
fcvm-09-885426 September 8, 2022 Time: 15:15 # 1

TYPE Original Research
PUBLISHED 14 September 2022
DOI 10.3389/fcvm.2022.885426

OPEN ACCESS

EDITED BY

Anne-Clémence Vion,
INSERM U1087 Institut du Thorax,
France

REVIEWED BY

Hong Jin,
Karolinska Institutet (KI), Sweden
Frrédéric Clarençon,
Hôpitaux Universitaires Pitié
Salpêtrière, France

*CORRESPONDENCE

Omer F. Eker
omer.eker@chu-lyon.fr

SPECIALTY SECTION

This article was submitted to
Atherosclerosis and Vascular Medicine,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 28 February 2022
ACCEPTED 27 July 2022
PUBLISHED 14 September 2022

CITATION

Eker OF, Lubicz B, Cortese M,
Delporte C, Berhouma M, Chopard B,
Costalat V, Bonafé A,
Alix-Panabières C, Van Anwterpen P
and Zouaoui Boudjeltia K (2022)
Effects of the flow diversion technique
on nucleotide levels in intra-cranial
aneurysms: A feasibility study providing
new research perspectives.
Front. Cardiovasc. Med. 9:885426.
doi: 10.3389/fcvm.2022.885426

COPYRIGHT

© 2022 Eker, Lubicz, Cortese,
Delporte, Berhouma, Chopard,
Costalat, Bonafé, Alix-Panabières, Van
Anwterpen and Zouaoui Boudjeltia.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Effects of the flow diversion
technique on nucleotide levels
in intra-cranial aneurysms: A
feasibility study providing new
research perspectives
Omer F. Eker1,2*, Boris Lubicz3, Melissa Cortese4,
Cedric Delporte4, Moncef Berhouma5, Bastien Chopard6,
Vincent Costalat7, Alain Bonafé7,
Catherine Alix-Panabières8,9, Pierre Van Anwterpen4 and
Karim Zouaoui Boudjeltia10

1Department of Neuroradiology, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France,
2CREATIS Laboratory, UMR 5220, U1206, Université Lyon, INSA-Lyon, Université Claude Bernard
Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France, 3Department of Interventional
Neuroradiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium,
4RD3–Pharmacognosy, Bioanalysis, and Drug Discovery and Analytical Platform, Faculty
of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium, 5Department of Vascular
Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France, 6Scientific
and Parallel Computing Group, CUI, University of Geneva, Geneva, Switzerland, 7Department
of Neuroradiology, Hôpital Gui de Chauliac, Montpellier, France, 8Laboratory of Rare Human
Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier,
France, 9CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France, 10Laboratory
of Experimental Medicine (ULB 222), Medicine Faculty, Université Libre de Bruxelles, CHU
de Charleroi, Charleroi, Belgium

Introduction: The flow diverter stent (FDS) has become a first-line

treatment for numerous intra-cranial aneurysms (IAs) by promoting aneurysm

thrombosis. However, the biological phenomena underlying its efficacy

remain unknown. We proposed a method to collect in situ blood samples

to explore the flow diversion effect within the aneurysm sac. In this feasibility

study, we assessed the plasma levels of nucleotides within the aneurysm sac

before and after flow diversion treatment.

Materials and methods: In total, 14 patients with unruptured IAs who were

selected for FDS implantation were prospectively recruited from February

2015 to November 2015. Two catheters dedicated to (1) FDS deployment and

(2) the aneurysm sac were used to collect blood samples within the parent

artery (P1) and the aneurysm sac before (P2) and after (P3) flow diversion

treatment. The plasma levels of adenosine monophosphate (AMP), adenosine

diphosphate (ADP), and adenosine triphosphate (ATP) at each collection point

were quantified with liquid chromatography and tandem mass spectrometry.

Results: The aneurysms were extradural in nine (64.3%) patients and intra-

dural in five (35.7%) patients. They presented an average diameter of

15.5 ± 7.1 mm, height of 15.8 ± 4.6 mm, and volume of 2,549 ± 2,794 ml.

