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Simple variance bounds with applications to Bayesian
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Abstract Using coupling techniques based on Stein’s method for probability approxi-
mation, we revisit classical variance bounding inequalities of Chernoff, Cacoullos, Chen
and Klaassen. Taking advantage of modern coupling techniques allows us to establish
novel variance bounds in settings where the underlying density function is unknown or
intractable. Applications include bounds for asymptotically Gaussian random variables
using zero-biased couplings, bounds for random variables which are New Better (Worse)
than Used in Expectation, and analysis of the posterior in Bayesian statistics.
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1 Introduction

Weighted Poincaré (or isoperimetric) inequalities, giving upper bounds on the variance of
a function of a random variable, have a long and rich history, beginning with the work of
Chernoff [6]. Chernoff proved that if X has a centred Gaussian distribution with variance
σ2, then

Var[g(X)] ≤ σ2
E[(g′(X))2] , (1.1)

for any absolutely continuous function g : R 7→ R such that g(X) has finite variance. This
inequality has since been generalized by many authors, including Cacoullos [2], Chen [4]
and Klaassen [10]. To accompany these upper variance bounds, many of these authors
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have also established corresponding lower bounds, in the form of generalized Cramér-Rao
inequalities. In particular in the centred Gaussian case we have

Var[g(X)] ≥ σ2
E[g′(X)]2, (1.2)

see [2]. The above cited works represent early entries in what is now a vast literature; we
refer to [7, 8] for recent overviews of this large body of work.

The purpose of the present article is to revisit these classical variance bounding in-
equalities in light of the coupling techniques at the heart of Stein’s method for probability
approximation (see, for example, [5] and [11] for recent introductions to Stein’s method).
These techniques allow us to establish upper and lower variance bounds in a variety of set-
tings, including many in which the density of the underlying random variable is unknown
or intractable. Making use, for example, of the zero-biased coupling allows us to establish
explicit variance bounds for a wide range of situations in which the underlying random
variable is known to be asymptotically Gaussian. In Sections 2–4 we will consider a va-
riety of situations where bounds may be derived using this, and other, couplings. Before
doing so, we use the remainder of this section to outline the general coupling techniques
we employ from Stein’s method, and how these can be used to establish upper and lower
variance bounds in the spirit of Chernoff, Cacoullos, Chen and Klaassen.

Let W be a real random variable on some fixed probability space. Let γ be a real-
valued function. We say that a pair of random variables (T1, T2) (living on the same
probability space as W ) form a Stein coupling for W with respect to γ if

E [γ(W )φ(W )] = E [T1φ
′(T2)] (1.3)

for all test functions φ ∈ C with C ⊂ C1(R) some appropriately chosen class of functions.
Although the choice C = C∞

0 (R) is always allowed, it will generally be necessary to use C
as wide as possible; this fact is often reflected in the literature wherein one rather makes
use of the generic expression “where C is the class of functions for which expectations on
both sides exist”.

We begin by showing an elementary argument allowing us to use (1.3) to obtain tight
upper variance bounds. To this end, suppose that γ is a strictly increasing, differentiable
function with exactly one sign change. Then in particular it is invertible and γ−1(0) is
well-defined. Let g be a real-valued differentiable function such that Var[g(W )] is finite.
Following [12] we write

Var[g(W )] ≤ E

[

(

g(W )− g(γ−1(0))
)2
]

= E





(

∫ γ(W )

0

g′(γ−1(u))

γ′(γ−1(u))
du

)2




≤ E

[

γ(W )

∫ γ(W )

0

(

g′(γ−1(u))

γ′(γ−1(u))

)2

du

]

,

where the equality follows by differentiability of g and the subsequent inequality via
Cauchy-Schwarz. Applying (1.3) as well as Leibnitz’ rule for differentiating integrals we
deduce the general upper variance bound

Var[g(W )] ≤ E

[

T1

γ′(T2)
(g′(T2))

2

]

, (1.4)
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which holds as soon as the function x 7→
∫ γ(x)

0

(

g′(γ−1(u))
γ′(γ−1(u))

)2

du belongs to the (so far

unspecified) class C. Note that inequality (1.4) also holds if in (1.3) we replace the
equality sign by an increasing inequality.

