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Abstract. This work is devoted to the asymptotic behavior of eigenvalues of an elliptic
operator with rapidly oscillating random coefficients on a bounded domain with Dirich-
let boundary conditions. A sharp convergence rate is obtained for eigenvalues towards
those of the homogenized problem, as well as a quantitative two-scale expansion result
for eigenfunctions. Next, a quantitative central limit theorem is established for fluctu-
ations of isolated eigenvalues; more precisely, a pathwise characterization of eigenvalue
fluctuations is obtained in terms of the so-called homogenization commutator, in parallel
with the recent fluctuation theory for the solution operator.

1. Introduction

Let a be a stationary and ergodic random coefficient field on Rd with symmetric val-
ues in Rd×d, with the following boundedness and uniform ellipticity properties, for some
deterministic constant ν > 0,

|a(x)e| ≤ |e|, e · a(x)e ≥ ν|e|2, almost surely, for all x, e ∈ Rd, (1.1)

and denote by (Ω,P) the underlying probability space. In the sequel, we further assume
that a satisfies some strong mixing condition, and our main results focus for simplicity on
a Gaussian model, see Section 2.1. Given a bounded C1,1 domain U ⊂ Rd, we consider
the sequence of rescaled operators −∇ · a( ·ε)∇ on H1

0 (U). We consider their eigenvalues
{λkε}k≥1, listed in increasing order and repeated according to multiplicity, and we choose
corresponding orthonormal eigenfunctions {gkε}k≥1 ⊂ H1

0 (U),

−∇ · a( ·ε)∇g
k
ε = λkεg

k
ε in U, ‖gkε‖L2(U) = 1. (1.2)

As is well-known, see e.g. [25, Section 11], the eigenvalues {λkε}k≥1 converge almost surely
to the corresponding eigenvalues {λ̄k}k≥1 of the homogenized operator −∇ · ā∇,

−∇ · ā∇ḡk = λ̄kḡk in U, ‖ḡk‖L2(U) = 1, (1.3)

where the effective coefficient ā ∈ Rd×d is defined in each direction eα, 1 ≤ α ≤ d, by
āeα = E [a(∇ϕα + eα)] ,

in terms of the so-called corrector gradient ∇ϕα, which is defined as the unique almost
sure gradient solution in L2

loc(Rd)d of the corrector equation

−∇ · a(∇ϕα + eα) = 0, in Rd,

such that ∇ϕα is a stationary field with vanishing expectation and bounded second mo-
ment. In addition, normalized eigenfunctions are known to converge weakly in H1

0 (U) to
the corresponding eigenfunctions of the homogenized operator (up to taking linear combina-
tions in case of multiple eigenvalues), see e.g. [25, Section 11]. In the present contribution,
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we further establish sharp convergence rates and we analyze random fluctuations. More
precisely, our results are twofold:
(i) We prove an optimal convergence rate for eigenvalues and provide a two-scale descrip-

tion of eigenfunctions. Note that this also applies to the case of multiple eigenvalues.
Such results were only known previously in the easier periodic setting [26, 27].

(ii) We characterize joint fluctuations of simple eigenvalues in form of a quantitative
central limit theorem, thus answering a question raised by Biskup, Fukushima, and
König in [6, Section 2.2]. More precisely, we unravel the pathwise structure of fluctu-
ations: in the spirit of our recent work with Gloria and Otto [15] (see also the related
heuristics by Armstrong, Gu, and Mourrat in [23]), we show that fluctuations of λkε
are pointwise close to fluctuations of

´
U Ξ◦αβ( ·ε)∂αḡ

k∂β ḡ
k,1 in terms of the so-called

standard homogenization commutator

Ξ◦αβ := eβ · (a− ā)(∇ϕα + eα). (1.4)

In other words, while we found in [15, 14] that Ξ◦ governs fluctuations of the solu-
tion operator, we show in the present contribution that this quantity also governs
eigenvalue fluctuations. This pathwise relation then reduces the characterization of
eigenvalue fluctuations to the scaling limit of Ξ◦, which we already studied extensively
in [15, 16, 11]. In particular, under suitable strong mixing conditions, eigenvalue fluc-
tuations are Gaussian.

These different results make heavy use of refined tools from the recent quantitative theory
of stochastic homogenization as developed in [1, 21, 20, 16].

We briefly explain how our fluctuation result relates to the spectral statistics conjecture
for random operators. Rescaling the eigenvalue relation (1.2), eigenvalues of the oper-
ator −∇ · a∇ on the dilated domain 1

εU coincide with {ε2λkε}k≥1, and we consider the
large-volume limit ε ↓ 0. In this contribution, we show that the first eigenvalues have
joint Gaussian fluctuations, in the sense that the vector ε−d/2(λ1

ε − E[λ1
ε], . . . , λ

n
ε − E[λnε ])

is asymptotically Gaussian for any fixed n. This Gaussian fluctuation result at the bottom
of the spectrum is new and should be compared to the conjecture that eigenvalues have
local Poisson statistics in spectral regions where localization holds (in particular, at edges
of the spectrum other than its bottom) and have random matrix GOE statistics in the bulk
of regions where delocalization holds. Rigorous results on Poisson statistics in the localized
regime were pioneered by Minami [28] for the Anderson model, and we refer to [18, 24, 9]
and references therein for recent developments, but to our knowledge the problem still
remains open for the divergence-form operator −∇ · a∇ apart from the 1D case covered
in [31]. Rigorous results on GOE statistics in the delocalized regime are only known in the
simplified setting of random band matrix models [8, 7].

The article is organized as follows. Precise assumptions and main results are stated in
Section 2. We focus for simplicity on a Gaussian model for the coefficient field a, in which
case Malliavin calculus is available and simplifies the analysis. In Section 3, we recall some
useful tools from the quantitative theory of stochastic homogenization, including corrector
estimates and large-scale regularity theory, and we recall notations from Malliavin calculus.
Proofs of the main results are postponed to Section 4.

1Throughout, we use Einstein’s convention of summation on repeated indices, here on 1 ≤ α, β ≤ d.
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Notation.

• We denote by C ≥ 1 any constant that only depends on the dimension d, on the el-
lipticity constant ν in (1.1), on the domain U , and on ‖a0‖W 2,∞ and

´
Rd [C0]∞ in (2.1)

and (2.2) below. We use the notation . (resp. &) for ≤ C× (resp. ≥ 1
C×) up to such a

multiplicative constant C. We write ' when both . and & hold. We add subscripts to
C,.,&,' to indicate dependence on other parameters.
• We denote by Br(x) the ball of radius r centered at x in Rd, and we write for shortness
Br := Br(0), B(x) := B1(x), and B := B1(0).

• For a function g and an exponent 1 ≤ p < ∞, we write [g]p(x) := (
ffl
B(x) |g|

p)1/p for
the local moving Lp-averages, and similarly [g]∞(x) := supB(x) |g|. For averages at the
scale ε, we write [g]p;ε(x) := (

ffl
Bε(x) |g|

p)1/p.