In all patients (100%), 16 FDS implantations and 42 in situ blood collections
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were performed successfully without any complications associated with the

procedure. The ATP, ADP, and AMP concentrations within the aneurysm sac

were decreased after flow diversion (p = 0.005, p = 0.03, and p = 0.12,

respectively). Only the ATP levels within the aneurysm sac after flow diversion

were significantly correlated with aneurysm volume (adjusted R2 = 0.43;

p = 0.01).

Conclusion: In situ blood collection within unruptured IAs during a flow

diversion procedure is feasible and safe. Our results suggest that the flow

diversion technique is associated with changes in the nucleotide plasma levels

within the aneurysm sac.

KEYWORDS

intra-cranial aneurysm, flow diversion, nucleotides, in situ blood collection,
thrombosis – etiology

Introduction

The flow diversion technique is recognized as a safe and
efficacious first-line therapy for selected intra-cranial aneurysms
(IAs). Although initially dedicated to the treatment of large
or giant complex IAs in proximal intra-cranial arteries (i.e.,
the internal carotid or vertebral arteries), this technique has
been expanded to various types of aneurysms and locations,
such as ruptured aneurysms (1). Unlike surgical clipping and
endovascular coiling, which target the aneurysm itself, the
flow diversion technique relies on the primary endoluminal
reconstruction of the parent vessel through the deployment
of a flow diverter stent (FDS), thus leading to the secondary
occlusion of the aneurysm (1, 2). The aneurysm cure results
from intra-saccular thrombosis are favored by this technique
and therefore are not immediate but progressive. Indeed, a
recent meta-analysis has reported complete occlusion rates
of 68% (65–72%) and 90% (88–92%) with this technique in
follow-up before 6 months and at 6–12 months, respectively
(3, 4).

Despite the increasing use of FDSs in recent years and
the introduction of newer-generation surface-modified FDSs,
the mechanism of flow diversion and its therapeutic effects
remain unclear. Two mechanisms are commonly understood
to be involved in FDS action: (1) the hemodynamic alteration
in the aneurysm sac induced by the flow redirection within the
parent vessel and (2) the promotion of endothelialization at the
aneurysm neck favored by the implant acting as a “scaffold”
that increases endothelial cell migration and colonization (2,
5, 6). These two mechanisms, dependently or independently,
have been proposed to explain the intra-saccular thrombosis
resulting from the treatment and leading to IA cure. Numerous
studies exploring these two mechanisms have improved the
understanding of this technique (2, 7–9). However, they have
not provided a comprehensive picture of the flow diversion

effect that may explain why as many as 10% of IAs treated with
FDSs remain patent at 1-year follow-up (4).

Little is known regarding the biological phenomena induced
by the flow diversion technique within the IA. Notably, the effect
of intra-saccular blood stasis on platelet aggregation remains
unknown. Nucleotides (intra- and/or extracellular) play diverse
physiological roles but are pathological under certain conditions
(10). The role of adenosine diphosphate (ADP) in platelet
aggregation through the P2Y12 receptors is well known, and
many antiplatelet therapies target its action (11). Adenosine
triphosphate (ATP) is released from erythrocytes and platelets
under certain pathophysiological conditions, such as hypoxia
or venous stasis (12). ATP is also known to induce platelet
aggregation in whole blood via conversion to ADP by ecto-
ATPases on leukocytes (11).

In this article, we propose an original investigative technique
to collect blood samples from the aneurysm sac during
endovascular treatment (EVT) of unruptured IAs with the flow
diversion technique. We demonstrated its feasibility in patients
treated with FDSs for unruptured IAs. The collected blood
samples were analyzed to assess the levels of intra-saccular
nucleotides before and after flow diversion treatment.

Materials and methods

Population

In total, 14 patients with unruptured IAs who
were selected for FDS implantation were prospectively
recruited from February 2015 to November 2015 in
two INR centers. The indications for FDS implantation
were assessed after a multidisciplinary meeting at the
relevant institution for all patients. Local ethics committee
guidelines were followed for this study (DGRI CCTIRS
MG/CP 2012.528; Comité d’Ethique du CHU de Lyon;
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Lyon/France). Informed consent was obtained from all
patients. This work was funded partly by the THROMBUS
VPH Project (7th Framework Programme/Seventh
Framework Programme of European Commission/Virtual
Physiological Human ICT-2009.5.3/Project reference: 269966;
http://www.thrombus-vph.eu).

