
CHAPTER5
CONCLUSIONS AND OUTLOOK

5.1 Summary of the main results and general conclusion

With its marine configuration possibly prone to self-reinforcing mechanisms, the question of
whether and when the WAIS will collapse under a warming climate remains unclear (Fox-Kemper
et al., 2021), and reducing this uncertainty is an urgent and prior matter. Despite the uncertain-
ties, recent studies suggest that the WAIS will lose mass in the future and eventually (partially)
collapse. The uncertainties essentially pertain to when, and to whether the weak Earth structure
beneath that area of the ice sheet may be a stabilising factor, as a rapid bedrock uplift in response
to ice mass loss has been shown to delay or even limit mass loss. In addition, the future behaviour
of the EAIS (with its sea-level potential of about 52 m SLE; Morlighem et al., 2020) is associated
with even larger uncertainties (Stokes et al., 2022; Fox-Kemper et al., 2021). The pending ques-
tion is: will the EAIS lose or gain mass in the future? More specifically, will the grounding line
retreat in its marine basins, and if so, can the associated mass loss be compensated by sufficient
mass gain due to increased snow accumulation in the interior of the ice sheet?

In this thesis, we have contributed to clarify and provide new insights to these questions, and
therefore on the long-term future of the Antarctic ice sheet. To do so, we have investigated the
influence of uncertainties in ice sheet–Earth system interactions on its future stability. Especially,
we have focused on the influence of the interactions with the bedrock and sea surface via GIA,
with the atmosphere via surface mass balance changes, and the ocean via sub-shelf melt changes.

In Chapter 3, while considering the regional heterogeneity in Antarctic Earth structure as well
as the influence of local gravitationally-consistent sea-surface changes, we have explored for the
first time the complete uncertainty range in Antarctic solid-Earth characteristics in a probabilistic
assessment where we analysed their impact on the response of the AIS to future warming. We
hence have produced Antarctic projections whose uncertainty ranges are solely due to the un-
certainty in viscoelastic properties. In Chapter 4, we have produced observationally-calibrated
projections of the future contribution of the AIS to GMSL changes based on an ensemble of
simulations considering key uncertainties in ice sheet–climate interactions. This ensemble thus
allows to investigate the future balance between sub-shelf melting and ice discharge on the one
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hand, and the changing surface mass balance on the other.

In other words, we have investigated in this thesis two main uncertainties about the future
evolution of the AIS: (i) will GIA be able to stabilise its marine areas, and (ii) will the surface
mass balance compensate for the ocean-driven mass loss? When tackling these questions, we
have mainly focused on the centennial-to-multi-millennial timescales. In addition, considering
ice–climate uncertainties only, we have proposed new estimates, with quantified uncertainties, of
the evolution of the Antarctic ice sheet over the current millennium.

Overall, we have shown that the ocean will be the main driver of Antarctic short-term mass
loss, leading to significant retreat in the WAIS (especially in the ASE), even under limited warm-
ing. Under sustained warming, however, this may lead to a complete WAIS collapse over the
course of the millennium, despite a stabilising weak solid Earth structure beneath West Antarc-
tica. In addition, our results suggest that a sustained warming will likely turn the EAIS into a
positive contributor to SLR over the course of the next century. Indeed, we project that the ocean-
driven grounding line retreat in its marine basins, which cannot be efficiently stabilised by GIA
feedbacks given the rigid structure of the solid Earth in that area, will progressively outweigh the
SMB. Finally, we have shown that the mitigating role of the SMB may strongly be reduced under
sustained warming, due to a significant increase in surface runoff with increasing temperatures,
hence further increasing the net AIS contribution to sea-level rise.

Below, we summarise the main results obtained in Chapter 3 and 4 by axing them following
the two main objectives of this thesis. We then provide directions for future research in the next
and last section.

5.1.1 The contribution of Antarctica to future sea-level rise

A first objective of this thesis was to contribute to the estimation of the future contribution of the
AIS to sea-level changes and its uncertainty by producing credible projections of long-term AIS
mass changes. In this framework, while the scope of Chapter 3 was not to carry out realistic pro-
jections of the AIS, we produced in Chapter 4 observationally-calibrated projections of the future
contribution of the AIS to global mean sea-level changes considering key uncertainties in ice–
climate interactions. Such projections thus contribute to estimating with quantified uncertainties
what may be the magnitude and the rate of the contribution of the AIS to future SLR.

Under a sustainable SSP1-2.6 socio-economic pathway (in which global warming is very
likely to be 1.3–2.4°C above pre-industrial levels by 2081-2100 and remain stable or even de-
crease thereafter; IPCC, 2021), our calibrated ensemble, similar to earlier studies (Golledge et al.,
2015; Bulthuis et al., 2019; Rodehacke et al., 2020; Garbe et al., 2020), projects that only part
of WAIS would be lost, limiting the AIS contribution to SLR to +0.79 m [-0.22 to +1.56 m]
by 2300 and +1.6 m [-0.47 to +3.12 m] by 3000 CE (with a high-end contribution attributed to
less likely ice–climate interactions, such as high sensitivity of sub-shelf melting to ocean thermal
forcing).

Under a high-emission SSP5-8.5 socio-economic pathway (in which global warming is very
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likely to be 3.3–5.7°C above pre-industrial levels by 2081-2100 and keep increasing thereafter;
IPCC, 2021), our calibrated ensemble projects a complete collapse of the WAIS, likely to be
completed before the year 2500 as well as significant retreat in the marine basins of the
EAIS occuring by the end of the millennium, also in agreement with previous estimates (Garbe
et al., 2020; Fox-Kemper et al., 2021; Bulthuis et al., 2019). More specifically, we find a higher
probability of grounding-line retreat in the Wilkes and Recovery basins than in the Aurora basin
(similar to, e.g., Garbe et al., 2020; Golledge et al., 2019), despite the fact that the latter is cur-
rently showing signs of ocean-driven ice-shelf thinning and associated mass loss (also reproduced
by our projections). Such continent-wide mass loss would lead to AIS contribution to SLR
equivalent to +2.82 m [+0.58 to 4.45 m] by 2300 +7.2 m [+3.5 to +13.45 m] by 3000 CE.

The above calibrated estimates of future AIS mass loss did not account for the lateral variabil-
ity nor the uncertainties in Antarctic viscoelastic properties. Therefore, taking into account the
findings from Chapter 3, we may expect

(i) a stabilising influence of the weak Earth structure beneath West Antarctica, and more par-
ticularly the ASE, likely leading to a reduction and/or delay in mass loss arising from the
WAIS, though probably not enabling to counteract the WAIS collapse projected under high-
emission scenarios at multi-centennial timescales, as well as

(ii) a longer tail towards high values at multi-centennial-to-millennial timescales, due to the
rigid rheology of the solid Earth beneath East Antarctica, hence providing a reduced sta-
bilising effect compared with simulations that use a spatially-uniform Earth deformation
model.

Therefore, our results confirm the already proposed point of view (e.g., Garbe et al., 2020;
Seroussi et al., 2020; Bulthuis et al., 2019; DeConto et al., 2021) that the trigger of future Antarc-
tic mass loss will occur in the WAIS. Thereby, we have contributed to reducing the uncertainty in
the shorter-term future evolution of the AIS. Our results also provide additional support to the as-
sessment that ‘a threshold for WAIS stability may be close to 1.5-2°C’ (Oppenheimer et al., 2019;
Fox-Kemper et al., 2021; McKay et al., 2022). Additionally, our projections seem to point out
that (similar to Golledge et al., 2019) present-day climate conditions are sufficient to commit
to a continuous retreat of Thwaites glacier.