2. Main results

2.1. Assumptions. Let U ⊂ Rd be a bounded C1,1 domain. For the random coefficient
field a, we focus on a Gaussian model: more precisely, we set

a(x) := a0(G(x)), (2.1)

where a0 ∈ C2
b (Rκ)d×d is such that the boundedness and uniform ellipticity require-

ments (1.1) are pointwise satisfied, and where G : Rd × Ω → Rκ is an Rκ-valued cen-
tered stationary Gaussian random field on Rd with covariance function C : Rd → Rκ×κ,
constructed on a probability space (Ω,P). In addition, we assume that G has integrable
correlations in the following sense: starting from the representation

Gi = C0;ij ∗ ξj ,

where ξ is an Rκ-valued Gaussian white noise on Rd and where the kernel C0 : Rd → Rκ×κ
satisfies C0;il ∗ C0;lj = Cij , we assume that C0 satisfies the integrability condition

ˆ
Rd

[C0]∞ < ∞. (2.2)

In particular, this entails that the covariance function C itself satisfies the same integra-
bility condition

´
Rd [C]∞<∞. Moreover, C is necessarily continuous, so that G and a are

stochastically continuous and jointly measurable on Rd × Ω.

Remark 2.1 (Relaxation of assumptions). This Gaussian model (2.1)–(2.2) allows to ex-
ploit Malliavin calculus techniques, which strongly simplify the analysis. Our approach
can be repeated mutatis mutandis in a corresponding Poisson model or in the iid discrete
setting, using corresponding stochastic calculus techniques, e.g. [30, 10]. It can be further
adapted to the case of a degraded stochastic calculus in form of multiscale variance inequal-
ities as we introduced in [12, 13] with Gloria, which are available for a much wider class of
mixing coefficient fields. The general case of an α-mixing coefficient field is however much
more demanding: we believe that it can be treated using the recent techniques of [1, 22],
but we do not pursue in that direction here. Finally, the integrability condition (2.2) is eas-
ily relaxed: the Gaussian model with non-integrable correlations can be treated similarly
but would yield different scalings as in [20, 14, 11].
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2.2. Convergence rate for eigenvalues and eigenfunctions. The following result pro-
vides a sharp convergence rate for eigenvalues, as well as a quantitative two-scale expansion
for corresponding eigenfunctions. Note that the statement also covers multiple eigenvalues;
in case of a simple eigenvalue λ̄k, the projection π̄k[gkε ] is reduced to ḡk. The square root in
the convergence rates (εµd(

1
ε ))1/2 is due to boundary layers: for corresponding eigenvalue

problems on a box with periodic boundary conditions, boundary issues disappear and a
direct inspection of the proof would yield the optimal rate εµd(1

ε ).

Theorem 2.2. For all k ≥ 1, denoting by π̄k[·] the orthogonal projection of L2(U) onto
the (possibly multidimensional) eigenspace associated with λ̄k, we have for all q <∞,

‖λkε − λ̄k‖Lq(Ω) .k,q (εµd(
1
ε ))

1
2 , (2.3)

‖gkε − π̄k[gkε ]‖Lq(Ω;L2(U)) .k,q (εµd(
1
ε ))

1
2 , (2.4)

‖∇gkε − (∇ϕα + eα)( ·ε)∂απ̄
k[gkε ]‖Lq(Ω;L2(U)) .k,q (εµd(

1
ε ))

1
2 , (2.5)

in terms of

µd(r) :=


1 : d > 2,

log(2 + r)
1
2 : d = 2,

(1 + r)
1
2 : d = 1.

(2.6)

2.3. Eigenvalue fluctuations. The following result shows that eigenvalue fluctuations
are governed to leading order by fluctuations of the so-called standard homogenization
commutator (1.4). Combined with the scaling limit for the latter in [15, 16, 11], this yields
a full characterization of eigenvalue fluctuations together with a convergence rate. Note
that this result is restricted to simple eigenvalues. As in Theorem 2.2, the convergence
rates (εµd(

1
ε ))1/2 can be replaced by εµd(1

ε ) in case of corresponding eigenvalue problems
on a periodic box.

Theorem 2.3. For all k ≥ 1 such that λ̄k is simple, we have for all q <∞,

ε−
d
2

∥∥∥λkε − E[λkε ]−
ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k
∥∥∥

Lq(Ω)
.k,q (εµd(

1
ε ))

1
2 , (2.7)

where we recall that the standard homogenization commutator Ξ◦ is defined in (1.4), and
where µd is given by (2.6). Combined with the known scaling limit for Ξ◦, cf. [15, 16, 11],
this yields for all k1, . . . , kn ≥ 1 such that λ̄k1 , . . . , λ̄kn are simple,

W2

(
ε−

d
2

((
λk1ε − E[λk1ε ]

)
, . . . ,

(
λknε − E[λknε ]

))
; Nk1,...,kn

)
.k1,...,kn (εµd(

1
ε ))

1
2 ,

where W2(·; ·) denotes the 2-Wasserstein distance and where Nk1,...,kn stands for the n-
dimensional centered Gaussian vector with covariance

E [(Nk1,...,kn)i(Nk1,...,kn)j ] =

ˆ
Rd

(∇ḡki ⊗∇ḡki) : Q (∇ḡkj ⊗∇ḡkj ),

where the 4th-order tensor Q ∈ Rd×d×d×d is given by the following Green–Kubo formula,
for any cut-off function χ ∈ C∞c (Rd) with χ(0) = 1,

Qα′β′αβ := lim
L↑∞

ˆ
Rd
χ( 1

Lx) Cov
[
Ξ◦α′β′(0); Ξ◦αβ(x)

]
dx. (2.8)
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Remark 2.4. As shown in [15, 16, 11], although the covariance function of the homoge-
nization commutator Ξ◦ is only borderline integrable,∣∣Cov

[
Ξ◦α′β′(0); Ξ◦αβ(x)

]∣∣ . (1 + |x|)−d,

the limit (2.8) indeed exists and the convergence holds with rate O(L−1µd(L)). Alterna-
tively, in terms of Malliavin calculus, the effective tensor Q can be expressed as

Qα′β′αβ :=

ˆ
Rd
Cij(y) E

[(
(∇ϕβ′ + eβ′) · ∂ia0(G)(∇ϕα′ + eα′)

)
(0)

× (L+ 1)−1
(
(∇ϕβ + eβ) · ∂ja0(G)(∇ϕα + eα)

)
(y)
]
dy,

where L is the Ornstein–Uhlenbeck operator associated with the Malliavin calculus with
respect to the underlying Gaussian field G, cf. (3.4) below.

3. Main tools

In this section, we recall useful tools both from the quantitative theory of stochastic
homogenization, including corrector estimates and large-scale regularity theory, and from
Malliavin calculus.

