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Abstract
The development of reduced-order combustion models able to accurately reproduce the physics of reactive sys-
tems has been a highly challenging aspect of numerical combustion research in the recent past. The complexity of
the problem can be reduced by identifying and using low-dimensional manifolds able to account for turbulence-
chemistry interactions. Recently, Principal Components Analysis (PCA) has shown its potential in reducing the
dimensionality of a chemically reactive system while minimizing the reconstruction error. The present work
demonstrates the application of the Manifold Generated by Local PCA (MG-L-PCA) approach in direct numer-
ical simulation (DNS) of turbulent flames. The approach is enhanced with an unsupervised clustering based on
Vector Quantization PCA (VQPCA) and an on-the-fly PCA-based classification technique. The reduced model is
then applied on a three-dimensional (3D) turbulent premixed NH3/air flame by transporting only a subset of the
original state-space variables on the computational grid and using the PCA basis to reconstruct the non-transported
variables. Results are compared with both a detailed reaction mechanism and a Computational Singular Perturba-
tion (CSP) reduced skeletal mechanism. A comparison between training the reduced model using one-dimensional
(1D) and 3D data sets is also included. Overall, the MG-L-PCA allows not only for a reduction in the number of
transport equations, but also a significant reduction in the stiffness of the system, while providing highly accurate
results.
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1. Introduction

Direct Numerical Simulation (DNS) using detailed
chemistry is still an overly demanding task for most
computational facilities due to the large number of
species and reactions in the chemical system. To
lower the computational cost associated with detailed
kinetics and make the simulations more affordable,
various strategies have been proposed in the combus-
tion literature, which can be classified into two cate-
gories: reduction of the chemical mechanism and pa-
rameterization of the state-space with a reduced num-
ber of optimal variables.

The reduction of a chemical mechanism can be
achieved using various techniques. Among those,
Computational Singular Perturbation (CSP) theory
[1] has gained attention in recent years for its abil-
ity to reduce the number of elementary reactions in
a complex reaction system by grouping reactions that
are characterized by a single characteristic time scale,
and subsequently, discarding those reactions which
are associated with fast time scales. By the process
of identifying and discarding fast reaction groups, a
simplified kinetic scheme for the complex chemical
system is obtained.

Among the various state-space parameterization
methods, Principal Component Analysis (PCA) [2]
has proven to be a particularly elegant tool for this
purpose. In this approach, empirical data sets are an-
alyzed using PCA to identify a low-dimensional rep-
resentation of the reacting system, where the low-
dimensional manifold is parameterized in terms of
a reduced number of optimal variables [3–9]. If
the original thermo-chemical state-space consists of
Q variables, PCA will provide a truncated set of q
(q < Q) Principal Components (PCs) – which are lin-
ear combinations of the original variables – contain-
ing most of the information present in the original
data. Therefore, PCA offers the ability to reduce the
dimensionality of the system, accelerating the com-
putation accordingly.

Two families of methods exist to use the mani-
fold identified by PCA. In the PC-transport approach
[4], the Principal Component scores are directly trans-
ported in the flow solver. However, this approach re-
quires significant code modifications and special at-
tention should be given to the PC source terms accu-
racy, requiring nonlinear regression techniques to re-
duce the number of components to transport [7–10].

The second method consists in solving the Navier–
Stokes equations for a subset of species mass frac-
tions and reconstructing the non-transported variables
from the PCA basis. This is referred to as the Mani-
fold Generated from PCA (MG-PCA) model [11, 12],
which relies on classical transport equations for a re-
duced set of principal variables (PV). In particular, in
[11] the model was coupled with local PCA [3], al-
lowing a local application of the MG-PCA method in
clusters, thus further reducing the number of trans-
ported species. The MG-L-PCA model was applied
to a laminar two-dimensional (2D) hydrogen flame-

vortex interaction case in a DNS solver, with the
training data being generated using a one-dimensional
(1D) freely propagating hydrogen-air laminar flame.

