Bioinformatics, 2021, 1-8
https://doi.org/10.1093/bioinformatics/btab787
Advance Access Publication Date: 19 November 2021
Original Paper

Gene expression

GNN-based embedding for clustering scRNA-seq data

Madalina Ciortan and Matthieu Defrance ® *

Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium

*To whom correspondence should be addressed.
Associate Editor: Valentina Boeva

Received on June 16, 2021; revised on October 15, 2021; editorial decision on October 26, 2021; accepted on November 15, 2021

Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) provides transcriptomic profiling for individual cells, allowing
researchers to study the heterogeneity of tissues, recognize rare cell identities and discover new cellular subtypes.
Clustering analysis is usually used to predict cell class assignments and infer cell identities. However, the high spars-
ity of scRNA-seq data, accentuated by dropout events generates challenges that have motivated the development of
numerous dedicated clustering methods. Nevertheless, there is still no consensus on the best performing method.
Results: graph-sc is a new method leveraging a graph autoencoder network to create embeddings for scRNA-seq
cell data. While this work analyzes the performance of clustering the embeddings with various clustering algorithms,
other downstream tasks can also be performed. A broad experimental study has been performed on both simulated
and scRNA-seq datasets. The results indicate that although there is no consistently best method across all the ana-
lyzed datasets, graph-sc compares favorably to competing techniques across all types of datasets. Furthermore, the
proposed method is stable across consecutive runs, robust to input down-sampling, generally insensitive to
changes in the network architecture or training parameters and more computationally efficient than other competing
methods based on neural networks. Modeling the data as a graph provides increased flexibility to define custom fea-
tures characterizing the genes, the cells and their interactions. Moreover, external data (e.g. gene network) can easily
be integrated into the graph and used seamlessly under the same optimization task.

Availability and implementation: https:/github.com/ciortanmadalina/graph-sc.

Contact: matthieu.defrance@ulb.be

Supplementary information: Supplementary data are available at Bioinformatics online.

pure and transitional cells and uses the expression similarity matrix
to compute soft cluster memberships. Seurat (Satija et al., 2015) lev-
erages graph-processing techniques like community detection (i.e.

1 Introduction
The recent progress of single-cell RNA sequencing (scRNA-seq)

motivated the research for computational methods to analyze tran-
scriptomic data of individual cells. Because information about
sequenced cells is only partial, clustering analysis is usually used to
discover cellular subtypes or distinguish and better characterize
known ones. Clustering scRNA-seq data introduces several chal-
lenges, consisting of dropout events (i.e. false observed zero counts),
batch contamination and high dimensionality. As shown in various
surveys (Freytag et al., 2017; Kiselev et al., 2019; Menon, 2019; Qi
et al., 2020), the scientific community developed numerous
approaches to mitigate the computational challenges of scRNA-seq
data and produce accurate results. SCRNA (Mieth et al., 2019) uses
non-negative matrix factorization to incorporate information from a
larger annotated dataset and then applies transfer learning to per-
form the clustering. CIDR (Clusteing through Imputation and
Dimensionlity Reduction) (Lin et al., 2017) performs data imput-
ation before clustering a PCA-reduced (Principal Component
Analysis) representation using hierarchical clustering. SOUP
(Semisoft Clustering with Pure cells) (Zhu et al., 2019) handles both

the Louvain algorithm) to process the shared nearest neighbor
graph and predict cluster assignments. RaceID (Griin et al., 2015)
identifies rare cell types and improves clustering performance
using K-medoids.

Deep learning was equally used to perform data imputation,
embedding learning and clustering. DCA (Deep Count
Autoencoder) (Eraslan et al., 2019) proposes a deep count autoen-
coder to denoise and impute the original data by minimizing a zero-
inflated negative binomial (ZINB) loss. This contribution inspired
other works such as scDeepCluster (Tian et al., 2019), which added
a clustering layer to the DCA model, performing cell cluster assign-
ment after an initial denoising phase. A similar approach to
scDeepCluster is followed in the DESC (Deep Embedding Single-cell
Clustering) method (Li et al., 2020), which separated the data con-
struction from the clustering phase. scziDesk (Chen et al., 2020)
proposes a weighted soft K-means enhancing the scDeepCluster
model with a triple loss that factors in the association between simi-
lar cells under the same cluster. The proposed loss function

©The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

1202 49qWaAON 0g Uo 1senb Aq 0£0ZE¥9/28.GBIG/SONEULIOJUIOIG/EE0 L 0 L/10P/2[0IE-80UBADPE/SOIEULIOJUIOIC/WOS" dNO"DIWaPEDE//:SA)IY WO} PaPEOjuMOQ

https://orcid.org/0000-0002-3090-3142
https://github.com/ciortanmadalina/graph-sc
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/

M.Ciortan and M.Defrance

combines the ZINB loss, a weighted soft K-means loss and a KL
(Kullback-Leibler) divergence between the Student’s t-distribution
of the embedding space and that of a target distribution, as proposed
in DEC (Deep Embedded Clustering) (Xie et al., 2016). The KL di-
vergence analyzes the pairwise similarity of data points in the latent
space and encourages similar points to be clustered in the same clus-
ter. A similar approximation of the ZINB distribution of the expres-
sion values is performed by the ScVI (Single-cell Variational
Inference) (Lopez et al., 2018) method which, in addition to cluster-
ing, provides batch correction, differential expression and
visualizations

Recently, graph neural networks (GNNs) have been applied to
scRNA-seq data. The common strategies to create the graph proc-
essed subsequently with GNNs are the cell-to-cell graph and the
gene-to-cell graph, depicted in Supplementary Figure S1. The cell-
to-cell graph is used in scGNN (Wang et al., 2021) and represents
only the cells as graph nodes. The connections between cells are
obtained by training a suite of three multi-modal autoencoders in an
iterative way. A feature autoencoder learns an embedding for the
cell data, used next for constructing a K-Nearest Neighbor (KNN)
graph, corresponding to the cell-to-cell model. The KNN graph is
processed with a graph autoencoder to learn a topological embed-
ding for cells and produces cluster assignments. The scGNN model
performs both imputation and clustering. The gene-to-cell model
was proposed in scDeepSort (Shao et al., 2021). In this case, a
weighted graph reproduces closely the information in the expression
matrix: both cells and genes are treated as graph nodes, and the gene
counts in each cell become the weighted edges between genes and
cells. Unlike the cell-to-cell architecture, there are no direct connec-
tions between cells, but only between genes and cells. The
scDeepSort network is trained in a supervised way (i.e. as a classifi-
cation problem) using annotated human and mouse data of various
tissues. A pretrained model is provided to perform inference on new
datasets. However, being supervised, scDeepSort cannot be applied
to datasets having different target classes than those present in the
original training data, which limits the model’s generalization to the
diversity of the available input training sets. A detailed presentation
of the two graph neural network models is provided in
Supplementary Materials.

2 Materials and methods

Given a scRNA-seq matrix D € R™" having # samples (i.e. cells)
and m features (i.e. transcripts), our method, graph-sc, models the
expression data as a gene-to-cell graph, processes it with a graph
autoencoder network and clusters the resulting cell embeddings with
either K-means or Leiden clustering algorithm.

