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Seismic precursors to the Whakaari 2019 phreatic
eruption are transferable to other eruptions and
volcanoes
Alberto Ardid 1✉, David Dempsey 1, Corentin Caudron2 & Shane Cronin 3

Volcanic eruptions that occur without warning can be deadly in touristic and populated areas.

Even with real-time geophysical monitoring, forecasting sudden eruptions is difficult, because

their precursors are hard to recognize and can vary between volcanoes. Here, we describe a

general seismic precursor signal for gas-driven eruptions, identified through correlation

analysis of 18 well-recorded eruptions in New Zealand, Alaska, and Kamchatka. The precursor

manifests in the displacement seismic amplitude ratio between medium (4.5–8 Hz) and high

(8–16 Hz) frequency tremor bands, exhibiting a characteristic rise in the days prior to

eruptions. We interpret this as formation of a hydrothermal seal that enables rapid pres-

surization of shallow groundwater. Applying this model to the 2019 eruption at Whakaari

(New Zealand), we describe pressurization of the system in the week before the eruption,

and cascading seal failure in the 16 h prior to the explosion. Real-time monitoring for this

precursor may improve short-term eruption warning systems at certain volcanoes.
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Gas-driven explosions in volcanic areas usually occur with
little warning and have recently caused loss of life in Japan
(2014 Mt Ontake eruption, 60 deaths1) and New Zealand

(2019 Whakaari eruption, 22 deaths2). Whakaari is an andesitic
stratovolcano island located at the northern end of New Zealand’s
Taupo Volcanic Zone (TVZ) (Fig. 1a). It is one of the country’s
most active volcanoes with a long history of fumarolic activity,
interspersed with phreatic, phreatomagmatic, and magmatic
eruptions3,4. Because of this history, and despite real-time mon-
itoring, identification and early warning of eruption precursors at
this and similar volcanoes remains challenging.

Phreatic eruptions are usually driven by expansion and steam-
flashing of suddenly released hot pressurized fluids5. Contain-
ment arises through sealing of a liquid water, magmatic gas, or
steam reservoir under diverse conditions, e.g., low-permeability
layers that form below crater lakes or within crater basins (clay/
silt deposits, liquid sulfur6); hydrothermal alteration that changes
rock texture/permeability7; pore-blockage by elemental sulfur or
hydrothermal precipitates8–10; and/or active sealing by pressure
applied to compressible clays11. Permeability barriers are espe-
cially important if gas input increases during magmatic unrest.
Restriction of gas flow through the upper vent system leads to
localized shallow pressurization, creating the conditions for an
explosive eruption.

Hydrothermal seals and their failure can play an important role
in phreatic eruptions because diminished vent permeability drives
pressurization whereas a rapid increase can drive sudden
decompression6,12,13. The timescales of seal formation depend on
a range of mineralization, pressurization, and fluid-rock

properties14. In active hydrothermal systems beneath lakes,
seals commonly form over weeks to months15 with mineral
precipitation (sulfur, sulfates, and silica). In extreme cases, they
may form in seconds to hours16 due to mineralized zones (alu-
nite, anhydrite, smectite) that open and close in response to
pressure variations.