The present work focuses on MG-L-PCA in the
context of DNS of three-dimensional (3D) turbulent
flows. The objective is to demonstrate the approach a
posteriori, coupling the method with an unsupervised
classification of the state-space, for the definition and
retrieval of optimal local parametrisations. Vector
quantization PCA (VQPCA) is used both a priori, for
the generation of local basis, and during the simu-
lations, for the on-the-fly classification of the state-
space. The training data set is generated using a col-
lection of 1D strained premixed counterflow flames.
The MG-L-PCA results are benchmarked against de-
tailed DNS results and the DNS results obtained from
a CSP reduced mechanism. The test case is a 3D pre-
mixed NH3/air flame interacting with turbulence. To
the authors’ knowledge, the present work represents
the first attempt to use the MG-L-PCA model in such
a comprehensive and unsupervised manner.

2. Methodology

2.1. Principal Component Analysis (PCA)

The methodology behind PCA and MG-PCA is
briefly introduced here. For detailed information, the
reader may refer to [4–11].

For a data set X of dimension (n×Q), containing n
samples of Q independent variables, PCA provides an
approximation based on q (q < Q) linear correlations:

X ≊ Xq = ZqAt
q , (1)

where Xq (n×Q) is the approximation of X based on
the first q eigenvectors, Zq (n× q) are the principal
components scores and At

q (q×Q) is the matrix of
the first q eigenvectors, i.e. the truncated basis ma-
trix (the superscript t denotes the transposed). In the
present work, X contains the species mass fractions
(X = [Yi, ...,Yns]) and it is assumed that X has been
appropriately centered and scaled before PCA is car-
ried out, as discussed thoroughly in [13].

In the MG-PCA approach, a subset of the origi-
nal variables is solved using classical transport equa-
tions, and the remaining variables are recovered using
PCA. Indeed, the scores Zq can be approximated from
a subset q of the original variables:

Z̃q = X(q) (A(q)t
q)

−1 , (2)

where X(q) (n × q) contains only q variables, and
A(q)q is a (q× q) matrix containing only the coef-
ficients related to the q retained variables. Combining
Eqs. (1) and (2), the Q−q species mass fractions can
be directly recovered from the q transported ones:

Xq = X(q) (A(q)t
q)

−1 At
q = X(q)B . (3)
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In the present work, the projection matrix B is re-
trieved following Isaac et al. [12]:

B = X(q)+ZqAt
q , (4)

where X(q)+ is the pseudo-inverse of X(q). In the
flow solver, the MG-PCA method is implemented as
follows: (1) transport equations are solved for the q
retained variables, (2) at the end of each temporal
(or pseudo-temporal) iteration, the remaining Q− q
variables are reconstructed using Eq. (3), (3) all the
species mass fractions are then available for the next
iteration, and their source terms, diffusion coefficients
and other mixture properties can be computed.

2.2. Local PCA (L-PCA)

For reacting flows, a larger number of PCs may be
required to properly describe the system due to the
intrinsically multi-linear nature of the technique [12].
To overcome this limit, a local PCA approach was in-
troduced by Parente et al. [3], where the data set is di-
vided into k clusters using an unsupervised algorithm
based on Vector Quantization (VQ). The VQPCA al-
gorithm partitions the data into separate clusters by
minimizing the reconstruction error. Subsequently,
PCA is performed in each cluster to find a local re-
duced representation. A global scaled reconstruction
error (εGSRE ) for each observation can be defined as
[3]:

εGSRE

(
X̃i,X

(k)
)
=∥ X̃i − X̃i,q ∥ , (5)

where X̃i is the scaled ith observation of the sample,
X(k) is the kth cluster centroid and X̃i,q is the rank q
approximation of X̃i. The iterative VQPCA algorithm
can be summarized as follows:

1. Initialization: the number of clusters k is set by the
user and the clusters centroids X(k) are initialized;

2. Partition: each sample observation is assigned to
the cluster satisfying Eq. 5;

3. Update: the new clusters centroids are computed
on the basis of the partitioning from the previous
step;

4. Local PCA: PCA is performed in each cluster;

5. Steps 2-4 are iterated until convergence is reached.

The use of local PCA is well-suited in the context
of MG-L-PCA. Indeed, as the q retained variables are
chosen based on the global data set, only the B matri-
ces change between clusters. Therefore, the transport
equations will not change from one cluster to another,
but rather the local basis matrices At

q,k, used to re-
cover the missing Q−q variables, will differ [11].