3.1. Tools from quantitative homogenization theory. The following result recalls the
definition of correctors and flux corrector, e.g. [21, Lemma 1], which are key to describe fine
oscillations of the solution operator. Note that the flux corrector σα is defined as a vector
potential for the flux qα = a(∇ϕα + eα) − āeα, cf. (3.2), and the defining equation (3.1)
amounts to choosing the Coulomb gauge.

Lemma 3.1 (Correctors; [21]). For all 1 ≤ α ≤ d, there exists a unique solution ϕα to the
following infinite-volume corrector problem:
• Almost surely, ϕα belongs to H1

loc(Rd) and satisfies in the weak sense

−∇ · a(∇ϕα + eα) = 0, in Rd.
• The gradient field ∇ϕα is stationary, has vanishing expectation, and has bounded sec-
ond moment, and ϕα satisfies the anchoring condition

ffl
B ϕα = 0 almost surely.

In addition, there exists a unique random 2-tensor field σα = {σαβγ}1≤β,γ≤d that satisfies
the following infinite-volume problem:
• For all 1 ≤ β, γ ≤ d, almost surely, σαβγ belongs to H1

loc(Rd) and satisfies in the weak
sense

−4σαβγ = ∂β(qα)γ − ∂γ(qα)β, in Rd, (3.1)
in terms of the flux qα := a(∇ϕα + eα)− āeα.
• The gradient field ∇σα is stationary, has vanishing expectation, and has bounded sec-
ond moment, and σα satisfies the anchoring condition

ffl
B σα = 0 almost surely.

In particular, this definition entails

∇ · σα = qα, σαβγ = −σαγβ. (3.2)

Next, in the present Gaussian setting (2.1)–(2.2), we have the following moment bounds
on corrector gradients, as well as optimal estimates on the sublinearity of correctors,
see [1, 20]. In dimension d > 2, these estimates ensure that correctors ϕ, σ can be chosen
themselves as stationary fields.
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Theorem 3.2 (Corrector estimates; [1, 20]). For all q <∞,

‖[∇ϕ]2‖Lq(Ω) + ‖[∇σ]2‖Lq(Ω) .q 1,

and for all x ∈ Rd,

‖[ϕ]2(x)‖Lq(Ω) + ‖[σ]2(x)‖Lq(Ω) .q µd(|x|),

where we recall that µd is given by (2.6). In addition, the following Meyers type improve-
ment holds: there exists a constant C0 ' 1 such that for all 2 ≤ p ≤ 2 + 1

C0
the local

quadratic averages [·]2 in the above estimates can be replaced by [·]p.

A key insight in quantitative stochastic homogenization theory is the idea of large-scale
regularity, which started with Avellaneda and Lin [5] in the periodic setting, then with
Armstrong and Smart [3] in the random setting, and was fully developed in recent years
in [2, 1, 21]: due to homogenization, the heterogeneous elliptic operator −∇ · a∇ can be
expected to inherit the same regularity properties as its homogenized version −∇ · ā∇ on
large scales. For our purpose in this work, we focus on large-scale Lp-regularity and we
appeal to a convenient annealed version that we established in [16, Theorem 6.1] with Otto.
More precisely, while in [16] only interior Lp-regularity was established, the following is
further stated to hold globally on any bounded domain with Dirichlet boundary conditions:
the proof follows as in [16, Section 6] up to replacing the use of large-scale interior Lipschitz
regularity by corresponding global regularity as developed in [1, Section 3.5] (see also [17]).

Theorem 3.3 (Annealed Lp-regularity; [16, 1]). Let D ⊂ Rd be a bounded C1,γ domain
for some γ > 0. For all 0 < ε ≤ 1 and h ∈ C∞c (D; L∞(Ω)d), if uε;h is almost surely the
unique solution in H1

0 (D) of

−∇ · a( ·ε)∇uε;h = ∇ · h, in U,

then there holds for all 1 < p, q <∞ and δ > 0,

‖[∇uε;h]2;ε‖Lp(D;Lq(Ω)) .D,p,q,δ ‖[h]2;ε‖Lp(D;Lq+δ(Ω)).

3.2. Tools from Malliavin calculus. We recall some classical notation and tools from
Malliavin calculus; we refer e.g. to [29] for details. We set

G(ζ) :=

ˆ
Rd
G · ζ, for all ζ ∈ C∞c (Rd)κ,

which are jointly Gaussian random variables with covariance

Cov
[
G(ζ);G(ζ ′)

]
=

¨
Rd×Rd

Cij(x− y) ζi(x)ζ ′j(y) dxdy, ζ, ζ ′ ∈ C∞c (Rd)κ.

Defining H as the closure of C∞c (Rd)κ for this (semi)norm,

‖ζ‖2H := 〈ζ, ζ〉H, 〈ζ, ζ ′〉H :=

¨
Rd×Rd

Cij(x− y) ζi(x)ζ ′j(y) dxdy,

we may extend by density the definition of G(ζ) ∈ L2(Ω) to all ζ ∈ H. The space H (up to
taking the quotient with respect to the kernel of ‖ · ‖H) is a separable Hilbert space and
embeds isometrically into L2(Ω) via ζ 7→ G(ζ). In view of the integrability condition (2.2),
the norm of H is bounded by

‖ζ‖H . ‖[ζ]1‖L2(Rd). (3.3)
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Without loss of generality we can assume that the probability space is endowed with the
σ-algebra generated by the Gaussian field G, so that the linear subspace

S(Ω) :=
{
g(G(ζ1), . . . ,G(ζn)) : n ∈ N, g ∈ C∞c (Rn), ζ1, . . . , ζn ∈ H

}
is dense in L2(Ω). We may thus define operators on this simpler subspace S(Ω) be-
fore extending them by density to L2(Ω). For a random variable X ∈ S(Ω), say X =
g(G(ζ1), . . . ,G(ζn)), we define its Malliavin derivative DX ∈ L2(Ω;H) as

DX :=

n∑
i=1

ζi (∂ig)(G(ζ1), . . . ,G(ζn)).

We can check that this operator D : S(Ω) ⊂ L2(Ω) → L2(Ω;H) is closable, and we still
denote by D its closure. Next, we define the divergence operator D∗ as the adjoint of D,
and we construct the so-called Ornstein–Uhlenbeck operator

L := D∗D, (3.4)

which is well-defined as an essentially self-adjoint nonnegative operator on S(Ω) ⊂ L2(Ω).
With this notation, we may now state the following useful classical result; a short proof
and relevant references can be found e.g. in [16, Proposition 4.1].

Proposition 3.4 (Malliavin–Poincaré inequality). For all X ∈ S(Ω) and q <∞,

‖X − E [X]‖L2q(Ω) . q
1
2 ‖DX‖L2q(Ω;H).

4. Proof of main results

This section is devoted to the proof of our main results. After a few preliminary esti-
mates, Theorems 2.2 and 2.3 are established in Sections 4.2 and 4.3, respectively. Note
that the C1,1 regularity of the domain U is only used to have W 2,∞− estimates on homog-
enized eigenfunctions, cf. Lemma 4.2 below, while all other arguments only require C1,γ

regularity for some γ > 0.