5.1.2 What have we learned about the interactions of the ice sheet with the
Earth System?

A second objective of this thesis was to assess the influence on future AIS mass changes of
uncertainties approximating the current limits of our scientific understanding in the interactions
of the AIS with the other components of the Earth system. Overall, we have shown that such
uncertainties strongly modulate the response of the ice sheet to climate changes. In this context,
our results have allowed to reduce uncertainties and better identify the drivers of future Antarctic
mass loss, as well as the likely influence of GIA feedbacks.
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Interactions with the solid Earth and sea surface In Chapter 3, we have highlighted, similar
to previous studies (e.g., Gomez et al., 2015; Konrad et al., 2015; Larour et al., 2019), the overall1

stabilising influence of GIA feedbacks on ice dynamics. Our results suggest that GIA feedbacks
are not expected to substantially reduce SLR from marine-based ice in Antarctica over the 21st
century, although the local weak Earth structure beneath the ASE may give rise to a delay of
grounding-line retreat in this area at decadal timescales (as also suggested Kachuck et al., 2020).
We showed, also in line with previous studies (e.g., Gomez et al., 2015; DeConto et al., 2021),
that these processes may, however, become important at longer (multi-centennial-to-millennial)
timescales (Gomez et al., 2015), even leading in some cases to a re-advance of the grounding
line. Importantly, we have highlighted the importance of accounting for the spatial variability
in the Antarctic viscoelastic properties and shown that the pathway followed by the future AIS
is very sensitive to the solid-Earth structure adopted when evaluating the solid-Earth component
of GIA across Antarctica. Especially, we have shown that, at multi-millenial timescales, large
uncertainties arise from solid Earth structure below the EAIS (and in particular the Aurora basin),
hence highlighting that if we want to robustly predict the long-term future of the AIS, its solid-
Earth structure should be better constrained.

Interactions with the atmosphere As expected, the influence of the interactions with the at-
mosphere is less clear, due to an increase in competing processes (snow accumulation and surface
runoff) in a warming climate. Nevertheless, we have contributed in Chapter 4 to a better approx-
imation of how the Antarctic SMB may evolve in a warming climate. Especially, we have shown
that, at first, the signal of SMB changes in a warming climate will be dominated by an increase
in snow accumulation, as surface runoff remains limited. However, if regional surface warm-
ing increases beyond a threshold of 7.5°C above present-day (typically associated with a slightly
lower global warming), we have highlighted that the increase in surface runoff will progressively
compensate for the increase in snow accumulation, therefore reducing the mitigating potential of
the ice-sheet SMB. In addition, under such regional warming (+7.5°C), we find a likely negative
SMB over the ice shelves, hence directly contributing to the weakening of their buttressing poten-
tial. Beyond +15°C, we find that runoff rates on the grounded ice sheet would likely be sufficient
to fully compensate for the snow accumulation, implying that SMB no longer mitigates mass
losses and directly contributes to SLR. Whether such thresholds may be crossed and when will
be dictated by the trajectories of future atmospheric warming. In addition, our results, similar to
others before (Seroussi et al., 2020; Gilbert and Kittel, 2021; Trusel et al., 2015), have pointed out
that the increase in surface runoff as atmospheric warming takes place may favour an acceleration
of mass loss by way of hydrofracturing-driven weakening of the buttressing ice shelves. Finally,
we have also highlighted the importance of the melt-elevation feedback, which has a significant
influence of the future evolution of the AIS, and this already at centennial timescales.

Interactions with the ocean In line with recent findings (e.g., Paolo et al., 2015; Gudmundsson
et al., 2019; Golledge et al., 2019; Bulthuis et al., 2019), we have highlighted in Chaper 4 the

1with the exception of less frequent classes of behaviour, see section 3.1
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crucial importance of ice–ocean interactions on the future evolution of the AIS, as ocean thermal
forcing triggers mass loss by way of ice-shelf thinning. Especially, our results pointed out that
the ocean will be the main driver of Antarctic short-term mass loss, triggering significant ice loss
in the WAIS already during this century. Additionally, we have highlighted the strong potential
influence of ice–ocean interactions at longer (multi-centennial) timescales under high-emission
pathways, under which they will likely trigger a complete WAIS collapse, as well as significant
grounding-line retreat in the EAIS, where ocean-driven mass loss will take over atmospheric-
driven mass gain as of the beginning of the next century. Overall, we have shown that ice–ocean
interactions currently represent the biggest contributor to uncertainties in future AIS mass changes
amongst ice–Earth system interactions at decadal-to-multicentennial timescales.

5.2 Discussion and directions for future research

5.2.1 Improving the representation of ice–Earth system interactions

It is important to underline that not all interactions between the AIS and its surrounding environ-
ment have been explored here. For example, we have not evaluated the influence of the geother-
mal heat flux, subglacial water pressure, nor the interactions of the ice sheet with the sea ice (Fyke
et al., 2018). Some of the two-way interactions between the ice sheet and other components of the
Earth system have been approximated here by using parameterisations or reduced-order models
(such as the PDD model, parameterisations of the ocean circulation below the ice shelves, and the
Elementary GIA model), allowing to (sometimes roughly) approximate the influence of changes
in ice-sheet/shelf geometry on the surface mass balance (SMB–elevation feedback), sub-shelf
melting, and isostasy and gravity (GIA feedbacks). However, several additional two-way interac-
tions between the ice sheet and the Earth system (Fyke et al., 2018) have not been explored here,
leading to the underestimation of feedback mechanisms, such as the influence of ice-sheet topog-
raphy changes on atmospheric circulation, of AIS mass changes on the Earth’s rotation vector or
other ice masses, or of fresh water input (essentially from iceberg fluxes and sub-shelf melting)
on the oceanic stratification and circulation, and others, which, in turn, influence the ice-sheet
evolution.

Clearly, the future of Antarctic (or more generally climate) projections resides in a full cou-
pling between the different components of the Earth system. Unfortunately, the significant com-
putational resources requested by such coupled simulations hampers the realisation of large en-
semble of projections and hence the application of an uncertainty quantification framework.
Therefore, while high priority should be (and currently is, e.g., Siahaan et al., 2021; Pelletier
et al., 2022) accorded to facilitating and improving fully coupled simulations, a simultaneous
direction for future research resides in improving our current approximations of the ice-sheet in-
teractions with the Earth system. In this framework, we believe that the Elementary GIA model
developed in the context of this thesis represents an interesting tool and improvement for approx-
imating GIA feedbacks in a computationally-efficient way. Further research may, for example,
focus on better constraining the influence of local ice-sheet elevation/geometry changes on, no-
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tably, the magnitude and the pattern of precipitations, allowing to improve the relatively crude
approximations of elevation feedback used here. For example, a line of research may be, as an
intermediate step to two-way coupling between an ice-sheet model and an atmospheric model,
to evaluate the evolution of RCM projections using an evolving ice-sheet geometry and try to
derive/constrain updated parameterisation(s) of SMB–elevation feedbacks.

5.2.2 Towards credible sea-level projections

Capturing observed trends of mass change remains a challenge for ice-sheet models. As a con-
sequence, uncertainty in AIS projections is increased, especially for this century (Fox-Kemper
et al., 2021; Seroussi et al., 2020; Reese et al., 2020; Aschwanden et al., 2021). Nevertheless,
AIS projections are increasingly evaluated or calibrated with modern or past observational con-
straints (Nias et al., 2019; Edwards et al., 2019; DeConto et al., 2021; Lowry et al., 2021). Such
conditioning on observations allows to obtain more realistic present-day (i.e., initial) ice-sheet
conditions (typically geometry and velocity) and also to constrain uncertainty in a probabilis-
tic framework (Fox-Kemper et al., 2021; Aschwanden et al., 2021). AIS projections are also
increasingly better designed to quantify uncertainties, for example by way of model intercompar-
ison projects (Seroussi et al., 2019, 2020; Levermann et al., 2020), statistical emulation (Edwards
et al., 2019, 2021; Bulthuis et al., 2019), and large ensembles with space-filling perturbed param-
eter spaces (Bulthuis et al., 2019; Nias et al., 2019). Providing a protocol for the historical runs
used to bring the ice sheet to present day and apply criteria for sub-selecting projections from
the multi-model ensemble based on the ability to reproduce historical changes will likely become
standard in future model intercomparison projects, such as ISMIP7. With such improvements,
we are on the way towards increasingly credible and robust projections of ice-sheet mass changes
(Aschwanden et al., 2021; Fox-Kemper et al., 2021).