Identity (1.3) can also readily be combined with the Cauchy-Schwarz inequality to
obtain lower variance bounds. To this end, consider a mean zero function γ (this is in
any case necessary for relationships such as (1.3) to hold) for which (E [γ(W )g(W )])2 =
(E [γ(W )(g(W )− E[g(W )])])2 ≤ E [γ(W )2] Var[g(W )]. Then from (1.3) we deduce

Var[g(W )] ≥ (E [T1g
′(T2)])

2

Var [γ(W )]
(1.5)

for all g ∈ C. As above, we note that inequality (1.5) also holds if in (1.3) we replace the
equality sign by a decreasing inequality.

The rest of this paper is devoted to proposing situations wherein such couplings W,T1

and T2 occur naturally and may be used to establish upper and lower variance bounds. In
Section 2 we use the framework of Stein kernels to express suitable couplings. Section 3
makes use of zero-biased couplings to derive variance bounds suitable for random variables
which are asymptotically Gaussian. Finally, in Section 4 we consider random variables
satisfying certain stochastic or convex ordering assumptions, which allow us to derive
bounds sharper than we would otherwise obtain with our method. Some proofs and
additional examples illustrating the results of Section 2 are deferred to the appendices.

2 Stein kernel and a bound of Cacoullos

Suppose that the target W has a differentiable density p with interval support. Following,
for example, [3] and [7], we define the Stein kernel of W as the function τ satisfying

Cov [W,φ(W )] = E [τ(W )φ′(W )] (2.1)

for all functions φ such that either integral is defined. See [7] for an extensive discussion of
this function. In the notation of Section 1, this means that we can take γ(x) = x−E[W ],
T1 = τ(W ) and T2 = W in (1.3). Note that E[τ(W )] = Var[W ]. Applying (1.4) and (1.5),
we get for all g ∈ L2(W ) that

E [τ(W )g′(W )]2

Var [W ]
≤ Var[g(W )] ≤ E

[

τ(W ) (g′(W ))
2
]

, (2.2)

which is nothing but a restatement of classical bounds already available in [2].
Of course for (2.2) to be of use it remains to identify situations in which the Stein

kernel has an agreeable form. We give several such situations.

Example 2.1. Following [13], it is easy to see that if W = n−1/2
∑n

i=1Xi, where the Xi

are centred, independent random variables with Stein kernel τi(·) and common variance
σ2, then τW (w) = 1

n

∑n
i=1 E[τi(Xi) |W = w] is a Stein kernel for W . If the Xi are copies

of X1 with kernel τ1(·), (2.2) becomes

E [τ1(X1)g
′(W )]2

σ2
≤ Var[g(W )] ≤ E

[

τ1(X1)(g
′(W ))2

]
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If W and X1 were independent, we could use E[τ1(X1)] = σ2 to recover the Gaussian
case stated in (1.1) and (1.2). Here we need to apply a limited development to make
independence appear. Let U ∼ Unif[0, 1] and recall the mean-value theorem g′(x + t) =
g′(x) + tE[g′′(x + Ut)]. Let W (1) = W − n−1/2X1. Then, by independence, if g is twice
differentiable the lower bound becomes σ2

E[g′(W (1))]2 + C1√
n
where C1 = C1(g, n) is given

by C1 = 2E[g′(W (1))]E[τ1(X1)X1g
′′(W (1) + n−1/2UX1)] + n−1/2/σ2

E[τ1(X1)X1g
′′(W (1) +

n−1/2UX1)]
2. Clearly limn→∞C1(g, n)/

√
n = 0 for all g. Similar considerations apply for

the upper bound. Indeed, recall that for a twice differentiable function g we have

∣

∣g′(x+ t)2 − g′(x)2
∣

∣ ≤ 2‖g′g′′‖|t| , (2.3)

(where ‖·‖ is the supremum norm) so that we have E[τ1(X1)(g
′(W ))2] ≤ σ2

E[(g′(W (1)))2]+
2√
n
‖g′g′′‖σ2

E[|X1|] =: σ2
E[(g′(W (1)))2] + C2√

n
. Wrapping up,

σ2
E[(g′(W (1)))]2 +

C1√
n
≤ Var[g(W )] ≤ σ2

E[(g′(W (1)))2] +
C2√
n
,

where the proximity with the corresponding inequalities for the Gaussian case are now
made explicit.