2.3. Classification via PCA reconstruction er-
ror

The PCA reconstruction error-based metric, de-
fined as the difference between the original (xi) and
the reconstructed (x̃i) observation (i.e. εr = ∥x̃i −xi∥)
can also be adapted for the on-the-fly classification
of a new, unobserved, vector y ∈ Rq. During the
simulation, in each cell, the vector y representing
the state-space is projected onto the k local mani-
folds described by the pre-computed local basis ma-
trices At

q,k. Each cell is then classified to the clus-
ter for which the reconstruction error is minimized
[14]. Then, the missing Q−q variables are computed
by selecting the B matrix associated to each cluster.
This procedure allows for a fast and efficient classifi-
cation thanks to the efficiency of the on-the-fly PCA
algorithm. Figure 1 shows the procedure graphically:
starting from an existing clustering solution, the new
observation to be classified is projected onto each lo-
cal PCA bases, and the reconstruction error is com-
puted for each projection. The observation is then as-
signed to the cluster that minimizes εr.
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y
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PC1

d2
d1 d3

New and unobserved 
point to classify
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Cluster 2
Cluster 3

Existing 
clustering 
solution 

Figure 1: Classification procedure via PCA reconstruction
error (adapted from [14]).

2.4. Variables selection via PCA

The selection of the subset of variables to be trans-
ported is a key step for the quality of the MG-L-PCA
results [12]. Indeed, the retained subset of species
should allow for a quasi-exact reconstruction of the
entire state-space to avoid numerical errors in the
source terms computation. In the present work, the
B2 backward method is used [15]. The B2 algorithm
eliminates variables by analyzing the weights distri-
bution on the PCs: the weights on the last Q−q PCs
are inspected (those associated with small eigenval-
ues), and the variables with the highest weights on
those PCs are discarded. In a previous study, the B2
method was shown to be the most robust and provid-
ing the best approximation of the state-space [12].
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3. Numerical setup

MG-L-PCA was implemented and applied in the
simulation of turbulent reacting flows. The 3D DNS
computations were carried out using the KARFS
code [16, 17] developed at KAUST, which solves
the compressible Navier–Stokes equations fully ex-
plicitly. A fourth-order, six-stage explicit Runge–
Kutta scheme is used for time integration, while
the spatial discretization is done using an eighth-
order, non-dissipative, central difference operator.
For stiff chemistry problems, a stiff-ODE solver and
a second-order operator splitting algorithm are also
available. The code also includes an implementation
of the Navier–Stokes characteristic boundary condi-
tions (NSCBC) [18].

The chosen case is a premixed, rich, NH3/air flame
in a box configuration, schematically illustrated in
Fig. 2. The equivalence ratio is φ=1.2, the pressure is
P=1 atm and the unburned temperature is Tu=500 K.
The computational domain is discretized with (168,
64, 64) uniform grid points in the (x, y, z) directions,
respectively. The grid resolution is chosen such that
∆x = ∆y = ∆z = 1.09×10−4 m ≤ 2.1ηk, where ηk is
the Kolmogorov length scale, and the thermal flame
thickness is resolved with more than 12 grid points.
The turbulent Reynolds, Damkhöler, Karlovitz, and
Lewis numbers are respectively 72, 0.1, 85, and 1.12.
Periodic boundary conditions are used in the y and z
directions, while Navier–Stokes characteristic bound-
ary conditions are applied for the outflow.

The simulation is initialized using the solution
from a 1D premixed flame (at the same equivalence
ratio, pressure and temperature), mapped onto the 3D
domain. An initial isotropic turbulence field was gen-
erated with a spectrum function [19], which was then
fed at the inlet (x = 0). The turbulent forcing de-
scribed by Bassenne et al. [20] is applied in the un-
burned region to retain the initial turbulence level.
Moreover, the mean inflow velocity is properly ad-
justed based on the fuel consumption speed, to an-
chor the flame at a specified location within the com-
putational domain [21]. Thermo-chemical and trans-
port properties were computed using the Cantera li-
brary [22]. Ammonia combustion was described with
a detailed kinetic mechanism involving 38 species and
263 reactions, developed by Zhang et al. [23]. In ad-
dition, a skeletal mechanism consisting of 25 species
and 175 reactions, which was obtained using CSP re-
duction, was also employed for comparison with the
MG-L-PCA approach.

