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Abstract: In recent years, Wi-Fi has become the main gateway that connects users to the internet. Considering the availability of
Wi-Fi signals, and their suitability for channel estimation, IEEE established the Wi-Fi Sensing (WS) Task Group whose purpose
is to study the feasibility of Wi-Fi-based environment sensing. However, Wi-Fi signals are transmitted over limited bandwidths
with a relatively small number of antennas in bursts, fundamentally limiting the range, Angle-of-Arrival and speed resolutions.
This paper presents a super-resolution algorithm to perform the parameter estimation in a quasi-monostatic WS scenario. The
proposed algorithm, RIVES, estimates the range, Angle-of-Arrival and speed parameters with Vandermonde decomposition of
Hankel matrices. To estimate the size of the signal subspace, RIVES uses a novel Model Order Selection method which eliminates
spurious noise targets based on their distance to the noise and signal subspaces. Various scenarios with multiple targets are
simulated to show the robustness of RIVES. In order to prove its accuracy, real-life indoor experiments are conducted with human
targets by using Software Defined Radios.

1 Introduction

In the past 20 years, Wi-Fi technologies have evolved to satisfy the
high throughput demands in a wide variety of scenarios where tens
of devices can be connected to a single Wi-Fi Access Point (AP).
In order to achieve the required throughputs, the Wi-Fi standard
(IEEE 802.11) has been ever-evolving. The most recent Wi-Fi stan-
dard, namely 802.11be, will bring even wider bandwidths (up to 320
MHz), enhanced spatial diversity (maximum of 16 spatial streams),
and possibly, coordinated and joint transmission by multiple APs.

In the meantime, wireless channel sensing, and its related appli-
cations, attracted the attention of the academy and the industry.
The goal in wireless channel sensing is to detect and track humans
and/or other objects by applying radar processing schemes [1]
[2] [3]. Recently, IEEE established the Wi-Fi Sensing (WS) Task
Group 802.11bf [4] whose purpose is to study the feasibility and
reliability of Wi-Fi-based environment sensing within the IEEE
802.11 framework. However, specifically for human movement
detection/tracking, the following fundamental limitations bring new
challenges [5]:

• Range resolution, which is limited by the signal bandwidth.
Clearly, WS will make use of the increased signal bandwidth in 11be,
providing roughly 0.5 meters range resolution. However, consider-
ing the fact that indoor Channel Impulse Responses (CIRs) are very
rich in terms of multipath components (MPCs), even better range
resolutions are needed for reliable estimation [6], [7], [8].
• Angle-of-Arrival (AoA) resolution, which is limited by the num-
ber of antennas. Most of the modern communication and radar
systems use super-resolution methods for AoA estimation. How-
ever, regardless of the algorithm, increasing the number of available
antennas increases the spatial resolution, as well as the complexity
and the cost of such a system.
• Speed resolution, which is limited by the duration of the available
signal. Wi-Fi signals are transmitted in bursts and often interrupted
by other signals [9]: i) the transmission of acknowledgments; ii) the
interfering signals from other cells, and iii) synchronization frames
used for Multi-User Multiple-Input Multiple-Output and Orthogo-
nal Frequency Division Multiple Access technologies. Furthermore,

higher modulation orders are introduced (up to 1024 QAM). Hence,
an equal amount of data can be transmitted over a shorter frame dura-
tion compared to the previous versions of the standard, which further
limits the available signal duration. Therefore, the duration of Wi-Fi
bursts is not long enough to achieve the desired speed resolution for
human movement detection.

These three fundamental problems on the range, AoA and speed esti-
mation have been discussed within the WS Task Group. To cope
with the low estimation accuracy of FFT-based processing, vari-
ous subspace-based super-resolution algorithms have been proposed
in the literature. In summary, subspace-based parametric estimation
methods are designed to provide better resolution than the FFT-based
non-parametric methods [10]. However, to achieve such resolutions,
the size of the signal subspace has to be estimated, also known
as the Model Order Selection (MOS). Thus, the reliability of the
entire system depends on both the accuracy of the spectral parameter
estimation, as well as the accuracy of the MOS method.

In [11], MUSIC algorithm is introduced where the frequency
content of the sample covariance matrix (SCM) is estimated by
exploiting the orthogonality between signal and noise subspaces.
In [12], the foundation of ESPRIT algorithm is given for one-
dimensional (1D) parameter estimation which exploits the rotational
invariance present in the eigenvectors of SCM. The parameter esti-
mation performance of ESPRIT is relatively poor in low signal-
to-noise-power-ratio (SNR) conditions compared to MUSIC [13].
However, MUSIC needs spectral peak searching which increases
its computational complexity. In the context of radar-like param-
eter estimation with ESPRIT, the literature is extensive. In [14],
the range and Doppler frequencies are estimated with ESPRIT and
Least Square (LS) algorithms, by exploiting the unique Orthogonal
Frequency Division Multiplexing (OFDM) frame structure of Radar-
Communications systems. However, the algorithms are optimized
for high target velocities such as 80 and 100 km/h, which already
yield very high Doppler frequencies. In [15], the range and speed
estimation is performed with ESPRIT by considering 802.11p sig-
nals. The integration time is considered to be around 50ms, which is
not realistic for Wi-Fi signals. In reality, the Wi-Fi bursts are much
shorter yielding only a few milliseconds of integration time (if the
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channel coherence time is sufficiently high). Since data transfer is
often interrupted by management/control frames and Wi-Fi is a sys-
tem that provides data transfer only by request, such low integration
times are introduce a problem for Doppler resolution. Moreover, in
both of these works, the number of targets is assumed to be known.
In other words, no MOS algorithm is implemented.