Seismic data analysis is standard practice at volcano observa-
tories to track magmatic processes, the volcano state, and the
possibility of future eruptions17–21. Continuous volcanic seismic
signals are interrogated to understand fluid movement (e.g.,
magma degassing), conduit fracture/bubble processes that pre-
cede eruptions, and pressurization of a hydrothermal system22–24.
However, for continuously active, seismically noisy, and “wet”
volcanoes25, tremor precursors prior to phreatic or phreato-
magmatic eruptions are difficult to distinguish, or only identified
in retrospect2,6,8,26,27. Detection of tremor prior to Whakaari
eruptions28 has helped support diagnoses of volcanic unrest but
has not been used to establish eruption imminence. This is partly
due to the very shallow origin of this signals, with pressurization
and triggering occurring within a few tens to hundreds of meters
of the surface5,21,29. The signals can also be dampened when low-
permeability seals form8,30 because surface fluid flux is dimin-
ished. Such quietening of the system has the potential to impart a
false sense of safety when actually the trapped fluids may be
pressurizing. A sudden pulse of additional magmatic gas may
rupture these systems, but eruption initiation can also be any
process that causes decompression, such as surface-propagating
drying/cooling cracks, tectonic fracturing, sudden overburden
loss due to landslides5 or lake breakouts.
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Fig. 1 Locations of the six volcanoes in this study. a Whakaari, Tongariro, and Ruapehu in New Zealand (TVZ: Taupo Volcanic Zone); b Veniaminof and
Pavlof in Alaska, USA, and Bezymianny in the Kamchatka Peninsula, Russia. c–h Time-series for the feature nDSAR (normalized displacement seismic
amplitude) rate variance (red) prior to six major eruptions (black dashed line) at each volcano (LHS y-axis indicates the feature magnitudes). The raw
nDSAR data time series is shown in the background (light blue) (RHS y-axis indicates their magnitudes). VEI=Volcano Explosivity Index.
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Tremor data in the frequency range 0.1–25 Hz18,31 are often
analyzed within frequency bands. Real-time seismic amplitude
measurement (RSAM) and reduced displacement use the 2–5 Hz
band32 (also, wider bands33) for short-term forecasting2,34–36.
Medium (MF; 4–8 Hz) and high-frequency bands (HF; 8–16 Hz),
and their ratios are used to interpret seismic attenuation in
relation to source effects and source changes24. The displacement
seismic amplitude ratio (DSAR; MF/HF) has been linked to
month- and year-long variability prior to eruptions21 that is
interpreted as progressive sealing and tendency to pressurization.
Rather than using earthquakes, DSAR has been used to investi-
gate changes in the persistent shallow seismic vibrations by
adopting this simple band-ratio approach24. To evaluate these
continuous signals, pattern-recognition, clustering, neural net-
work and failure-forecasting tools are used2,37,38. In particular,
time-series feature engineering may reveal hidden, but statistically
relevant patterns in complex time series2.

Here, we analyzed tremor time-series prior to 18 eruptions at
six volcanoes: Whakaari, Ruapehu and Tongariro (New Zealand),
Veniaminof and Pavlof (Alaska, USA), and Bezymianny (Russia)
(Fig. 1a, b). Individual eruptions are referred to with the short-
hand volcano year, e.g., Whakaari 2013a refers to the first erup-
tion in 2013 at Whakaari. We used feature engineering to extract
latent patterns from the tremor and then systematically mined
these for statistically differentiable correlations across all volca-
noes in the weeks prior to eruptions (see “Methods”). We iden-
tified characteristic peaks in the 2-day median of normalized
DSAR tremor (nDSAR median; see Methods; n denotes nor-
malization) that recurred prior to eruptions at several volcanoes.
Corroborated by other observations, we present a timeline of the
2019 Whakaari eruption, explaining how rapid sealing in the
shallow hydrothermal system promoted pressurization and cre-
ated the conditions for a phreatic explosion.

Results and discussion
Recurrency of pre-eruptive time-series features. In the four
weeks leading up to an eruption, we observe correlated patterns
across at least three classes of derived tremor time series. These
patterns are the result of an initial screening using a cross-
correlation analysis of eruptive periods (see “Methods”). Later, we
discard spurious patterns that are not differentiable from periods of
repose. Prior to six major eruptions (VEI > 2) at each of the studied
volcanoes, there is a sustained elevation of nDSAR rate variance
between 5 and 10 days prior to the event (Fig. 1c–h; see Fig. S1 for
equivalent time series on all eruptions). This feature quantifies
variance in the “spikiness” of nDSAR, however, its pattern is not
obvious from visual inspection of the raw data.