In this framework, although not fully accounting for all types of uncertainties, we believe that
this thesis represents a step forward in its exploration of parametric uncertainties and its applica-
tion of a Bayesian framework allowing to historically-constrain the ice-sheet model projections.
Applied in a multi-model ensemble as well as on a broader (less climate and solid Earth-oriented)
parametric uncertainty exploration, it would constitute a significant step forward in producing
credible projections of the contribution of the AIS to sea-level changes (Edwards et al., 2019;
Aschwanden et al., 2021). To continue in this direction, future work should focus on applying
a similar Bayesian calibration approach on an ensemble considering (i) climate and solid-Earth
uncertainties together as well as (ii) including uncertainties in ice-dynamical parameters that ap-
proximate the current limits of our scientific understanding.

Nevertheless, one may wonder whether calibrating ice-sheet models with respect to observa-
tions really leads to more credible projections. Indeed, ensemble members may be evaluated as
well-matching the observations while, in fact, projections compensate for some drift associated
with the model initialisation (though the latter has been significantly reduced in our case), or
applied model physics compensate for biases in the imposed climate forcing. In this context,
we believe that an advantage/improvement of the calibration method applied in Chapter 4 with



5.2 Discussion and directions for future research 149

respect to previous works (e.g., Nias et al., 2019; DeConto et al., 2021; Lowry et al., 2021) is
that it relies on different sources of mass change triggered by processes which are known to drive
current AIS mass changes: sub-shelf melting, surface mass balance, iceberg calving. The method
applied here may however be improved by forcing the ice-sheet model with outputs from RCMs
downscaling climate reanalysis (such as the ERA5 reanalysis; Hersbach et al., 2020) for the atmo-
sphere and from reanalysis directly for the ocean (e.g., ORAS5; Zuo et al., 2018, 2019), instead
of using atmospheric and oceanic forcings derived from ESMs.

In addition, modern ice-sheet and climate conditions may not necessarily reflect the future
ones. In such case, model projections that do not match observed mass changes may yet better
perform at reproducing the future evolution of the AIS. This is all the more problematic as, due to
the lack of observational data, we are currently only able to calibrate for relatively short modern
periods. To address this, another advantage of a Bayesian approach such as applied here is that
model projections with physics or parameter values that do not ideally match current observed
trends are still attributed a weight in the projections, even though a lower one. Similarly, projec-
tions from ice-sheet models are crucially dependent on the model physics that they include. How-
ever, despite our constantly improving knowledge and understanding of ice-sheet dynamics, we
know for a fact that current ice-sheet models do not include all physics characterising ice sheets.
Model projections may thus reproduce current trends, but lack accounting for processes that may
be triggered in the future. A known example of such process/mechanism is MICI, which occurs
through brittle failure (Bassis et al., 2021). Ice is known to be brittle, but large scale ice-sheet
models do not yet include such brittle deformation. By definition, current ice-sheet models would
thus not be able to properly predict the occurrence of such a behaviour in the future. Therefore,
attention should be directed towards the understanding and representation of processes that may
be triggered or increased in a warmer climate, such as ice-shelf weakening through damage (Lher-
mitte et al., 2020) which may facilitate cliff collapse (Pollard et al., 2015; Bassis et al., 2021), or
the injection of surface melt water into the ice-sheet subglacial environment (Bell et al., 2018).
Further steps may also consist in (similarly to, e.g., DeConto and Pollard, 2016; DeConto et al.,
2021) additionally calibrate projections for available paleo observations, allowing to (potentially)
account for conditions different than modern. However, this requires tackling some additional
challenges typically associated with modelling the past evolution of the AIS, such as uncertain-
ties in the paleo-climate and the initialisation procedure (how do you initialise an ice-sheet model
when you only know little about the past conditions of the ice sheet?).

Finally, it is important to underline that model evaluation and calibration remains hampered
by uncertainties in processes that may currently play a significant role but are yet not well taken
into account in ice-sheet models, such as calving (Benn et al., 2017), firn densification processes
(Verjans et al., 2020), or the influence of subglacial hydrology on basal sliding (Kazmierczak
et al., 2022). Opportunities in reducing uncertainties in AIS projections hence lie in improving
our understanding of such processes.
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5.2.3 On the road to decadal (regional) predictability?

Although the title and focus of this thesis is ‘The long-term future of the Antarctic ice sheet’,
some of the aspects tackled in this work may open new perspectives on the investigation of shorter
timescales. First, the improvements made on the initialisation procedure (section 2.3.1) allowed
for a significant diminution in model drift (noise), hence limiting the aforementioned risk of hav-
ing model projections that reproduce observations for the wrong reasons (i.e., compensate for
such drift). In addition, the development of a simplified GIA model enables to account for the
fast (potentially at decadal timescales) uplift likely occurring in the Amundsen Sea sector of West
Antarctica, as well as for the instantaneous influence of gravitationally-consistent sea-surface
changes in response to Antarctic mass changes. Finally, applying a Bayesian framework as re-
alised in Chapter 4 enables to evaluate the performance of ice-sheet models over the historical
period and retain (or attribute more weight to) the projections that closely match observations
over the past decades, hence providing more robustness and reducing uncertainties on the short
timescales. The combination of such improvements may imply that ice-sheet models are now
capable of reproducing Antarctic mass changes at short timescales. Therefore, future work may
focus on investigating the interactions of the AIS with its environment at decadal timescales as
well as regional spatial scales. This would allow, notably, to identify the drivers of mass changes
at such spatio-temporal scales, both over hindcasts of the past decades and short-term projections.
Nevertheless, being able to evaluate such short-term and regional projections requires reliable and
detailed time series of observational data, and this especially at regional (i.e., basin) scales (Nils-
son et al., 2022; Rignot et al., 2019). Luckily, the amount of such detailed accurate observations
is growing continually. In the future, applying model calibration with detailed observations from
longer time periods will allow for increasingly more robust projections.
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Introduction

The following supporting information provides

1. a review of some elements of plate bending theory relevant for GIA models in glaciol-

ogy and the derivation of the ELRA model for a spatially-varying flexural rigidity (Text

S1)

2. additional figures concerning (i) the local sea level calculation (Fig. S1), (ii) WRMS

of the predicted uplift rates obtained using specific ice-loading histories (Figs. S2–S3),

(iii) the relative sea-level changes observed under RCP 8.5 (Fig. S4), (iv) the behav-

ior of non-plausible ensemble members compared to the overall spread of the ensemble

(Fig. S5), (v) the behavior of the UNIBED simulation under the four RCP scenarios

(Fig. S6), (vi) the behavior of control simulations under various GIA configurations

(Figs. S7–S9), (vii) results from the sensitivity analysis of AIS future behavior to GIA

processes for different marine basins (Figs. S10–S14), (viii) the ice thickness changes

of the UNIBED experiment with a fixed geoid under the four RCP scenarios at various

snapshots (Figs. S15–S18), and (iv) uplift rates predicted by the ensemble of 2000 Monte

Carlo simulations at 2100 CE (Fig. S19).
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Text S1.