Aneurysm treatment

All patients were treated under general anesthesia with
a biplane angiographic system (Phillips Allura, Philips, Best,
Netherlands) after preparation according to the institutional
protocol common to both centers (loading dose of 300 mg
of clopidogrel administered 1 day before EVT; systemic
heparinization administered during the endovascular procedure
and stopped at the end of the treatment; per-procedural loading
dose of 300 mg of acetylsalicylic acid after FDS deployment;
and double antiplatelet therapy initiated for 6 months starting
on day 1 after treatment, with 75 mg of acetylsalicylic acid
and 75 mg of clopidogrel per day). The aneurysm and parent
vessel underwent 3D rotational angiography before the EVT,
thus allowing for 3D reconstruction and treatment planning.
One or more FDSs were deployed in one session according to the
aneurysm neck size (PipelineTM Embolization Device, PEDTM,
ev3-Covidien, Irvine, CA, United States; Flow Redirection
Endoluminal Device, FREDTM, Microvention Terumo, Aliso
Viejo, CA, United States; and p64 Flow Modulation Device,
Phenox, Germany). If deemed necessary by the interventional
neuroradiologist, additional coiling was performed (Target
Coils, Stryker Neurovascular, Fremont, CA, United States).

Aneurysm assessment

The 3D aneurysms and parent vessel geometries
were segmented and reconstructed from the 3D
angiographic acquisition before the EVT (spatial resolution
0.48 mm × 0.48 mm), according to a new active contour
method dedicated to the near real-time segmentation of 3D
objects with the level-set method (13). This method allowed for
the calculation of the two maximal diameters (mm), the depth
(mm), the neck size (mm), and the volume (i.e., the volume
of the patent intra-saccular lumen; mm3) of all aneurysms in
dedicated software (ITK-SNAP, Penn Image Computed and
Science Laboratory, University of Pennsylvania, United States).

In vivo intra-aneurysmal blood
collection

The principle of the technique relies on using the catheter
normally dedicated to the FDS deployment and to coiling for

the blood collection. During the EVT, a 0.027-inch Marksman
Microcatheter (ev3 Neurovascular, Irvine, CA, United States)
dedicated to FDS deployment was positioned within the parent
artery and allowed for blood collection at the P1 position
(i.e., parent artery catheter, PAC). The catheter was positioned
upstream of the target IA for blood collection. The PAC
was then positioned in the parent artery downstream of the
IA for FDS deployment. Before FDS deployment, a 0.021-
inch Headway Microcatheter (Microvention Terumo, Aliso
Viejo, CA, United States) normally dedicated to coiling was
positioned within the aneurysm sac and allowed for blood
collection at this position (i.e., intra-IA catheter, IIAC). The
deployment of the FDS while the IIAC was within the aneurysm
lumen enabled the aneurysm neck to be covered and the
IIAC to be jailed. The intra-aneurysmal blood samples were
collected via the IIAC within the aneurysm sac before and after
FDS deployment (blood collection P2 and P3, respectively).
All microcatheter navigations were performed with 0.014-
inch Synchro Guidewires, which were withdrawn before blood
collection (Stryker Neurovascular, Fremont, CA, United States).
From each catheter at each location (i.e., P1, P2, and P3), before
each blood sampling, the catheter (i.e., either PAC or IIAC)
was purged with a 1-cc Luer lock syringe (Becton Dickinson,
Belgium). The purged volume corresponded approximately to
their dead volume space of 0.87 and 0.55 ml for the 0.087-inch
and the 0.021-inch catheters, respectively. At the end of the
purging, when the blood appeared at the tip of the syringe, a new
1-cc Luer lock syringe was used to collect at least 700 µl of blood.
The catheter purging and the blood collection were performed
slowly during approximately 30 s of aspiration to minimize
the red blood cell (RBC) hemolysis. Thus, three samples per
patient were yielded, in the following order, to minimize the
intra-luminal device manipulation:

- Within the parent artery upstream of the aneurysm and
before the flow diversion (P1);

- Within the aneurysm sac before the flow diversion (P2);
and

- Within the aneurysm sac after 10 min of flow diversion
(P3).