Example 2.2 (Smoothing). Let Y be a real-valued random variable with E[Y ] = µ. Note
that we do not require Y to have a density function, and the bounds of this example apply
if, for instance, Y is a discrete random variable. In order to allow us to derive variance
bounds for Y using our approach, we smooth it by convolving it with independent Gaussian
noise with small variance. We let Z ∼ N (0, ǫ2) have a Gaussian distribution, independent
of Y . Let ϕǫ and Φǫ be the density and distribution functions of Z, respectively, and define

τǫ(x) = ǫ2 +
E
[

(Y ′ − µ)Φ̄ǫ(x− Y ′)
]

E[ϕǫ(x− Y ′)]
, (2.4)

where Φ̄ǫ(y) = 1−Φǫ(y) and Y ′ is an independent copy of Y . Then τǫ(x) is a Stein kernel
for Y + Z (see Appendix A) and (2.2) applies to all differentiable functions g : R 7→ R

such that Var[g(Y + Z)] is finite. Moreover, the following hold:

(i). If the mapping x 7→ (g(x)− E[g(Y + Z)])2 is convex, then

Var[g(Y )] ≤ E
[

τǫ(Y + Z)g′(Y + Z)2
]

.

(ii). If the mapping x 7→ (g(x)− E[g(Y )])2 is concave, then

Var [g(Y )] ≥ E [τǫ(Y + Z)g′(Y + Z)]2

ǫ2 +Var[Y ]
.

We defer the proofs of these claims to Appendix A.

Example 2.3 (Pearson family and application to posterior distributions). As is well
known, the Pearson family has explicit Stein kernels given by Proposition B.1 recalled
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in the Appendix. Such a result is particularly useful in the following situation inherited
from Bayesian statistics. In a Bayesian setting, the initial distribution of the parameter
of interest is some prior distribution with density π0(θ); upon observing data points x =
(x1, . . . , xn) sampled independently with sampling distribution π(θ,x) we update from the
prior to the posterior density given by π2(θ) = κ2(x)π(θ,x)π0(θ). We use the notation
Θ0 to indicate the distribution of the parameter under the prior, Θ2 its distribution under
the posterior, and X a random variable following the same common distribution of the
observations. We also write Θ1 for the parameter under the sampling distribution π1(θ) =
κ1(x)π(θ,x), which corresponds to a posterior with flat (uninformative) prior. A popular
choice of prior is that of a conjugate prior for which the mathematical properties of the
posterior are the same as those of the sampling distribution; the impact of the data is then
visible in the parameters of the posterior distribution who are updated. Restricting our
attention to Pearson distributed families, we can apply Proposition B.1 and read variance
bounds directly from the updated parameters. For instance:

• Gaussian data, inference on mean, Gaussian prior: If X ∼ N (θ, σ2) with θ ∈ R and

fixed σ > 0, and Θ0 ∼ N (µ, δ2) with µ ∈ R, δ > 0, then Θ2 ∼ N
(

σ2µ+nδ2x̄
nδ2+σ2 , σ2δ2

nδ2+σ2

)

,

where x̄ = 1
n

∑n
i=1 xi. The Stein kernel for this Gaussian distribution is τ(θ) =

( n
σ2 +

1
δ2
)−1. Consequently,

E [g′(Θ2)]
2 ≤

(

n

σ2
+

1

δ2

)

Var[g(Θ2)] ≤ E[g′(Θ2)
2]

for all suitable g, all n and all values of the parameters.

• Gaussian data, inference on variance, Inverse Gamma prior: If X ∼ N (µ, θ) with
θ > 0 and fixed µ ∈ R, and Θ0 ∼ IG(α, β) has an Inverse Gamma distribution with
density

θ 7→ βα

Γ(α)
θ−α−1 exp

(

−β

θ

)

, α, β > 0,

then Θ2 ∼ IG
(

n
2
+ α, 1

2

∑n
i=1(xi − µ)2 + β

)

. The Stein kernel for this Inverse

Gamma distribution is τ(θ) = θ2
n

2
+α−1

. Consequently, for all suitable g,

(n
2
+ α− 2)

(1
2

∑n
i=1(xi − µ)2 + β)2

E[Θ2
2g

′(Θ2)]
2 ≤ Var[g(Θ2)] ≤

1
n
2
+ α− 1

E[Θ2
2g

′(Θ2)
2].