A second pattern was identified in the nDSAR median one
week before eruptions (Fig. 2). Patterns between Whakaari
eruptions and others as Veniaminof 2013 are especially similar.
Both records exemplify a steady rise of nDSAR median to a peak
a few days before the eruption. The eruption itself often occurs
after a day or two of decline. We quantify similarity in the pattern
shape between pairs of eruptions by calculating the cross-
correlation coefficient, CC, for the 4-week records prior to
eruption. For instance, a CC= 0.71 was found between the
Whakaari 2019 and Veniaminof 2013 eruption pair. The
smoothed nDSAR pattern is broadly similar across all studied
volcanoes with some variability in the timing, width, and
magnitude of the peak, which produces a range of CC values
(Fig. 2a). The greatest similarity is seen between Whakaari,
Veniaminof, and Ruapehu volcanoes, whereas Tongariro, Pavlof,
and Bezymianny, show a self-similar pattern of several decreasing
cycles of the nDSAR median in the month before their eruptions.

The third pattern is observed as an increased strength of
75 min oscillations in nHF tremor, with similar timings prior to
several eruptions as Whakaari 2016, 2019, Ruapehu 2009, and
Bezymianny 2007a, b (see Fig. S4). These eruptions were
dominated by strong activity around two days prior with inverse
RSAM exhibiting a linear decline (Fig. S5), indicative of cascading
material failure34,39. In the next section, we show that the
correlation in this particular time series is spurious.

Differentiability of eruption precursors. Demonstrating that a
common pattern occurs prior to multiple events (recurrency) is
only the first step in establishing an eruption precursor. It is also
transferable if it occurs prior to eruptions at other volcanoes.
Qualitative inspection of nDSAR rate variance and nDSAR median
suggests both are recurrent and transferable (Figs. 1 and 2). A third
property of a precursor is that it should be rare (or absent) during
non-eruptive unrest or volcanic repose, which we refer to here as
differentiability. The statistical tests we present test the differentia-
bility of three candidate precursors that passed the initial screening
for recurrency and transferability.

First, we checked if a candidate precursor for one eruption (the
archetype) had high correlation values when compared against
random four-week periods of repose at other volcanoes (Fig. 3;
Pavlof and Bezymianny were excluded because of their shorter data
records, see Table S1). For illustration, we have used feature time-
series prior to Whakaari 2019 (Fig. 2b) as archetypes, although later
we show that differentiability of the precursor is independent of this
choice. Figure 3a shows that the nDSAR median archetype has very
high correlation values for the other four Whakaari eruptions, all
exceeding the distribution 90th percentile when compared to
correlation over more than 40 years of non-eruptive data. We
calculated a two-sample Kolmogorov–Smirnov (K–S) p-value to
check whether CC values from eruptions belonged to a similar
distribution as the inter-eruptive data. The resulting value of
0.00015 is very low and suggests the eruptions come from distinct
distributions. Eruptions at Ruapehu, Tongariro, and Veniaminof
also rank highly in a percentile-sense, but are less differentiable than
Whakaari (p-value of 0.017, 0.066, and 0.072, respectively).

A similar analysis of nDSAR rate variance suggests some
differentiability of this pattern amongst the Whakaari eruptions
(Fig. 3b), with all ranking above the 80th percentile (p-value of
0.006). However, the pattern is less transferable to Ruapehu,
Tongariro, and Veniaminof eruptions. The 75 min nHF harmonic
prior to the Whakaari 2019 eruption (Fig. S4) shows very little
differentiability compared with non-eruptive data (Fig. 3c).
Although strong activity is observed several days before six
different eruptions (Fig. S4), this appears also to occur frequently
during repose.

Transferability of eruption precursors. The analysis above and
in Fig. 3a–c is specific to Whakaari 2019. Here, we generalize to a
multi-eruption test where cross-validation is used to establish
whether a precursor has differentiability independent of the
archetypal eruption. For the features of interest, nDSAR median
and nDSAR rate variance, we assembled different subsets of
eruptions, randomly selected an archetype eruption from the
subset to correlate across volcanic record, and then computed a
K–S p-value to quantify its differentiability. We repeated these
steps many times, each time selecting a different eruption from
the subset as the archetype and applying a random “jitter” (dis-
placing the precursors time-series backward up to 7 days; similar
results were obtained with 5–8 days) to allow for time offsets. The
result is a distribution of p-values that provide a general view of
how differentiable a particular precursor amongst that eruption
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subset. Finally, this distribution is compared against a benchmark
that was constructed by randomly selecting archetypes from
within the non-eruptive data.