4.1. Preliminary estimates. The following lemma provides uniform bounds on eigen-
values and eigenfunctions. Uniform bounds on gradients of eigenfunctions, cf. (4.3), are
based on large-scale regularity theory.

Lemma 4.1. For all k ≥ 1, we have almost surely,

λkε ' |k|2, (4.1)

|gkε | .k 1, (4.2)
and for all 1 < p, q <∞,

‖[∇gkε ]2;ε‖Lp(U ;Lq(Ω)) .k,p,q 1. (4.3)

Proof. We split the proof into two steps.

Step 1. Proof of deterministic estimates (4.1) and (4.2).
The first estimate (4.1) follows from a spectral comparison argument based on the uni-
form ellipticity condition (1.1). We turn to the proof of (4.2) and we appeal to a similar
reproducing kernel trick as in [6]: the eigenvalue relation (1.2) yields for all k ≥ 1 and t ≥ 0,

gkε = eλ
k
ε tP tεg

k
ε ,
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in terms of the Dirichlet semigroup P tε := et∇·a( ·
ε
)∇ on U . Noting that the latter is

bounded by the corresponding whole-space semigroup, and appealing to the Nash–Aronson
estimates [4] (see also [25, Appendix A]), we deduce almost surely

|gkε | . eλ
k
ε t

ˆ
U
t−

d
2 exp(− ν

8t | · −y|
2) |gkε (y)| dy.

Choosing t = 1, using (4.1), and recalling that gkε is normalized, we conclude

|gkε | .k 1.

Step 2. Proof of (4.3).
Considering the unique solution hkε ∈ H1

0 (U) of the Laplace equation

4hkε = λkεg
k
ε in U, (4.4)

we can rewrite the eigenvalue relation (1.2) as

−∇ · a( ·ε)∇g
k
ε = ∇ · (∇hkε) in U.

Appealing to annealed Lp-regularity in form of Theorem 3.3, we deduce for all 1 < p, q <∞
and δ > 0,

‖[∇gkε ]2;ε‖Lp(U ;Lq(Ω)) .p,q,δ ‖[∇hkε ]2;ε‖Lp(U ;Lq+δ(Ω)) . ‖∇h
k
ε‖L∞(Ω;L∞(U)).

Schauder regularity theory applied to equation (4.4) yields almost surely

‖∇hkε‖L∞(U) . λkε‖gkε‖L∞(U),

and the conclusion (4.3) then follows from (4.1)–(4.2). �

The following lemma concerns the regularity of eigenfunctions of the homogenized op-
erator. The proof follows from global Lp-regularity theory in C1,1 domains, e.g. [19, The-
orem 9.13], applied to the eigenvalue relation (1.3).

Lemma 4.2. For all k ≥ 1, we have for all 1 < p <∞,

‖ḡk‖W 2,p(U) .k,p 1.

4.2. Convergence of eigenvalues and eigenfunctions. This section is devoted to the
proof of Theorem 2.2. We start with the following estimate on the fluctuation scaling of
eigenvalues. This is often used in the sequel as a concentration result.

Lemma 4.3 (Fluctuation scaling). For all k ≥ 1 and q <∞,

‖λkε − E[λkε ]‖Lq(Ω) .k,q ε
d
2 .

Proof. In terms of Malliavin calculus, cf. Proposition 3.4, centered moments can be esti-
mated by

‖λkε − E[λkε ]‖Lq(Ω) .q ‖Dλkε‖Lq(Ω;H). (4.5)
Starting from identity

λkε =

ˆ
U
∇gkε · a( ·ε)∇g

k
ε ,

the Malliavin derivative can be written as

Dλkε =

ˆ
U
∇gkε ·Da( ·ε)∇g

k
ε + 2

ˆ
U
∇Dgkε · a( ·ε)∇g

k
ε .
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Since the eigenvalue relation and the normalization of gkε ensure that the second right-hand
side term is ˆ

U
∇Dgkε · a( ·ε)∇g

k
ε = λkε

ˆ
U
gkεDg

k
ε = 1

2λ
k
εD‖gkε‖L2(U) = 0,

we deduce
Dλkε =

ˆ
U
∇gkε ·Da( ·ε)∇g

k
ε . (4.6)

The definition (2.1) of a yields for any test function ψ ∈ Cb(U),ˆ
U
ψDza( ·ε) = εdψ(εz) ∂a0(G(z)), (4.7)

so that the above becomes

Dλkε = εd∇gkε (ε·) · ∂a0(G(·))∇gkε (ε·).
Inserting this into (4.5), and using the integrability condition (2.2) in form of (3.3), we
obtain after rescaling,

‖λkε − E[λkε ]‖Lq(Ω) .q ε
d
2 ‖[∇gkε ]2;ε‖2L2q(Ω;L4(U))

, (4.8)

and the conclusion follows from (4.3). �

Next, we establish the following convergence result for eigenvalues and eigenspaces. The
proof is based on using two-scale expansion to show that homogenized eigenvalues {λ̄k}k
are approximate eigenvalues for the heterogeneous problem (1.2). Recall that the weight µd
is defined in (2.6).

Lemma 4.4 (Convergence of eigenvalues and eigenspaces).
(i) For all k ≥ 1 and q <∞, we have

‖λkε − λ̄k‖Lq(Ω) .k,q (εµd(
1
ε ))

1
2 .

(ii) For all k ≥ 1 and q <∞, we have

‖gkε − π̄k[gkε ]‖Lq(Ω;L2(U)) .k,q (εµd(
1
ε ))

1
2 ,

where we recall that π̄k[·] stands for the orthogonal projection of L2(U) onto the
eigenspace associated with λ̄k.

Proof. We split the proof into three steps.

Step 1. Construction of approximate eigenvalues.
Given a parameter ρ ∈ [ε, 1] to be later optimized (depending on ε), set

Uρ := {x ∈ U : dist(x, ∂U) > ρ}, ∂ρU := U \ Uρ,
choose a cut-off function ηρ ∈ C∞c (U) such that

ηρ|Uρ = 1, 0 ≤ ηρ ≤ 1, |∇ηρ| . 1
ρ , (4.9)

and consider the following truncated two-scale expansion,

hkε,ρ := ḡk + εηρϕα( ·ε)∂αḡ
k ∈ H1

0 (U). (4.10)

The eigenvalue relation for ḡk yields

−∇ · a( ·ε)∇h
k
ε,ρ = λ̄kḡk −∇ ·

(
(a− ā)( ·ε)∇ḡ

k + a( ·ε)∇
(
εηρϕα( ·ε)∂αḡ

k
))
. (4.11)



10 M. DUERINCKX

Let us reformulate the right-hand side. Expanding the gradient and inserting the definition
of the flux corrector σ, cf. (3.2), we can rewrite

(a− ā)( ·ε)∇ḡ
k + a( ·ε)∇

(
εηρϕα( ·ε)∂αḡ

k
)

= (1− ηρ)(a− ā)( ·ε)∇ḡ
k + ε(aϕα)( ·ε)∇(ηρ∂αḡ

k) +
(
a(∇ϕα + eα)− āeα

)
( ·ε)ηρ∂αḡ

k

= (1− ηρ)(a− ā)( ·ε)∇ḡ
k + ε(aϕα)( ·ε)∇(ηρ∂αḡ

k) + (∇ · σα)( ·ε)ηρ∂αḡ
k.

and we note that Leibniz’ rule and the skew-symmetry of σ yield for the last right-hand
side term,

∇ ·
(

(∇ · σα)( ·ε)ηρ∂αḡ
k
)

= (∇ · σα)( ·ε) · ∇(ηρ∂αḡ
k) = −∇ ·

(
σα( ·ε)∇(ηρ∂αḡ

k)
)
.