After collection, the blood samples were collected in 1.5 ml
tubes containing citrate and stored at +4◦C for less than 2 h.
Second, the samples were centrifuged at 3,500 g for 10 min, thus
allowing for separation and extraction of the serum, which was
stored at −80◦C until further analyses.

Biological analyses

In each blood sample, the plasma levels of adenosine
monophosphate (AMP), ADP, and ATP were quantified through
a liquid chromatography and tandem mass spectrometry
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TABLE 1 Population and aneurysm characteristics, procedural features, and follow-up.

Case Age Sex Symptoms Aneurysm characteristics Procedural characteristics Occlusion
(time)

Localization* Height
(mm)

Diameter
1 (mm)

Diameter
2 (mm)

Volume
(mm3)

Mural
thrombus

n of
FDSs

Type of
FDS

Coiling Complications Contrast
media

stagnation

1 30 M Cavernous sinus
syndrome

R ICA C4 12.00 14.00 15.00 1319 No 2 PEDTM No No Yes Complete
(12 months)

2 55 F Cavernous sinus
syndrome

R ICA C4 24.50 33.50 22.50 9669 No 1 PEDTM Yes No Yes Complete
(48 months)

3 43 M Headaches L ICA C5 20.00 16.00 20.00 3351 No 1 PEDTM No No Yes Complete
(48 months)

4 79 F Incidental discovery L ICA C2 12.00 8.00 9.00 452 No 1 PEDTM No No Yes Complete
(12 months)

5 50 M Incidental discovery L Pericallosal a. 9.00 5.60 7.70 203 Yes 1 PEDTM No No Yes Complete
(6 months)

6 78 F Cavernous sinus
syndrome

R ICA C4 13.50 12.00 11.50 975 No 1 PEDTM No No Yes Complete
(12 months)

7 71 F Cavernous sinus
syndrome

R ICA C4 21.00 26.00 23.00 6575 No 1 PEDTM No No Yes Complete
(48 months)

8 63 F Cavernous sinus
syndrome

L ICA C4 10.00 13.00 18.00 1225 No 1 FREDTM No No Yes Complete
(6 months)

9 61 F Headaches L ICA C1–C2 18.00 9.50 9.50 851 No 1 PEDTM Yes No No Complete
(12 months)

10 53 M Incidental discovery R ICA C2 18.50 7.80 8.00 604 No 1 PEDTM Yes No Yes Complete
(12 months)

11 51 F Incidental discovery R ICA C3 13.00 19.00 20.00 2587 No 2 P64 No No Yes Complete
(6 months)

12 61 F Headaches R ICA C2 14.00 7.00 8.00 411 No 1 PEDTM Yes No No Complete
(12 months)

13 39 M Cavernous sinus
syndrome

R ICA C4 20.00 15.50 14.00 2272 Yes 1 PEDTM No No Yes Complete
(12 months)

14 58 F Cavernous sinus
syndrome

R ICA C3–C4 16.00 20.00 31.00 5194 Yes 1 PEDTM No No Yes Complete
(12 months)

F, female; FDS, flow diverter stent; FREDTM , flow redirection endoluminal device; ICA, internal carotid artery; L, left; M, male; P64, P64 flow modulation device; PEDTM , PipelineTM embolization device; R, right;
*ICA localizations according to Fisher’s classification: C1, communicating segment; C2, ophthalmic segment; C3, clinoidal segment; C4, cavernous segment; C5, intra-petrous.
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method that was previously developed, validated, and fully
described by our team (10). This technique provides the
advantages of a lower limit of quantification than other methods
and the ability to simultaneously quantify all nucleotides within
a single injection within less than 10 min on the same blood
sample (10).

