Inhibition or deletion of Adenosine A_2A receptor enhances acetylcholine-induced vascular response: role of angiotensin-II in A_2AAR$^{-/-}$ vs. C57Bl/6 mice

Stephanie O. Agba, Ahmad Hanif, Catherine Ledent, Tilley L. Stephen, Mohammed A. Nayeem
First published: 13 May 2022
The authors report that there are no conflicts of interest. National Institutes of Health (HL-114559) to M. A. Nayeem supported this work.

Abstract

In previous studies, we showed that adenosine-induced vascular relaxation was reduced in adenosine A_2A receptor (A_2AAR)-null (A_2AAR$^{-/-}$) or A_2AAR-inhibited C57Bl/6 mice. However, it is unknown the acetylcholine-induced vascular response in A_2AAR$^{-/-}$ or A_2AAR-inhibited C57Bl/6 mice; therefore, we hypothesized that the acetylcholine enhances endothelial-dependent vascular relaxation in A_2AAR-gene deleted (A_2AAR$^{-/-}$) or inhibited C57Bl/6 mice compared to their respective controls. Acetylcholine-induced dose dependent vascular response was tested with SCH58261 (A_2AAR-antagonist) in C57Bl/6 vs. non-treated C57Bl/6 mice and angiotensin-II (Ang-II) in C57Bl/6 vs. non-treated C57Bl/6 mice, Ang-II treated A_2AAR$^{-/-}$ vs. non-treated A_2AAR$^{-/-}$ mice and Ang-II treated A_2AAR$^{-/-}$ vs. Ang-II treated C57Bl/6 mice. In C57Bl/6 mice, SCH58261 (1µM) increased in acetylcholine-induced dose-dependent vascular relaxation compared to non-treated C57Bl/6 mice. Similarly, in A_2AAR$^{-/-}$ mice, acetylcholine enhanced dose-dependent vascular relaxation compared to C57Bl/6 mice. However, acetylcholine-induced dose-dependent vascular relaxation was reduced with angiotensin-II (Ang-II,1µM) in C57Bl/6 compared to non-treated C57Bl/6 mice and acetylcholine-induced dose-dependent vascular relaxation was reduced with Ang-II (1µM) in C57Bl/6 compared to A_2AAR$^{-/-}$ treated mice. Our data suggest that the acetylcholine dose-dependent vascular relaxation is endothelial dependent and is enhanced in the absence or inhibition of A_2AAR unlike adenosine dose-dependent vascular relaxation in mice.

This is the full abstract presented at the Experimental Biology meeting. There are no additional versions or additional content available for this abstract.