4. Training data and manifold

The training data set for the MG-L-PCA model
was generated using a 1D laminar premixed counter-
flow flame setup. Simulations were performed using
the Cantera software package [22]. This particular
setup simulates two counterflow jets of reactants im-
pinging onto each other. The initial thermo-chemical

500 2200
T [K]

Figure 2: Flame in a box configuration used in the current
DNS work.

conditions were the same as for the 3D DNS case de-
scribed in Section 3, and the detailed kinetic mech-
anism by Zhang et al. [23] was used. The inlet axial
velocity was varied in order to generate a collection of
strained flame solutions, which were saved on a grid
of 60 points over a 25 mm domain. All of the data
points were used collectively for the PCA analysis.
The final data set consisted of ∼ 30,000 observations
for each of the state-space variables.

In the MG-L-PCA approach, a subset of variables
are transported and, therefore, the latter must allow
a quasi-exact reconstruction of the non-transported
variables in order to avoid nonphysical behavior of
the flame. Using the B2 backward selection method
[15] with pareto scaling [13], 21 species were iden-
tified. The VQPCA analysis showed that by using 3
clusters, the retained 21 species allowed for a quasi-
exact reconstruction (R2 > 0.999) of the other non-
transported species. The minimum number of re-
tained species is constrained by the reconstruction ac-
curacy of the discarded species, while the maximum
number of clusters is constrained by the accuracy of
the on-the-fly classification. It was found that the 21
retained species (using the B2 backward method) and
3 clusters (identified in an unsupervised manner using
VQPCA) provided the best compromise between ac-
curacy in the reconstruction of the remaining species
and accuracy in the on the fly classification algo-
rithm. The different sets of species used for the de-
tailed, CSP-reduced and MG-L-PCA simulations, re-
spectively, are reported in Table 1.

Two different MG-L-PCA models were built using
two different data sets of increasing complexity: one
using the 1D strained counterflow data set described
above (hereafter called MG-L-PCA - 1D training),
and a second one using the data obtained from the de-
tailed DNS simulation (hereafter called MG-L-PCA -
3D training). The number of transport equations for
the different cases are summarized in Table 2 (for all
simulations YN2 was computed using mass balance).
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Table 1: List of transported species used for the detailed, CSP-reduced and MG-L-PCA simulations.

Method No. of species Transported species

Detailed
mechanism by
Zhang et al. [23]

38 AR,H,H2,HE,O,OH,H2O,HO2,H2O2,O2,OH∗,N,NH,NH2,NH3,

NNH,N2H2,N2H3,N2H4,H2NN,NO,N2O,NO2,HNO,HON,HONO,

HNO,HNOH,NH2OH,HNO2,HONO2,NO3,HNO3,CO,CO2,CH4,

C2H6,N2

CSP-reduced
skeletal mechanism

25 H,H2,O,OH,H2O,HO2,H2O2,O2,N,NH,NH2,NH3,NNH,N2H2,

N2H4,H2NN,NO,N2O,NO2,HNO,HONO,H2NO,HNOH,HNO2,N2

MG-L-PCA
reduced model

21 H,H2,O,OH,H2O,HO2,H2O2,O2,N,NH,NH2,NH3,N2H2,N2H3,

N2H4,NO,N2O,NO2,HNO,H2NO,HNOH

Table 2: Number of transport equations for the different
DNS cases.

Chemistry description No. of equations

Detailed mechanism 5+37
CSP-reduced 5+24
MG-L-PCA - 1D training 5+21
MG-L-PCA - 3D training 5+21

5. Results

In this section, results obtained from the DNS
computations using the detailed mechanism, CSP-
reduced skeletal mechanism and MG-L-PCA reduced
model are all compared for a 3D ammonia/air turbu-
lent premixed flame.

Figures 3 and 4 show the conditionally-averaged
profiles of temperature along with major species
(Fig. 3), and intermediate and minor species (Fig. 4),
plotted as a function of the temperature-based
progress variable cT , for each of the four cases de-
scribed in Table 2. The solution from the detailed
DNS is represented by solid lines (mean) and shaded
regions (standard deviation to the mean), while the
symbols and their associated error bars show the mean
and standard deviation for the three reduced models.