• Binomial data, inference on proportion, Beta prior: If X ∼ Bin(n, θ) with θ ∈ [0, 1],
and Θ0 ∼ Beta(α, β) with density

θ 7→ θα−1(1− θ)β−1

Γ(α)Γ(β)
Γ(α+β)

, α, β > 0,

then Θ2 ∼ Beta (x+ α, n− x+ β), where x denotes the observed number of suc-

cesses. The Stein kernel for this Beta distribution is τ(θ) = θ(1−θ)
n+α+β

. Consequently,
for all suitable g,

(n+ α + β + 1)

(x+ α)(n− x+ β)
E[Θ2(1−Θ2)g

′(Θ2)]
2 ≤ Var[g(Θ2)] ≤

E[Θ2(1−Θ2)g
′(Θ2)

2]

n+ α + β
.
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Further examples are provided in Appendix B.

3 Variance bounds from zero-biased couplings

In this section, we suppose that the target W has mean zero, finite variance σ2, and can
be coupled to some random variable W ⋆ through

E[Wφ(W )] = σ2
E[φ′(W ⋆)] (3.1)

for all functions φ : R 7→ R. Such W ⋆ always exists, and its law is unique. It has
the W -zero-biased distribution; see, e.g., [5, Section 2.3.3] and references therein for more
details. Note thatW ⋆ is a continuous random variable, regardless of whether W is discrete
or continuous. Under (3.1), we immediately obtain

σ2
E [g′(W ⋆)]

2 ≤ Var[g(W )] ≤ σ2
E
[

g′(W ⋆)2
]

(3.2)

by using (1.4) and (1.5) with γ(x) = x, T1 = σ2 and T2 = W ⋆ for all g : R 7→ R for
which Var[g(W )] is finite. Obviously it may be of interest to express (3.2) in terms of the
original variable. Using (2.3), we obtain the following result.

Proposition 3.1. Let W have mean zero and finite variance σ2, and W ⋆ have the W -zero
biased distribution. Then

Var[g(W )] ≤ σ2
E
[

g′(W )2
]

+ 2σ2‖g′g′′‖E|W ⋆ −W | (3.3)

for all twice differentiable functions g : R 7→ R for which Var[g(W )] exists.

It is classical that the Gaussian distribution is the unique fixed point of the zero-
bias transform, in the sense that W ∼ N (0, σ2) if and only if W = W ⋆. Hence |W ⋆ −
W | gives information on the distributional proximity between the law L(W ) of W and
N (0, σ2). Also, it is classical that the Gaussian is characterized by the fact that σ2 =
supg Var[g(W )]/E[g′(W )2], see, e.g., [3]. Inequality (3.3) captures these two essential
features of the Gaussian distribution.

Example 3.2. Let X1, X2, . . . , Xn be independent mean zero random variables with finite
variances E[X2

i ] = σ2
i , i = 1, . . . , n. Set W = X1 + · · ·+Xn and E[W 2] = σ2 =

∑n
i=1 σ

2
i .

Let I be a random index independent of all else such that P (I = i) = σ2
i /σ

2 and let
Wi = W −Xi. Finally let X⋆

i be the zero-bias transform of Xi. Then W ⋆−W = XI −X⋆
I

(see Example 2.1 of [9]) so that the bound (3.3) becomes

Var[g(W )] ≤ σ2
E[g′(W )2] + 2‖g′g′′‖

n
∑

i=1

σ2
i E[|Xi −X⋆

i |].

If, furthermore, we suppose the summands to be independent copies of X such that σ2 = 1
then

Var[g(W )] ≤ E[g′(W )2] + 2‖g′g′′‖E[|X −X⋆|] .

6



To see how this plays out in practice, suppose that X = (ξ − p)/
√
npq with ξ Bernoulli

with success parameter p. Following [5, Corollary 4.1], we obtain E[|X − X⋆|] = (p2 +
q2)/(2

√
npq) and

Var[g(W )] ≤ σ2
E[g′(W )2] + ‖g′g′′‖p

2 + q2√
npq

.

Many other examples can be explicitly worked out along these lines.