The size of the signal subspace, i.e, the number of paths or targets
in the environment, is required in order to guarantee a robust param-
eter estimation with subspace-based super-resolution algorithms. If
the true size of the signal subspace is not correctly estimated, there
will be either misdetections or false alarms [16]. Various MOS meth-
ods exist in the literature to estimate the size of the signal subspace
(see [17], [18] and the references therein). More recently in [19], it
is proven that the distribution of the eigenvalues in the SCM can-
not be considered as a reliable criterion when SNR is relatively low.
In [20] (ESTER), ESPRIT algorithm is used to estimate the spectral
parameters with an erroneous model for MOS. Then, the residual
perturbation errors are minimized to correct the errors made during
the MOS stage. In [21] (SAMOS), subspace shift-invariance charac-
teristic of the SCM is exploited to estimate the model order of the
system. However, MOS accuracy of ESTER and SAMOS decreases
as the number of sources increases. From the radar point-of-view,
this intrinsically means that ESTER or SAMOS reliably work only
if the number of targets is low. Therefore, the existing MOS methods
do not perform well in indoor radar-like scenarios since the num-
ber of MPCs can be very large). Furthermore, the existing methods
are designed to only estimate the model order of a system, without
taking care of the spectral parameter estimation after the MOS stage.

We have proposed a preliminary radar architecture for indoor
human/object detection and tracking [22]. However, the radar archi-
tecture was limited by: i) only the range and speed estimations;
ii) the estimation of signal and noise subspaces through the sam-
ple covariance matrix, which incurs a potential loss of information
due to the phase terms that cancel/affect each other, and iii) serial-
ized implementation of the proposed architecture. To deal with these
shortcomings, we propose a new subspace-based super-resolution
parameter estimation architecture, namely Recursive Isolation of
Vandermonde-like Eigen-Spaces (RIVES) which is capable of esti-
mating the range, AoA and speed of multiple objects. RIVES com-
bines a novel MOS method and the ESPRIT algorithm to reach the
desired estimation accuracy for indoor human target detection and
tracking. RIVES is designed to first estimate the spectral parame-
ters for an over-sized signal subspace spanned by the sample Hankel
matrix. Then, the corresponding over-sized Vandermonde matrix is
constructed, whose columns span the entire signal subspace as well
as a part of the noise subspace [23]. The estimated parameters are
refined in the MOS stage by exploiting the orthogonality between
signal and noise subspaces [11]. Therefore, different sets of eigen-
vectors that span the row and column spaces of the Hankel matrix
are efficiently combined for successive parameter and MOS esti-
mation. Finally, the accuracy of RIVES is experimentally validated
by using Software-Defined-Radio (SDR)-based multi-antenna pro-
totype. Specifically, USRP X310s are used to emulate an AP and
a multi-antenna passive radar/sensing device in an indoor scenario
with human targets.

This paper is structured as follows. In section 2, the radar/sensing
system model is given for a Single-Input Multiple-Output (SIMO)
scenario. In section 3, the generic version of RIVES is explained
in detail. In section 4, radar processing with RIVES is shown for
range, AoA and speed estimation, respectively. In section 5, the
robustness of the novel MOS method and the overall accuracy of
RIVES are studied by simulations. In section 6, analyses based on
real-life measurements are provided, and the efficiency of RIVES
is experimentally validated. Finally, in section 7, the conclusion is
drawn.

The notations used throughout this work are summarized in
Table 1. Additionally, Q, M , N and P represent the number
of OFDM subcarriers, received OFDM symbols,antennas at the
receiver and propagation paths, respectively. To improve the read-
ability throughout the paper, the cisoid function is defined as

ω(x) = exp(−j2πx).

Table 1 Summary of the mathematical notations
Symbol Definition Symbol Definition
u Scalar
u Vector ui ith entry in u

U Matrix Ui,j
entry of U at the ith
row and jth column

û Estimated scalar ũ Post-decision scalar
û Estimated vector ũ Post-decision vector
Û Estimated matrix Ũ Post-decision matrix
U(m) Matrix U is a function of scalar m
UT ,U∗ Transpose and Hermitian transpose of U
U+ Moore-Penrose inverse of U

u[k1:k2]
Subvector of u composed of the entries

between indices k1 and k2

U[:, k1:k2]
Submatrix of U composed of columns

between indices k1 and k2
û(vi) Vector û is estimated for the ith entry in v

2 System Model

In this section, we introduce the system model of the Channel Trans-
fer Function (CTF). Although the proposed algorithm can be applied
to bistatic or multistatic geometries, we focus on quasi-monostatic
geometry where the transmitter (Tx) and the receiver (Rx) are closely
located. Moreover, the receiver has access to the transmitted signal
and it is equipped with N antennas configured in a Uniform Linear
Array (ULA). Since WS is the main focus of this work, the signal
model is written only for OFDM signals. However, the model can be
extended to more traditional radar/sensing signals such as Frequency
Modulated Continuous Wave [24] and Pulse Modulated Continuous
Wave [25] [26], as well as the bistatic radar geometry.