First, we considered the differentiability of pre-eruptive nDSAR
median amongst the subset of five Whakaari eruptions. Figure 3d
shows that p-values for differentiability are predominantly very small
compared against a benchmark of non-eruptive data, which are
more uniformly distributed up to 1. Similar results are obtained for
the nDSAR rate variance. This indicates both features are robust
eruption precursors for phreatic eruptions at Whakaari.

Next, we considered whether these precursors were transfer-
able to other volcanoes. We considered the subset of phreatic
eruptions at Whakaari, Ruapehu and Tongariro volcanoes as well
as a mixed style subset that pools phreatic Whakaari eruptions
with magmatic eruptions from Veniaminof, Pavlof, and Bezy-
mianny. The same multi testing approach was applied.

Precursors amongst the Whakaari–Ruapehu–Tongariro set
indicate a degree of differentiability (Fig. 3e), although it is less
than for the subset of only Whakaari eruptions (Fig. 3d). This
indicates a moderate level of transferability of the nDSAR median
and nDSAR rate variance precursors between phreatic eruptions
at these three volcanoes.

Precursor differentiability amongst the mixed eruption-style,
Whakaari–Veniaminof–Pavlof–Bezymianny subset is much less
conclusive than other subsets. Distributions of p-values for both
nDSAR median and nDSAR rate variance are not obviously
different from the benchmark. Clearly, there is a limit on the
transferability of the eruption precursors, and this appears to be
linked with eruption style. This would be expected if precursors
are informative of physical changes in the volcano linked to the
particular type of eruption occurring there. These physical
changes are discussed in the next section.

Inferring eruptive processes in the Whakaari 2019 eruption.
Statistical analysis supports a recurrent, differentiable, and partly
transferable archetypal pattern of nDSAR median across several
volcanoes (Fig. 2b), increasing to a peak ~2–4 days before an
eruption. We use observations of the Whakaari 2019 eruption to
explain this pattern in the context of the active hydrothermal
system and aquifer within crater-filled deposits above the vent.
Specifically, we identify transitions between five phases prior to
the eruption: (1) interaction and gas exchange between magmatic
and geothermal systems, (2) pulsating gas release at the surface,
(3) consolidation of a seal, (4) aquifer pressurization, and (5) seal
breakdown and eruption (Fig. 4; see Table S3).

A sustained RSAM harmonic signal lasting minutes to days
(identified as “volcanic tremor”17), was detected at Whakaari
between Nov 10 and 23 (phase 1, Fig. 4c). This signal is thought
to indicate interactions between the magma source (estimated to
be 0.8–1.0 km deep at Whakaari29) and the groundwater
(geothermal aquifer). At the surface28 geysering began and the
crater lake level rose. On Nov 18, the Volcano Alert Level (VAL)
was raised from 1 to 2, its highest non-eruptive category40.

Transition to a new phase is marked by an RSAM decrease, and
concurrent increases in MF and HF after Nov 23. This was
accompanied at the surface by more frequent gas emissions, water
jetting and a stabilization of the lake level41, along with elevated SO2

flux detected from satellite observations42. Short, day-long cyclic
oscillations are evident in RSAM, MF, and HF bands (Fig. 4c). Since
the MF signal is stronger, the oscillations are associated with short-
term rises in the unsmoothed DSAR (Fig. S7). Each cycle ends with a
linear decline of inverse RSAM (Fig. 4a), which suggests that
cascading material failure is occurring39.