2.1 Preprocessing

Before assembling the graph, the expression matrix is preprocessed
with the following steps. All genes expressed in less than two cells
are first discarded. The expression level of the remaining genes is
then normalized to obtain the same total count for each cell (for
each cell, the expression count values are divided by the total count
for that cell). After computing the variance across the cells, only the
most variable genes (top 3000) are kept in the dataset. The removal
of low expressed or less variable genes brings a computational gain
in addition to reducing the overall data noise. These operations pro-
duce a positive normalized matrix noted X € R¥*", where d is the
number of selected features (genes) and # the number of cells. This
preprocessing has been chosen as it maximizes the clustering per-
formances, as shown in an ablation study detailed in Supplementary
Materials/Ablation studies. A similar preprocessing procedure was
also proposed in scziDesk (Chen e al., 2020).

2.2 Graph creation

The scRNA-seq data are modeled as a gene-to-cell graph, bringing
several adaptations to the scDeepSort model. The gene-to-cell ap-
proach has been selected as a starting point for three theoretical

reasons, detailed in Supplementary Materials. First, the gene-to-cell
architecture is simple, as it reproduces directly the information in
the expression matrix: the gene nodes are connected with the cell
nodes in which they are expressed. Second, compared with classical
neural-network methods, it provides increased flexibility to model
the connections between genes and cells and control how the infor-
mation is aggregated. Finally, it allows to easily integrate external
data into the graph and uses it seamlessly. Other types of omics data,
such as the bulk RNA-seq could provide relevant information charac-
terizing the gene co-expression events, which combined with the
scRNA-seq data, could help the model produce better cell embed-
dings. This information can be integrated in the gene-to-cell graph as
gene-to-gene connections, refining the local neighborhood of gene
nodes. However, this functionality depends on the availability of rele-
vant external data, requirement not always easy to satisfy; as such this
track remains an optional improvement to graph-sc, presented in
Section 4. Next, we detail the steps to create the scRNA-seq gene-to-
cell graph. Graph neural networks process graph structures which
consist of both an adjacency matrix (describing the connections be-
tween nodes, corresponding to the arrows in Fig. 1d) and a node fea-
ture matrix, storing representations for each node (corresponding to
the vectors next to each node in Fig. 1d). In a nutshell, the node fea-
tures are essential for the functioning of the graph as all underlying
operations combine (e.g. sum) the features of each node with those of
neighboring nodes (identified with through the adjacency matrix) to
produce hidden representations for each node. Further technical
details on the functioning of graph neural networks are provided in
Supplementary Materials/Graph Preliminaries. The following section
details the creation of graph nodes, graph node features and graph
node edges.

Graph nodes. Both genes and cells are created as graph nodes.
Each node must have initial values for its features (i.e. a feature vec-
tor), which will be processed by a graph neural network input layer.
After testing multiple types of graph neural network layers
(Supplementary Fig. S9), the convolutional layer (Kipf and Welling,
2017) has been chosen as input layer, as it maximized the clustering
performances. This layer processes directly the input graph data.
When performing the forward pass, it produces for each node a hid-
den representation computed as the sum of its own features and those
of the neighboring nodes. This operation requires all nodes to be rep-
resented in the same input space. Next, the initial feature values for
gene and cell nodes are defined. For each gene node, input features
representing the top principal components (50) are created using the
normalized matrix X. Inspired by the structure of the expression ma-
trix, where a cell is represented by the set of expressed genes, for each
cell nodes, initial features are created by summing the corresponding
gene nodes. This strategy produces a representation in the same space
as the gene nodes (see Fig. 1). Thus, all graph nodes have input fea-
tures in the same 50D space. The PCA reduction has been chosen for
its ability to extract meaningful features from a high-dimensional
space. The projection in a lower-dimensional space is a common
ground between the cell and the gene nodes and finally, it provides a
lower memory footprint than storing for example, the original gene
data. The PCA transformation starts by scaling the data such that
each gene has zero mean and unit variance. The matrix X has been
used instead of the raw data D because normalizing the expression
data and scaling the values has shown to produce better representa-
tions for scRNA-seq data (Satija ez al., 2015) and has been adopted in
several state-of-the-art methods (Chen et al., 2020; Tian et al., 2019).
Using only the most variable genes, selected in X, by removing the
genes with less informative content for clustering provides a gain in
the computational speed, as it also limits the graph size. The cell node
features are computed as the sum of expressed gene nodes, weighted
by the values in the positive matrix X.

Graph edges. Cell nodes are connected to the expressed gene
nodes with edges having as weights, the values in the positive matrix

X. Thus, the weight of the edge connecting gene ito cell j is
. __Dii]
Wi = S Dkl

1202 49qWaAON 0g Uo 1senb Aq 0£0ZE¥9/28.GBIG/SONEULIOJUIOIG/EE0 L 0 L/10P/2[0IE-80UBADPE/SOIEULIOJUIOIC/WOS" dNO"DIWaPEDE//:SA)IY WO} PaPEOjuMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

GNN-based embedding for clustering scRNA-seq data

D (expression count data) (d)

cat | co | can Cell nodes are represented in the same space as the gene nodes

Each cell s the weighted sum of its expressed genes.
Genet | 2 s o

@ ez | o B o U -~
‘. é A
Genea | 0 o ' \
! Gene1
Genet | 0 | o o (16,02 1 y
- Discard low counts and less variable _—
genes
“Normaize per cell

X (counts normalized by cel)

12,07

017 * Gene1 +0.83 * Gene 4

celt | cez | cois Gene 2

Genet | 017 | o083 o

®) Cell 2

Genez | 0 017 o [1.6,-02]

Gene3 | 0 0 o1 0.83* Gened +0.17 * Gene 2

Gened | 083 o 09 Gene 3

113,08
-PCA
cell3
PCA repesentation of genes in 2D

1.8,-0.6]
Genet 116,-02) F \/ 0.1* Gene3 +0.9* Gene 4
© Genez (15.01] 15,0n

.
Genes 113.08) ~--

Gonet 118,00
Edge weighs are the
U {} values in X

Use PCA representation for gene
nodes features

Fig. 1. Overview of graph creation. To model the expression matrix with a graph
neural network, a graph defined by node features and an adjacency matrix (contain-
ing the weighted edges between nodes) are first produced. A gene-to-cell architecture
is adopted to represent both the genes and the cells as graph nodes. Cell nodes are
connected to the expressed gene nodes (e.g. Cell 1 is connected to Genes 1 and 4).
The preprocessing of the scRNA-seq expression matrix D (a) consists of normalizing
the data by cells to produce the normalized expression matrix X (b). A hidden repre-
sentation combining the neighboring nodes’ features is attributed to each node of
the graph, which requires the gene and the cell nodes to be expressed in the same
space. The cell nodes are represented as the sum of expressed gene node features.
Thus, gene node features are created first and consist of the first principal compo-
nents (PCs) of the normalized matrix, X. For simplicity, this figure exemplifies the
first 2 PCs (c). Next, the features for cell nodes are computed as the sum of
expressed genes, weighted by X (d). In addition, all nodes are enriched with self-
connections having a weight of 1

Using a weighted graph is an elegant approach to allow genes to
have different contributions for different cells, depending on the ex-
pression level. The weighted graph provides an alternative to a
graph pruning phase (i.e. as proposed in scGNN), which would re-
move noisy connections based on an arbitrary dataset-dependent
threshold. Note that, as depicted in Figure 1, the graph does not in-
clude gene-to-gene or cell-to-cell connections and consists only of
gene-to-cell connections. Before passing the graph as input to the
neural network, the standard edge normalization in graph neural
networks is performed, as detailed in Supplementary Materials for
scDeepSort. In a nutshell, this edge normalization addresses the gene
variability across cells and prevents us from creating aggregations
having a different range of values for different cells. All graph nodes
are also enriched with self-loop connections with a weight of 1.