Example 3.3. Let (ai,j)
n
i,j=1 be an array of real numbers and π a uniformly chosen per-

mutation of {1, . . . , n}. Let W =
∑n

i=1 ai,π(i). We further define

a•• =
1

n2

n
∑

i,j=1

ai,j , ai• =
1

n

n
∑

j=1

ai,j , and a•j =
1

n

n
∑

i=1

ai,j ,

and note that E[W ] = na•• and

Var[W ] = σ2 =
1

n− 1

n
∑

i,j=1

(ai,j − ai• − a•j + a••)
2 .

See, for example, [5, Section 4.4]. Letting Z = σ−1(W −na••) and C = max1≤i,j≤n |ai,j −
ai• − a•j + a••|, the proof of Theorem 6.1 of [5] shows that E|Z⋆ − Z| ≤ 8Cσ−1 for some
positive constant C, and so we have from (3.3) that

Var[g(Z)] ≤ E
[

g′(Z)2
]

+
16C

σ
‖g′g′′‖ ,

for all twice differentiable g such that Var[g(Z)] is finite.

4 Variance bounds using stochastic ordering

We consider now some further applications in which we do not require explicit knowl-
edge of the density of W in order to derive bounds on Var[g(W )] using our techniques.
Unlike those examples in Section 3, the bounds we obtain here have the same form as
in applications where we employ the exact expression for the underlying density, as in
Section 2, without any additional ‘remainder’ terms. We may obtain such bounds under
natural assumptions on the random variable W , which we express in terms of stochastic
orderings; the price we pay is in some restriction on the class of functions g for which the
bounds apply.

We begin by recalling the definitions of the orderings which we will use. For any
random variables X and Y , we will say that X is stochastically smaller than Y (denoted
X ≤st Y ) if P(X > t) ≤ P(Y > t) for all t. We will say that X is smaller than Y in
the convex order (denoted X ≤cx Y ) if E[φ(X)] ≤ E[φ(Y )] for all convex functions φ for
which the expectations exist. See [15] for background and many further details.
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4.1 Zero-biased couplings and the convex order

Let W be a real-valued random variable with mean zero and variance σ2. Recall the
definition (3.1) of W ⋆, the zero-biased version of W . We note that, from Lemma 2.1(ii)
of [9], W ⋆ is supported on the closed convex hull of the support of W and has density
function given by

p⋆W (w) =
1

σ2
E[WI(W > w)] . (4.1)

If we assume that W ⋆ ≤cx W , then we may write

E[Wφ(W )] = σ2
E[φ′(W ⋆)] ≤ σ2

E[φ′(W )] , (4.2)

for all differentiable functions φ such that φ′ is convex. That is, (1.3) holds with the
equality replaced by an inequality for all such φ, with the choices γ(W ) = W , T1 = σ2,
and T2 = W .

Following the proof of (1.4), the inequality (4.2) is sufficient to obtain this upper bound
on Var[g(W )]. In proving this bound, we apply (4.2) with φ such that φ′(x) = g′(x)2;
we must therefore assume that g′(x)2 is convex in order to do this. We thus obtain the
following bound.

Theorem 4.1. Let W have mean 0 and variance σ2, and assume that W ⋆ ≤cx W . For
all differentiable g : R 7→ R such that Var[g(W )] exists and g′(x)2 is convex,

Var[g(W )] ≤ σ2
E[g′(W )2] . (4.3)

Example 4.2. Let W = X1 + X2 + · · · + Xn, where X1, X2, . . . , Xn are independent,
mean-zero random variables, with Xi supported on the set {−ai, bi} for ai, bi > 0, for
each i = 1, . . . , n. That is, P(Xi = −ai) = pi = 1 − P(Xi = bi) for 1 ≤ i ≤ n, where
pi = bi/(ai + bi) so that E[Xi] = 0. Let σ2

i = Var(Xi) and σ2 = σ2
1 + · · ·+ σ2

n.
A straightforward calculation using (4.1) shows that, for each i = 1, . . . , n, X⋆

i is
uniformly distributed on the interval [−ai, bi]. Hence, Theorem 3.A.44 of [15] gives that
X⋆

i ≤cx Xi for each i.
Let I be a random index, chosen independently of all else, with P(I = i) = σ2

i /σ
2, for

i = 1, . . . , n. Now, using Lemma 2.1(v) of [9], W ⋆ is equal in distribution to X⋆
I+
∑

j 6=I Xj,
which is smaller than W in the convex order for each possible value of I by (3.A.46) of
[15]. It then follows from Theorem 3.A.12(b) of [15] that W ⋆ ≤cx W , and hence our upper
bound (4.3) applies.