Taken together, these observations imply that the Nov 23 to
Dec 02 period was dominated by pulsatory gas fluxing. Each cycle
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begins with building MF and DSAR which likely represents
pressurization below a blocked conduit or weak seal. The cycle
ends with cascading seal failure that renews gas flow paths, and
generates surface jetting, accompanied by decrease in MF and
DSAR. Sealing in the breccia-filled crater and conduit could be
due to deformable clays, pore blockage by elemental sulfur, or
rapid sulfate mineral precipitation along thin cracks. Seal failure

and crack formation at Whakaari is likely transient16. On Dec 02
there was an especially large gas pulse as seen in SO2 flux42, which
coincides with a strong signal in the smoothed nDSAR rate
variance (Fig. 4a). This marked the end of the pulsatory
phase and may be indicating a change in the system state to be
more conducive to voluminous sealing or pressurization with
comparatively larger gas explosions.

Feature nDSAR median in Whakaari 2019 erup�on over Veniaminof, Tongariro, 
Whakaari and Ruapehu records

Feature nDSAR rate variance in Whakaari 2019 erup�on over Veniaminof, Tongariro, 
Whakaari and Ruapehu records

Feature 75-minute nHF harmonic in Whakaari 2019 erup�on over Veniaminof, Whakaari and 
Ruapehu records
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After Dec 03, both the nMF and nHF medians (2-day
normalized smoothed MF and HF tremor) decline for a few
days, before a reversal and steady rise of the MF signal (phase 3,
Fig. 4b). Decoupling of MF and HF signals during this period is
reflected in a concurrent increase of the nDSAR median (Fig. 4a),
identified above as a key eruption precursor at Whakaari. There
was no SO2 flux42 or elevated surface activity reported during this
period and we hypothesize that this reflects more efficient seal
consolidation and pressurization. This is consistent with prior
association between short-term MF increase and pressurization in
the pulsatory phase, but now with a larger disparity between MF
and HF. A sub-surface seal will suppress fluid release, and in-turn
dampen surface processes (decreases HF signal). Ongoing fluid
entry and pressurization below the seal causes stronger MF

return, because HF is attenuated as signal transits from the
subsurface. The mechanism of seal consolidation is uncertain but
could be, e.g., determined by analysis of ballistics43.

The fourth phase is characterized by a reversal of the nDSAR
median, which declines steadily in the days before eruption
(phase 4, Fig. 4a). The decline mainly reflects a proportionally
larger drop in MF (Fig. 4b). This ‘MF-quieting’ could indicate
that the reservoir/aquifer below the seal has reached an
equilibrium pressure with the current state of deep fluid recharge.

On Dec 08, ~16 h before the eruption, a burst of activity
occurred across all tremor bands (Fig. 4c, waveforms in Fig. S8).
At the same time, inverse RSAM began a characteristic linear
decrease (Fig. 4a). This pattern has been used for retrospective34

forecasting of Whakaari eruptions using the failure forecast

Fig. 3 Testing differentiability of potential precursors. a–c Percentile analysis of correlation coefficients (cc) for Whakaari 2019 archetype features
nDSAR median, nDSAR rate variance, and nHF harmonic 75min, respectively. The distribution of daily correlation coefficients calculated using these
archetypes are shown over the available Whakaari (blue), Ruapehu (red), Tongariro (gray), and Veniaminof records (green). Correlations with other
eruptions are labeled by year of eruption and corresponding volcano color. Vertical offset is for distinction only. Median, 70th and 90th percentiles are
shown as increasingly darker gray vertical bars. d–f Statistical multi-testing and cross-validation of archetypes across different eruption pools. d Five
Whakaari eruptions. e Phreatic eruptions from Whakaari, Ruapehu, and Tongariro. f Phreatic Whakaari and magmatic Veniaminof, Pavlof, and Bezymianny
eruptions. Distribution of K–S p-values from repeat testing of nDSAR median and nDSAR rate variance archetypes prior to eruptions (denoted “in eruption”;
blue and red) and randomly selected from the non-eruptive record (denoted “out eruption”; cyan and yellow). Increasing differentiability is indicated by a
distribution that clusters closer to zero.
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Fig. 4 Four-week pre-eruptive time series for the Whakaari 2019 eruption. a nDSAR median (blue), nDSAR rate variance (green), and inverse RSAM
(gray); b 2-day moving medians for normalized MF (green), HF (red), and RSAM (gray); c raw, unsmoothed MF, HF, and RSAM. Vertical gray bands mark
approximate divisions of the five phases labeled at the base of the figure. d Identified transitions between five phases prior to the eruption.
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method39,44. As with the pulsatory phase, this decline is
interpreted as cascading material failure, including crack forma-
tion within the seal; this eventually allows explosive escape of the
pressurized fluids. Notable is a strong SO2 signal up to 40 min
before the eruption42, possibly reflecting the final stages of seal
breakdown. The seismic activity burst 16 h before eruption was
recognized2 as a precursor and hypothesized to represent a
sudden gas/fluid influx. We show here, however, that pressuriza-
tion and pre-conditioning of the system to eruption can be
recognized much earlier.