2.1 Estimated CTF at any time instant

In order to save space, and focus on more important parts of the
system model, we assume that the received OFDM signals already
went through the following process: i) correlation is applied to the
Short Training Fields to find the starting time of the received OFDM
frames; ii) Carrier Frequency Offset is estimated from the High-
Efficiency Long Training Fields and compensated accordingly; iii)
Cyclic Prefix samples are dropped, and the Fast Fourier Transform
(FFT) of each OFDM symbol is computed; iv) through zero-forcing,
the CTF is estimated [27] [28], which can be written as

Ĥ[q, n,m] =

P∑
p=1

(
αp ω

( qτp
QT

)
ω
(
n sin(θp)

)
ω
(
fpmTf

)
+z[q, n,m]

)
(1)

with q = 0 . . . Q− 1, n = 0 . . . N − 1,m = 0 . . .M − 1. The
first term models the attenuation due to radio wave propagation.
The first cisoid models the effect of the propagation delay τp, on
subcarrier q, with a normalization factor corresponding to the sam-
pling duration at Rx T . The second cisoid models the phase due to
the AoA θp, which evolves among N antennas separated by λc/2
distance, where λc is the carrier wavelength. The third cisoid mod-
els the Doppler frequency shift fp, that evolves over the slow-time
index m and the slow-time sampling rate Tf . Finally, z[q, n,m] cor-
responds to the Additive White Gaussian Noise (AWGN) samples at
subcarrier q, antenna n and slow-time index m.

2.2 Equivalent matrix model

Since the three cisoids model the three orthogonal spaces, namely
range, AoA, and speed, one can write (1) in matrix form. To do so,
let us introduce the following matrices. The first cisoid can be written
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as the delay matrix

D =


1 . . . 1

ω( 1
QT τ1) . . . ω

(
1

QT τP
)

...
. . .

...
ω
(Q−1

QT τ1
)

. . . ω
(Q−1

QT τP
)
 ∈ CQ×P (2)

whose rows correspond to different subcarriers. The second cisoid
can be written as the AoA matrix

Θ =


1 . . . 1

ω
(
1
2 sin(θ1)

)
. . . ω

(
1
2 sin(θP )

)
...

. . .
...

ω
(
N−1
2 sin(θ1)

)
. . . ω

(
N−1
2 sin(θP )

)
 ∈ CN×P

(3)
whose rows correspond to different antennas. Furthermore, the
columns of D and Θ identify different propagation path delays
and AoA angles, respectively. The diagonal matrix A(m) ∈ CP×P

whose entries correspond to the path attenuations and the Doppler
phases at slow-time instant m can be written as

A(m)=


α1ω(mf1Tf ) 0 . . . 0

0 α2ω(mf2Tf ) . . . 0
...

...
. . .

...
0 0 . . . αPω(mfPTf )

 .

(4)
Finally, (1) can be written in matrix form

Ĥ(m) = D A(m) ΘT + Z(m),∈ CQ×N

=

 H[0, 0,m] . . . H[0, N−1,m]
...

. . .
...

H[Q−1, 0,m] . . . H[Q− 1, N−1,m]

+Z(m).

(5)

Here, Ĥ(m) ∈ CQ×N is written as a function of the slow-time
index m. Each column of Ĥ(m) contains the CTF estimated at
antenna n, while its rows correspond to the different subcarriers q.
Moreover, Z(m) ∈ CQ×N is the noise matrix whose entries are the
samples of z[q, n,m] given in (1).

3 Super-Resolution Parameter Estimation:
Recursive Isolation of Vandermonde-like
Eigenspaces

In this section, we introduce the RIVES algorithm to estimate the
entries of a vector µ ∈ RL whose entries define the following
Vandermonde matrix

V =


1 . . . 1

ω(µ1η) . . . ω(µLη)
...

. . .
...

ω
(
(K1 − 1)µ1η

)
. . . ω

(
(K1 − 1)µLη

)
 ∈ CK1×L

(6)
where K1 and K2 correspond to the size of the measurement
dimensions, e.g., the number of subcarriers and antennas, and η cor-
responds to a generic normalization factor. RIVES can be applied to
any linear system of the form

Ŷ = VB+ Z,∈ CK1×K2 (7)

where B is the source matrix of arbitrary size, i.e., it can be a single
row vector or a matrix, Z is the matrix whose entries are the AWGN
noise samples. RIVES can estimate the size of the vector µ ∈ RL,
i.e., L̂, as well as its entries corresponding to the parameters-of-
interest, from the measurement matrix Y, without any knowledge

about the source matrix B. To do so, the measurement matrix goes
through two subsequent stages in RIVES. In the first stage, the
parameters-of-interest are estimated for an oversized V since the
number of resolvable paths is not known a priori. In other words,
since the true size of µ is not known, µ̂ ∈ RLo is obtained where
Lo>L is guaranteed. This process is explained in Section 3.1. In
the second stage, a novel MOS method is proposed to separate the
real parameters from spurious noise parameters. The entries in µ̂
are tested against a threshold to decide whether a given entry cor-
responds to a real parameter or a spurious noise parameter. This
process is explained in Section 3.2. Finally, there are three inputs
to the algorithm; i) the measurement matrix Y; ii) the maximum
expected size of the signal subspace Lo, and iii) the normalization
parameter η.