Inserting these identities into (4.11), we are led to the following approximate eigenvalue
relation,

−∇ · a( ·ε)∇h
k
ε,ρ = λ̄khkε,ρ − λ̄kskε,ρ −∇ · rkε,ρ, (4.12)

where the remainder terms rkε,ρ, skε,ρ are defined by

rkε,ρ := (1− ηρ)(a− ā)( ·ε)∇ḡ
k + ε(aϕα − σα)( ·ε)∇(ηρ∂αḡ

k), (4.13)

skε,ρ := hkε,ρ − ḡk = εηρϕα( ·ε)∂αḡ
k.

We now estimate these remainders. As 1− ηρ and ∇ηρ are supported in ∂ρU , cf. (4.9), we
can estimate by Hölder’s inequality, for all p > 2,

‖rkε,ρ‖L2(U) . |∂ρU |
1
2 ‖∇ḡk‖L∞(U) + ρ−1ε‖(ϕ, σ)( ·ε)‖L2(∂ρU)‖∇ḡ

k‖L∞(U)

+ ε‖(ϕ, σ)( ·ε)‖Lp(U)‖∇2ḡ‖
L

2p
p−2 (U)

,

and thus, taking the Lq(Ω) norm of both sides, appealing to the corrector estimates of
Theorem 3.2 for p > 2 close enough to 2, using that ∂ρU has volume |∂ρU | ' ρ, and
appealing to Lemma 4.2 for regularity of ḡk, we deduce for all q <∞,

‖rkε,ρ‖Lq(Ω;L2(U)) .k,q ρ
1
2 + ρ−

1
2 εµd(

1
ε ), (4.14)

and similarly,
‖skε,ρ‖Lq(Ω;L2(U)) .k,q εµd(

1
ε ). (4.15)

Step 2. Convergence of eigenspaces: given δ ∈ (0, 1], denoting by πkε,δ[·] the orthogonal
projection of L2(U) onto span{gjε : |λjε − λ̄k| ≤ δ}, we show for all q <∞,

‖ḡk − πkε,δ[ḡk]‖Lq(Ω;L2(U)) .k,q δ
−1(εµd(

1
ε ))

1
2 . (4.16)

We claim that it suffices to establish the following result: given ρ ∈ [ε, 1], in terms of the
truncated two-scale expansion hkε,ρ, cf. (4.10), we have for all q <∞,

‖hkε,ρ − πkε,δ[hkε,ρ]‖Lq(Ω;L2(U)) .k,q δ
−1
(
ρ

1
2 + ρ−

1
2 εµd(

1
ε )
)
. (4.17)

Indeed, as ḡk = hkε,ρ − skε,ρ, with skε,ρ estimated in (4.15), the latter entails

‖ḡk − πkε,δ[ḡk]‖Lq(Ω;L2(U)) .k,q δ
−1
(
ρ

1
2 + ρ−

1
2 εµd(

1
ε )
)
,

and the claim (4.16) follows after optimizing with respect to ρ ∈ [ε, 1], which amounts to
choosing ρ = εµd(

1
ε ).
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We turn to the proof of (4.17). For that purpose, starting point is the following spectral
decomposition,

hkε,ρ − πkε,δ[hkε,ρ] =
∑

j:|λjε−λ̄k|>δ

(ˆ
U
hkε,ρg

j
ε

)
gjε. (4.18)

In order to estimate the norm of the right-hand side, we note that projecting the approxi-
mate eigenvalue relation (4.12) onto gjε yields

(λjε − λ̄k)
ˆ
U
hkε,ρg

j
ε = −λ̄k

ˆ
U
skε,ρg

j
ε +

ˆ
U
rkε,ρ · ∇gjε, for all j. (4.19)

Inserting this into (4.18) and using that {gjε}j is an orthonormal basis of L2(U), we infer

‖hkε,ρ − πkε,δ[hkε,ρ]‖2L2(U)
≤

∑
j:|λjε−λ̄k|>δ

2

(λjε − λ̄k)2

(∣∣∣λ̄k ˆ
U
skε,ρg

j
ε

∣∣∣2 +
∣∣∣ˆ

U
rkε,ρ · ∇gjε

∣∣∣2).
In terms of the solution vkε,ρ ∈ H1

0 (U) of the auxiliary problem

−∇ · a( ·ε)∇v
k
ε,ρ = ∇ · rkε,ρ in U, (4.20)

we can write ˆ
U
rkε,ρ · ∇gjε = −

ˆ
U
∇vkε,ρ · a( ·ε)∇g

j
ε = −λjε

ˆ
U
vkε,ρg

j
ε,

so that the above becomes

‖hkε,ρ − πkε,δ[hkε,ρ]‖2L2(U)
≤

∑
j:|λjε−λ̄k|>δ

2((λjε)2 + (λ̄k)2)

(λjε − λ̄k)2

(∣∣∣ˆ
U
skε,ρg

j
ε

∣∣∣2 +
∣∣∣ˆ

U
vkε,ρg

j
ε

∣∣∣2).
Noting that for |λjε − λ̄k| > δ we have

2((λjε)2 + (λ̄k)2)

(λjε − λ̄k)2
≤ 4 +

6(λ̄k)2

(λjε − λ̄k)2
.k δ

−2,

and using again that {gjε}j is an orthonormal basis of L2(U), we are led to

‖hkε,ρ − πkε,δ[hkε,ρ]‖L2(U) .k δ
−1
(
‖skε,ρ‖L2(U) + ‖vkε,ρ‖L2(U)

)
.

Poincaré’s inequality combined with an energy estimate for (4.20) yields

‖vkε,ρ‖L2(U) . ‖∇v
k
ε,ρ‖L2(U) . ‖r

k
ε,ρ‖L2(U).

Combining this with the above, together with the bounds (4.14)–(4.15) on the remain-
ders rkε,ρ, skε,ρ, the claim (4.17) follows.

Step 3. Conclusion.
Assume that λ̄k has multiplicity s ≥ 1, with

λ̄k−1 < λ̄k = . . . = λ̄k+s−1 < λ̄k+s.