Derivation of the ELRA model with a spatially-varying flexural rigidity

In this section, we provide a formal derivation of the ELRA model with a spatially-

varying flexural rigidity (equation (7) in the main manuscript). The derivation of the

ELRA model can be carried out based on the plate bending theory (Van Wees & Cloet-

ingh, 1994; Ventsel & Krauthammer, 2001). In this context, the equilibrium vertical

displacement of the lithosphere in response to an ice loading is described as the equi-

librium vertical displacement of a horizontal linear elastic plate subject to a transverse

load. In order to represent the viscous asthenosphere underneath the lithosphere, it is

also assumed that this plate lies on a viscous substratum. Most of our derivation is based

on Ventsel and Krauthammer (2001) but we also refer the reader to Garcia, Sandwell,

and Luttrell (2014) for complementary information.

We first present the equation for the equilibrium vertical displacement of an elastic

plate with constant thickness (section 1) and its extension to a plate lying on a viscous

substratum (section 2). We then present their extensions to an elastic plate with spatially-

varying thickness (sections 3 and 4).

1. Plate with constant thickness

Let us a consider a thin rectangular plate (which represents the lithosphere in the case

of the ELRA model) with constant thickness h (and infinite horizontal dimension). The

mechanical properties of the plate are given by its Young’s modulus E and its Poisson’s

ratio ν (both properties are assumed to be constant). The plate is subjected to a transverse
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load p (the ice and ocean loadings in the case of the ELRA model), which is a function of

the horizontal position x = (x, y) i.e. p = p(x). Let w = w(x) be the normal displacement

of the plate (also called the deflection). For a thin rectangular plate, it is assumed that

the shear strains εxz and εxy and the normal strain εxx are negligible, where we denoted

the strain tensor by ε. In this context and using Hooke’s law in linear elasticity (the plate

is assumed to behave like a linear elastic material), the components σxy, σxx, and σxy of

the stress tensor are given by

σxx = E
1−ν2 (εxx + νεyy), (1)

σyy = E
1−ν2 (εyy + νεxx), (2)

σxy = 1
2
Gεxy, (3)

where G = E
2(1+ν)

is the shear modulus. In the context of thin rectangular plates (see

equation (2.1) in Ventsel and Krauthammer (2001)), these stress components can be

written as

σxx = − Ez
1−ν2 (∂

2w
∂x2

+ ν ∂
2w
∂y2

), (4)

σyy = − Ez
1−ν2 (∂

2w
∂y2

+ ν ∂
2w
∂x2

), (5)

σxy = − Ez
1+ν

∂2w
∂x
∂y, (6)

where the vertical coordinate z is measured from the middle surface of the plate.
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The resulting twisting (or torsion) moments Mxx and Myy and bending moment Mxy

(equal to Myx) are given by

Mxx =
∫ h/2
−h/2 σxxzdz = −D

(
∂2w
∂x2

+ ν ∂
2w
∂y2

)
, (7)

Myy =
∫ h/2
−h/2 σxyzdz = −D

(
∂2w
∂y2

+ ν ∂
2w
∂x2

)
, (8)

Mxy =
∫ h/2
−h/2 σxyzdz = −D(1− ν) ∂

2w
∂x∂y

, (9)

where

D =
Eh3

12(1− ν2)
(10)

is the flexural rigidity of the plate.

Writing the equilibrium of forces and moments for the plate (see equations (2.19)–(2.21)

in Ventsel and Krauthammer (2001)), it can be shown that the twisting and bending

moments satisfy the following differential equation (see equation (2.23) in Ventsel and

Krauthammer (2001)):

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
= −p. (11)

Substituting equations (7)–(9) into equation (11) gives the following partial differential

equation for the deflection w:

∂2

∂x2

(
−D

(
∂2w

∂x2
+ ν

∂2w

∂y2

))
+2

∂2

∂x∂y

(
−D(1− ν)

∂2w

∂x∂y

)
+
∂2

∂y2

(
−D

(
∂2w

∂y2
+ ν

∂2w

∂x2

))
= −p,

(12)

or as D is assumed to be constant and ν is constant

−D
(
∂4w

∂x4
+ 2ν

∂4w

∂x2y2
+
∂4w

∂y4

)
− 2D(1− ν)

∂4w

∂x2y2
= −p, (13)

that is,

D

(
∂4w

∂x4
+ 2

∂4w

∂x2y2
+
∂4w

∂y4

)
≡ D∇4

xw = p. (14)
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2. Plate with constant thickness on a viscous substratum

We consider now that the plate (lithosphere) in section 1 lies on a viscous substratum

(the asthenosphere) with density ρa. In this case, we must account for the buoyancy force

(which depends on the vertical displacement w) that the lithosphere experiences in the

underlying viscous substratum. The buoyancy force acts to reduce the exerted load p by

an amount ρagw (hydrostatic pressure of the asthenosphere). Then, equation (14) writes

in the presence of a viscous substratum as

D∇4
xw + ρagw = p. (15)

This equation is simply the equation for the deflection of the lithosphere in the ELRA

model (equation (1) in the main manuscript).

For a general applied load p, a solution to the linear partial differential equation (15)

can be established using a superposition principle. Indeed, the Green’s function for the

linear differential operator D∇4
x + ρag writes as (Hertz, 1884; Nadai, 1963)

G(x) = − L2

2πD
kei

(‖x‖
L

)
, (16)

where kei denotes the zeroth-order Kelvin function and L = 4
√
D/(ρag) is the so-called

radius of relative stiffness (or flexural length scale), which determines the non-locality

of the plate displacement. Using the superposition principle, the solution to the linear

partial differential equation (15) can be expressed as

w(x) = G(x) ∗ p(x) =

∫

R2

− L2

2πD
kei

(‖x− x′‖
L

)
p(x′)dx′, (17)

where ∗ denotes the convolution operator. The use of this Green’s function provides an

efficient way to solve for the deflection of the lithosphere due to ice loading in numerical

ice-sheet models (see for instance (Pattyn, 2017; Pollard & DeConto, 2012)).
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3. Plate with spatially-varying thickness

Let us consider in this section a thin rectangular plate having a spatially-varying thick-

ness h = h(x) (and infinite horizontal dimension). As in section 1, the plate is assumed

to behave as a linear elastic material with constant Young’s modulus E and Poisson’s

ratio ν. The plate is subjected to a transverse load p = p(x) that induces a deflection

w = w(x) of the plate. Following section 3.8 in Ventsel and Krauthammer (2001), we

assume that the thickness varies gradually and there is no abrupt variation in thickness so

that the expressions for the bending and twisting moments introduced earlier for plates of

constant thickness (see equations (7)–(9)) also apply with sufficient accuracy to the case

of a thin rectangular plate having a spatially-varying thickness. Please note that in this

case, the flexural rigidity D is therefore spatially varying i.e.

D = D(x) =
Eh(x)3

12(1− ν2)
. (18)

Substituting equations (7)–(9) with the spatially-varying flexural rigidity D(x) into

equation (11) gives the following partial differential equation for the deflection w:

∂2

∂x2

(
−D(x)

(
∂2w

∂x2
+ ν

∂2w

∂y2

))
+ 2

∂2

∂x∂y

(
−D(x)(1− ν)

∂2w

∂x∂y

)

+
∂2

∂y2

(
−D(x)

(
∂2w

∂y2
+ ν

∂2w

∂x2

))
= −p,

(19)

where we have highlighted the dependence of D on the horizontal position x. Please note

that although this equation is identical to equation (12), it cannot be reduced to the simple

equation (14) due to the fact that the spatially-varying flexural rigidity D(x) cannot

be simply drawn out of the derivatives. Arranging the different terms in equation (19)

(using Leibniz rule for derivation), one obtains the following equation for the deflection

of a plate having a spatially-varying flexural rigidity (see equation (3.83) in Ventsel and
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Krauthammer (2001)):

D∇4
xw + 2

∂D

∂x

∂

∂x
(∇2

xw) + 2
∂D

∂y

∂

∂y
(∇2

xw) +∇2
xD(∇2

xw)

−(1− ν)

(
∂2D

∂x2

∂2w

∂y2
− 2

∂2D

∂x∂y

∂2w

∂x∂y
+
∂2D

∂y2

∂2w

∂x2

)
= p.

