COMPARISON OF THE CARDIO-RESPIRATORY RESPONSE DURING DEEP WATER RUNNING TRAINING VS INDOOR CYCLING TRAINING IN HEALTHY ATHLETIC SUBJECTS Carpentier M.¹, Duchêne A., Faoro V.¹ ¹ Faculty of Motor Sciences, Cardio-Pulmonary Exercise Laboratory, Université Libre de Bruxelles, Belgium

UNIVERSITÉ LIBRE DE BRUXELLES

INTRODUCTION

Sports may lead to lower limb mechanical injuries. To recover from those, it is advised to practice unloaded sports such as **INDOOR CYCLING** to maintain a good physical condition with limited mechanical stresses¹. Despite the **indoor cycling training**, the injured athletes often lose cardiopulmonary capacity and suffer from **physical deconditioning**. Therefore, we studied an alternative training : **DEEP WATER RUNNING**.

Deep water running has previously been showed to **reduce lower-limbs overload, improve muscle strength**² **and balance**³, while water resistance forces the subject to **exert greater force than moving in air**⁴.

DEEP WATER RUNNING

OBJECTIVE

Compare the cardio-pulmonary parameters of two continuous trainings : **DEEP WATER RUNNING** and **INDOOR CYCLING.**

 $42\pm 5 \text{ max} - 44$

✓ VCO₂ (carbon dioxide production)
 ✓ VO₂ (oxygen consumption)

%max

(mmol/L)

lactate

54%

HYPOTHESIS

Deep water running could **highly sollicit the cardiorespiratory** system due to **water physical properties**, and therefore be an **appropriate training** for injured athletes, thanks to the **few biomechanical stresses** that this training represents.

 ✓ VE (ventilation) ✓ RER (respiratory exchange ratio) ✓ HR (heart rate) ✓ Blood lactate 				HR at 80% VT		$24n \ge trainin 10 min HR at 100% VT m-up Pos$		2 min 10 min END
RESULTS			m-up	Post 10 min		Post 20 min		
		Deep Water Running	Indoor Cycling	Deep Water Running	Indoor Cycling	Deep Water Running	Indoor Cycling	CONCLUSION
	Lactate (mmol/L)	0,9±0,3 (rest)	0,9±0,4 (rest)	4,5±2,4	3,4±2	$3,9\pm 1,7$	2,9±2,3	When training is calibrated by HR,
	%max			50%	39%	43%	33%	VE and VO ₂ are about 40% higher
	VO2 (ml/min/kg)	30±9 ÷	* 22±4	39±5 **	** 29±4	40±7 *	** 29±5	during deep water running than
	%VT1	134%	93%	170%	124%	175%	124%	cycling. This might be explained by a
	%max	73%	53%	95%	70%	97%	70%	better venous return and a
	VE (L/min)	67±33 ÷	* 38±8	82±22 *	* 55±13	81±21 *	* 55±18	higher stroke volume, due to
	%VT1	152%	84%	185%	124%	184%	122%	lower limbs hydrostatic

46%

67%

67%

45%

compression. With limited biomechanical constraints and a higher VE and VO₂ than cycling, DEEP WATER RUNNING could be proposed for injured athletes before going back to the field.

31%

¹ Glass & al., 1995
 ² Foley & al., 2003
 ³ Simmons & Hansen, 1996
 ⁴ Miyoshu & al., 2004

CIENCE IN THE HEAL

Sevu

SEVILLA - 2022