3.1 Estimation Stage

Before we apply the ESPRIT algorithm for parameter estimation, let
us define the Hankel matrix as follows

H(k2) =


Ŷ1,k2

Ŷ2,k2
. . . ŶK1

2 ,k2

Ŷ2,k2
Ŷ3,k2

. . . ŶK1
2 +1,k2

...
...

. . .
...

ŶK1
2 ,k2

ŶK1
2 +1,k2

. . . ŶK1,k2

 ,∈ C
K1
2 ×K1

2

where k2 = 1, . . . ,K2. The first row and first column of H(k2)
are identical, and its entries are symmetric along the diagonal, i.e.,
constant skew diagonals. The structure of the Hankel matrix is very
suitable for subspace-based parameter estimation since its eigen-
value decomposition yields a Vandermonde matrix spanning the
signal and noise subspaces of the parent matrix [29] [30]. Moreover,
Hankel matrices do not require spatial smoothing as opposed to the
SCMs, which smoothens the transition between the eigenvalues and
makes the estimation of the size of subspaces much more difficult
[31] [32]. Moreover, when K2 measurements are available, the block
Hankel matrix can be constructed to improve the SNR and reduce
the risk of destructive interference among different measurements,
which is defined as

H =


H(1) H(2) . . . H(K2

2 )

H(2) H(2) . . . H(K2
2 + 1)

...
...

. . .
...

H(K2
2 ) H(K2

2 + 1) . . . H(K2)

 (8)

where H ∈ CK3×K3 and K3 = K1K2
4 . Here, the structure of the

block Hankel matrix is adjusted in such a way that its eigenvalue
decomposition is equivalent to its Vandermonde factorization [23],
which can defined as

H = UΣVT (9)

where the rows of VT are the right singular vectors. The columns of
U correspond to the basis vectors of signal and noise subspaces, and
the diagonal entries of Σ are the associated eigenvalues. The estima-
tion stage is finalized by applying ESPRIT on the first Lo columns
of U, such as

µ̂ = ESPRIT(U[:, 1:Lo]),∈ RLo (10)

where µ̂ is the output of ESPRIT. Here, we assume that among the
Lo number of entries in µ̂, there are L number of parameters that
correspond to real parameters, while the remaining Lo − L number
of its entries correspond to spurious noise parameters. Now that the
parameters-of-interest are estimated, MOS can be performed on the
entries of the vector µ̂.

3.2 Order Selection

In this section, the proposed MOS method, i.e., Angular Separa-
tion between the Reconstructed Eigenvectors and the Noise subspace
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Fig. 1: Intuitive demonstration of ASREN. Horizontal plane and
vertical axes represent the noise and signal subspaces, respec-
tively. The reconstructed vectors, V̂[:, 1] and V̂[:, 2], are drawn with
dashed lines, while their projections on the noise subspace, Ĝ[:, 1]
and Ĝ[:, 2], are drawn with dotted lines. We propose to use the angle
ϕ̂l as the MOS metric. In this example, V̂[:, 1] corresponds to a spu-
rious noise parameter, while V̂[:, 2] is a real parameter.

(ASREN), is explained in detail. First, let us construct the oversized
Vandermonde matrix based on the previously obtained µ̂, while
assuming that K3 and the generic normalization factor η, are known

V̂ =


1 . . . 1

ω(µ̂1η) . . . ω(µ̂Lo
η)

...
. . . . . .

ω
(
(K3 − 1)µ̂1η

)
. . . ω

(
(K3 − 1)µ̂Lo

η
)
 ∈ CK3×Lo .

(11)
In the meantime, we remind that the remaining eigenvectors

in U, i.e., the last K3 − Lo + 1 columns of Ue, such that
Ue = U[:, Lo+1:K3], span the noise subspace of its parent matrix,
e.g., H. Therefore, one can construct the noise projection matrix and
project the reconstructed vectors onto the noise subspace as follows

Ĝ = UeU
∗
eV̂,∈ CK3×Lo . (12)

Here, the columns of Ĝ correspond to the projections of the columns
of V̂ on the noise subspace, i.e., their shadows on the noise plane.
Thus, the angular separation between the associated columns of
these two matrices i.e., V̂o[:, l] and Ĝ[:, l], holds the information
about the estimated parameter µ̂l: it is either a real parameter or a
spurious noise parameter. The intuition behind this MOS method
is shown in Fig. 1 and the corresponding angle can be obtained as
follows