4.2 Equilibrium couplings

Throughout this section, letW be a non-negative random variable with mean λ−1. Follow-
ing, for example, [14], we say that a random variable W e has the equilibrium distribution
with respect to W if

E[φ(W )]− φ(0) = λ−1
E[φ′(W e)] , (4.4)

for all a.e. differentiable functions φ.
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Remark 4.3. Note that this definition is motivated by the fact that W is Exponential
if and only if W and W e are equal in distribution. Applying the definition to the func-
tion φx(w) = (w − x)I(w ≥ x) and integrating by parts we obtain that P(W e > x) =
λ
∫∞
x

P(W > y) dy for all x ≥ 0.

In this section we consider random variables that are new better than used in expecta-
tion (NBUE) and new worse than used in expectation (NWUE). Recall that W is NBUE
if λ

∫∞
x

P(W > s) ds ≤ P(W > x) for all x ≥ 0, and that W is NWUE if this holds
with the inequality reversed. These properties are well-known in reliability theory; see,
for example, [15].

From this definition and the remark above, it is clear that W is NBUE if and only if
W e ≤st W , and that W is NWUE if and only if W ≤st W

e. For a random variable W
which is either NBUE or NWUE, we employ this stochastic ordering in a similar way to
the convex ordering we used in Section 4.1 above.

We begin by deriving an inequality analogous to (4.2). For a differentiable function
φ, the definition of W e gives that

E[Wφ(W )] = λ−1
E[φ(W e) +W eφ′(W e)] ,

and hence
E[(λW − 1)φ(W )] + E[φ(W )] = E[W eφ′(W e)] + E[φ(W e)] .

Thus, the inequality
E[(λW − 1)φ(W )] ≤ E[Wφ′(W )] (4.5)

holds if and only if

E[φ(W e) +W eφ′(W e)] ≤ E[φ(W ) +Wφ′(W )] .

Therefore, inequality (4.5) holds if W is NBUE and φ(x)+xφ′(x) is increasing in x. Alter-
natively, (4.5) also holds if W is NWUE and φ(x)+xφ′(x) is decreasing in x. Analogously
to the use of (4.2) in proving Theorem 4.1 above, an upper bound on Var[g(W )] therefore
holds for some functions g under either of these assumptions; see Theorem 4.4 below for
a precise statement.

Similarly, we may ask when the reversed inequality E[(λW − 1)φ(W )] ≥ E[Wφ′(W )]
holds. By similar reasoning, this holds if either (i) W is NBUE and φ(x) + xφ′(x) is
decreasing in x, or (ii) W is NWUE and φ(x) + xφ′(x) is increasing in x. Under either of
these assumptions, we have a lower variance bound.

We have thus proved the following.

Theorem 4.4. Let W be a non-negative random variable with mean E[W ] = λ−1.

(a) For a differentiable function g : R+ 7→ R such that Var[g(W )] exists, let φg(x) =
∫ λx−1

0
g′(λ−1(u+ 1)) du. Assume that either

(i) W is NBUE and φg(x) + xφ′
g(x) is increasing in x; or

(ii) W is NWUE and φg(x) + xφ′
g(x) is decreasing in x.

9



Then

Var[g(W )] ≤ 1

λ
E[Wg′(W )2] .

(b) For a differentiable function g : R+ 7→ R such that Var[g(W )] exists, assume that
either

(i) W is NBUE and g(x) + xg′(x) is decreasing in x; or

(ii) W is NWUE and g(x) + xg′(x) is increasing in x.

Then

Var[g(W )] ≥ (E[Wg′(W )])2

λ2Var[W ]
.