2.3 Graph training
As we assume that no knowledge on cell class assignments is avail-
able, unlike scDeepSort, we propose an unsupervised model, a con-
volutional graph autoencoder neural network (Kipf and Welling,
2016), to process the gene-to-cell graph. Autoencoder networks are
models trained to reconstruct the input data and in doing so, pro-
duce a meaningful representation (i.e. an embedding) of the input
data. Graph autoencoders produce representations for input nodes
and are trained to reconstruct the adjacency matrix. As illustrated in
Figure 2, our autoencoder consists of an encoder and a decoder net-
work. The encoder is composed of a Graph Convolutional Layer,
processing the graph (the input node features, Zy, being the PCA
representations) and returning a vectorial representation for all
nodes (Z1). The output of the convolutional layer (Z) is passed
through a linear layer, producing a new representation of the nodes
(Z) which is also the desired representation of cell data. The encoder
network iterates only over the cell nodes (highlighted in red in
Fig. 2) and produces cell embeddings used subsequently in the clus-
tering phase. However, the gene nodes play an essential role in the
neighborhood aggregation of cell nodes performed by the graph con-
volutional layer.

The second part of the network, the decoder, is trained to recon-
struct the graph adjacency matrix from the inner product of the cell

() Training graph autoencoder network

Input gragh Reconsiructed graph
Training nodes Decoder
Gene 1 Gene 1
\ 72,72 LAY

Cell 1 z NN

Gone2 — N
A adjacency
cerz) |, — o —

22: Linear Layer

Gene 3

H
H
3
Ex
§§
3%
g3
8
&

Embeddings /
Gene 4 / Gene 4
(b) Clustering phase
Training nodes. Encoder
Gene 1
\ cell1 z Cell cluster prediction
Cluster the embedding with a
Gene 2 general clustering algorithm (i.e.
KMeans, Leiden)
c2i— | = z
Gene 3 ~_

Cell
cors Embeddings

\

Gene 4

v
Trained graph neural network

Fig. 2. Method overview. Training phase (a). A graph autoencoder neural network
is trained to produce hidden representations (embeddings) for the input graph
nodes. As the goal is to cluster the cells, the relevant representations are the cell
embeddings. Our network consists of an encoder model, which produces node
embeddings (Z) and a decoder model, which uses the embeddings (Z) to reconstruct
the adjacency matrix and the graph. Our encoder model consists of a Graph
Convolutional layer, which aggregates the neighborhood of input nodes as a sum
weighted by the input edge values. To produce cell embeddings for clustering, en-
coder processes only cell nodes (red box). The gene nodes are instrumental in this
neighborhood aggregation. Clustering phase (b). The result of the convolutional
layer is passed through a Linear layer to produce the final cell embeddings, Z. After
the network training phase, the produced cell embeddings are clustered to produce
cell cluster assignments

embedding 6(Z - Z") ~ A, where ¢ is the sigmoid function. To keep
this presentation simple, the technical details concerning the graph
convolutional layer and the training objective is provided in
Supplementary Materials.

2.4 Clustering phase

After having produced cell embeddings, a general clustering algo-
rithm is used to produce cell-cluster assignments. The decoupling be-
tween the embedding creation and the cluster assignment provides
flexibility to adapt to both cases when the expected number of clus-
ters is known (K-means) and unknown (Leiden), but also to analyze
the embedding with any other suitable technique.

3 Results

The performances of clustering methods are evaluated with both ex-
ternal scores (assessing the agreement with the provided ground
truth): Adjusted Rand Index (ARI) score (Hubert and Arabie, 1985),
Normalized Mutual Information and internal scores (assessing the
cluster compactness): Silhouette score (Rousseeuw, 1987) and
Calinski Harabasz (Calinski and Harabasz, 1974). For all metrics
the higher the value, the better the performance. The implementa-
tion details together with a detailed description of the evaluation
framework are provided in Supplementary Materials, Evaluation
Framework section.

3.1 Competing methods

Clustering analysis is typically performed on unlabeled data, either
in an explorative way (to discover the number of clusters best fitting
the analyzed data) or in an exploitation setting, using prior know-
ledge or a good definition of the sample groups to be identified.
Some existing methods require to input the number of clusters to be

1202 JaquianoN 0g Uo 1sanb Aq 0£0ZE¥9/28.0€Iq/SONEULIOJUIOIG/E60 L 0 L /I0P/3 |l E-80UBADE/SOIELLIO)UI0IG/ W00 dNO"lWapeE/:sd)y WoJy papeojumod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

M.Ciortan and M.Defrance

identified, while others, more suitable for exploratory analysis, can
dynamically infer it from various data density or connectivity crite-
ria. Our experimental setup compared the performance of graph-sc
with 12 competing methods, representative of both scenarios.
ScziDesk (Chen et al., 2020), scDeepClustering (Tian et al., 2019),
scRNA (Mieth et al., 2019), cidr (Lin et al., 2017) and soup (Zhu
et al., 2019) take as input the expected number of clusters while
scGNN (Wang et al., 2021), Seurat (Satija et al., 2015), scanpy
(Wolf et al., 2018) implementation), desc (Li et al., 2020), scedar
(Zhang et al., 2020), raceid (Muraro et al., 2016) and scvi (Lopez
et al., 2018) perform clustering without any alternative information.
In addition, 6 naive baselines (depicted in gray in all our plots) consist-
ing of clustering with K-means the following dimensionality reduced
version of the expression matrix were assessed: the first 2 (labeled
pca2_kmeans) and 50 (labelled pca50_kmeans) principal components
of X, the first 20 (umap20_kmeans) or 50 (umap50_kmeans) UMAP,
the first 2 UMAP components of the 50 PCA (pca50_umap_kmeans)
of X and with Leiden the best performing baseline, the 2 UMAP com-
ponents of the 50 PCA of X (labelled pca50_umap_leiden). A detailed
record of all benchmarked methods, their repositories and instructions
on how to reproduce our experimental results has been made avail-
able in Supplementary Table S1.

All our experiments present the results of three consecutive runs
of each method on each dataset. The methods annotated with (aster-
isks) are those that did not receive as input the number of clusters.
Our methods are usually highlighted in bold. This experimental set-
ting is used to benchmark the presented methods on a collection of
24 simulated and 15 real scRNA-seq datasets, as detailed below.