Statistical analyses

Categorical variables are expressed as counts and
percentages. Continual variables are expressed as
mean ± standard deviation (SD). The nucleotide levels at
the three blood collection points (P1, P2, and P3) were
compared with Student’s t-test, the Mann–Whitney rank sum
test, the one-way analysis of variance (ANOVA), or the Kruskal–
Wallis rank test, according to the results of the Shapiro–Wilk
normality test and the Levene test of homogeneity. Linear
regression analyses were performed to evaluate any correlation
between the nucleotide levels and the aneurysm volume at
each blood collection point. A two-sided p-value of <0.05
was considered statistically significant. Statistical analyses
were performed in R version 3.2 (R Foundation for Statistical
Computing, Vienna, Austria) (14).

Results

Table 1 summarizes the demographic characteristics of
the population, the aneurysm characteristics, the procedural
features, and the aneurysm occlusion status at follow-up.
Figure 1 shows the blood collection workflow during EVT.

Table 2 summarizes the nucleotide plasma concentrations at
each blood collection point.

Figure 2 illustrates the sampling process in one
case (in patient 2).

Figures 3–5 report the nucleotide levels at each blood
collection point.

Figure 6 reports the distribution of ATP levels according to
the aneurysm volume.

Study population

In total, 9 (60.0%) patients were women. The median
patient age was of 57 ± 15 years (range 30–79 years). Seven
(50%) patients had a cavernous sinus syndrome associated
with headaches, ipsilateral ptosis, and ophthalmoplegia, due
to III, IV, or VI nerve palsy, without any decrease in visual
acuity or pupillary abnormalities. Three (21.4%) patients had
headaches whose symptoms had no confirmed relationship with
their aneurysms. Four (28.6%) patients were asymptomatic,
and their aneurysms were incidentally discovered (Table 1).

The patients’ medical histories included high blood pressure
in three (21.4%) patients, cigarette smoking in six (42.9%)
patients, and diabetes mellitus in one (7.1%) patient. No
patients presented any vascular steno-occlusive lesions of
the supra-aortic trunks or intra-cranial arteries or any
hypoxic conditions.

Aneurysm characteristics

One (7.1%) partially thrombosed aneurysm was located
on the left pericallosal artery, and all other aneurysms
were located on the right (n = 9, 64.3%) and the left
(n = 4, 28.6%) intra-cranial carotid arteries (Table 1),
from their intra-petrous segment to termination. Nine
(64.3%) aneurysms were in extradural locations, and
five (35.7%) were in intra-dural locations. The maximal
aneurysm diameters were 1 and 2, heights and volumes
were 14.8 ± 7.8 mm (range 5.6–33.5 mm), 15.5 ± 7.1 mm
(range 7.7–31.0 mm), 15.8 ± 4.6 mm (range 9–
24.5 mm), and 2,549 ± 2,794 ml (range 203–9,669 ml),
respectively. Three (21.4%) aneurysms presented a mural
thrombus (Table 1).

Procedure safety and aneurysm
occlusion

In all patients, the intra-arterial and intra-aneurysmal
navigations with the IIAC and the PAC were performed
successfully. The aneurysms were treated with PEDTM in
12 (85.7%), FREDTM in 1 (7.1%), and P64 in 1 (7.1%)
cases, respectively. In two (14.3%) patients, two FDSs were
deployed in a telescopic fashion to treat the aneurysm. All
stents were successfully deployed. Intra-aneurysmal contrast
media stagnation after flow direction was observed in 12
(85.7%) patients. In three (21.4%) cases, the aneurysm coil
embolization was deemed necessary by the physician and
was performed in addition to the flow diversion technique
through the jailed IIAC after P3 blood collection (Table 1).
Apart from a groin hematoma in one (7.1%) patient, no
postoperative complications were observed in all procedures.
In all patients (100%), the blood collection through the
PAC and IIAC did not affect the EVT and its duration. The
aneurysm occlusion was obtained between 6 and 48 months
of follow-up in all patients. The occlusion status did not
change during the follow-up between 2015 and 2021.
No patients presented any clinical consequences of the
intra-cranial blood sampling. All patients who initially
presented with cavernous sinus syndrome showed clinical
improvement or complete regression of their symptoms
at the 1-year follow-up. The other patients remained
clinically unchanged.
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FIGURE 1

Illustrates the different steps of the blood collection within the parent vessel and the aneurysm sac during the endovascular treatment with the
flow diverter stent.