Given K > 0, choosing δ = K(εµd(
1
ε ))

1
2 , the event ]{j : |λjε − λ̄k| ≤ δ} < s entails that

the projection πkε,δ[·] defined in Step 2 is a projection onto a subspace of dimension < s.
As a consequence, under this event, there exists a unit vector in span{ḡk, . . . , ḡk+s−1} for
which the projection vanishes, and therefore there must exist j with k ≤ j ≤ k+s−1 such



12 M. DUERINCKX

that ‖ḡj−πkε,δ[ḡj ]‖L2(U) ≥ s−
1
2 . Combining this observation with a union bound, Markov’s

inequality, and (4.16), we deduce for all q <∞,

P
[
]
{
j : |λjε − λ̄k| ≤ K(εµd(

1
ε ))

1
2
}
< s
]

≤ P
[

max
k≤j≤k+s−1

‖ḡj − πkε,δ[ḡj ]‖L2(U) ≥ s
− 1

2

]
≤ s

q
2

k+s−1∑
j=k

‖ḡj − πkε,δ[ḡj ]‖
q

Lq(Ω;L2(U))

.k,s,q
(
δ−1(εµd(

1
ε ))

1
2
)q

= K−q. (4.21)

Also recall that Lemma 4.3 ensures that the law of each eigenvalue is strongly concentrated:
more precisely, using Markov’s inequality and the fact that εd/2 ≤ εµd(

1
ε ), it gives for

all j ≥ 1 and q <∞,

P
[
|λjε − E[λjε]| > K(εµd(

1
ε ))

1
2

]
.j,q K

−q. (4.22)

In view of (4.1), there exists a deterministic constant ck > 0 and a deterministic index
set Ik such that almost surely, for all ε > 0,

inf
j
|λjε − λ̄k| ≤ ck, {j : |λjε − λ̄k| ≤ ck} ⊂ Ik, ]Ik .k 1. (4.23)

By a union bound, provided 2K(εµd(
1
ε ))

1
2 ≤ ck, we may then write

P
[
]
{
j : |E[λjε]− λ̄k| ≤ 2K(εµd(

1
ε ))

1
2
}
< s
]

≤ P
[
]
{
j : |λjε − λ̄k| ≤ K(εµd(

1
ε ))

1
2
}
< s
]

+
∑
j∈Ik

P
[
|λjε − E[λjε]| > K(εµd(

1
ε ))

1
2

]
,

and thus, inserting (4.21) and (4.22), we deduce for all K > 0 and q <∞,

P
[
]
{
j : |E[λjε]− λ̄k| ≤ 2K(εµd(

1
ε ))

1
2
}
< s
]
.k,s,q K

−q.

As the left-hand side is the probability of a deterministic event, while the right-hand side
can be made < 1 by choosing K 'k,s,q 1 large enough, we infer

]
{
j : |E[λjε]− λ̄k| .k,s,q (εµd(

1
ε ))

1
2
}
≥ s.

Since it is already known that the set {λjε}j converges almost surely to {λ̄j}j with multi-
plicities, see e.g. [25, Section 11], we can deduce

max
k≤j≤k+s−1

|E[λjε]− λ̄k| .k,s,q (εµd(
1
ε ))

1
2 .

Appealing again to the concentration result of Lemma 4.3, this yields part (i) of the
statement.

It remains to establish part (ii). First note that a straightforward linear algebraic argument
yields

max
k≤j≤k+s−1

‖gjε − π̄k[gjε]‖L2(U) .s max
k≤j≤k+s−1

‖ḡj − πkε [ḡj ]‖L2(U), (4.24)
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where πkε [·] stands for the orthogonal projection of L2(U) onto span{gkε , . . . , gk+s−1
ε }. Now

choosing
δk :=

(
1
2 |λ̄

k − λ̄k−1|
)
∧
(

1
2 |λ̄

k − λ̄k+s|
)
∧ ck > 0,

where we recall that ck is chosen in (4.23), we note that this projection πkε coincides
with πkε,δk unless there is some k ≤ j ≤ k + s − 1 with |λjε − λ̄k| > δk, or unless there is
some j < k or some j > k + s − 1 with |λjε − λ̄k| ≤ δk. In view of the choice of δk, this
actually means that the projection πkε coincides with πkε,δk unless there is some j ∈ Ik with
|λjε − λ̄j | > δk. By conditioning and Markov’s inequality, we may then estimate

‖ḡj − πkε [ḡj ]‖Lq(Ω;L2(U)) ≤ ‖ḡj − πkε,δk [ḡj ]‖Lq(Ω;L2(U)) + 2
(∑
j∈Ik

P
[
|λjε − λ̄j | > δk

]) 1
q

.k ‖ḡj − πkε,δk [ḡj ]‖Lq(Ω;L2(U)) +
∑
j∈Ik

‖λjε − λ̄j‖Lq(Ω).

Combining this with (4.16) and with part (i) of the statement, and inserting the result
into (4.24), the conclusion (ii) follows. �

It remains to establish the corrector result stating the accuracy of the two-scale expan-
sion of eigenfunctions.

Lemma 4.5 (Corrector result). For all k ≥ 1 and q <∞, we have

‖∇gkε − (∇ϕα + eα)( ·ε)∂απ̄
k[gkε ]‖Lq(Ω;L2(U)) .k,q (εµd(

1
ε ))

1
2 . (4.25)

In addition, the following Meyers type improvement holds: there exists a constant C0 ' 1
such that for all 2 ≤ p ≤ 2 + 1

C0
the L2(U) norm can be replaced by an Lp(U) norm

in (4.25), at the price of replacing the rate (εµd(
1
ε ))1/2 by (εµd(

1
ε ))1/p.

Proof. Assume that λ̄k has multiplicity s ≥ 1, with

λ̄k−1 < λ̄k = . . . = λ̄k+s−1 < λ̄k+s.

Given a parameter ρ ∈ [ε, 1], we choose a cut-off function ηρ as in (4.9). For all j
with k ≤ j ≤ k + s− 1, we consider the following truncated two-scale expansion for gjε,
taking into account the multiplicity of the homogenized eigenspace,

h̃jε,ρ := π̄k[gjε] + εηρϕα( ·ε)∂απ̄
k[gjε] ∈ H1

0 (U).

Comparing with (4.10), this means h̃jε,ρ =
∑k+s−1

l=k (
´
U g

j
ε ḡl)hlε,ρ. Starting point is the

approximate eigenvalue relation (4.12), which we reorganize as

−∇ · a( ·ε)∇(gjε − h̃jε,ρ) = (λjε − λ̄k)π̄k[gjε] + λjε(g
j
ε − π̄k[gjε]) +∇ · r̃jε,ρ, (4.26)

where the remainder r̃jε,ρ is given by

r̃jε,ρ := (1− ηρ)(a− ā)( ·ε)∇π̄
k[gjε] + ε(aϕα − σα)( ·ε)∇(ηρ∂απ̄

k[gjε]).

We split the proof into two steps.