3.2 Analysis of simulated data
The data simulation strategy consists of generating datasets approxi-
mating various biological scenarios in which we controlled the

(al) ARI scores (a2) NMI scores (a3) Calinski scores (a4) Silhouette scores.

graph-sc(KM) graph-sc(kM) s graph-sc(xm) { [
scaiDesk scziDesk. i scaivesk { [}
scoeepCluster scDeepCluster scoeepciuster | (I
scma scrna scr a |}
cor car cior
soup soup soup | (a)
pea2_kmeans pea2_kmeans pea2 kmeans | [} Simulated
pcas0_kmeans pcaso kmeans pcaso_kmeans | I balanced
pcas0_umap kmeans peas0_umap_kmeans peaso_umap kmeans | (I data
umap20_kmeans umap20 kmeans umap20 umap20_kmeans { [
umaps0_kmeans umap50 kmeans umaps0_kmeans
graph-sc(LD) () graph-sc(LD) () *
ScGAN () ScGuN (1) scon o
desc () desc (1) a ”
scanpy-seurat) scanpy-seurat (4 ©)
scedar () scedar () sced or (4 { [
scvi () scvi () - scvi 0|
raceid () raceid (4 ac roceid () =
pcaso_umap.eiden peaso_umap.eiden pcas0_umap.eiden peaso_umap.eiden | (IR
Am i Catinski (og sale) Sihouette
(b2) NMI scores (b3) Calinski scores (b4) Silhouette scores
graph-sc(kM) ‘graph-sc(kM) graph-sc(xm) | I
scribesk scaiDesk scaesk | [
scDeepCluster scpeepCluster scoeepciuster | IR
scrna scrma scrna |B
car car car
soup soup soup | B (b)
pea2 kmeans peaz_kmeans pco2 kmeans | [Simulated
peaso_kmeans peaso kmeans pcas0_kmeans { | imbalanced
peas0_umap_kmeans pca50_umap_kmeans. pcas0_umap_kmeans | [T} data
umap20 kmeans umap20 kmeans umap20_kmeans | B
umap50_kmeans. umaps0_kmeans umaps0_kmeans { B}
graph-sc(LD) (*) araph-sc(L) (') araph-sc(uo) ()|
ScGN (+) ScGNN () ScGuN)
dese (1) dese (1) dosc)| (-
scanpy-seurat (1 scanpy-seurat () scanpyseurat (1)
scedar () scedar () scedar () {
scvi () scvi () scvi)| B
raceid () raceid () raceid ()1 [
peaso_umap.eiden pcs50_umap.eiden pcaso_umap.leiden { [}
n Calinski (og scale) Sihoustte

(c1) ARI scores (c2) NMi scores. (c3) Calinski scores (c4) Silhouette scores

graph-sc(kM) graph-sc(kM) raph-sc(kM)
scriDesk scriDesk scaibesk
scDeepCluster scDeepCluster scoeepCluster
cidr ciar

soup soup {c)

pea2_kmeans pca2_kmeans Real

p peaso_t peaso_kmeans peaso_kmeans 5

X X pcas0_umap_kmeans peaso_umap._kmeans. data
u umap20_kmeans umap20_kmeans
umaps0_kmeans umapso_kmeans
- - X graph-sc(LD) (1) graph-sc(LD) (*)
ScGNN () ScGNN (1 SCGNN (7) SCGNN ()
esc (4 desc (4 desc (1) desc (%)
scanpy-seurat () seurat (%) scanpy-seurat (%) scanpy-seurat ()
scedar () scedar scedar (7) scedar ()
scvi () scvi (1) scvi ()
raceid) raceid raceid () raceid (%)
peaso_umap_leiden) umap.| peaso_umap,leiden pcaso_umap_leiden

Catinii g Scole) Sihouete

Fig. 3. Method evaluation scores on all simulated balanced (al-a4), imbalanced
(b1-b4) and real-world scRNA-seq (c1-c4) datasets. The ARI scores are depicted in
panels 1, normalized mutual information scores in panels 2, Calinski Harabasz
scores in panels 3 and Silhouette scores in panels 4. The internal quality scores
(Calinski, Silhouette) measure the compactness of the identified clusters in the cre-
ated cell embedding space. However, those metrics are independent from the exter-
nal quality scores (i.e. the most compact clusters do not necessarily correspond to
the ground truth annotations and conversely). graph-sc identifies clusters in agree-
ment with the annotations and having also a good internal quality despite not being
the most compact partitions

number of clusters, samples, genes and dropout rates. The R pack-
age splatter (Zappia et al., 2017) was used to create balanced and
imbalanced datasets (i.e. uniform and non-uniform distribution of
cluster sizes). As shown in Figure 3, our methods (graph-sc with K-
means and Leiden) provide encouraging results, on both external
and internal quality measures, reporting high average ARI scores as
well as a good ranking (in general, the first or the second position).
There is no significant performance difference between K-means and
Leiden clustering. The description of the data simulation process
and a detailed analysis are provided in Supplementary Materials. As
simulated datasets remain an approximation of the biological data,
the following sections of the article focus on the analysis of a collec-
tion of 15 real-world datasets.

3.3 Analysis of single-cell datasets

A collection of 15 real-world scRNA-seq datasets has been
assembled by combining the data made available by scziDesk and
scDeepCluster. The datasets from scziDesk have been created at
Stanford University from mouse cells using Smart-seq2 and 10x
Genomics sequencing (Schaum et al., 2018). The Smart-seq2 data-
sets have been prefixed with ‘Quake Smart’ while the latter with
‘Quake10x’. Other publicly available datasets have been added, as
follows: Adam et al. (2017), Muraro et al. (2016), Romanov et al.
(2017) and Young et al. (2018). The scDeepCluster data had been
collected using four sequencing platforms: 10x genomics platform
for the PBMC cells (Zheng et al., 2017), droplet barcoding for
mouse embryonic stem cells (Klein ez al., 2015), Microwell-seq for
mouse bladder cells (Han et al., 2018) and sci-RNA-seq for worm
neuron cells (Cao et al., 2017). As detailed in Supplementary Table
S4, all datasets are class-imbalanced and contain 4-16 annotated
clusters and 870-9552 cells. More details about data sparsity and

(s1) Exacution time (a2) Delta predicted (a3) ARI ranking (a4) Silhouette ranking
te

