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Abstract: This paper describes the extension of a baker’s yeast growth model to account for
the intracellular trehalose storage and mobilization. Trehalose is a reserve carbohydrate that is
accumulated and converted back to intracellular glucose when the yeast cells face certain stresses.
This is modeled by a new macroscopic reaction, which is coupled to an existing macroscopic
reaction scheme describing the coordinated uptake of glucose and ammonium by the yeast cells.
The dynamics of the trehalose concentration is described by a delay differential equation as the
available experimental data used to fit the model exhibits a time-delayed correlation between
trehalose storage and glucose uptake as well as a time-delayed correlation between trehalose
mobilization and ethanol respiration phases. The proposed extension contains 6 parameters of
which 5 are estimated via nonlinear least squares identification. The proposed model predicts
accurately the dynamics of trehalose storage and mobilization and can be used to optimize the
intracellular trehalose accumulation in Saccharomyces cerevisiae, which is valuable for obtaining
reinforced yeast cells, able to better withstand drying operations.
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1. INTRODUCTION

Saccharomyces cerevisiae, also known as baker’s yeast, is
one of the most widely used and researched microorgan-
isms. It usually serves as a model for eukaryotic cells.
Industrial uses of yeast fed-batch culture ranges from the
food and alcoholic beverages to the production of biofuels
and chemicals such as bioethanol (Parapouli et al., 2020).

Improving efficiency in industry is an everlasting objective.
In the agro-food industry, it is essential to reach high cell
viability rate when forming dry yeast. However, during the
various processes, cells encounter several stress-inducing
environments: the culture medium can be hypertonic and
leads to osmotic stress, high level of ethanol is toxic for
the cells, and processing, such as yeast drying, subjects
cells to high temperature variations. All these stresses
increase the mortality rate of the yeast cells. It has been
proven (Ohtake and Wang, 2011) that the intracellular
accumulation of trehalose, a sugar naturally synthesized
within insects, plants and yeasts, rises the resistance to
these stresses and therefore the viability of yeast cells in
industrial bioprocesses (Tapia and Koshland, 2014; Saini
et al., 2018).

* This research has been funded by the Wallonia Region (SPW
Recherche) and supported by Wagralim, the agri-food innovation
cluster in Wallonia Region, within the framework of the WA-SuNuP
project.

Aside of being a highly efficient protectant that enhances
the yeast cells resistance in hostile conditions, trehalose
has many utilizations in practice such as stabilizer in
reagents and bioproducts (enzymes, proteins, biomasses),
preservative for food, component in cosmetics, cryoprotec-
tant for preserving cells in medicine and microbiology (Du
and Zhao, 2012). Hence, a high trehalose production rate
is desired, which can be achieved by process optimization.
To avoid long lasting and expensive experimental work,
process optimization is performed based on a process
model (Richelle and Bogaerts, 2014). Models that predict
trehalose formation are scarce. Moreover, they are either
based on the cell metabolic network rather than describing
the population dynamics or consider that glucose is the
only nutrient that the cells need for growth (Voit, 2003;
Aranda et al., 2004).

This study proposes an extension to a macroscopic model
describing fed-batch baker’s yeast growth (Richelle et al.,
2014), to incorporate the trehalose dynamics.The resulting
model includes overflow metabolism phenomena, coordi-
nated uptake of glucose and nitrogen, and intracellular
trehalose storage and mobilization for S. cerevisiae fed-
batch cultures. The paper is organized as follows. Section 2
introduces the growth model with coordinated uptake
of glucose and nitrogen, while Section 3 details the cell
trehalose cycle, the macroscopic reaction added to the
existing model and the storage and mobilization reaction
rates. Parameter estimation from the available experimen-
tal database and model validation are discussed in Sec-
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tion 4, while conclusions and possible model improvements
are indicated in Section 5.