It is observed in Fig. 3 that the three DNS us-
ing reduced models show nearly identical results to
the detailed DNS for the predictions of major state-
space variables. In particular, the MG-L-PCA model
is able to predict the temperature and major species
mass fractions as accurately as the CSP method over
the entire range of the progress variable, but at a lower
computational cost. This decrease in CPU cost is due
to two reasons: 1) a smaller number of species trans-
port equations are required (21 instead of 37, repre-
senting a 43% reduction), and 2) the stiffness of the
system is also considerably reduced as the DNS simu-
lations with the MG-L-PCA models were able to run
using a timestep five times larger than the timestep
used for the detailed and skeletal (from CSP) mech-
anisms. To support this, a more rigorous timescale

analysis is presented in Section 5.1. Figure 3 also
indicates that there are no significant differences be-
tween the MG-L-PCA models trained on 1D or 3D
data sets for major state-space variables.

Regarding Figure 4, when referring to the MG-
L-PCA models, intermediate and minor species are
divided into two categories: transported and non-
transported species. Figures 4a-b show the results
for two transported species: YN2O and YN2H4 . It
is seen that those species are accurately captured by
both MG-L-PCA models, showing good agreement
between the 1D and 3D trainings. In particular, in
the case of YN2H4 , the MG-L-PCA models show im-
proved accuracy compared to the CSP method. For
non-transported species (Fig. 4c-d), a clear advantage
of using a 3D training data set is evident. Indeed,
those non-transported minor species are poorly pre-
dicted by the 1D trained MG-L-PCA, whereas the 3D
trained model captures the evolution of those species
better. This suggests that the complex transport phe-
nomena present in the 3D DNS data set allows to
build a more accurate B matrix for the recovery of
non-transported variables, compared to the laminar
strained 1D flames. After all, utilization of the 1D
data set relies on the flamelet assumption, implying an
additional level of approximation and potential inac-
curacy. It is noted that, although YH2NN is not trans-
ported, it is nevertheless better predicted by the 3D
trained MG-L-PCA model as well as, and slightly bet-
ter than, the CSP-reduced model, in which YH2NN is
explicitly transported and solved.

Figure 5 shows scatter plots of the chemical source
terms of one major transported species (ω̇NH3 , top
row) and a minor one (ω̇N2H4 , bottom row), compar-
ing the detailed, CSP reduced and MG-L-PCA results
respectively. The source terms were extracted over
the entire duration of the simulations. It can be ob-
served that the MG-L-PCA model is able to accu-
rately predict the chemical source terms when com-
pared to the detailed results, even outperforming the
CSP reduced model in the case of ω̇N2H4 . Therefore,
the observed level of inaccuracy in the reconstruc-
tion of minor species for the MG-L-PCA model does
not significantly affect the calculations of the source
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(a) Temperature (b) YNH3 and YH2O

Figure 3: Comparison of conditional average of temperature (a) and major species (b) as a function of the temperature-based
progress variable cT . The solid line indicates the mean for the detailed case, and shaded region is the standard deviation to the
mean. Symbols and associated error bars indicate the mean and standard deviation for CSP and MG-L-PCA cases, respectively.

terms of transported variables.
Table 3 shows the normalized root-mean-square

(nrms) error values as a quantitative assessment of
the reduced models performances. For some scalars,
the MG-L-PCA trained on 1D flames is able to pro-
vide more accurate results than both the CSP and the
MG-L-PCA trained on a 3D DNS data set, exhibit-
ing 2 to 4 times lower nrms values. This suggests
that MG-L-PCA model can be trained on simple con-
figurations using detailed mechanisms. Therefore, a
1D trained model represents a feasible and generaliz-
able approach providing very accurate results for ma-
jor variables. The 1D flame based training yielding a
lower error for the major variables (compared to the
3D DNS training) could be due to the increased com-
plexity and curvature of the DNS data, as the latter
inherently contains the effect of turbulence and mix-
ing. This in turn leads to a more challenging mani-
fold, requiring a higher number of clusters to accu-
rately compute the B matrix in each of them. The ma-
jor variables could be more sensitive to this effect as
they are more strongly affected by large scale turbu-
lence. Regarding the minor non-transported species,
it should be pointed out that a classical mechanism re-
duction technique completely removes those species
from the system, whereas MG-PCA retains them and
still provides a reasonable prediction of those without
solving for their transport equations. Given that the
minor species are only estimated, it is possible that a
3D data set provides better results. However, the ac-
curacy of the minor non-transported species, although
essential for the source terms computations, does not
seem to affect the predictions of the major species and
temperature.

Table 3: Normalized root-mean-square (nrms) error values
for the variables plotted in Figs. 3 and 4.