Final comments. Shallow-seated sudden explosive eruptions are
notoriously difficult to forecast, especially in wet and noisy vol-
canoes. We performed a correlation analysis across feature time-
series derived from tremor data in the weeks preceding 18
explosive eruptions across six volcanoes. We showed that there
are common feature patterns, two of which can be classed as
phreatic eruption precursors because they are recurrent and dif-
ferentiable from non-eruptive repose. The nDSAR median feature
is potentially also transferable to other volcanoes.

Both nDSAR median and nDSAR rate variance features are
especially similar across five Whakaari eruptions, and also
recognized prior to Ruapehu, and Tongariro eruptions. We used
the Whakaari 2019 eruption to relate these precursors with
hydrothermal reservoir sealing and pressurization that prime the
system for a phreatic eruption. Five distinct phases track the onset
to such shallow gas and steam-driven eruptions: (1) deep source
fluid input into a geothermal reservoir; (2) pulsatory gas fluxing
with weak temporary sealing over one or more weeks; (3) strong
seal formation over the hydrothermal system several days before
the event (4) leading to a critically pressured shallow aquifer (in
near-equilibrium with deep gas pressures); (5) external perturba-
tion, and/or cascading material failure and crack formation over
~10–20 h, leading to final seal breach and explosive
decompression.

Our retrospective analysis suggests these precursors have
encouraging properties for short term eruption forecasting. This
could include real-time monitoring for individual precursors, or
using models that optimally combine them. However, true
forecasting skills must be demonstrated with prospective experi-
ments, which underscores how operationalization, testing, and post
hoc analysis are essential complements to predictive volcanology.
This is the best way to produce trusted forecasts that can improve
safety at inhabited or regularly visited volcanoes.

Methods
Tremor data processing. Continuous seismic waveform data were downloaded
using ObsPy45 for six broadband stations close to the craters or vents of subject
volcanoes (see Table S1). In total, 50 years of data were processed, ensuring that
each eruption had at least one month of data prior (Table S2).

The instrument response was removed from the daily waveform data and this
was processed to obtain four time-series (data streams): RSAM (real-time seismic
amplitude measure), a 10 min average of the absolute vertical station velocity
bandpass filtered between 2 and 5 Hz; MF (medium frequency) and HF (high-
frequency), computed the same as RSAM but using the 4.5–8, and 8–16 Hz
frequency bands; and DSAR (displacement seismic amplitude ratio), the ratio
between MF and HF bands recalculated for absolute vertical displacement. DSAR is
computed by integrating the MF and HF signals, then computing the average
absolute signals over 10 min windows, and then taking the ratio of the two
quantities2,24. The 4–5 Hz threshold between RSAM and MF reflects an
assumption that tremor mostly radiates energy below 4.5 Hz. To exclude this effect
and explore attenuation related to permeability change (such as sealing), this
frequency value is used as a threshold.

To isolate continuous tremor signal, outlier detection was used to remove
regional and volcano-tectonic (VT) earthquakes before each of the above data
streams were calculated. Wave trains from earthquakes perturb the average velocity
record at stations above the background. After averaging, there is an outlier in the
RSAM that adds noise and confuses algorithms without context. To identify and
remove the earthquake effects, we applied an outlier detection algorithm to raw
velocity traces, excising a 2 min envelope whenever velocity exceeded three

standard deviations from the data 10 min window mean. This removed most short
duration events but still resulted in contamination by larger subduction
earthquakes. To remove these, we applied a two-window (20 min), moving-
minimum. Other methods to automatically identify earthquake signals46 could also
be used.