Step 1. Proof of (4.25).
Testing equation (4.26) with gjε− h̃jε,ρ ∈ H1

0 (U) itself, using Poincaré’s inequality and (4.1),
we find ˆ

U
|∇(gjε − h̃jε,ρ)|2 .j |λjε − λ̄k|2 +

ˆ
U
|gjε − π̄k[gjε]|2 +

ˆ
U
|r̃jε,ρ|2.
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Taking the Lq(Ω) norm of both sides, appealing to Lemma 4.4, and estimating the last two
right-hand side term as in (4.14), we deduce

‖∇(gjε − h̃jε,ρ)‖Lq(Ω;L2(U)) .j (εµd(
1
ε ))

1
2 + ρ

1
2 + ρ−

1
2 εµd(

1
ε ).

Now decomposing

∇h̃jε,ρ = (∇ϕα+eα)( ·ε)∂απ̄
k[gjε]−(1−ηρ)∇ϕα( ·ε)∂απ̄

k[gjε]+εϕα( ·ε)∇(ηρ∂απ̄
k[gjε]), (4.27)

similar estimates yield

‖∇gjε − (∇ϕα + eα)( ·ε)∂απ̄
k[gjε]‖Lq(Ω;L2(U)) .k,q (εµd(

1
ε ))

1
2 + ρ

1
2 + ρ−

1
2 εµd(

1
ε ).

The conclusion (4.25) follows after optimizing with respect to ρ ∈ [ε, 1], which amounts to
choosing ρ = εµd(

1
ε ).

Step 2. Meyers improvement.
Rewriting the approximate eigenvalue relation (4.26) as

−4(gjε − h̃jε,ρ) = ∇ ·
(

( 2
1+νa( ·ε)− Id)∇(gjε − h̃jε,ρ)

)
+ 2

1+ν

(
(λjε − λ̄k)π̄k[gjε] + λjε(g

j
ε − π̄k[gjε]) +∇ · r̃jε,ρ

)
,

the standard Lp regularity theory for the Laplace equation in U yields for all 1 < p <∞,

‖∇(gjε − h̃jε,ρ)‖Lp(U) ≤ K(p)‖( 2
1+νa( ·ε)− Id)∇(gjε − h̃jε,ρ)‖Lp(U)

+ 2K(p)
(
|λjε − λ̄k|‖π̄k[gjε]‖W−1,p(U) + λjε‖gjε − π̄k[gjε]|W−1,p(U) + ‖r̃jε,ρ‖Lp(U)

)
,

where by interpolation the multiplicative constants satisfy

lim
p→2

K(p) = K(2) = 1. (4.28)

The uniform ellipticity condition (1.1) yields

| 2
1+νa( ·ε)− Id | ≤ 1−ν

1+ν ,

and thus, also appealing to the Sobolev inequality and to (4.1), we get for all 2 ≤ p ≤ 2d
d−2 ,

‖∇(gjε − h̃jε,ρ)‖Lp(U) ≤ K(p)1−ν
1+ν ‖∇(gjε − h̃jε,ρ)‖Lp(U)

+ Cj,p

(
|λjε − λ̄k|+ ‖gjε − π̄k[gjε]‖L2(U) + ‖r̃jε,ρ‖Lp(U)

)
.

Taking the Lq(Ω) norm of both sides of this estimate, appealing to Lemma 4.4, and esti-
mating the last right-hand side term as in (4.14), we deduce

‖∇(gjε − h̃jε,ρ)‖Lq(Ω;Lp(U)) ≤ K(p)1−ν
1+ν ‖∇(gjε − h̃jε,ρ)‖Lq(Ω;Lp(U))

+ Cj,p,q

(
(εµd(

1
ε ))

1
2 + ρ

1
p + ρ

1
p
−1
εµd(

1
ε )
)
. (4.29)

Recalling (4.28) and 1−ν
1+ν < 1, we can choose C0 ' 1 such that

K(p)1−ν
1+ν ≤ (1−ν

1+ν )
1
2 < 1 provided |p− 2| ≤ 1

C0
.

This allows to absorb the first right-hand side term in (4.29): for all 2 ≤ p ≤ 2 + 1
C0

,

‖∇(gjε − h̃jε,ρ)‖Lq(Ω;Lp(U)) .j,p,q (εµd(
1
ε ))

1
2 + ρ

1
p + ρ

1
p
−1
εµd(

1
ε ).
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Further decomposing ∇h̃jε,ρ as in (4.27), and optimizing with respect to ρ, the Meyers
improvement of (4.25) follows. �

4.3. Eigenvalue fluctuations. This section is devoted to the proof of Theorem 2.3. While
the fluctuation scaling is already captured in Lemma 4.3, we now turn to the characteri-
zation of leading-order fluctuations and their pathwise description (2.7).

Proof of Theorem 2.3. Let k ≥ 1 be fixed such that the eigenvalue λ̄k is simple. The
eigenvalue relations for gkε and ḡk yield

(λkε − λ̄k)
ˆ
U
gkε ḡ

k =

ˆ
U
∇ḡk · (a( ·ε)− ā)∇gkε ,

or alternatively,

λkε − λ̄k =

ˆ
U
∇ḡk · (a( ·ε)− ā)∇gkε + (λkε − λ̄k)

(
1−
ˆ
U
gkε ḡ

k
)
, (4.30)

where the first right-hand side term involves the so-called “homogenization commutator”
of the eigenfunction gkε , that is, the vector field (a( ·ε)− ā)∇gkε , in the terminology of [15].
Taking inspiration from the fluctuation theory for the solution operator in [15], we expect
that the homogenization commutator can be replaced by its two-scale expansion, and we
are led to postulating the following approximation,

λkε − E[λkε ] ∼
ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k,

where we recall the definition of the standard homogenization commutator, cf. (1.4),

Ξ◦αβ = eβ · (a− ā)(∇ϕα + eα).

It remains to estimate the approximation error. For that purpose, in view of (4.30), we
can write for all q <∞,∥∥∥λkε − E[λkε ]−

ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k
∥∥∥

Lq(Ω)
= ‖Ekε − E[Ekε ]‖Lq(Ω),

where we have set for abbreviation

Ekε :=

ˆ
U
∇ḡk · (a( ·ε)− ā)

(
∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
)

+ (λkε − λ̄k)
(

1−
ˆ
U
gkε ḡ

k
)
. (4.31)

Appealing to Malliavin calculus, cf. Proposition 3.4, we deduce for all q <∞,∥∥∥λkε − E[λkε ]−
ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k
∥∥∥

Lq(Ω)
.q ‖DEkε ‖Lq(Ω;H). (4.32)

To estimate the right-hand side, we first proceed to a suitable computation of the Malliavin
derivative DEkε , and we split the proof into two steps.