b of clust
graph-sc(km) graphsckm | | graph-sctkm) {fo graph-scikmy | H) ¢
scabesic scavesi| | scriesk | e scrivesk i
scDeepCluster sopcuse || scpeepCuster | ¢ HIH scDeepCluster | #
scrna [semal —CLH wmal 4 4l
ciar o o car Y cr LI
soup soup sowp{ —H soup i
pca2_kmeans. peaz_kmeans| | pcaz_kmeans —T pea2_kmeans | HIEH Fsimulated
peaso_kmeans. peas0 kmeans | | peas0 kmeans | [l— peaso_kmeans + palanced
pcas0_umap_kmeans. pcaSD umap_kmeans] Pea50_umap_kmeans HlH peas0_umap_kmeans (-] ¢ data
umap20_kmeans- imap20_kmeans. i umap20_kmeans HilH umap20_kmeans HH
umaps0_kmeans imagsamens| | umaps0 kmeans o umap30 kmeans [
graph-sc(L) () oractn) (0] 4 graph-sc(L) () {1¢ graphsc(to) (7]l #
SCGNN (%) scGhi () | IT— SCGNN () ¢ K SCONN ()] _#H ¢
desc () s) HE— desc () ¢l desc ()| EE—
WO~ ¢ sconpysewrat ()] HIM scanpy-seurat () { F—LTTT)
scedar (1) scedar) | 4HIH scedar) | B+ scedar ()] o
scvi (1) sovi] HEIE scvi (1 HERIH scvi ()¢ HIEH
raceid () raceid ()10 HIH ¢ aced (] HEI— raceid () | —IEE—
peaso_umap leiden peaso_umap_leiden | {RIH peaso_umap_leiden |l pcas0_umap_teiden {_+—fih
o 2 LN LI
..M Error nb pred clusters Aank Rank
(b1) Execution time (b2) Delta predicted (b3) ARI ranking (b4) Silhouette ranking
in sec nb of clusters
graph-sc(km) graphescikm { | sraph-scikm) 4] sraph-scikm) { I
scaiDesk scaivesk| | scziDesk "+
sceepCluster scoeepCluster | | scDecpCluster i — sceepiuser ||
scrna scma | —LH —
cidr ciar{ | —TH ()
ol el o | T Simulated
pea2 kmeans peaz kmeans { | ™
peaso kmeans. peaso kmeans | | rigpbalanced
pcas0_umap_kmeans pcas0_umap kmeans | | "
umap20_kmeans umap20_kmeans | | I
umaps0 kmeans. umapso_kmeans { | i
‘graph-sc(LD) (*) graph-sc(Lo) (*) | Hi
SCGNN () scGnn () (il I
desc (1) desc () { (- e
HIH + —
scedar (+) scedar () HE—— HH
scvi () scvi 4 @ —
raceid () raceia () {{TH raceid (41 +—{—1 raceid () ¢ Hib
pcaso_umap leiden peaso_umap_leden | (N peasoumap_leiden{ ¢ M peaso_umap.leden | _HIH
100 o 5 2 5)
seconds (og scale) Error nb pred clusters Rank position by ARI score Rani position by Silhouete score
(c1) Execution time (c2) Delta predicted (€3) ARI ranking (c4) Silhouette ranking
in sec nb of clusters
graph-sc(kM) ‘graph-se(km) { | graph-sc(km) {lH graph-sc(km) | [H—
scaivesk |4 scavesk {[H ¢+ i
scbeepCluster scDeepCluster {4 seDeepCluster {—IH sceepCiuster {BH ¢+
scrma || —TH nal 4
ciar{ | cor | v— car &
|] o] " Real
peaz kmeans peaz kmeans . peaz kmeans
peas0_kmeans | | kmeans |l + o ke | _—EFRNA-seq
pcaso_umap_kmeans { | peaso_umap_kmeans { HIl_¢ pcas0_umap_kmeans {l—1 data
umap20 kmeans || 20 kmeans { - HEI—1 p20 kmeans
umapso kmeans || umaps0 kmeans | HII— umaps0 kmeans
graph-se(LD) (%) |l graph-sc(LD) (*) | graph-se(LD) (*) L =
G () G 1) { sconn)] T SCONN () —Iy
desc (1) desc () {Hjte dese (4) {— I dese () {HI—
+ scanpy-seurat () |——L T} scanpy-seurat ()] Tt
scedar (*) scedar (*) | HilH . scedar () o~ scedar (*) HH ¢
scvi () scvi () { HH scvi (9] o— scvi(){ 4 +
raceid (1) aceid 4 | 19 raceid (10 B raceid (4] 4 _+—{—
peaso_umap_leiden peas0_umap_leiden . peas0_umap_leiden L pcoso_umap teen | I
10t PR

Rank position by ARI score

]
Error b pred clusters

Seconds (1og scale)

Rank positon by Silhouette score

Fig. 4. Method result ranking on all simulated balanced (al-a4), imbalanced (b1-
b4) and real-world scRNA-seq (c1—c4) datasets. The execution time in seconds is
depicted in panels 1. The error as the relative difference between the predicted and
the true number of clusters [(pred—true)/true] is illustrated in panels 2. A perfect
clustering has 0 error, negative values represent methods underestimating the num-
ber of clusters in the data and positive scores conversely. The dataset ranking for
each method by ARI scores is presented in panels 3 and for Silhouette scores in pan-
els 4. The ranking values vary between 1 and 14, the lower the better. Most methods
in the asterisk category tend to overestimate the number of clusters in the data, be-
havior which is more pronounced in the imbalanced setting

1202 JoquiaAoN 0€ UO 1saNnb Aq 0£0ZE19/28/q€Ia/SONBWIOJUIOIG/EE0 L 0 L/I0P/[0IE-90UBADE/SOIBLIOJUIOIG/WOY"dNO"DIWSPED.//:SA)Y WO} PaPEOjuMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

GNN-based embedding for clustering scRNA-seq data

QS Trachea Q Bladder Q Spleen
#2, #7 #2, #9 #1, #9

sraphcion | I graph-sctkin raph
oot ek roest
scocepcluser "

o o)
<aup P
scoso kmeans pcaso kmeans
araph-sclLD) () araphsdlLo) () araphsctior ()
o)) scomn)
dese) o
scarpy-souek 1 scanpyseurat (1 scanpy-souek (4
it) oo () St)
v iy v
raced) aced () aceid ()
ww

Qs Diaphragm
#1, #5

graph-sc(km)
cior
soup
pcaso_kmeans
raph-sc(Lb) (*)
SO ()

AR

QS Limb Muscle
#1, #7

graph-sc(km)
soup
pcaso_kmeans
graph-sc(Lb) (*)
SCGN ()
n o
Romanov
#1, #3
graph-sc(km) graph-sc(km)
scaiDes scaiDesk scaibesk
scDeepCluster scDeepCluster
cidr cidr cidr
up soup- "
peaso kmeans paso_kmeans. peaso_kmeans
graphsc(Lo) ()
SCGN () SCGNN (%) SCGNN ()
gesc (1) desc (7
"
k " k
k) i
AR
graph-sc(km)
scaibesk scaiDesk
sceepCluster
e i
1250, kmeans pcaso_kmeans.
raph-sc(LD) () raph-scl
desc (4 desc
scedar () scedar (
i (0 “©

AR

10X PBMC
#2, #4

2,
araph-sc(kM)
scaibesk
scDeepCluster
raph-sc(LD) ()
desc (4
scedar ()
scvi (1)
raceld (1)

AR

Mouse ES Cell
#3, #3

graph-sc(km) v
scaibesk
scDeepCluster
cior
soup.
peaso_kmeans

graph-sc(Lb) (*) o
SCGNN ()
)
scanpy-seurat ()
scedar (4
scui ()
raceld (1)
AR

Fig. 5. Dataset-level analysis of real scRNA-seq data on ARI scores. The dataset
annotations (e.g. #1) indicate the ranking of graph-sc, respectively, with K-means
and Leiden clustering on each analyzed dataset

Mouse Bladder Cell
#4, #1

other descriptive statistics specific to each dataset have been pro-
vided in Supplementary Table S5.

The results depicted in Figure 3(cl1—c4) indicate that the pro-
posed methods (graph-sc with K-means and Leiden) compares favor-
ably with state-of-the-art techniques on real-world datasets,
producing average ARI scores of 0.78 and 0.53, respectively. Ran
with default parameters, Leiden method overestimates the number
of clusters in the data on average by a factor of two, which penalizes
the external quality scores and explains the difference in perform-
ance compared with K-means. Supplementary Table S9 indicates
that when performing hyperparameter optimization on the Leiden’s
worst performing datasets, our model achieves results comparable
with K-means clustering (Figs 4 and 5).