Example 4.5. Consider the random sum W =
∑N

i=1Xi, where X,X1, X2, . . . are inde-
pendent and identically distributed, continuous, real-valued random variables and N is a
counting random variable supported on the non-negative integers. Conditions are known
under which W is NWUE. For example, [1] shows that if N is Geometric, then W is
NWUE, regardless of the distribution of X. More generally, Corollary 2.1 of [17] estab-
lishes that if N satisfies

∞
∑

k=0

P(N > n + k + 1) ≥ P(N > n)

∞
∑

k=0

P(N > k) , (4.6)

for all n = 0, 1, . . ., then W is NWUE. This includes, for example, the case where N is
mixed Poisson with a mixing distribution that is itself NWUE; see Corollary 3.1 of [17].
Thus, under the condition (4.6), the bounds of the NWUE cases of Theorem 4.4 apply,
with λ−1 = E[N ]E[X ] and Var[W ] = (E[X ])2Var[N ] + E[N ]Var[X ].
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of Rényi and Yaglom. The Annals of Probability, 39(2):587–608, 2011.

[15] M. Shaked and J. G. Shanthikumar. Stochastic Orders. Springer New York, 2007.

[16] C. Stein. Approximate Computation of Expectations. Institute of Mathematical
Statistics Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics,
Hayward, CA, 1986.

[17] G. E. Willmot, S. Drekic, and J. Cai. Equilibrium compound distributions and
stop-loss moments. Scandinavian Actuarial Journal, 2005(1):6–24, 2005.

11



A Example 2.2: Proofs of claims

We begin by showing that τǫ(x), as defined in (2.4), is the Stein kernel of Y + Z. To see
this, note that P(Y +Z ≤ t) = E[Φǫ(t−Y )], so that Y +Z has density pǫ(t) = E[ϕǫ(t−Y )].
Hence, since Y + Z has expectation µ, its Stein kernel is given by

1

pǫ(x)

∫ ∞

x

(y − µ)pǫ(y) dy =
1

pǫ(x)

∫ ∞

x

∫ ∞

−∞
(y − µ)ϕǫ(y − t) dF (t) dy ,

where F is the distribution function of Y ; see [3]. Applying Fubini’s theorem, this is equal
to

1

pǫ(x)

∫ ∞

−∞

∫ ∞

x−t

(s+ t− µ)ϕǫ(s) ds dF (t) =
1

pǫ(x)
E
[

ǫ2ϕǫ(x− Y ) + (Y − µ)Φ̄ǫ(x− Y )
]

,

since
∫∞
y

sϕǫ(s) ds = ǫ2ϕǫ(y). This Stein kernel is easily seen to be equal to τǫ(x) given

in (2.4).
Now, to prove claim (i), we firstly note that Y ≤cx Y + Z (see Theorem 3.A.34 of

[15]), so that E[φ(Y )] ≤ E[φ(Y +Z)] for any convex function φ. Noting that the function
f(α) = E[(g(Y )− α)2] is minimized at α = E[g(Y )], we have

Var[g(Y )] = E
[

(g(Y )− E[g(Y )])2
]

≤ E
[

(g(Y )− E[g(Y + Z)])2
]

≤ Var[g(Y + Z)] ,

where the final inequality follows from the assumption in (i) that the mapping x 7→
(g(x)− E[g(Y + Z)])2 is convex. Applying the upper bound from (2.2) completes the
proof of (i).

We use a similar argument for (ii). We have that

Var[g(Y + Z)] ≤ E[(g(Y + Z)− E[g(Y )])2] ≤ E[(g(Y )− E[g(Y )])2] ,

where the final inequality uses the convex ordering between Y and Y + Z (from which
E[φ(Y +Z)] ≤ E[φ(Y )] for any concave function φ) and the assumption that the mapping
x 7→ (g(x)−E[g(Y )])2 is concave. We now apply the lower bound from (2.2) to complete
the proof of (ii).

B Example 2.3: Stein kernel and further applications

We start by recalling a result taken from [16, Equation (40), p. 65], which was used in
Example 2.3.

Proposition B.1 (Pearson distribution). A random variable with mean µ and variance
σ2 is of Pearson type if and only if there exist δ1, δ2, δ3 ∈ R, not all equal to 0, such that

p′(x)

p(x)
= − (2δ1 + 1)(x− µ) + δ2

δ1(x− µ)2 + δ2(x− µ) + δ3
.

In this case, its Stein kernel is τ(x) = δ1(x− µ)2 + δ2(x− µ) + δ3.
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To complement Example 2.3 and illustrate the scope of its application, we use the
remainder of this appendix to present further examples along similar lines.