TABLE 2 Nucleotide plasma concentrations at each blood
collection point.

Blood collection points p-Value

P1 P2 P3

AMP (µM) 911 ± 520 624 ± 385 600 ± 393 0.12*

ADP (µM) 1,163 ± 286 1,009 ± 283 903 ± 467 0.03*

ATP (µM) 2,566 ± 453 2,158 ± 193 2,049 ± 179 0.005**

P1, parent vessel; P2, intra-aneurysmal before flow diversion stent implantation; P3,
intra-aneurysmal after flow diversion stent implantation; ADP, adenosine diphosphate;
AMP, adenosine monophosphate; ATP, adenosine triphosphate.
For each measured metabolite, a one-way analysis of variance (ANOVA; *) or the
Kruskal–Wallis test (**) was used to compare the mean values among the three blood
collection points, according to the results of the Shapiro–Wilk normality test and the
Levene test for homogeneity of variance.

Biological results

In total, 42 blood collections were successfully performed
in 14 patients without any difficulties or per-procedural
complications. We observed significantly lower ATP, ADP,
and AMP concentrations within the aneurysm sac after flow

diversion than within the parent artery and the aneurysm sac
before flow diversion (p = 0.005, p = 0.03, and p = 0.01,
respectively; Table 2 and Figures 3–5). No differences were
observed in the nucleotide levels between smoker (n = 6) and
non-smoker (n = 8) patients. The ATP level within the aneurysm
sac after flow diversion was significantly correlated with the
aneurysm volume (adjusted R2 = 0.44, p = 0.01; Figure 6
and Supplementary material). No significant correlations were
observed between aneurysm volume and ATP levels within
the aneurysm sac before flow diversion or within the parent
vessel, or AMP and ADP levels at each blood collection point
(Supplementary material).

Discussion

In this work, we used an approach to collect blood samples
within the parent artery and the aneurysm sac during EVT
for IAs with the flow diversion technique. In this feasibility
study, the collected blood was analyzed, and the nucleotide levels
were measured. The blood collection had no consequences on
the EVT, and there were no complications observed in any
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FIGURE 2

Illustrates a patient presenting a giant aneurysm of the right internal carotid artery (segment C4; red asterisk; A–E). The 0.027-inch catheter for
the first blood collectio (P1) is visible in panels (B–E) (single black arrow). The 0.021-inch catheter within the aneurysm sac is visible in panels
(B–E) (double black arrows). The flow diverter stent is deployed in panels (C–E) (triple black arrows).

FIGURE 3

The boxplot shows the results of the measured AMP levels (in µM) within the parent vessels (P1) and the aneurysm sacs before (P2) and after (P3)
flow diversion. No significant differences were observed for the AMP levels between the three sampling locations.
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FIGURE 4

The boxplot shows the results of the measured ADP levels (in µM) within the parent vessel (P1) and the aneurysm sac before (P2) and after (P3)
flow diversion. The ADP levels were significantly lower within the aneurysm sacs after flow diversion (P3) compared to the ones in the parent
vessels (P1) (p = 0.008).

patients. First, we observed significant decreases in the ATP
and ADP levels within the aneurysm sac after flow diversion.
Second, our results showed a significant correlation between
the intra-aneurysmal ATP decrease after flow diversion and the
aneurysm volume.

The flow diversion technique has revolutionized the
treatment of large and complex IAs that were difficult (or
even impossible) to treat with previous techniques. Compared
with conventional techniques (i.e., coiling, stent-assisted coiling,
parent vessel occlusion, or surgical clipping), FDSs showed
higher rates of occlusion and lower rates of recurrence without
increasing the rate of complications in the treatment of specific
aneurysms, such as giant or complex aneurysms (3, 4, 15).
Their efficacy relies on the ability to redirect the blood flow
out of the aneurysmal sac, thus decreasing the intra-aneurysmal
blood flow and the endothelization of the aneurysm neck, hence
promoting thrombosis of the aneurysm and its regression (2).
Despite the improvements in IA treatment with this technique,