The detailed dataset-level ranking analysis depicted in Figure 6
indicates no consensus regarding the best method across all datasets.
graph-sc compared favorably with the best competitive techniques,
being ranked first on 6 datasets and second on another 5 datasets
over the 15 real-world scRNA-seq datasets analyzed. The other
best-performing methods are scziDesk, scDeepCluster, cidr and
soup. SCGNN has a mixed tendency to overestimate and underesti-
mate the number of clusters in different datasets. While the worst-
performing method is pca2_kmeans, pca50_kmeans and pca50_u-
map_kmeans provided results comparable with other state-of-the-
art methods. This can be explained as the first 2 principal compo-
nents are not enough to capture all relevant variations in the data.
The other methods (annotated with asterisks) have a significant ten-
dency to overestimate the number of clusters in the data, on average
by a factor of 2 (desc, scanpy-seurat, scvi, raceid), but up to five
times (scedar). However, the identified partitions have generally
higher internal quality scores, as indicated by both the Silhouette
(Fig. 3(c3)) and Calinski (Fig. 3(c4)) scores. This behavior may be
attenuated with an additional work of method-specific

(a1) scDeepCluster (a2) scziDesk (a3) scGNN
(9 clusters, ARI 0.67) (9 clusters, ARI 0.65) (8 clusters, ARI 0.52) (9 clusters, ARI 0.9)
o

(a4) graph-sc(kM) (a5) graph-sc(LD)
(11 clusters, ARI 0.6)

Muraro

R I TR E)

(b1) scDeepCluster (b2) seziDesk (b3) scGNN (ba) graph-sc(kM) (b5) graph-sc(LD)
(6 clusters, 76) (6 clus RI0.97) (8 clusters, ARI 0.59) (6 clusters, ARI 0.97) (11 clusters, ARI 0.54)
3

Qumb
Muscie

i

7w S 0w

(c1) sceepCluster (c2) scziDesk (c4) graph-sc(KM) (<5) graph-sc(LD)
(4 clusters, ARI 0.49) (4 clusters, ARI 0.99) (4 clusters, ARI 0.97) (11 clusters, ARI 0.25)

Q Biadder

S 6w

(d1) scDeepCluster (d2) scziDesk (d3) scGNN
(8 clust 10.69) (8 clus RI0.87) (8 clusters, ARI 0.17) «

(d5) graph-se(LD)
(13 clusters, ARI 0.7)

Fig. 6. Visualization of identified clusters. The partitions identified with
scDeepCluster, scziDesk, scGNN, graph-sc(KM), graph-sc(LD) on four datasets
(Muraro, Quake Limb Muscle, Quake Bladder, Adam). The remaining datasets are
depicted in Supplementary Figures S12 and S13. The plots illustrate the t-SNE 2D
projections of the created embeddings. All selected methods start by producing an
embedding for the cells, which is clustered in a second phase. The quality of the
method depends on both the created embedding and the clustering algorithm. Both
our methods clustered the same embedding, produced by graph-sc

hyperparameter tuning for each dataset, but this introduces add-
itional computational load and requires defining an experimental
setup adapted for each technique, going beyond the scope of a broad
benchmarking exercise. For a fair comparison, the same parameters
across all experiments were used.

The methods providing the most compact partitions
(scDeepCluster, desc, scvi) do not always provide results aligned with
the ground truth. The average Silhouette score of 0.48 reported by
our best method, graph-sc with K-means, suggests that the identified
partitions are not only in agreement with the ground truth, but they
also consist of well-separated clusters. This finding is also supported
by a visual analysis of the reported results. A set of four real-world
datasets has been selected for visualization. First, the embeddings and
the clusters predicted by graph-sc are compared with those created by
the competitive methods scziDesk, scDeepCluster and scGNN
(Fig. 6). Next, the sample clusters created by graph-sc are compared
with the ground truth (Fig. 7). A comprehensive analysis of these
results is provided in Supplementary Materials. This visualization ex-
ercise demonstrates that both the embedding and the cell clusters
computed with graph-sc are aligned with the provided class annota-
tions while forming well-defined clusters.

3.4 Execution time analysis

A detailed analysis of the execution time and computational com-
plexity is provided in Supplementary Materials. Compared with the
studied competing methods, graph-sc reports average execution
times. However, it is faster than the other techniques based on neur-
al networks.

3.5 Method stability

The stability of graph-sc has been studied over consecutive runs and
when using only a fraction of input cells (input down-sampling).
The detailed analysis provided in Supplementary Materials suggests
that our method is generally stable and robust to input down-sam-
pling, being able to provide competitive results even when 25% of
the input cells are provided as input.

3.6 Ablation studies
A wide range of ablation studies has been performed to assess the
importance of all choices proposed for the input preprocessing,

1202 JoquiaAoN 0€ UO 1saNnb Aq 0£0ZE19/28/q€Ia/SONBWIOJUIOIG/EE0 L 0 L/I0P/[0IE-90UBADE/SOIBLIOJUIOIG/WOY"dNO"DIWSPED.//:SA)Y WO} PaPEOjuMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

M.Ciortan and M.Defrance

(al) graph-sc(KM)
(9 clusters, ARI 0.9)

(a2) graph-sc(LD)
(11 clusters, ARI 0.6)

(a3) Ground truth
(9 clu

(b1) graph-sc(KM)
(6 clusters, ARI 0.97)

(b2) graph-sc(LD)
(11 clusters, ARI 0.54)

(b3) Ground truth
(6 clusters)

Muraro
alpha

endothelial
delta

beta

gamma
mesenchymal
epsilon

QLimb
Muscle

endothelial cell

(a1) ARI scores.
0.1 0.7 078 078 077 077

i

(a2) NMI score
0.7 0.8 0.2 0.2 081 081
10

(a3) Calinski scores
14000 4681 2782 1763 1538 1236 1100

12000
10000

8000

e .

Cainski

Sihouette.

(24) Silhouette scores

o038 058 047 044 037 034

pca

S0 100 300 500
iz oo it featres
(A

(b1) ARI scores.

50 100 300 500
Size of node Input features
o

CA)
(b2) NMI score

S0 100 300 500
Suaot rode nput eaures

(b3) Calinski scores

S0 100 300 500
Size of nade input features
(k)

(ba) Silhouette scores

Bcell
mesenchymal stem cell
macrophage

skeletal muscle satelite cell

ececce

-50 [50 -50 o 50 50 o 50

(c1) graph-sc(KM)
@cl

{€2) graph-se(LD)
ters, ARI 0.97) a1

(c3) Ground truth Q Bladder
isters, ARI 0.25) clust

usters) bladder cell

bladder urothelial cell
leukocyte
endothelial cell

(d1) graph-sc(KM)
(8 clusters, ARI 0.65)

(d2) graph-: sc(I.D) (d3) Ground truth Adam
(13 clusters, ARI 0.7) (8 clusters) cm
Distal tubule:

Podocytes
PT

Stromal
Ureteric bud

-100 ~100 -100

Fig. 7. graph-sc clustering results compared with ground truth. The comparison of
predicted and ground truth clusters on four scRNA-seq datasets (Muraro, Quake
Limb Muscle, Quake Bladder, Adam). Our methods cluster the same embedding,
produced with the graph autoencoder. The ground truth is also depicted in the same
space. All plots present a 2D t-SNE projection of the underlying embeddings. graph-
sc (LD) consistently overestimated the number of clusters in the data and performed
best on datasets with a large number of clusters. A similar exercise has been per-
formed on simulated data in Supplementary Figures $14-517

graph creation, network architecture and training hyperparameters.
All default parameters used in our method (i.e. number of PCA com-
ponents, network architecture, embedding size) are the result of an
extensive hyperparameter search exercise, summarized in Figure 8
and, for simplicity, detailed in Supplementary Materials.