For comparison between volcanoes, values in each data stream are transformed
to a unit log-normal distribution (or a unit normal distribution in log10-space).
This is called z-score normalization and it has been shown to improve classification
modeling47. Thus, a normalized value of 1 indicates a datapoint at the mean, and a
value of 100 indicates the signal is two standard deviations above the mean.
Alternative normalization techniques based on station distance could be
implemented32,48.

Feature extraction. Each of the four data streams was subdivided into overlapping
48 h windows, with each window advancing one data point (10 min) beyond the
previous one. For each window, time-series features are extracted using the Python
package tsfresh49. Features included measures of distribution (parametric: mean,
standard deviation; and non-parametric: quantiles, number of peaks), auto-
correlation, frequency content, linearity, and information content (entropy, energy,
nonlinearity scores). Feature extraction yields 524 new time-series for each data
stream. This is fewer than the 700 features2 because we excluded some linear
regression features with high correlation, FFT coefficients higher than the Nyquist
frequencies, and FFT phase angles. The effect of window length was explored2 and
shown not to affect the resolution of short-term eruption precursors at Whakaari.

The feature nDSAR median corresponds to a time series calculated as the
‘median’ from the normalized DSAR data in a 48 h window. The feature referred
to as nDSAR rate variance is labeled in the tsfresh Python library as
‘change_quantiles__f_agg_“var”__isabs_False__qh_0.6__ql_0.4’. It is calculated
as the variance of adjacent data differences (the “rate”) of nDSAR values falling
in the interquartile range 0.4–0.6 (hence, outliers are removed). The feature
referred to as 75 min nHF harmonic has the corresponding tsfresh label
‘fft_coefficient__coeff_38__attr_“real”’ and is the real component of Fourier
coefficient 38, which corresponds to a frequency with period of approximately
75 min. See ‘Quick recipes’ in the Supplemental Material for a straightforward
procedure to calculate the DSAR median and the DSAR rate variance.

The tsfresh library calculates many features. However, there are ‘families’ of
features that capture similar characteristics and are highly correlated with one
another. For example, the ‘median’ feature (i.e., Fig. 2) has strong similarities with
other time series quantiles. When undertaking eruption correlation analysis, we
obtained quite similar results for DSAR quantiles 0.3, 0.4, 0.5 (median), 0.6, and
0.7. We decided to use the median (0.5 quantile) as it is more understandable. A
similar situation occurs for the DSAR rate variance (that measures variance of
adjacent data differences falling in the interquartile range 0.4–0.6), which has quite
similar patterns across other quantile ranges (i.e., ~0.3–0.7).

Cross-correlation analysis. For each feature time-series, e.g., nDSAR median, we
extracted the four-week period prior to each of the 18 eruptions in this study
(Table S2). We calculated the standard correlation coefficient (Pearson method)
between each pair of pre-eruption feature data, obtaining a matrix (see Fig. 2a as
reference). We also calculated Kendall and Spearman correlations, obtaining
similar results (Fig. S12; notice the correlation matrices are only a first guide for
selecting the features to be later tested as precursors). Once matrices were
assembled for all features (~2000), we ranked them by highest average correlation,
grouping similar features together (e.g., median, mean, and sum). We selected from
this ranking to create a shortlist of features for visual inspection (Figs. 1 and 2b)
and the next stage of testing.

The correlation method is sensitive to temporal offsets of signals or stretching
on the time axis. The former is partially compensated by introducing a “jitter” at
multi-testing. However, the method is only used for the initial screening of
potential precursors, and spurious correlations are identified at the next stage of
statistical testing. Sophisticated alternatives such as maximum convolution or
dynamic time-warping may reveal other patterns missed by our approach.

Statistical tests. We conduct statistical analysis to test whether a pre-eruptive
feature that correlates across multiple eruptions is also differentiable from non-
eruptive repose periods. This verifies whether a result generated by testing the data
is not likely to occur randomly, but is instead attributable to a specific cause.