its mechanism of action is not fully understood. Previous studies
on flow diversion have focused on hemodynamic alterations
within the aneurysm sac and/or the endothelization processes
within the parent artery that promote IA thrombosis (2, 5,
6). Those studies have not provided information on the intra-
saccular biological phenomena occurring after flow diversion.
We believe that these phenomena may play a key role in
the curative effect of this technique. Better knowledge of the
blood modification within the IA induced by flow diversion
should aid in understanding its efficacy (or lack thereof) and
eventually enable the identification of patients who will not
benefit from this technique.

However, any exploration of the blood biology within the
IA lumen requires in situ real-time blood samples that are
not available or accessible in normal conditions or after IA
treatment through conventional techniques. A method to obtain
sufficient usable blood to explore these mechanisms is lacking.
The ideal technique to obtain in situ blood samples should
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FIGURE 5

The boxplot shows the results of the measured ATP levels (in µM) within the parent vessel (P1) and the aneurysm sac before (P2) and after (P3)
flow diversion. The AMP levels were significantly lower within the aneurysm sacs before (P2) and after (P3) flow diversion compared to the ones
in the parent vessels (P1) (p = 0.018 between P1 and P2, and p = 0.003 between P1 and P3).

meet several criteria. First, it must be safe, posing minimal
complication risk to patients. Second, it must be as rapid as
possible to prevent or minimize any potential modification of
the assessed biological environment by the collection devices
or techniques. Third, it must be standardized and reproducible
to allow the comparison of blood samples in the same patient
or among patients. Fourth, it must be as easy as possible to
perform, to enable the dissemination of the technique, and to
promote research in this field. For these purposes, we propose a
minimally invasive method to achieve this goal while meeting
all these criteria. Our approach exploits the flow diversion
EVT itself and the materials used during the procedure, i.e.,
the catheters dedicated to the intra-cranial navigation, the FDS
deployment, and additional coiling of the aneurysm if necessary.
The catheters are positioned sequentially within the parent
artery and the aneurysm sac. The blood collection at each
targeted location lasts approximately 30 s through the catheters,
a duration compatible with that of EVT. The last collection
(i.e., within the aneurysm sac after flow diversion) is performed

10 min after flow diversion, on the basis of previous reports of
the changes in nucleotide levels in venous blood after 4 min of
stasis (10), to maximize the chances of detecting any changes in
nucleotide levels after flow diversion.

The nucleotides in the blood play complex and various
roles that are closely associated with local conditions. Indeed,
in addition to functioning as an intra-cellular energy source,
ATP and ADP are important extracellular signaling molecules
(16). Extracellular circulating ATP is rapidly degraded into ADP,
AMP, and adenosine by ectonucleotidases (17). ATP and ADP
activate P2 receptors on various cells, particularly blood cells,
such as platelets and endothelial cells (18, 19), thus regulating
several physiological responses. These responses include platelet
aggregation, vascular tone (20), and the release of endothelial
factors. At least 15 nucleotide-activated cell surface receptors
have been found in humans (P2X and P2Y receptors) and show
remarkably varied physiological responses.

Platelet aggregation is mediated by ADP through the
P2Y12 receptors (21, 22), in a process involving leukocytes,
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FIGURE 6

The scatter plot reports the ATP levels (in µM) within the
aneurysm sacs after flow diversion (P3) according to the
aneurysm volumes (in mm3). A significant correlation was
observed between the ATP levels within the aneurysm sacs after
flow diversion (P3) and the aneurysm volumes (R2 = 0.44;
p = 0.014).

which present cell surface enzymes that degrade ATP into
ADP and then AMP, such as the ectonucleoside triphosphate
diphosphohydrolase-1 (also known as cluster of differentiation
39, CD39) (23). ATP itself is not considered a platelet-
aggregating agent. However, it can induce platelet aggregation
when it is added to whole blood (24). In addition, RBCs play
a role in platelet aggregation by capturing adenosine (23).
These mechanisms may be involved in the progressive intra-
aneurysmal thrombosis observed after flow diversion treatment.