4 Discussion

The presented experimental results suggest that graph-sc compares
favorably with competing methods for clustering scRNA-seq data
on simulated and scRNA-seq datasets, achieving encouraging
results on both internal and external clustering evaluators. Even
though there is no one best method across all analyzed datasets,
graph-sc ranks the first on 6 out of 15 real-world datasets, when
compared with another 12 competing methods. The encouraging
results suggest that modeling scRNA-seq data using the proposed
gene-to-cell model is an alternative to the analytical method of
modeling the dropout, if used to acquire robustness for clustering
scRNA-seq data, using NB or ZINB autoencoders (Chen et al.,
2020; Eraslan et al., 2019; Tian et al., 2019). Moreover, the
decoupling between the embedding generation and the clustering
phase allows us to easily explore multiple clustering algorithms
and choose the most suitable one. K-means provides the best trade-
off between clustering performance and execution time when the
expected number of clusters is known. The underlying gain in exe-
cution time can allow analyzing a larger range of input parameters,
thus providing a solution also to the exploration scenario. In
Supplementary Materials is presented an exercise where the BIC
and AIC scores have been used to infer the optimal number of clus-
ters when analyzing for each dataset from range of nine candidate
values. The results presented in Supplementary Figure S11 indicate
that similarly good scores are achieved, having average ARI scores
of 0.66 and 0.67, respectively, but lower than when using the
ground truth. These runs overestimate the number of clusters in
the data, behavior which also characterizes the density-based algo-
rithms. Leiden community detection provides the best results from
the algorithms not receiving as input the number of clusters.

10076 077 078 055 022 048 048 048 033 037
.
08 ‘
[
06
g
04
02

G000

08
N 5000
06 H 4000

3000

Catinsi

Lo
3
: Learming
fo e
L] 2000
o o

0
1¢106 52,06 16.05 0.0001 0.001 1606 5606 1605 0.0001 0,001 1706 56,06 105 0.0001 0.001 1¢706 5206 16105 0.0001 0.001
Leaming rate Learning rate Learing rate Learning rate

Lo] 08 081 082 088 020 00
2244 2055 1763 a8 235

. (d) Grid search, ARI scores.

100

150

(1) G sizes

200

@ e
o00) o7 o7 om om2 o [MOCEM o5 o1 o7 on

300

Fig. 8. Identification of optimal parameters. Panels al-a4 depict the impact on per-
formance of selecting from 5 to 500 principal components from X. Learning rates
ranging from le-6 to le-3 have been explored in panels b1-b4. Panel ¢ reminds the
network architecture, consisting of a Graph Convolutional Network (GCN) fol-
lowed by a linear layer. Forty-four different neural network architectures are
explored panel d: on the y axis, the explored values for the GCN layer size and on
the x axis the hidden layer architectures. [300] represents a single linear layer of 300
values while [300, 300] represents 2 stacked linear layers of 300 values each, ‘None’
indicates no linear layer used in the encoder, in which case the cell embedding is the
output of the GCN layer. All experiments are performed three times on all real-
world datasets using K-means clustering and we also cross validated the results on
three folds (Supplementary Fig. $10)

Our experimental results demonstrate that graph-sc is robust
to input down-sampling, stable across consecutive runs and gener-
ally insensitive to changes in network hyperparameters. Several
types of graph layers have been explored and the best results are
achieved with convolutional graph neural networks, the same
type of layer used in scGNN. graph-sc is faster than similar meth-
ods leveraging neural networks and has a smaller memory foot-
print. The computational efficiency is explained by the reduced
number of epochs needed for convergence (10 epochs) in combin-
ation with the selection of most variable genes, performed in the
preprocessing phase, which limits the number of nodes in the
graph.

4.1 Enriching the graph with external information
Adopting a graph-based architecture provides the flexibility not
only to choose representations for gene and cell nodes, but also to
integrate external information. The gene-to-cell graph can be
enriched with gene-to-gene connections, extracted from biological-
ly related datasets and representing co-association events docu-
mented in other studies. For this exercise, we analyzed the
compilation of 17 mouse tissues bulk RNA transcripts, published
by Li et al. (2017. The gene associations are computed using the
Pearson correlation coefficient across all types of tissues. Next, all
pairs of genes having an absolute correlation above an arbitrary
threshold of 0.5 are selected, to ensure only important associations
are integrated. As depicted in Figure 9a, the pairs of correlated
genes produce gene-to-gene edges, weighted by the absolute correl-
ation value.

By selecting the mouse datasets providing information about
the gene names, we obtained a set of nine datasets. The experimen-
tal results presented in Figure 9b suggest that the performance is
only marginally different, and the enriched graph is not systematic-
ally more accurate than the baseline. Even though the correlation
data come from the same organism, the co-association tendencies
observed on average in the bulk datasets of unrelated tissues are
not necessarily representative for all mouse scRNA-seq datasets.
Thus, this technique can also introduce noise as spurious

1202 JoquiaAoN 0€ UO 1saNnb Aq 0£0ZE19/28/q€Ia/SONBWIOJUIOIG/EE0 L 0 L/I0P/[0IE-90UBADE/SOIBLIOJUIOIG/WOY"dNO"DIWSPED.//:SA)Y WO} PaPEOjuMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

GNN-based embedding for clustering scRNA-seq data

(a) Graph with external data (b) ARI baseline vs external data

"} Neighbors K = 1 Neighbors K = 2 Qs mm# 0.66

Q Bladder -
Q Spleerw}

Co- Qs Diaphragm -

expressed

genes Q Limb Muscle |

QS Limb Muscle +
mmj o7
Young 06!

QS Lung

baseline with external data % improvement

Fig. 9. Enriching the graph with external gene co-association data. In (a), external
gene correlation data is used to select the pairs of highly correlated genes. Cell 1
expresses Genes 1 and 4 and they contribute to the neighborhood aggregation of
Cell 1 at a distance k= 1. However, because gene 1 is highly co-expressed with gene
3, an edge is added between Genes 1 and 3 and thus Gene 3 becomes part of the
neighborhood aggregation of Cell 1 at a distance k =2. In (b) are depicted the ARI
scores when using the baseline graph-sc in the first column and when graph-sc has
been enriched with external data in the second column. The third column indicates
that when processing the enriched graph, the highest performance gains are
achieved (21% and 5% increase in ARI scores), while the remaining runs produce
generally low variations, in a range comparable to random initialization variations
(Supplementary Fig. S5)

correlations, explaining the variations around the baseline model’s
score. These results emphasize the importance of selecting the ex-
ternal data to be relevant to the analyzed dataset. Further details
on this analysis are provided in Supplementary Materials.

As finding relevant data sources is a requirement not always easy
to fulfill, and integrating noisy data can damage the performance,
this approach is proposed as an optional improvement to the base-
line model. However, integrating multiple external data sources in a
single model, under the same optimization problem and with a min-
imal impact to the overall method is an important theoretical advan-
tage which differentiates our method from the existing approaches.