ϕ̂l = arccos

(
V̂[:, l]Ĝ[:, l]T∥∥∥V̂[:, l]

∥∥∥ . ∥∥∥Ĝ[:, l]
∥∥∥
)

where ϕ̂l is the lth entry in the vector ϕ̂. Furthermore, let us define
the decision vector d ∈ RLo , whose entries are obtained as follows

dl =

{
l, ϕ̂l > T
0, elsewhere

, l = 1 . . . Lo (13)

where the angle between the reconstructed vector and the noise sub-
space is compared against a detection threshold T . If this angle is
bigger than the threshold, the corresponding parameter is marked as
a true and real parameter and its index is kept. Otherwise, the esti-
mated parameter will be discarded. The entries in the decision vector
d allows us to select the corresponding entries in µ̂ and columns
from V̂, such that

µ̃ =µ̂[d],∈ RL̃ (14)

Ṽ =V̂[1 :K1,d],∈ CK1×L̃ (15)

where entries in µ̃ contain the selected parameters, and its size
L̃ is the number of selected parameters that satisfies (13) i.e., the

estimated size of the signal subspace. Here, the term true refers
to the actual parameters, which we don’t have access to, while
selected parameters correspond to the estimation and decision out-
put. Moreover, the columns of Ṽ correspond to the constructed
vectors associated with the entries in µ̃. Since the Vandermonde
structured matrix is extracted from the measurement matrix Ŷ,
one can also estimate the source matrix B̂ through pseudo-inverse:
B̃ = Ṽ+Ŷ,∈ CL̃×K2 .

Finally, we define RIVES() as the function whose input-output
relation is given as

µ̃, B̃ = RIVES(Ŷ, Lo, η) (16)

4 Estimation of the Radar Parameters with
RIVES

The matrix model given in (5) contains three layers of matrices:
range, AoA and speed, two of which are in Vandermonde form.
By using RIVES, we successively obtain these matrices in the given
order. We remind that M number of OFDM symbols are needed to
estimate the Doppler frequencies. Thus, whenever there is an avail-
able OFDM symbol for channel estimation, it is first used to estimate
range and AoA information. By keeping track of the index m,
the speed/Doppler-frequency can be estimated when there are suf-
ficient number of samples. This flexibility brings a crucial advantage
against the unpredictable availability of Wi-Fi frames.

4.1 Range and AoA Estimation

Let us start by defining the first layer where the delay matrix and
its related source matrix is obtained through RIVES. For the sake
of clarity, we continue our derivations without using the slow-time
index (m). The range processing by RIVES is defined as

τ̃ , ÃΘ̃T = RIVES
(
Ĥ, Lo,

2π

QT

)
. (17)

Here, the entries in τ̃ ∈ RL̃τ correspond to the unique estimated
propagation delays associated with the columns of D, and L̃τ is the
number of estimated unique delays.

Since the delay matrix is obtained, one can use RIVES to esti-
mate the AoA parameters per estimated unique range, i.e., for each
column of D̂ such that D̂[:, i], i = 1, . . . , L̃τ , as follows

θ̃(τ̃i), Ã(τ̃i) =RIVES
(
B̂D[:, i], Lo, π

)
(18)

where B̂D = ÃΘ̃T . Thus, the entries in θ̃(τ̃i) ∈ RL̃θ correspond to
the AoA estimations with L̃θ being the number of unique AoA val-
ues at unique range τ̃i. Similarly, Â(τ̃i) contains only the Doppler
phases of the paths at τi. Here, another possibility is to use the entire
matrix B̂D for AoA estimation during the second layer. However,
this implicitly means that each path in the wireless channel has a
unique pair of τ and θ values, i.e., any two paths cannot exist at the
same distance and AoA, which is an unlikely assumption. Thus, by
feeding individual columns of B̂D for AoA processing, we guaran-
tee that for each unique range, all the AoAs that exist at that range
are estimated.

4.2 Speed Estimation

The successive estimation stages given in (17) and (18) are based
on a single OFDM symbol, measured at time instant m. Once
these two stages are finalized, RIVES outputs the following matrix
Ã(τ̃i)(m) ∈ CL̃θ×L̃θ whose diagonal entries correspond to the
Doppler phases of each path at range τi and time instant m. There-
fore, one-to-one association between the propagation delay and AoA
values are still maintained. Once M number of measurements are
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obtained, one can construct Doppler phase matrix at AoA θ̃
(τ̃i)
j , i.e.,

per entry of θ̃(τi), such as

Aθ̃
(τ̃i)

j = A(τ̃i,θ̃j) =


Λ(1)[k]
Λ(2)[k]

...
Λ(M)[k]

 (19)

where k is a vector whose entries index the Doppler phase terms
present only at τ̃i and θ̃j . Moreover, Λ(m) is a row vector composed
of the diagonal entries in A(m). Since the Vandermonde struc-
ture is still present, and the one-to-one association is maintained,
RIVES can be used to estimate the Doppler frequencies in A(τ̃i,θ̃j)

as follows

f̃ (τ̃i,θ̃j), σ2
ZI = RIVES

(
A(τ̃i,θ̃j), Lo, Tf

)
(20)

where σ2
Z corresponds to the variance of the noise. The entries in

f̃ (τ̃i,θ̃j) correspond to the estimated Doppler frequencies at unique
range τ̃i and θ̃j . Therefore, after 3 successive layers of RIVES, we
obtain sets of delay, AoA and Doppler frequency estimations.