The first test is of the differentiability of a specific precursor archetype when
comparing it to other eruptions as well as the non-eruptive data. First, we extract a
feature time-series (the archetype) for the four-weeks prior to a nominated
eruption. The archetype is used to calculate a correlation coefficient with four-week
periods of the same feature over the entire record, shifting forward one day at a
time to calculate a new correlation coefficient (this calculation is performed most
efficiently as a convolution). For example, approximately 10 years of Whakaari data
yields about 3600 correlation values for each feature. Histograms are used to
summarize the overall distribution and percentiles to identify where individual
eruptions fall on the distribution (Fig. 3a–c). High percentile values for eruptions
are an indication of dissimilarity from the background distribution. This is
quantified by a two-sample K–S p-values, with correlation coefficients from
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eruptions in one sample and non-eruptive periods in the other. We tested different
archetype lengths (three and five weeks) and found that the results were similar.

As the selection of a particular eruption as the archetype is arbitrary, we
repeated the process using a different eruption each time, a form of cross-
validation. To allow for uncertainty in the exact eruption time or for precursors to
have time offsets (e.g., inspection feature time series in Figs. 1 and 2 indicates the
timing of peaks can vary by a few days), we applied a “jitter” to each archetype.
This was a random displacement backwards by up to 7 days (we tested values
between 5 and 10 days and saw no change in results). The K–S p-value was then
calculated for the new archetype in the manner described in the previous
paragraph. Eruptions are pooled from different volcano subsets, with each eruption
taking a turn as the archetype, and the same eruption tested multiple times with
different jitters. The result is a distribution of p-values that represents all eruptions
in the subset and allows for time offsets.

As a benchmark for comparison, a second K–S p-values distribution is
constructed except that, instead of selecting the archetype as a four-week feature
time-series before an eruption, a random four-week feature is chosen from the
entire volcano record. Archetypes chosen this way will have low differentiability by
construction. Thus, the benchmark adds a degree of robustness for interpreting
differentiability, because it outlines what a non-differentiable eruption precursor
looks like.

The following eruption subsets were tested for differentiability:

1. All phreatic eruptions at Whakaari for two features of interest, nDSAR
median, and nDSAR rate variance. Each of the five eruptions is correlated
with the Whakaari record and a K–S p-value calculated. We iterate these 10
times, each time applying a random set-back of the archetype, for a total of
fifty tests. This is compared against fifty tests with randomly selected
archetypes.

2. All phreatic eruptions from Whakaari, Ruapehu, and Tongariro volcanoes.
To balance the eruptions subset, a set of six eruptions is constructed, two
each randomly selected from the three volcanoes. Within each set, each
eruption takes a turn as the archetype and then a K–S p-value calculated
after convolution over all three volcano’s records. This is iterated 10 times,
using a different set of six eruptions each time.

3. A mixed set of five phreatic Whakaari eruptions and eight magmatic
eruptions from Veniaminof, Pavlof, and Bezymianny. Balanced subsets are
constructed by sampling two eruptions from each volcano and then
proceeding the same as subset 2 above.

The two-sample K–S test presumes samples contain independent observations.
In practice, correlation coefficients computed on non-eruptive windows can have
significant overlap. We checked if this was affecting our results by recalculating
the tests using fewer, non-overlapping windows for non-eruptive data (Fig. S13).
The results are not materially different to Fig. 3.

Data availability
Raw waveform data for Ruapehu, Tongariro, and Whakaari volcanoes can be download
from GEONET (https://service.geonet.org.nzand for Veniaminof, Pavlof, and
Bezymianny volcanoes from IRIS (http://service.iris.edu). Both are operable as clients
though the FDSN webservice (https://www.fdsn.org/networks/). Rainfall data are
available in New Zealand’s National Climate Database (https://cliflo.niwa.co.nz/).

Code availability
The codes required to replicate the results of this study are available at https://github.
com/aardid/volc_forecast_tl/tree/transfer-learning, released under the MIT license.
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