5 Conclusion

In this article, we proposed a method, graph-sc, leveraging graph
autoencoders for clustering scRNA-seq data. The proposed method
produces competitive results on both simulated and real datasets, it
is faster than other similar deep-learning approaches, robust to
changes in input parameters and flexible to allow the integration
any suitable clustering algorithm. An extensive ablation has been
performed, offering insights into the best strategies to create gene-
to-cell graphs modeling scRNA-seq data but also into various under-
lying neural network architectures and training parameters. graph-
sc can easily incorporate external data with minimal changes to the
baseline method, which is another added value compared with exist-
ing methods. The external data can be integrated under the same op-
timization task and we believe that this architectural advantage can
open new research directions in combining several types of data to
refine the results of existing models. However, this improvement
requires the availability of relevant data, a condition which may not
always be easy to fulfill. We hope that this work will motivate future
research to consider graph models for the analysis of scRNA-seq
data.

Data availability

All data needed to reproduce the presented results has been made
available on GitHub (https:/github.com/ciortanmadalina/graph-sc).

Author contributions

M.C. developed the method, analyzed and interpreted the data.
M.C. and M.D. contributed to writing the manuscript. All authors
read and approved the final manuscript.

Financial Support: none declared.

Contflict of Interest: The authors declare no competing interests.

References

Adam,M. et al. (2017) Psychrophilic proteases dramatically reduce single-cell
RNA-seq artifacts: a molecular atlas of kidney development. Development
(Cambridge), 144, 3625-3632.

Caliniski,T. and Harabasz,]. (1974) A dendrite method foe cluster analysis.
Commun. Stat., 3, 1-27.

Cao,]. et al. (2017) Comprehensive single-cell transcriptional profiling of a
multicellular organism. Science, 357, 661-667.

Chen,L. et al. (2020) Deep soft K-means clustering with self-training for
single-cell RNA sequence data. NAR Genomics Bioinf., 2,1qaa039.

Eraslan,G. et al. (2019) Single-cell RNA-seq denoising using a deep count
autoencoder. Nat. Commun., 10, 1-14.

Freytag,S. et al. (2017) Cluster headache: comparing clustering tools for 10x
single cell sequencing data. BioRxiv, doi:10.1101/203752.

Griin,D. et al. (2015) Single-cell messenger RNA sequencing reveals rare intes-
tinal cell types. Nature, 525,251-255.

Han,X. et al. (2018) Mapping the mouse cell atlas by microwell-seq. Cell,
172,1091-1107.e17.

Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classif., 2, 193-218.

Kipf,T.N. and Welling,M. (2016) Variational Graph Auto-Encoders. In: NIPS
Workshop on Bayesian Deep Learning (2016), Barcelona, Spain. http:/
arxiv.org/abs/1611.07308.

Kipf,T.N. and Welling,M. (2017) Semi-supervised classification with graph
convolutional networks. In: 5th International Conference on Learning
Representations, ICLR 2017 — Conference Track Proceedings, Toulon,
France.

Kiselev,V.Y. et al. (2019) Challenges in unsupervised clustering of single-cell
RNA-seq data. Nat. Rev. Genet., 20,273-282.

Klein,A.M. et al. (2015) Droplet barcoding for single-cell transcriptomics
applied to embryonic stem cells. Cell, 161, 1187-1201.

Li,B. et al. (2017) A comprehensive mouse transcriptomic BodyMap across 17
tissues by RNA-seq. Sci. Rep., 7, 4200.

Li,X. et al. (2020) Deep learning enables accurate clustering with batch effect
removal in single-cell RNA-seq analysis. Nat. Commun., 11, 1-14.

Lin,P. et al. (2017) CIDR: ultrafast and accurate clustering through imput-
ation for single-cell RNA-Seq data. Genome Biol., 18, 59.

Lopez,R. et al. (2018) Deep generative modeling for single-cell transcriptom-
ics. Nat. Methods, 15,1053-1058.

Menon,V. (2019) Clustering single cells: a review of approaches on high-and
low-depth single-cell RNA-seq data. Brief. Funct. Genomics., 18, 434.

Mieth,B. et al. (2019) Using transfer learning from prior reference knowledge
to improve the clustering of single-cell RNA-Seq data. Sci. Rep., 9,20353.

Muraro,M.]. et al. (2016) A single-cell transcriptome atlas of the human pan-
creas. Cell Syst., 3,385-394.¢3.

Qi,R. et al. (2020) Clustering and classification methods for single-cell
RNA-sequencing data. Brief. Bioinf., 21, 1196-1208.

Romanov,R.A. et al. (2017) Molecular interrogation of hypothalamic organization
reveals distinct dopamine neuronal subtypes. Nat. Neurosci., 20, 176-188.

Rousseeuw,P.J. (1987) Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. . Comput. Appl. Math., 20, 53-65.

Satija,R. et al. (2015) Spatial reconstruction of single-cell gene expression
data. Nat. Biotechnol., 33,495-502.

Schaum,N. et al. (2018) Single-cell transcriptomics of 20 mouse organs creates
a Tabula Muris. Nature, 562, 367-372.

Shao,X. et al. (2021) scDeepSort: a pre-trained cell-type annotation method
for single-cell transcriptomics using deep learning with a weighted graph
neural network. Nucleic Acids Res., [Epub ahead of print, doi:
10.1093/nar/gkab775, September 09, 2021].

Tian,T. et al. (2019) Clustering single-cell RNA-seq data with a model-based
deep learning approach. Nat. Mach. Intell., 1,191-198.

Wang,]J. et al. (2021) scGNN is a novel graph neural network framework for
single-cell RNA-Seq analyses. Nat. Commun., 12, 1882.

Wolf,F.A. et al. (2018) SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol., 19, 15.

Xie,]. et al. (2016) Unsupervised deep embedding for clustering analysis. In:
33rd International Conference on Machine Learning (ICML 2016). Vol. 48,
pp. 478-487, New York City, NY, USA.

Young,M.D. et al. (2018) Single-cell transcriptomes from human kidneys re-
veal the cellular identity of renal tumors. Science, 361, 594-599.

1202 JaquianoN 0g Uo 1sanb Aq 0£0ZE¥9/28.0€Iq/SONEULIOJUIOIG/E60 L 0 L /I0P/3 |l E-80UBADE/SOIELLIO)UI0IG/ W00 dNO"lWapeE/:sd)y WoJy papeojumod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data
https://github.com/ciortanmadalina/graph-sc
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.07308
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab787#supplementary-data

M.Ciortan and M.Defrance

Zappia,L. et al. (2017) Splatter: simulation of single-cell RNA sequencing
data. Genome Biol., 18, 174.

Zhang,Y. et al. (2020) SCEDAR: a scalable Python package for single-cell
RNA-seq exploratory data analysis. PLoS Comput. Biol., 16,e1007794.

Zheng,G.X.Y. et al. (2017) Massively parallel digital transcriptional profiling
of single cells. Nat. Commun., 8, 14049.

Zhu,L. et al. (2019) Semisoft clustering of single-cell data. Proc. Natl. Acad.
Sci. USA, 116, 466-471.

1202 JaquianoN 0g Uo 1sanb Aq 0£0ZE¥9/28.0€Iq/SONEULIOJUIOIG/E60 L 0 L /I0P/3 |l E-80UBADE/SOIELLIO)UI0IG/ W00 dNO"lWapeE/:sd)y WoJy papeojumod