4.3 Recursive Implementation of RIVES

In this section, the implementation of RIVES is explained in more
detail. Since it is used in all layers of the parameter estimation, with
the only difference being the generic normalization factor, it can be
implemented as a recursive function. In other words, when RIVES
is recursively called, a set of parameters estimated in the previous
layer is used to estimate the parameters in the next layer. The block
diagram shown in Fig. 2 explains this recursive implementation of
RIVES which can be summarized as follows:

1. Based on the CTF matrix Ĥ(m) measured at time instant m,
unique path delays in the wireless channel are estimated, i.e., entries
in τ̃ ∈ RL̃τ . Through the LS, associated subspaces are extracted for
further processing.
2. For any given unique path delay τ̃i, i ∈ [1, L̃τ ], the unique AoA
parameters are estimated. This step is repeated L̃τ times (or executed
in parallel) such that all the path angles at range τ̃i are estimated,
which corresponds to the entries in θ̃(τ̃i).
3. Once the steps 1 and 2 are repeated M times, the Doppler phases
are isolated for each path delay and AoA. Then, the matrix A(τ̃i,θ̃j)

is formed which is used to estimate the Doppler frequencies present
at τ̃i and θ̃j .

Fig. 2: Recursive implementation of RIVES allows successive sub-
space isolation for parameter estimation.

In essence, RIVES runs once to estimate the unique ranges and
isolate the AoA subspace. Then, for each estimated unique range,
RIVES will run again to estimate the unique AoA values from their
isolated subspaces. Finally, for each unique range-AoA pair, RIVES
will be used to estimate the speed of the corresponding target. There-
fore, the number of times that RIVES will run completely depends

on the number of targets, as well as their unique range/AoA/speed
values.

Thanks to the left-right (or equivalently top-down) branching,
one-by-one association between the estimated parameters are main-
tained. One may argue that jointly estimating all the parameters of
Ĥ is more robust and -depending on the context- relatively more
straight forward. However, in multipath rich environments, such as
indoor wireless channels, recursive extraction of subspaces provides
additional advantages. First, estimation of the size of an isolated sub-
space is much more ideal compared to the estimation of the total
number of paths directly from Ĥ, i.e., estimating P in (1). Sim-
ply put, the estimation of the size of the entire space depends on
minimizing (or maximizing) a cost function or an information cri-
teria [17]. However, due to the richness of MPCs, channel statistics
drastically vary which makes it difficult to find a cost function that
fits every scenario. In contrast, RIVES independently estimates the
size of each subspace based on the orthogonality between signal and
noise subspaces. Second, jointly estimating the channel parameters
directly from Ĥ requires a solution space where a global min-
ima/maxima can be found. However, such methods are known to
stuck at a local minima/maxima, especially if the number of paths is
high and/or incorrectly estimated [33]. Moreover, highly varying and
independent statistics of diffuse MPCs yield a mismatch between
the models and real-life channels. In contrast, RIVES relies only on
the measured data itself to separate the true paths from the spurious
noise paths. Under semi-ideal conditions where there is only ther-
mal noise, RIVES outperforms other algorithms as shown in Section
5 and Section 6.

5 Numerical Results

In this section, the accuracy and reliability of RIVES are numeri-
cally assessed under different conditions. The statistical consistency
of ASREN and the accuracy of the spectral parameter estimation
determine the overall reliability and accuracy of RIVES. Thus,
the two stages are separately analyzed. Table 2 summarizes the
standard-compliant parameters used in simulations.

Table 2 Summary of the simulation parameters
Symbol Parameter Value Unit
Q Number of subcarriers 64, 256, 1024
M Number of OFDM symbols 60, ..., 200
N Number of antennas at Rx 4, 8
B Bandwidth 20, 80 MHz
fc Carrier frequency 2.45 GHz
σhuman RCS of human targets -4 dBsm
Tf Slow-time sampling rate 0.01, 0.1, 1 ms

5.1 Model Order Selection with ASREN

In Fig. 3, values of the MOS metric are provided as a function of the
SNR of a single target over 10000 realizations. The entries of ϕ̃ in
(13) corresponding to only the real and the strongest noise targets are
shown. First, the mean of the metric increases with SNR, while its
variance decreases in all dimensions. Second, the range layer shows
slightly better performance compared to other layers since the noise
samples are better averaged when the number of available samples
is larger, i.e., M,N < Q. Third, the strongest metric corresponding
to a spurious noise target, and its variance, remain constant for all
layers, regardless of the target SNR. This is expected since the noise
power is mainly a function of the signal bandwidth and system tem-
perature. Since the differences between the metrics corresponding
to the real target and the noise are sufficiently high, a Range Aware
Threshold (RAT) can be drawn whose purpose is to select the appro-
priate threshold for ASREN at any layer. Furthermore, T defined
in (13) corresponds to a single point on the RAT curve. Since the
difference between noise and target metrics is not sufficiently high
when SNR is below -3 dB, there is an intrinsic limit on the minimum
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Fig. 3: Mean and variance of the metric corresponding to the real
parameters in all dimensions (ϕ̂τ , ϕ̂θ and ϕ̂f ) and the strongest noise
parameter (ϕn), estimated by ASREN as a function of SNR.