(20)

Please note that in the latter equation, the Poisson’s ratio of the plate appears explicitly

in the equation. Also, this equation involves both the gradient of the flexural rigidity

(through its first derivatives) and the curvature of the flexural rigidity (through its second

derivatives). All the terms in equation (20) involving derivatives of the flexural rigidity

are nil when the plate has a constant thickness and therefore a constant flexural rigidity.

4. Plate with spatially-varying thickness on a viscous substratum

We consider now that the plate (lithosphere) in section 3 lies on a viscous substratum

(the asthenosphere) with density ρa. Similarly to section 2, we must account for the

buoyancy force (which depends on the vertical displacement w) that the lithosphere expe-

riences in the underlying viscous substratum. Then, equation (20) writes in the presence

of a viscous substratum as

D∇4
xw + 2

∂D

∂x

∂

∂x
(∇2

xw) + 2
∂D

∂y

∂

∂y
(∇2

xw) +∇2
xD(∇2

xw)

−(1− ν)

(
∂2D

∂x2

∂2w

∂y2
− 2

∂2D

∂x∂y

∂2w

∂x∂y
+
∂2D

∂y2

∂2w

∂x2

)
+ ρagw = p.

(21)

This equation is simply the equation for the equilibrium deflection of the lithosphere in the

ELRA model with spatially-varying flexural rigidity (equation (7) in the main manuscript)

Please note that contrary to section 2 and to our knowledge, there exists no Green’s

function that allows to write the solution to equation (21) as a superposition principle.

In this case, equation (21) is solved using numerical methods such as finite-difference

methods or finite-element methods.
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𝑪 = 𝑽𝑷/𝑨𝒐𝒄

𝑺𝑳𝑪

𝑺𝑳𝟎

𝑽𝑷

𝑺𝑳𝒕+𝟏

𝑺𝑳𝒕+𝟏 = 𝑺𝑳𝟎 + 𝑷 + 𝑺𝑳𝑪 + 𝑪

𝑷

Figure S1. Schematic 2D representation of local sea-level change calculations. Local sea level

at time t + 1, SLt+1 (black dashed line), is calculated as the sum of the initial sea surface SL0

(dark blue solid line), the geoid perturbation P due to mass changes mG (light blue dashed line),

the barystatic sea-level contribution arising from Antarctic ice mass changes (SLC, calculated as

in Goelzer et al. (2020)) and a mass conservation term C, which is a spatial constant that must

be added to the solution in order to conserve oceanic mass. C is calculated by redistributing the

volume change across ocean areas due to P (VP ) over the ocean area Aoc.
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Figure S2. Weighted Root-Mean Square (WRMS, see equation B1) of the predicted uplift

rates obtained using W12 ice-loading history (Whitehouse, Bentley, & Le Brocq, 2012) relative to

present-day uplift rates (Whitehouse, Bentley, Milne, et al., 2012). As a comparison, predicted

uplift rates obtained using uniform ELRA parameters (τ=8000 yr (Argus et al., 2014) and

D = 1025 N m (Le Meur & Huybrechts, 1996)) give a WRMS of 2.97 mm/yr. Units for DE are

N m and units for τE are years.
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Figure S3. Weighted Root-Mean Square (WRMS, see equation B1) of the predicted uplift

rates obtained using ICE-6G ice-loading history (Argus et al., 2014) relative to present-day uplift

rates (Whitehouse, Bentley, Milne, et al., 2012). As a comparison, predicted uplift rates obtained

using uniform ELRA parameters (τ=4000 yr (Argus et al., 2014) and D = 1025 N m (Le Meur

& Huybrechts, 1996)) give a WRMS of 2.12 mm/yr. Units for DE are N m and units for τE are

years.
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Figure S4. Relative sea-level changes at 7000 CE under RCP 8.5 for a simulation with a fixed

bedrock (a), and a simulation where bedrock adjustment is considered (b–d). Relative sea-level

changes due to geoid change are displayed in (a–b). Bedrock changes are displayed in (c). Note

that relative sea-level changes due to bedrock changes are the opposite of (c). Total relative

sea-level changes – i.e. the combination of geoid and bedrock changes – are displayed in (a) for

the simulation with a fixed bedrock (FIXED BED) and in (d) for a simulation where bedrock

adjustment is considered (UNIBED, with uniform ELRA parameters taken from Le Meur and

Huybrechts (1996)). When bedrock adjustment is considered, geoid changes (b) have a smaller

contribution to relative sea-level change (d) than bedrock changes (c). In addition, note that

the gravitational effect of changes in the distribution of mantle material associated with solid

earth deformation counteracts geoid changes due to ice and ocean mass changes, leading to geoid

changes of smaller amplitude in (b) than in (a).
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Figure S5. Projections of Antarctic grounded-ice volume (Vg) under RCP 2.6 (a), 4.5 (b), 6.0

(c), and 8.5 (d). Grey lines represent time series of Antarctic grounded-ice volume for the 1900

plausible Monte Carlo ensemble members while red line represent those of the 100 non-plausible

Monte Carlo ensemble members (i.e. either DW > DE or τW > τE).
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Figure S6. Change in Antarctic ice thickness at 7000 CE for the UNIBED simulations (with

uniform ELRA parameters taken from Le Meur & Huybrechts, 1996) under (a) RCP 2.6, (b)

RCP 4.5, (c) RCP 6.0, and (d) RCP 8.5.
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Figure S7. Evolution of Antarctic grounded-ice volume Vg (a) and ice thickness change at

2100 CE (b), 3000 CE (c), 5000 CE (d), and 7000 CE (e) for a control NOGIA (bedrock and

geoid are fixed) simulation under constant present-day climate (no climatic perturbation).
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Figure S8. Evolution of Antarctic grounded-ice volume Vg (a) and ice thickness change at

2100 CE (b), 3000 CE (c), 5000 CE (d), and 7000 CE (e) for a control simulation under constant

present-day climate (no climatic perturbation) for which uniform ELRA parameters (UNIBED)

from Le Meur and Huybrechts (1996) are considered.
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Figure S9. Evolution of Antarctic grounded-ice volume Vg (a) and ice thickness change at

2100 CE (b), 3000 CE (c), 5000 CE (d), and 7000 CE (e) for a control simulation under constant

present-day climate (no climatic perturbation) for which median values of the ELRA parameters

are considered.
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Figure S10. Evolution of Amundsen Sea Embayment grounded-ice volume under RCP 2.6

(a, e), 4.5 (b, f), 6.0 (c, g), and 8.5 (e, h) for 2000 Monte Carlo samples from the parameter space.

Time-series of the ensemble are color-coded by values of (a–d) log10(τW) and (e–h) log10(DW).

Units for DW are N m and units for τW are years.
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Figure S11. Evolution of Ross Sea Embayment grounded-ice volume (Vg) under RCP 2.6 (a, e),

4.5 (b, f), 6.0 (c, g), and 8.5 (e, h) for 2000 Monte Carlo samples from the parameter space.

Time-series of the ensemble are color-coded by values of (a–d) log10(τW) and (e–h) log10(DW).