2. YEAST GROWTH MODEL WITH COORDINATED
UPTAKE OF GLUCOSE AND AMMONIUM

One of the most renowned and accepted dynamical models
able to reproduce overflow metabolism in S. cerevisiae
cultures was proposed by Sonnleitner and Képpeli (1986).
They introduced a maximum respiratory capacity by a
simple mechanism with min-max non-linearities to model
the overflow metabolism. The model considers only glucose
uptake and has been widely used to simulate and optimize
S. cerevisiae growth. However, it is well known that am-
monium plays an important role in microorganisms growth
and the activation of the cellular metabolism as it is a main
component of proteins and nucleic acids. Hence, accurate
predictions of yeast growth may be obtained only using a
model which describes the coordinated uptake of carbon
and nitrogen sources, such as the one proposed by Richelle
et al. (2014). By the means of a new macroscopic reaction
in addition of those presented by Sonnleitner and Képpeli
(1986), Richelle et al. (2014) introduced the coordinated
uptake of ammonium as well as an intracellular metabolite,
a-ketoglutarate, that acts as an inhibitor of the fermenta-
tion. a-ketoglutarate is produced when biomass grows on
glucose through fermentation and can be consumed along
with ammonium. Considering fully aerobic conditions, the
reaction network describing the process is given by:

G5 kX

G 25 ko X 4+ kyE 4 k7 A

B 25 ks X (1)
N4+ A kX

In (1), X, G, N, E and A respectively denote the biomass
concentration (g/L), extracellular glucose concentration
(g/L), ammonium concentration (g/L), ethanol concen-
tration (g/L) and intracellular a-ketoglutarate concentra-
tion (g/gX). k1 ... ks represent the pseudo-stoichiometric
coefficients. The reactions included in the network (1)
express: 1) biomass growth on glucose through respiration;
ii) biomass growth on glucose through fermentation, with
ethanol production and a-ketoglutarate accumulation; iii)
biomass growth on ethanol through respiration, which is
only possible if the global glucose uptake is inferior to the
maximum respiratory capacity and occurs only in the pres-
ence of ethanol; iv) formation of biomass on ammonium
as well as coordinated consumption of a-ketoglutarate,
therefore boosting the fermentation as a-ketoglutarate is
considered an inhibitor of the fermentation.

For a fed-batch process, which is the common way of grow-
ing yeast in industry, the system dynamics are described
by the mass balance equations (2), where F is the feed flow
rate, V is the culture volume, G and N are respectively
the glucose concentration and ammonium concentration
in the feed and r;, ¢ = 1...4 are the reaction rates. The
specific rate of respiration, the glucose uptake rate and
ammonium uptake rate are given by (3), while the overflow
metabolism is expressed similarly as in (Sonnleitner and
Képpeli, 1986) through the kinetic rates (4).
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The model parameters (Richelle et al., 2014) are presented
in Table 1. These parameters have been identified from ex-
perimental data. The experimental database contains also
measurements of the intracellular trehalose concentration,
which will be used in the next sections for model extension.

Table 1. Model parameters

Name Value Units Name Value Units
k1 0.5998 gX/gG UNmaz 1.1903  gN/gX/h
ko 0.0662 eX/eG Kg 0.1524 gG/L
k3 0.9386 gX/gE Kr 3.1817 ¢E/L
ks 0.2452 ¢E/gG Kg 0.1 ¢E/L
k7 0.2389 gA/eG Ky 2.9370 gN/L
ks 1.0150 gX/eN Ka 9.0014 gA/L
o 0.4445 gG/gX/h Kra 5.5981 gA/L

HGmaz  2.5364  gG/gX/h Kras 5.7737 gA/L

3. TREHALOSE STORAGE AND MOBILIZATION
3.1 Biological Insight

Trehalose is a disaccharide formed from two glucose
molecules according to a pathway revealed by Cabib and
Leloir (1958). As stated by Smallbone et al. (2011), the
trehalose pathway in yeast consists of a small number of re-
actions, which occur in a metabolic cycle. These reactions
are governed by a complex regulatory system, including
various activation and inhibition signals, which makes the
experimental study of pathway operation difficult. The tre-
halose cycle (Smallbone et al., 2011; Voit, 2003) comprises:
the conversion of glucose into glucose 6-phosphate (G6P);
the formation of trehalose 6-phosphate (T6P) from glucose
6-phosphate and uridine diphosphate glucose (UDPG); the
conversion of trehalose 6-phosphate (T6P) into trehalose;
the splitting of trehalose into two glucose molecules. This
cycle is characterized by the reactions:

2Gint — G6P +UDPG — T6P — T — 2Gyn; (5)
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Fig. 1. Schematic representation of material flow in tre-
halose cycle in S. cerevisiae (Voit, 2003)

where G;,; denotes the intracellular glucose and T de-
notes the intracellular trehalose. The trehalose cycle is
illustrated in Figure 1 (Voit, 2003), where for simplicity
only the flux of material is included while the activation
and inhibition signals are discarded.