Our work showed that ATP and ADP significantly decrease
within the aneurysm sac after flow diversion and that
aneurysmal volume may influence these phenomena (or at least
the ATP decrease). However, given the limited sample size
and analyses performed (i.e., measurement of only nucleotide
levels), our results cannot explain this observation or indicate
a clear conclusion. At most, among the potentially unknown
mechanisms triggered by flow diversion, the decreases in ATP
and ADP might suggest that flow diversion induces intra-
aneurysmal local hypoxia. Indeed, RBCs are known to function
as O2 sensors, which contribute to the regulation of blood
flow and O2 delivery. They perform this role by releasing ATP
depending on the oxygenation state of hemoglobin and the
pH (20, 25–33). In this physiologically important signaling
system, when O2 decreases, ATP is rapidly degraded to ADP
in circulation by ectonucleotidases. The ADP in turn acts on
P2Y13 receptors on RBCs in a negative feedback pathway for
the inhibition of ATP release (34). The increase in ADP levels
is also known as a primary mediator of platelet aggregation,
thus leading to a sustained response via activation of the
P2Y12 receptors (21, 22). The rapid degradation of ATP into

ADP within the stagnating blood “trapped” outside the FDS
might explain the decrease in ATP. After its initial transient
increase secondary to the previously described mechanism, the
consumption of ADP by the P2Y13 receptors on RBCs and the
P2Y12 receptors on platelets might explain the decrease in ADP.

Limitations

Our work is hypothesis generating but does not provide
further answers because of several limitations. First, this was
a preliminary feasibility study. Hence, we included only a
limited number of patients, and we assessed only the nucleotide
levels. The patients had large intra-cranial, mostly internal
carotid artery, aneurysms. This design aspect was aimed at
minimizing the risk of complications to the patients while
maximizing the possibility of successfully collecting blood
samples within the aneurysmal sac. Indeed, the internal carotid
artery aneurysms are proximal and less prone to accessibility
issues than distally located aneurysms. The large aneurysm
size also minimized the risk of complications during the
intra-aneurysmal catheter manipulation (particularly the risk
of aneurysm perforation). Second, we did not evaluate the
effects of platelet activation or many other factors with roles
in thrombosis, such as the von Willebrand factor, thrombin,
thromboxane A2, coagulation activators (such as thrombin-
antithrombin complex), and components of the glycocalyx
at the endothelial cell surface. Third, we did not consider
the dual platelet inhibition required with flow diversion
treatment in the analyses of the nucleotide levels. The
antiplatelet regimen is commonly based on a combination of
acetylsalicylic acid and a P2Y12 inhibitor (i.e., clopidogrel,
prasugrel, or ticagrelor) that targets the P2Y12 receptor
and therefore may theoretically affect nucleotide levels. For
instance, ticagrelor has been reported to induce ATP release
from human RBCs (35). Fourth, the intra-aneurysmal flow
conditions after flow diversion were also not considered in
the analyses of the nucleotide levels. The intra-aneurysmal
hemodynamic alterations due to flow diversion markedly vary
from no effects (i.e., almost normal patency of the aneurysm)
to abrupt stasis. In the first scenario, few or no changes
in nucleotide levels within the aneurysm when compared
with the parent vessel can reasonably be expected, whereas
maximal changes should be expected in stagnating blood.
In our work, the intra-aneurysmal contrast media stagnation
(indicating blood stagnation) was unevenly distributed and
was observed in 85.7% of patients, thus preventing us from
drawing any conclusion. Finally, we collected blood within
the aneurysm sac after flow diversion at only one time
point (i.e., 10 min after the FDS deployment). Sequential
and consecutive blood collection might be considered to
analyze the kinetics of the intra-aneurysmal biological cascades
after flow diversion.
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Conclusion

Blood collection within unruptured IAs during a flow
diversion procedure is feasible and appeared safe in our
case series. Our preliminary work suggests that flow
diversion treatment is associated with changes in plasma
nucleotide levels within the aneurysm sac after flow diversion.
Further studies in larger populations are needed to better
understand the mechanisms involved in thrombus formation
after flow diversion.
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