Fig. 4: Comparison between ASREN, ESTER [20] and SAMOS
[21] in terms of probability of target detection as a function of the
SNR.

SNR that RIVES can reliably operate, which is a potential drawback.
However, depending on the scenario, SNR can reach to relatively
high values, especially when indoor conditions are considered.

In Fig. 4, the statistical performance of ASREN is compared with
two other techniques, namely SAMOS and ESTER. In [21] and
[20], the Probability of Detection (PD) performance of SAMOS and
ESTER are studied as a function of SNR for only two and three
uncorrelated sources, i.e., P = 2, 3. From a communication perspec-
tive, such low values might be valid assumptions. However, in the
radar (or WS) context, P = 3 essentially means that there are only
3 targets in the environment, which is not realistic at all. In order
to show the impact of P , and the true power of ASREN, we con-
sider 10 human targets, i.e., P = 10. Each human target is randomly
placed on the 3D range/AoA/speed grid with a minimum separa-
tion of 1 meter, 2 degrees and 0.4 m/s, respectively. The probability
of detecting all the targets is computed after 10000 realizations per
SNR. First of all, when SNR is below 0 dB, none of the methods
work when there are 10 targets in the environment, simply because
entries in the corresponding SCMs (or Hankel matrix for ASREN)
do not contain sufficient information to separate all the targets. Once
the SNR is increased, ASREN is the first algorithm that starts to
show an improved performance, followed by SAMOS and ESTER,

Fig. 5: Estimation accuracy of RIVES as a function of the differ-
ence in range, AoA and speed between two human targets. Left and
right vertical axes show the overall estimation accuracy of RIVES
and the output of ASREN, i.e., estimated number of targets, respec-
tively. Solid (black) and dashed (red) lines correspond to the RMSE
of RIVES and FFT-based processing, respectively. Blue line with
markers correspond to the output of ASREN.

respectively. Moreover, ASREN reaches a PD ceiling at around 95%
when SNR is 25 dB, while SAMOS needs 40 dB of SNR to reach
the same error ceiling.

5.2 Estimation Accuracy

Any given set of closely located paths (whether in range, AoA
or speed dimensions) may not be resolved separately. There are
two underlying reasons. First, the noise at the receiver which dis-
torts the characteristics of the signal subspace and makes it difficult
for ASREN to resolve them separately. This particular problem is
addressed in [22] by studying the Cramer-Rao Lower Bound of
closely-spaced paths. Second, we assume that each path is specu-
lar in our simulations, i.e., there is only a single Dirac Delta function
associated with any given target. However, in reality, any given major
path can be surrounded by other minor paths also known as diffuse
paths [34] [35]. In this case, depending on the diffuse characteristic
of each path, one may hide the other even though they are not closely
spaced.

In Fig. 5, the estimation accuracy of RIVES is shown in terms
of Root Mean Square Error (RMSE). In this scenario, RMSE is
computed as a function of the range, AoA and speed difference
between two targets, shown in the first, second and last rows, respec-
tively, while the closest human target is placed at 20 meters distance.
Thanks to the parametric super-resolution principles, RIVES pro-
vides higher accuracy than the FFT-based resolution in all cases.
When the difference between two targets is not large enough in any
given dimension, ASREN detects only a single target since the SNR
is not sufficient enough to resolve the two targets. In other words,
the eigenvalue decomposition of the corresponding Hankel matrix
yields only a single eigenvector that spans the combined subspace
of the two targets. Therefore, RIVES outputs only a single estima-
tion, corresponding to the combined range/AoA/Speed of the two
targets. Once the difference between targets is large enough for the
given SNR, ASREN can resolve both targets. Therefore, the overall
estimation accuracy is maintained.

6 Experimental Results

In this section, we provide experimental results by applying RIVES
to real-life measurements obtained with SDRs. In Fig. 6, the exper-
imental setup and the corresponding measurement scenario are
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shown. The measurements took place in a 6m × 20m corridor, and
9 snapshots were obtained, each separated by 0.5 seconds. Table 3
summarizes the parameters used in our experiments.

In Fig. 7, the estimated target positions are plotted for all snap-
shots. To do so, the polar coordinates at the output of RIVES
(i.e., range and AoA estimations) are converted into Cartesian coor-
dinates, and any speed detection between -0.5 and 0.5 m/s are
discarded as they are assumed to be a part of the static clutter. First
of all, even though there are two human targets in the environment,
RIVES always detects more targets at each snapshot. These addi-
tional detections correspond to either limbs of the human targets
or radio waves reflected from the walls, also known as ghost tar-
gets which is a common problem in multipath-rich environments.
In order to deal with indoor ghost targets, multiple radar receivers
can be deployed in multi-static configuration [38] [39] [40], or the
tracking algorithms can be adjusted accordingly [41] since the tracks
followed by ghost targets are much less consistent compared to the
tracks followed by real targets.