3.2 Model Rationales

The goal of this work is to identify a simple macroscopic
model that relates trehalose dynamics to the yeast growth
model (2). A model implementing cycle (5) will be fairly
complex taking into account the various activation and
inhibition terms and the number of components involved in
the reactions. Moreover, its identification will be hampered
by the lack of measurements, as the only intracellular mea-
surement available is trehalose. Hence, the trehalose cycle
is approximated in this work by a storage reaction, which
relates the internal glucose to trehalose formation, and a
mobilization reaction, which characterizes the conversion
of trehalose to intracellular glucose:

T (6)

ror 1

Gmt T:T 2

Note, however, that the internal glucose concentration is

not measured and the reaction rates for storage and accu-

mulation must be correlated to the available extracellular

measurements. Opposite to the reaction scheme (1), which

involves pseudo-stoichiometric coefficients, a direct stoi-

chiometric coefficient is considered in (6), as one trehalose
molecule is formed from two glucose molecules.

The proposed storage rate and mobilization rate are

Kisn
TsT = UsTmaz * T t_Ts' 7
P = et 76 (=) (D)
T
mT — UmTmazx * t*m'i
mT = UmT 7’3( T)T+KmT (8)
and the trehalose mass balance is given by
dl" 1 1 F
E = irSTX — §TmTX — VT (9)

In (7)-(9), T (g/L) denotes the product of intracellular tre-
halose (g/(g biomass)) and biomass concentration (g/L).
This notation will be used in all further developments.

The structures of the storage and mobilization rates are
chosen based on biological evidence and analysis of the
available data sets. Trehalose is formed from intracellular
glucose, whose availability is directly linked to the glucose
uptake rate (rg). However, the uptake of extracellular

glucose does not imply the instantaneous increase of tre-
halose, as transport phenomena are involved, intracellular
processes which are neither modeled nor fully understood
occur, while the operational conditions greatly influence
the cell cycle inducing stresses, which can trigger either
carbohydrates storage or mobilization. The available data
sets indicate a time-delayed correlation between trehalose
storage and the global glucose uptake rate, hence, the term
rg (t — 75) is included in (7), where 75 denotes the time
delay for trehalose storage. On the other hand, trehalose
is low (or zero) at high ammonium concentrations and its
storage boosts when ammonium decreases to low quanti-
Kisn
N + KISN
rate to account for ammonium inhibition.

ties. Hence, the factor is included in the storage

Trehalose mobilization occurs when glucose is exhausted
(or it is very low) and the culture is in the ethanol respi-
ration phase. A similar time-delayed dependency between
trehalose mobilization and ethanol respiration is observed
in the experimental data, modeled by the term r3 (¢ — 7,,),
where 7, denotes the time delay for trehalose mobiliza-
tion. Although no trehalose limitation has been noticed,

the factor is included in the mobilization rate

T
T+ Kot
to keep the model physical: no trehalose can be mobilized
if it is not available. Therefore, the parameter K., is not
identified from the available data but set to an arbitrarily
small value (K7 = 0.01gT/L).

To summarize, the proposed model for characterizing the
trehalose dynamics consists of the delay differential equa-
tion (9), with the reaction rates (7)-(8) involving five pa-
rameters that need to be identified from the experimental
data: two maximum specific rates psrmaz and fmTmaz,
two time delays 75 and 7, and the ammonium inhibition
constant Kjsn. The model is simulated in MATLAB using
the solver dde23.

4. PARAMETER ESTIMATION AND MODEL
VALIDATION

The parameters of the trehalose accumulation and mobi-
lization model are estimated from the experimental data
acquired by Richelle et al. (2014). This experimental
database consists of 4 fed-batch experiments that differ
mainly at the level of the ammonium feeding concentra-
tion. The experiments last 21 hours and measurements
are available at 15 or 16 time instants per experiment.
These measurements include extracellular concentrations:
biomass, glucose, ammonium, and ethanol, as well as in-
tracellular trehalose concentration.