Units for DW are N m and units for τW are years.
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Figure S12. Evolution of Weddell Sea Embayment grounded-ice volume (Vg) under RCP 2.6

(a, e), 4.5 (b, f), 6.0 (c, g), and 8.5 (e, h) for 2000 Monte Carlo samples from the parameter space.

Time-series of the ensemble are color-coded by values of (a–d) log10(τW) and (e–h) log10(DW).

Units for DW are N m and units for τW are years.
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Figure S13. Evolution of Wilkes Basin grounded-ice volume (Vg) under RCP 2.6 (a, e), 4.5

(b, f), 6.0 (c, g), and 8.5 (e, h) for 2000 Monte Carlo samples from the parameter space. Time-

series of the ensemble are color-coded by values of (a–d) log10(τE) and (e–h) log10(DE). Units for

DE are N m and units for τE are years.
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Figure S14. Evolution of Aurora Basin grounded-ice volume (Vg) under RCP 2.6 (a, e), 4.5

(b, f), 6.0 (c, g), and 8.5 (e, h) for 2000 Monte Carlo samples from the parameter space. Time-

series of the ensemble are color-coded by values of (a–d) log10(τE) and (e–h) log10(DE). Units for

DE are N m and units for τE are years.
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Figure S15. Ice thickness change at 2300 CE under RCP (a) 2.6, (b) 4.5, (c) 6.0, and (d) 8.5

for a simulation with uniform ELRA parameters (UNIBED) taken from Le Meur and Huybrechts

(1996) and for which only bedrock adjustment is considered, i.e. gravitationally-consistent sea-

level changes are not included.
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Figure S16. Ice thickness change at 3000 CE under RCP (a) 2.6, (b) 4.5, (c) 6.0, and (d) 8.5

for a simulation with uniform ELRA parameters (UNIBED) taken from Le Meur and Huybrechts

(1996) and for which only bedrock adjustment is considered, i.e. gravitationally-consistent sea-

level changes are not included.
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Figure S17. Ice thickness change at 5000 CE under RCP (a) 2.6, (b) 4.5, (c) 6.0, and (d) 8.5

for a simulation with uniform ELRA parameters (UNIBED) taken from Le Meur and Huybrechts

(1996) and for which only bedrock adjustment is considered, i.e. gravitationally-consistent sea-

level changes are not included.
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Figure S18. Ice thickness change at 7000 CE under RCP (a) 2.6, (b) 4.5, (c) 6.0, and (d) 8.5

for a simulation with uniform ELRA parameters (UNIBED) taken from Le Meur and Huybrechts

(1996) and for which only bedrock adjustment is considered, i.e. gravitationally-consistent sea-

level changes are not included.
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Figure S19. Mean uplift rates maps at 2100 CE predicted by the ensemble of 2000 Monte

Carlo simulations under RCP (a) 2.6, (b) 4.5, (c) 6.0, and (d) 8.5. GPS observations of present-

day uplift rates from Whitehouse, Bentley, Milne, et al. (2012) are plotted (colored circles) using

the same colour scale. The radius of the circle at each GPS site is inversely proportional to the

GPS uncertainty at that site.
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Supplementary Information

Violaine Coulon, Ann Kristin Klose, Christoph Kittel,
Ricarda Winkelmann, and Frank Pattyn

1 Ice sheet model setup and initialisation

The f.ETISh model is a vertically-integrated, thermomechanical, hybrid ice-sheet/ice-shelf model that incorporates es-
sential characteristics of ice-sheet thermomechanics and ice-stream flow, such as the mass-balance feedback, bedrock
deformation, sub-shelf melting, and calving. The ice flow is represented as a combination of the shallow-ice (SIA) and
shallow-shelf (SSA) approximations for grounded ice while only the shallow-shelf approximation is applied for floating
ice shelves (Bueler and Brown, 2009; Winkelmann et al., 2011). In order to account for grounding-line migration, a flux
condition (Schoof, 2007, related to the ice thickness at the grounding line;) is imposed at the grounding line following
the implementation by Pollard and DeConto (2012b, 2020). This implementation has been shown to reproduce the mi-
gration of the grounding line and its steady-state behavior (Schoof, 2007) at coarse resolution (Pattyn et al., 2013; Pollard
and DeConto, 2020). Numerical simulations of the AIS using a flux condition have also been able to simulate marine
ice-sheet behavior in large-scale ice-sheet simulations (Pollard and DeConto, 2012b; DeConto and Pollard, 2016; Pattyn,
2017; Sun et al., 2020). While the use of such a flux condition has been challenged, especially with respect to ice shelf
buttressing and regimes of low driving and basal stresses (Haseloff and Sergienko, 2018; Pegler, 2018; Reese et al., 2018;
Sergienko and Wingham, 2019), Pollard and DeConto (2020) demonstrate that the algorithm gives similar results under
buttressed conditions compared to high-resolution models. Basal sliding is introduced as a Weertman sliding law, i.e.,

vb = −Ab|τb|m−1τb (1)

where τb is the basal shear stress, vb the basal velocity, Ab the basal sliding coefficient – whose values are inferred
following the nudging method of Pollard and DeConto (2012a) – and m = 3 a sliding exponent. Basal melting underneath
the floating ice shelves may be determined by different sub-shelf melt parameterisation schemes, such as the PICO
model (Reese et al., 2018), the Plume model (Lazeroms et al., 2019), and simple parameterisations (Jourdain et al.,
2020; Burgard et al., 2022). Calving at the ice front depends on the combined penetration depths of surface and basal
crevasses, relative to total ice thickness. The depths of the surface and basal crevasses are parameterised as functions of
the divergence of ice velocity, the accumulated strain, the ice thickness, and (if desired) surface liquid water availability,
similar to Pollard et al. (2015) and DeConto and Pollard (2016). Prescribed input data include the present-day ice-sheet
geometry and bedrock topography from the Bedmachine dataset (Morlighem et al., 2019) and the geothermal heat flux by
Shapiro and Ritzwoller (2004). Present-day mean surface air temperature and precipitation are obtained either from van
Wessem et al. (2018), based on the regional atmospheric climate model RACMO2.3p2, or from Kittel et al. (2021), based
on the regional climate model MARv3.11. In order to correct the surface mass balance for elevation changes, we assume
that a 1◦C increase in air temperature accounts for a ∼5% increase in precipitation. Surface temperatures are corrected
for elevation changes according to a vertical lapse rate (Pollard and DeConto, 2012b). Surface melt is determined from
a Positive Degree-Day model (Huybrechts and De Wolde, 1999). We employed data by either Schmidtko et al. (2014)
or Jourdain et al. (2020) for present-day ocean temperature and salinity on the continental shelf. Changes in bedrock
elevation due to changes in ice load are modelled by the commonly used Elastic Lithosphere–Relaxed Asthenosphere

1
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(ELRA) model where the solid-Earth system is approximated by a thin elastic lithosphere plate lying upon a relaxing
viscous asthenosphere (Brotchie and Silvester, 1969; Le Meur and Huybrechts, 1996). The viscoelastic properties of the
Antarctic solid Earth are considered as spatially-uniform and approximated using an asthenosphere relaxation time τ of
3000 years and a flexural rigidity of the lithophere D of 1025 N m.