In order to assess the performance of RIVES, simple tracks are
instantiated by using the velocity gating and without making any
tracking-related predictions i.e., by using only the measurements.
Over 9 snapshots, 5 tracks are instantiated which can be grouped into
three categories. First, two temporary tracks are located at the top-
left of the figure. Due to their inconsistency, velocity gating removes
these tracks after the sixth snapshot. Second, a more consistent ghost
target yields a track that appears on all snapshots (on the right side
of the figure). However, as mentioned earlier, this is a typical issue
in MPC rich environments. Third, the two tracks correspond to the
real targets (located in the middle of the figure) and closely follow
the ground truth. Notice that, as the distance of real targets increases,
the corresponding SNR decrease, yielding relatively larger position
estimation errors.

One may argue that all the additional detections could correspond
to spurious noise targets which are not discarded by ASREN. In
order to check that ASREN only keeps echoes from real targets and
not noise, the amplitudes of detected paths from the previous exper-
iment are illustrated as a function of path distance in Fig. 8. Notice
that the amplitude of each path coincides with typical path loss mod-
els, following a log-like decreasing pattern. If there was a spurious
noise target, there would have been outliers in the amplitude data.
Therefore, the detected MPCs are either real or ghost targets, but
certainly not spurious noise targets.

Finally, in Fig. 9 the position and speed estimation errors of the
real targets are provided for the same scenario while the wireless
channel is measured over 9 snapshots. First, the position and speed
errors increase as a function of the target range, since estimation
errors are inversely proportional to the SNR. With RIVES, the aver-
age position error of both targets is less than 0.3 meters, and the
average speed error is below 0.4 m/s. When the targets are around a
similar range, their position and speed estimation accuracy are also
similar which shows the consistency of RIVES. With the FFT-based
processing, the estimation accuracy is directly limited by the system
resolution, yielding roughly 0.5m and 0.52m/s larger position and
speed errors, respectively. Moreover, the estimation accuracy shown
in Fig. 5 cannot be achieved in real-life. One source of this problem
is the impact of hardware non-idealities [42], e.g. Phase Noise, on
the accuracy of subspace-based estimation techniques [43] [44].

Table 3 Summary of the parameters used in experiments.
Symbol Parameter Value Unit
Q Number of subcarriers 1024
M Number of OFDM symbols 120
N Number of antennas at Rx 4
B Bandwidth 80 MHz
fc Carrier frequency 2.45 GHz
Ptx SDR Tx power 20 dBm
Grx SDR Rx gain 20 dB
Tf Slow-time sampling rate 0.01 ms
∆T Snapshot sampling rate 0.5 s

Fig. 6: The experimental setup from top-view. Tx/Rx antennas are
separated by absorbers. The width of the corridor emulates a typical
living room, and its length is sufficiently high to produce different
SNR values. USRP X310s are used as SDR devices.

Fig. 7: Output of RIVES over all snapshots. The markers and the
numbers next them indicate the position of the estimated MPCs and
the index of the snapshots, respectively. Tracks are instantiated with
simple velocity gating: the estimated velocity of an MPC is multi-
plied with ∆T , which yields a circle of possible future positions. If
there is an MPC that falls inside this circle in the next snapshot, the
two MPCs are connected and a track is instantiated [36] [37].

7 Conclusion

In this work, we proposed a new super-resolution algorithm struc-
ture, RIVES, which combines a novel MOS method, ASREN, with
the well-known super-resolution algorithm ESPRIT. In essence,
RIVES is an algorithm that estimates the propagation distance, AoA
and Doppler frequency of any given path. In order to keep the dis-
cussion simple, we have assumed a quasi-monostatic geometry, e.g.,
the range of a target is given as the half of its estimated propagation
distance due to two-way propagation. Thus, in a bistatic scenario,
RIVES can still successfully estimate the bistatic range/AoA/speed
of the targets. However, an additional processing will be required to
estimate the true range/AoA/speed of the targets, as it is the case in
conventional bistatic radar processing schemes.

Furthermore, RIVES is specifically designed to deal with MPC
rich environments by recursively isolating each measurement dimen-
sion, and estimating the spectral parameters in each dimension. Our
numerical and experimental analysis show that RIVES, together with
ASREN, achieve sufficient estimation accuracy for indoor target
detection and tracking. Even for closely spaced targets, RIVES is
shown to be accurate and reliable enough to detect and track multiple
human targets. However, some of the ghost tracks can be removed
by a simple tracking method with velocity gating, more consistent
ghost tracks still remain to be an issue.
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Fig. 8: The dots illustrate the MPC amplitudes as a function of the
range. The solid line corresponds to a fitted path loss model. Having
no outliers shows that ASREN kept only the real MPCs, including
the ghost targets.

Fig. 9: The radar performance over 9 successive measurements.
Position error is computed by converting range and AoA estimates
to XY coordinates.
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