The parameters of the model extension (7)-(9) are iden-
tified using MATLAB 1sqgnonlin function, which applies
the trust-region-reflective optimization algorithm to min-
imize a least-squares criterion. This criterion consists of
the sum of squared differences between model predictions
and the experimental values
n Nj
SSE(0) =Y (4 (0) — vij)”

j=1i=1

(10)

where 0 = [ ftsTmaz WmTmaz K1sN Ts Tm | is the parame-
ters vector, g;; (6) represents the trehalose concentration
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Table 2. Estimated parameters

Set 1 Set 2 Set 3 Set 4 Set 5
Parameter™* Range of Experiments  Experiments Experiments Experiments Experiments Variation
initialization 1-2-3-4 1-2-3 1-2-4 1-3-4 2-3-4 coefficients™
WsTmaz 0.01-0.1 0.0500 0.0419 0.0426 0.0607 0.0500 8.40
BmTmaz 0.1-0.5 0.4796 0.3631 0.2995 0.3348 0.2296 16.00
Krsn 0.01-0.1 0.3317 0.3291 0.4516 0.2528 0.2506 25.00
Ts 5-10 6.080 6.1678 5.7859 7.1978 6.2154 0.0025
Tm 1-5 3.3905 4.2764 1.4766 3.2149 2.7286 0.51
SSE* / 0.7083 0.9131 0.8310 0.7638 0.7506 /
* calculated for Set 1 ** gee units in Table 3
Table 3. Confidence intervals of the estimated parameters
Set 1 Set 2 Set 3 Set 4 Set 5
Parameter Experiments Experiments Experiments Experiments Experiments Units
1-2-3-4 1-2-3 1-2-4 1-3-4 2-3-4
MsTmaz [0.0416, 0.0584]  [0.0208, 0.0473]  [0.0337, 0.0514]  [0.0000, 0.0845]  [0.0427, 0.0654] gT/gG
UmTmaz [0.3262, 0.6330]  [0.0114, 0.2709]  [0.0000, 0.6657]  [0.0233, 0.5545]  [0.0735, 1.0352] gT/gE
Kirsn [0.1658, 0.4976]  [0.0875, 0.6250]  [0.2194, 0.6839]  [0.0000, 0.8961]  [0.1374, 0.4792] gN/L
Ts [6.0797, 6.0803]  [5.0853, 6.2727]  [5.7523, 5.8195]  [4.8016, 5.4277]  [6.2446, 6.4566] h
Tm [3.3558, 3.4251]  [2.1127, 2.6372]  [1.4375, 1.5158]  [2.2977, 2.3178]  [3.2521, 3.2583] h

predicted by the model (7)-(9) at the i*” time instant in the
jt* experiment, Y5 is the measured trehalose concentration
at the i’" time instant in the j** experiment.

The hypothesis of a constant measurement error variance
is made. Therefore, its unbiased estimate is calculated as

52 — SSE(6)
N—p
where 52 denotes the estimated variance on the measure-
ment error, # is the parameter set that minimizes crite-
rion (10), N = Z?Zl Nj; is the total number of trehalose
measurements and p is the number of parameters. The
sensitivity functions can be inferred from the Jacobian ma-
trix (J) provided by the 1sqnonlin solver. This matrix is
used to compute a lower bound of the covariance matrix of
the parameter estimation errors (Sg) based on the Fischer
information matrix (F)

(11)

F=J"J Sq=62F1 (12)
The variance of each parameter is then obtained as
o5 = Sais (13)

which leads to the 95% confidence intervals of the esti-
mated parameters 6;, with i =1...5

Cly, = 0; £ 20y, (14)
Variation coefficients are also computed as
VG, = 7 (15)

To avoid local minima and convergence problems, a mul-
tistart approach is used. For each parameter, pseudo-
random values over given ranges were used for the ini-
tialization of the optimization algorithm. In total, 15 ini-
tializations were performed. The second column of Table 2
displays the ranges for parameters initialization. The set
of parameters providing the lowest value of the cost func-
tion (10) was selected and reported in Table 2.

Several sets of parameters were estimated from different
data sets. These data sets were built from the experimental
database considering either the whole set of experimental
data points (Set 1, comprising experiments 1 to 4) or a

leave-one-out approach (Sets 2 to 5), in which the data
points from one experiment are not used in the identifica-
tion but are employed for cross validation. The identified
sets of parameters are given in Table 2, while the con-
fidence intervals calculated using the approach (11)-(14)
are reported in Table 3. Figure 2 displays the experimen-
tal data (experiment 1) and the model predictions. The
parameters estimated using the entire database (Set 1) are
used for trehalose prediction. Figure 3 presents the direct
validation (with Set 1) for each experiment, while Figure 4
shows the leave-one-out cross validation.