Ice-sheet initial conditions and basal sliding coefficients are provided by an inverse simulation following Pollard and
DeConto (2012a), using mass-balance forcing for the year 1950 (anomalies for the period 1945-1955 respective to the
period 1995-2014 derived from CMIP5 NorESM1-M climate projection are added to a present-day climatology for the
1995-2014 period provided by a RCM). In the inverse procedure, basal sliding coefficients under grounded ice, and
sub-shelf melt rates under floating ice (Bernales et al., 2017) are adjusted iteratively to reduce the misfit with observed
ice thickness. The obtained sub-shelf melt rates may therefore be regarded as the balance melt rates and are indepen-
dent of the ocean boundary conditions (forcing). For consistency, different initial states are only produced for each
atmospheric present-day climatology. Therefore, initial ice-sheet conditions (ice thickness, bed elevation, velocity, basal
sliding coefficients and internal ice and bed temperatures) are identical in all simulations that use the same present-day
atmospheric climatology (either derived from RACMO2.3p2, or MARv3.11) and are in steady-state with the initial at-
mospheric boundary conditions. To limit an initial shock caused by the transition from the balance sub-shelf melt rates
derived during the transient nudging spin-up to the imposed sub-shelf melt parameterisation scheme, a short 20-yr relax-
ation is run after the model initialisation, before the historical simulation. Our initial states are therefore considered as
quasi-equilibrated states. The two initialised ice sheet configurations resulting from the nudging spin-ups are within the
range of the ISMIP6 models (Seroussi et al., 2019), and well match observations in terms of ice geometry, grounding-line
position, and ice dynamics (Figures 1 and 2). In comparison to other ISMIP6 models, the root mean square error (RMSE)
is within the range for both ice thickness (RMSE ∼ 50 m) and ice surface velocity (RMSE ∼ 100 m yr−1).
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Figure 1: Ice-sheet initial state obtained with the 1995-2014 atmospheric climatology from MARv3.11 (Kittel et al., 2021). Shown is a
comparison of the ice sheet thickness and ice velocities as modeled by f.ETISh in the year 1950 (i.e. after the initialisation) to observed
ice sheet thickness (Morlighem et al., 2019, Bedmachine;) and velocities (Rignot et al., 2011), using the atmospheric climatology
derived from MAR. Modeled and observed surface velocity is illustrated in (a) and (b). Modeled minus observed ice velocity and
thickness are given in (c) and (e) with the modeled grounding line in black, respectively, while scatter plots for comparison are shown
in (d) and (f).
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Figure 2: Ice-sheet initial state obtained with the 1995-2014 atmospheric climatology from RACMO2.3p2 (van Wessem et al., 2018).
Shown is a comparison of the ice sheet thickness and ice velocities as modeled by f.ETISh in the year 1950 (i.e. after the initialisation)
to observed ice sheet thickness (Morlighem et al., 2019, Bedmachine;) and velocities (Rignot et al., 2011), using the atmospheric
climatology derived from MAR. Modeled and observed surface velocity is illustrated in (a) and (b). Modeled minus observed ice
velocity and thickness are given in (c) and (e) with the modeled grounding line in black, respectively, while scatter plots for comparison
are shown in (d) and (f).
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2 PDD-based melt-and-runoff model

At the beginning of every year, the air temperature and the precipitation rate are used as inputs to a positive degree-
day (PDD) algorithm that calculates the yearly surface mass balance at the ice surface by capturing the basic physi-
cal processes of surface melting of ice and refreezing versus runoff in the snow column (Huybrechts and de Wolde,
1999; Seguinot, 2013). More specifically, similar to Tsai et al. (2020), the algorithm involves seasonal cycles of zero-
dimensional bulk quantities of snow and embedded melt water, run through several years to equilibrium with a weekly
time step, driven by seasonal variations of the air temperatures and precipitation rate interpolated in time to those time
steps. A PDD scheme calculates the melt of snow or exposed ice at each weekly timestep (with a uniform normal dis-
tribution of standard deviation σP DD = 4 deg C around the monthly mean Tm, representing diurnal cycles and synoptic
variability) while tracking the evolving thickness of the snow layer across the balance year. Surface melt is proportional
to the amount of positive degree days, using coefficients of 3 and 8 mm water equivalent of melt per degree (C) day for
snow and ice, respectively. Accumulation is assumed equal to precipitation when the daily temperature (also assumed
to have a normal distribution around the monthly mean, using a smaller standard deviation of 3.5 deg C to account for
the smaller variations in temperature during cloudy days when precipitation occurs) is below 0 °C, and decreasing lin-
early with temperature between 0 and 2 °C (above which precipitation is then interpreted as rain Seguinot, 2013). After
seasonal equilibrium is reached, net annual quantities are used to calculate the refreezing of melt water (which depends
on the cold content of the upper ice sheet layers; Huybrechts and de Wolde, 1999), and runoff of excess meltwater once
the snow is saturated. Values of all parameters used in this melt-and-runoff scheme were calibrated to outputs from both
regional (MAR forced by CMIP6 projections until the year 2100; Kittel et al., 2021) and global climate models (CESM2
until the year 2300 – one of the few CMIP models that include a multi-layered snow model and prognostically calculated
snow albedo as a function of snow grain size; Lenaerts et al., 2016; Dunmire et al., 2022) under high-warming scenario.
Comparison of the calibrated PDD-based melt-and-runoff models with theses climate models projections are displayed
in Figures 3 and 4. It is important to note that since the melt-and-runoff model is not used during the initialisation proce-
dure (see Appendix 1) SMB anomalies derived from the PDD-based melt-and-runoff model are used instead of absolute
SMB values in order to maintain the steady-state with respect to initial (1950 CE) atmospheric conditions under unforced
conditions. These anomalies are calculated with respect to the SMB reproduced by the melt-and-runoff scheme under
the mean 1945-1955 air temperature and precipitation conditions.
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Figure 3: Comparison of outputs from the positive degree-day (PDD)-based melt-and runoff model with outputs from MAR.
Comparison of yearly surface melt (a-b), runoff (c-d) and rainfall (e-f) rates reproduced by the PDD model with outputs from MAR
forced by ERA5 over the 1979-2015 period and by ACCESS1.3, CNRM-CM6 and CESM2 under the RCP8.5 and SSP5-85 scenario,
respectively, over the 1980-2100 period. The PDD model uses monthly-mean 2-m air temperature and precipitation rate as inputs,
using standard deviations of the daily temperature σP DD = 4 °C and σRS = 3.5 °C, the precipitation cutoff values Tsnow = 0
°C and Train = 2 °C, the degree-day factor for snow melt Ksnow of 0.003w.e.mP DD−1 and a degree-day factor for ice melt
Kice of 0.008w.e.mP DD−1. The relation between the surface melt (a), runoff (b) and the yearly rain (c) with respect to the 2-m air
temperature are compared in (a,c,e), with the PDD model displayed by the blue dots and MAR outputs by the purple dots. Figures b,d,f,
display point-by-point scatter-plots comparing equivalent quantities, with outputs from the different MAR projections represented by
different colors. Figure g compares the mean yearly surface melt and DJF 2-m air temperature over the ice shelves, reproduced by the
PDD model and by MAR under for the period 1980-2100. The relation derived by Trusel et al. (2015) is shown for comparison.
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Figure 4: Comparison of outputs from the positive degree-day (PDD)-based melt-and runoff model with outputs from CESSM2-
WACCM. Comparison of yearly surface melt (a, d), runoff (b,e) and rain (c,f) reproduced by the PDD model with outputs from CESM2
under the SSP5-85 scenario over the 2015-2300 period. The PDD model uses monthly-mean 2-m air temperature and precipitation
rate as inputs, using standard deviations of the daily temperature σP DD = 4 °C and σRS = 3.5 °C, the precipitation cutoff values
Tsnow = 0 °C and Train = 2 °C, the degree-day factor for snow melt Ksnow of 0.003w.e.mP DD−1 and a degree-day factor for ice
melt Kice of 0.008w.e.mP DD−1. The relation between the snow melt (a), total surface melt (b), runoff (c) and the yearly rain (d)
with respect to the 2-m air temperature are compared in (a–d), with the PDD model displayed by the blue dots and CESM2 outputs by
the yellow dots. Figures (e–h), display point-by-point scatter-plots comparing equivalent quantities.