Variable CSP 1D training 3D training

T 0.47% 0.22% 1.30%
YNH3 1.79% 0.47% 1.73%
YH2O 1.71% 0.84% 1.14%
YN2O 5.57% 2.22% 5.74%
YN2H4 247.5% 9.40% 5.95%
YH2NN 9.72% 4.41% 3.34%
YHNO2 32.9% 79.56% 18.42%

5.1. Timescales analysis

A chemical timescale analysis is performed here
using the approach for complex kinetic schemes pro-
posed by Fox [24], where the chemical timescales are
computed based on the inverse of the eigenvalues of
the chemical source term Jacobian matrix. A compar-
ison is conducted for the detailed, CSP and MG-L-
PCA cases for a 0D case and for the 3D DNS cases.
The 0D simulations were carried out using a constant-
volume reactor in KARFS. The Jacobian matrix and
timescales calculations were performed using the in-
house MATLAB code JACOBEN [25]. The MG-L-
PCA case was run using the same number of species
as the CSP case, to allow a more consistent compari-
son.

Figure 6a shows the minimum chemical time
scales (τc,min) evolution with each time-step associ-
ated with the 0D reactor for the three cases under
consideration, namely the detailed mechanism (38
species), the CSP-reduced mechanism (25 species)
and the MG-L-PCA model (1D training, 25 species,
3 clusters). For the cases under study, the MG-L-
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(a) YN2O (b) YN2H4

(c) YH2NN (d) YHNO2

Figure 4: Comparison of conditional average of minor species as a function of the temperature-based progress variable cT .
The solid line indicates the mean for the detailed case, and shaded region is the standard deviation to the mean. Symbols and
associated error bars indicate the mean and standard deviation for CSP and MG-L-PCA cases, respectively.

PCA model has an advantage when examining the
limiting chemical timescales. Indeed, the stiffness of
the system is considerably reduced, indicating an in-
crease in the minimum chemical timescale of almost
2 orders of magnitude, compared to the detailed and
CSP systems. This reduction in stiffness offered by
MG-L-PCA is particularly appealing in the context
of DNS, especially when an explicit time integrator
is used. The same analysis is also shown for the 3D
DNS cases in Fig. 6b, where the averaged minimum
chemical time scales (for all eddy turnover times of
the simulation) are plotted as a function of tempera-
ture. Again, a significant decrease in the stiffness of
the system can be observed for the MG-L-PCA case,
whereas the detailed and CSP-reduced cases exhibit
similar behaviour except in the mid-range tempera-
ture region where the CSP shows a slight increase in
timescales.

6. Conclusions

The present work demonstrated the application of
the MG-L-PCA model, coupled with an unsuper-
vised clustering based on Vector Quantization PCA
(VQPCA) and with an on-the-fly PCA-based classi-
fication. The reduced model was trained using two
different data sets of increasing complexity (1D lam-
inar strained flames and 3D DNS data). The model
was tested on a 3D DNS case of a premixed NH3/air
flame in a turbulence field (flame in a box configura-
tion), and compared to DNS results using a detailed
mechanism (38 species) and a CSP-reduced skeletal
mechanism (25 species).

The MG-L-PCA showed a remarkable accuracy
for the predictions of temperature and major and mi-
nor species mass fractions. Using 21 transported
species out of the original 38, the model was able
to provide highly accurate results when compared to
the detailed and the CSP simulations. For the predic-
tions of temperature and major species, the 1D- and
3D-trained models showed similar accuracies, with
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Figure 5: Comparison of ω̇NH3 (top row) and ω̇N2H4 (bottom row) in kg/(m3s) for the detailed, CSP and MG-L-PCA cases,
respectively. Points were sampled down for clarity.

the 1D-trained model slightly outperforming the 3D-
trained one. On the other hand, for some intermedi-
ate and minor species the 3D-trained model outper-
formed the 1D-trained one, especially in the case of
non-transported species. This suggests that a data set
with a higher complexity used in an a priori manner
leads to a more accurate reconstruction matrix.

A chemical timescales analysis also showed that
the chemistry stiffness of the system is considerably
reduced with the MG-L-PCA model, compared to the
detailed and CSP-reduced mechanisms.

Future work will focus on the generalisation of the
non-transported species representation using nonlin-
ear regression techniques, with the objective of in-
creasing the accuracy and reducing the cost of numer-
ical simulations.
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