Comparing the two maximum rates, the largest uncer-
tainty is observed for pyrmaz (16% for fimrmas compared
to 8.4% for pisTmaz)- This is caused by the fact that there
are less instants in the four experiments in which there
is trehalose mobilization compared to trehalose storage,
which occurred more frequently.

The largest uncertainty is observed for Krsy (25%). It
is well known that environmental stress, such as low
ammonium concentration, boosts trehalose accumulation
in S. cerevisiae. It should be noted though that the
ammonium concentration measurements are the ones with
the highest standard variation in comparison to the signals
range as seen in Figure 2.

The uncertainties for both 74 and 7,, are very small
(0.0025% and 0.51% respectively). This shows in both
cases a clear time-delayed correlation between the kinetic
rates of trehalose and the uptake of glucose as well as
the respiration of ethanol. It is worthwhile noting that
in comparison to other similar biological models (Amribt
et al., 2013; Richelle et al., 2014), the variations for all
parameters are in acceptable ranges and that they do not
indicate the need for model reduction.

The 95% confidence intervals presented in Table 3 show
that the results of parameter estimation with both direct
validation and leave-one-out cross validation are quite
similar. Moreover, the 5 sets of parameters lead to a sum of
squared errors (SSE) of same order of magnitude (Table 2).
This is of importance as the main difference between
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Fig. 2. Experiment 1: measurements (red dots) and model predictions (blue lines)

the four experiments is the ammonium concentration in
the feeding medium. The predicted values are globally in
good accordance with the experimental measurements and
cross validation results are somewhat close to them. The
trehalose predicted by the model using the parameters
identified from Set 1 (direct validation) are presented
in Figure 3. The transient behavior of trehalose is well
captured for the four experiments. The final accumulation
is well reproduced for experiment 4. However, there is
an undershoot for experiment 2 and an overshoot for
experiment 3. The final value for experiment 1 is closer to
the experimental measurement and the second transient is
reproduced in terms of trend but not with close values.

The trehalose predictions based on the sets of parameters
identified from the leave-one-out approach (cross valida-
tion) are presented in Figure 4. In the case of experiment
1 (no ammonium in the feeding medium) and experiment
2 (high ammonium concentration in the feeding medium),
the cross validation results are quite close to the direct
validation ones. For experiment 3 (medium ammonium
concentration in the feeding medium), the first transient
almost disappears, and the model is not able to reproduce
the first trehalose mobilization, resulting in a bit higher
final overshoot than in direct validation. In the case of
experiment 4, the simulation is quite close to the direct
validation up till £ = 20h, where trehalose storage dimin-
ishes and the prediction ends up in an underestimation of
the measurement. Experiment 4 was performed with high
ammonium concentration in the feeding medium during
the first 15 hours and no ammonium feeding for the rest
of the culture. This is the experiment in which the culture
reaches the highest trehalose concentration out of the 4
experiments (1.3 g/L). By removing this experiment from
the data set used for estimation, the model is not exposed
during the identification to such high levels of trehalose
concentration (second highest trehalose concentration is
measured in experiment 1 with a concentration of 1 g/L).
These observations highlight the importance of the ex-

perimental database used for parameter estimation, which
must characterize the entire range of interest to allow the
identification of a model able to accurately predict the
process states. The model simulated with the parameters
identified from Set 1 provides the best approximation of
the fourth experiment. This is the experiment performed
with the most suitable conditions for trehalose final accu-
mulation.

5. CONCLUSION

In this study, an extension enabling trehalose concen-
tration prediction was added to a validated macroscopic
model for fed-batch cultures of S. cerevisiae. The model
parameters were estimated from the available experimen-
tal database. The model predicts accurately the storage
and mobilization of trehalose in S. cerevisiae for the op-
erational conditions characterized by the available experi-
mental database. The model may be improved if additional
experimental data measured during trehalose mobilization
phase is available. In a later stage, the model will be
extended to include the dynamics of other reserve carbo-
hydrates such as glycogen.
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