7

216 SUPPLEMENTARY INFORMATION FOR CHAPTER 4



MAR

RACMO

A
T

M
 c

li
m

0.1 0.3 0.5 0.7 0.9

SSM 
eff

0.1

0.3

0.5

0.7

0.9

S
S

M
 

e
ff

PICO Plume QUAD JD20 JD20s

SSM parameterisation

PICO

Plume

QUAD

JD20

JD20s

S
S

M
 p

a
ra

m
e

te
ri

s
a

ti
o

n

2 3 4

K
snow

 (mm PDD
-1

)

2

3

4

K
s
n

o
w

 (
m

m
 P

D
D

-1
)

6.5 8 9.5

K
ice

 (mm PDD
-1

)

6.5

8

9.5

K
ic

e
 (

m
m

 P
D

D
-1

)

3 4 5

PDD
 (°C)

3

4

5

P
D

D
 (

°C
)

7 8 9 10

 (°C km
-1

)

0.5

1

1.5

2

2.5

3

3.5

4

L
ik

e
li
h
o
o
d
 S

c
o
re

ISMIP6 Schmidtko

OCEAN clim

7

8

9

10

 (
°C

 k
m

-1
)

Figure 5: Likelihood weight for the 100-members ensemble of simulations accounting for key uncertainties in ice-ocean and ice-
atmosphere interactions over the 8-D parameter space. The parameters are the atmospheric (ATM clim) and oceanic (OCEAN clim)
present-day climatologies, the applied sub-shelf melt parameterisation (SSM parameterisation), the effective ice–ocean heat flux (SSM
Γeff ), the positive degree-day (PDD) snow melt factor (Ksnow), the PDD ice melt factor (Kice), the PDD standard deviation of
temperature variability (σP DD), and the atmospheric lapse rate (γ). For visibility, contours were derived by interpolating the obtained
weight in the parameter space. Note that for the parameters characterised by discrete values, i.e., ATM clim, OCEAN clim, and SSM
parameterisation, the continuous parameter space is divided into a finite number of equal probability regions, or bins, displayed by the
dashed lines.
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Figure 6: Calibrated probabilistic projections of the Antarctic ice sheet (AIS) contribution to global-mean sea-level rise until the end of
the millennia under constant present-day climate conditions. a., Evolution of the ensemble projected contribution to sea-level from the
AIS. Solid lines and shaded regions show the median and 25-75% and 5-95% probability intervals (N=100), with 5-year smoothing
applied. b-d., Marginal probability of being ungrounded at 2115 (b), 2315 (c) and 3015 (d). Grey regions correspond to locations
where there is a 0% probability of being ungrounded. f-g., Mean ice thickness change at 2115 (f), 2315 (g) and 3015 (h). The marginal
probability of being ungrounded and the mean thickness change at a given point are computed using the Bayesian calibrated means of
the ensemble. Present-day grounding lines are shown in black.
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Figure 7: Mean ice thickness change under (a) constant present-day climate conditions (PRESENT-DAY), shared socio-economic
pathways (SSP) 1-2.6 (b) and 5-8.5 (c) at different snapshots throughout the millennia. For each scenario, the mean thickness change
at a given point is computed using the Bayesian calibrated mean of the ensemble (N=100 for PRESENT-DAY, and N=400 for SSP1-2.6
and SSP5-8.5). Present-day grounding lines are shown in black.
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Figure 8: Evolution of the projected main mass balance components in an additional 100-member calibrated ensemble where the
choice of the Earth System model (ESM) is included in the Latin hypercube sampled parameter space under the shared socio-economic
pathway (SSP) 5-8.5 (a) with the atmospheric forcing only, (b) with the oceanic forcing only, (c) without the elevation feedback, and
(d) with hydrofracturing. Time series of the contribution to sea-level over the millennia are color-coded according to the applied ESM.
Solid lines and shaded regions show the median and 25-75% probability intervals (N=100 per SSP scenario), with 5-year smoothing
applied. The ice-sheet net mass balance net mass balance considers changes in volume above flotation and may therefor be interpreted
as the rate of mass change contributing to sea-level rise.
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Figure 9: Evolution of the projected main surface mass balance components in an additional 100-member calibrated ensemble where
the choice of the Earth System model (ESM) is included in the Latin hypercube sampled parameter space under the shared socio-
economic pathway (SSP) 5-8.5 (a) with the atmospheric forcing only, (b) with the oceanic forcing only, (c) without the elevation
feedback, and (d) with hydrofracturing. Time series of the contribution to sea-level over the millennia are color-coded according to
the applied ESM. Solid lines and shaded regions show the median and 25-75% probability intervals (N=100 per SSP scenario), with
5-year smoothing applied.
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Figure 10: Influence of the climate model on the Antarctic projected sea-level contribution in an additional 100-member calibrated
ensemble where the choice of the Earth System model (ESM) is included in the Latin hypercube sampled parameter space under
the shared socio-economic pathway (SSP) 5-8.5 (a) with the atmospheric forcing only, (b) with the oceanic forcing only, (c) without
the elevation feedback, and (d) with hydrofracturing. Time series of the contribution to sea-level over the millennia are color-coded
according to the applied ESM.
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Figure 11: Evolution of the calibrated probabilistic projections of the Antarctic integrated main surface mass balance components until
the year 2300 CE over the grounded ice sheet (a,c,e,g) and the ice shelves (b,d,f,h) compared with projections from MAR. Evolution
of the ensemble projected anomalies in total surface mass balance (a—b), snow accumulation (c—d), surface runoff (e—f), and rain
precipitation (g—h) for the 2015-2300 period under the shared socio-economis pathway (SSP) 5-8.5 over the grounded ice sheet
(left) and the ice shelves (right). Colored solid lines and shaded regions show the median, 25-75%, and 5-95% probability intervals
(N=400 per SSP scenario), with 5-year smoothing applied. Grey solid lines show time series of the integrated annual SMB components
simulated by MAR forced by CNRM-CM6-1 (dark grey), and CESM2 (light grey).
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Figure 12: Contribution of atmospheric forcing and SMB-elevation feedback to projected Antarctic mass changes under high-
emission pathway. Marginal probability of being ungrounded under shared socio-economic pathways (SSP) 5-8.5 considering (a) the
combination of atmospheric and oceanic forcings (b) the atmospheric forcing only, and (c) the atmospheric forcing only without the
elevation feedback, at different snapshots throughout the millennia. For each, the marginal probability of being ungrounded at a given
point is computed using the Bayesian calibrated mean of the ensemble (N=100 for atmospheric/oceanic forcing only, and N=400 for
SSP5-8.5). Grey regions correspond to locations where there is a 0% probability of being ungrounded. Present-day grounding lines are
shown in black. Figures e—f show the evolution of the calibrated projected contribution to global mean sea-level rise (GMSLR) from
Antarctica under SSP5-8.5 until 3000 CE, compared with a smaller calibrated ensemble of projections considering (e) the atmospheric
forcing only, and (f) the oceanic forcing only. Solid lines and shaded regions show the median and 25-75% and 5–95% probability
intervals with 5-year smoothing applied. Dashed lines show the median rate of contribution to GMSLR. Projections with atmospheric
forcing only are applied to a 100-members ensemble of simulations for which the ESM is part of the Latin hypercube sampling (i.e.,
9-D parameter space).
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Figure 13: Evolution of the calibrated probabilistic projections of the Antarctic integrated main surface mass balance components until
the year 2300 CE over under (a) SSP1-2.6 and (b) SSP5-8.5. Colored solid lines and shaded regions show the median, 25-75%, and
5-95% probability intervals (N=400 per SSP scenario), with 5-year smoothing applied.
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