Step 1. Proof of

DEkε =

ˆ
U

(
∇gkε + (∇φβ + eβ)( ·ε)∂β ḡ

k
)
·Da( ·ε)

(
∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
)

− ε
ˆ
U
∇(∂αḡ

k∂β ḡ
k) ·
(

(aϕβ + σβ)( ·ε)∇Dϕα( ·ε) + (ϕβDa)( ·ε)(∇ϕα + eα)( ·ε)
)
. (4.33)



16 M. DUERINCKX

By definition (4.31) of Ekε , its Malliavin derivative can be decomposed as

DEkε =

ˆ
U
∇ḡk ·Da( ·ε)

(
∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
)

+

ˆ
U
∇ḡk · (a( ·ε)− ā)

(
∇Dgkε −∇Dϕα( ·ε)∂αḡ

k
)

+D

(
(λkε − λ̄k)

(
1−
ˆ
U
gkε ḡ

k
))

. (4.34)

We start by reformulating the last right-hand side term,

D

(
(λkε − λ̄k)

(
1−
ˆ
U
gkε ḡ

k
))

= −(λkε − λ̄k)
ˆ
U
ḡkDgkε + (Dλkε)

(
1−
ˆ
U
gkε ḡ

k
)
. (4.35)

We further reformulate the first right-hand side term in this identity. Taking the Malliavin
derivative of the eigenvalue relation for gkε , we find

(−λkε −∇ · a( ·ε)∇)Dgkε = ∇ ·Da( ·ε)∇g
k
ε + (Dλkε)g

k
ε ,

hence, testing this relation with ḡk and using the eigenvalue relation for ḡk,

− (λkε − λ̄k)
ˆ
U
ḡkDgkε − (Dλkε)

ˆ
U
gkε ḡ

k

= −
ˆ
U
∇ḡk · (a( ·ε)− ā)∇Dgkε −

ˆ
U
∇ḡk ·Da( ·ε)∇g

k
ε .

Combining this with (4.34) and (4.35), we deduce after straightforward simplifications,

DEkε =

ˆ
U
∇ḡk ·Da( ·ε)

(
∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
)

−
ˆ
U

(∂αḡ
k)∇ḡk · (a( ·ε)− ā)∇Dϕα( ·ε)−

ˆ
U
∇ḡk ·Da( ·ε)∇g

k
ε +Dλkε ,

or equivalently, further using (4.6),

DEkε =

ˆ
U
∇ḡk ·Da( ·ε)

(
∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
)

−
ˆ
U

(∂αḡ
k)∇ḡk · (a( ·ε)− ā)∇Dϕα( ·ε) +

ˆ
U

(∇gkε −∇ḡk) ·Da( ·ε)∇g
k
ε . (4.36)

Next, we further reformulate the second right-hand side term in this identity. In terms
of the skew-symmetric flux corrector σ, cf. (3.2), integrating by parts, using Leibniz’ rule,
and noting that the Malliavin derivative of the corrector equation takes the form

−∇ · a∇Dϕβ = ∇ ·Da(∇ϕβ + eβ), (4.37)

we easily get ˆ
U

(∂αḡ
k)∇ḡk · (a( ·ε)− ā)∇Dϕα( ·ε)

=

ˆ
U

(∂αḡ
k∂β ḡ

k) (−a∇ϕβ +∇ · σβ)( ·ε) · ∇Dϕα( ·ε)

=

ˆ
U

(∂αḡ
k∂β ḡ

k) (∇ϕβ)( ·ε) ·Da( ·ε)(∇ϕα + eα)( ·ε)

+ ε

ˆ
U
∇(∂αḡ

k∂β ḡ
k) · (aϕβ + σβ)( ·ε)∇Dϕα( ·ε)
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+ ε

ˆ
U
∇(∂αḡ

k∂β ḡ
k) · (ϕβDa)( ·ε)(∇ϕα + eα)( ·ε).

Inserting this into (4.36), and reorganizing the terms, the claim (4.33) follows.

Step 2. Conclusion.
In terms of the solution vε;α ∈ H1

0 (U) of the auxiliary problem

−∇ · a( ·ε)∇vε;α = ∇ ·
(

(aϕβ − σβ)( ·ε)∇(∂αḡ
k∂β ḡ

k)
)
, in U, (4.38)

we can writeˆ
U
∇(∂αḡ

k∂β ḡ
k) · (aϕβ + σβ)( ·ε)∇Dϕα( ·ε) = −

ˆ
U
∇vε;α · a( ·ε)∇Dϕα( ·ε),

and thus, in view of the Malliavin derivative of the corrector equation, cf. (4.37),ˆ
U
∇(∂αḡ

k∂β ḡ
k) · (aϕβ + σβ)( ·ε)∇Dϕα( ·ε) =

ˆ
U
∇vε;α ·Da( ·ε)(∇ϕα( ·ε) + eα).

Inserting this into (4.33), and recalling that the definition (2.1) of a yields (4.7), we are
led to

DEkε = εd
(
∇gkε (ε·) + (∇φβ + eβ)∂β ḡ

k(ε·)
)
· ∂a0(G)

(
∇gkε (ε·)− (∇ϕα + eα)∂αḡ

k(ε·)
)

− εd+1
(
∇vε;α(ε·) + ϕβ∇(∂αḡ

k∂β ḡ
k)(ε·)

)
· ∂a0(G)(∇ϕα + eα).

Inserting this into (4.32), and using the integrability condition (2.2) in form of (3.3), we
obtain after rescaling, for all 2 < p, q <∞,∥∥∥λkε − E[λkε ]−

ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k
∥∥∥

Lq(Ω)

.q ε
d
2

∥∥[∇gkε + (∇ϕβ + eβ)( ·ε)∂β ḡ
k
]
2;ε

∥∥
L2q(Ω;L

2p
p−2 (U))

×
∥∥[∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
]
2;ε

∥∥
L2q(Ω;Lp(U))

+ ε1+ d
2 ‖[∇ϕα + eα]2‖L2q(Ω)

(
‖[∇vε;α]2;ε‖L2(U ;L2q(Ω))

+
∥∥[ϕβ( ·ε)∇(∂αḡ

k∂β ḡ
k)
]
2;ε

∥∥
L2(U ;L2q(Ω))

)
.

Appealing to annealed Lp regularity in form of Theorem 3.3 for equation (4.38), we find

‖[∇vε;α]2;ε‖L2(U ;L2q(Ω)) .p,q
∥∥[(aϕβ − σβ)( ·ε)∇(∂αḡ

k∂β ḡ
k)
]
2;ε

∥∥
L2(U ;L3q(Ω))

.

Further appealing to the corrector estimates of Theorem 3.2 and to the estimates of Lem-
mas 4.1 and 4.2 on λkε , gkε , ḡk, we deduce for all 2 < p, q <∞,

ε−
d
2

∥∥∥λkε − E[λkε ]−
ˆ
U

Ξ◦αβ( ·ε)∂αḡ
k∂β ḡ

k
∥∥∥

Lq(Ω)
.k,p,q εµd(

1
ε )

+
∥∥[∇gkε − (∇ϕα + eα)( ·ε)∂αḡ

k
]
2;ε

∥∥
L2q(Ω;Lp(U))

.

The conclusion (2.7) follows from the Meyers improvement of the corrector result in
Lemma 4.5 provided that p > 2 is chosen close enough to 2. �
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