Example B.2 (Negative binomial data, inference on proportion, Beta prior). If X ∼
NB(r, θ) has a negative binomial distribution with θ ∈ [0, 1] and fixed r ∈ N, and Θ0 ∼
Beta(α, β) with α, β > 0, then Θ2 ∼ Beta (

∑n
i=1 xi + α, nr + β). The Stein kernel for

this Beta distribution is τ(θ) = θ(1−θ)∑
n

i=1
xi+nr+α+β

. Consequently,

(
∑n

i=1 xi + nr + α + β + 1)

(
∑n

i=1 xi + α)(nr + β)
E[Θ2(1−Θ2)g

′(Θ2)]
2 ≤ Var[g(Θ2)] ≤

E[Θ2(1−Θ2)g
′(Θ2)

2]
∑n

i=1 xi + nr + α + β
.

Example B.3 (Weibull data, inference on scale, Inverse Gamma prior). If X ∼ Wei(k, θ)
has a Weibull distribution with θ > 0 and fixed k > 0 (note that here we consider the

Weibull density x 7→ kxk−1

θ
exp(−xk/θ), x > 0), and Θ0 ∼ IG(α, β) with α, β > 0, then

Θ2 ∼ IG
(

n+ α,
∑n

i=1 x
k
i + β

)

. The Stein kernel for this Inverse Gamma distribution is

τ(θ) = θ2

n+α−1
. Consequently,

n+ α− 2

(
∑n

i=1 x
k
i + β)2

E[Θ2
2g

′(Θ2)]
2 ≤ Var[g(Θ2)] ≤

E[Θ2
2g

′(Θ2)
2]

n+ α− 1
.

Example B.4 (Gamma data, inference on scale, Gamma prior). If X ∼ Gam(k, θ)
has a Gamma distribution with θ, k > 0, and Θ0 ∼ Gam(α, β) with α, β > 0, then
Θ2 ∼ Gam (nk + α,

∑n
i=1 xi + β). The Stein kernel for this Gamma distribution is τ(θ) =

θ∑
n

i=1
xi+β

. Consequently,

E[Θ2g
′(Θ2)]

2

nk + α
≤ Var[g(Θ2)] ≤

1
∑n

i=1 xi + β
E[Θ2g

′(Θ2)
2].

Example B.5 (Laplace data, inference on scale, inverse gamma prior). If X ∼ Lap(µ, θ)
has a Laplace distribution with θ > 0 and fixed µ ∈ R, and Θ0 ∼ IG(α, β) with α, β > 0,
then Θ2 ∼ IG (n + α,

∑n
i=1 |xi − µ|+ β). The Stein kernel can readily be deduced from

previous examples, and we get

n + α− 2

(
∑n

i=1 |xi − µ|+ β)2
E
[

Θ2
2g

′(Θ2)
]2 ≤ Var[g(Θ2)] ≤

1

n + α− 1
E
[

Θ2
2g

′(Θ2)
2
]

.

Example B.6 (Poisson data, inference on mean=scale, Gamma prior). If X ∼ Poi(θ)
has a Poisson distribution with θ > 0, and Θ0 ∼ Gam(α, β) with α, β > 0, then
Θ2 ∼ Gam (

∑n
i=1 xi + α, n+ β). The Stein kernel can readily be deduced from previous

examples, and we get

E[Θ2g
′(Θ2)]

2

∑n
i=1 xi + α

≤ Var[g(Θ2)] ≤
1

n + β
E
[

Θ2g
′(Θ2)

2
]

.

Example B.7 (Uniform data, inference on interval length, Pareto prior). If X ∼ U(0, θ)
has a Uniform distribution with θ > 0, and Θ0 ∼ Par(α, β) has a Pareto distribution with
α, β > 0 (as a reminder, the density of such a Pareto distribution is θ 7→ αβα

θα+1 I[β ≤ θ]
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where I[A] is the indicator function of the event A), then Θ2 ∼ Par (n + α,max(m(x), β))
with m(x) = max(x1, . . . , xn). The Stein kernel for this Pareto distribution is τ(θ) =
max(m(x),β)−θ

n+α−1
θ. Consequently, we get

(n+ α− 2)

(n+ α)(max(m(x), β))2
E [(max(m(x), β)−Θ2)Θ2g

′(Θ2)]
2

≤ Var[g(Θ2)] ≤
1

n + α− 1
E
[

(max(m(x), β)−Θ2)Θ2g
′(Θ2)

2
]

.
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