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ABSTRACT
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has 
become a global challenge and, if not properly disposed of, can spread contamination and viral 
diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically 
functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable 
by-products and extracting high value-added components from them is a sustainable approach 
to reclaim animal by-products while addressing scarce landfill resources. This article appraises the 
most recent studies conducted in the last five years on animal-derived proteins’ separation and 
biomedical application. The effort encompasses an introduction about the composition, an overview 
of the extraction and purification methods, and the broad range of biomedical applications of 
these ensuing proteins.

Introduction

Every year, the world’s growing population produces con-
siderable food waste (Baiano 2014; Abduh 2016; De 
Schouwer et  al. 2019), with discarded foods in North 
America and Europe alone accounting for three times the 
required food to feed the hungry people around the world 
(Stuart 2009).

Food waste can occur in the supply chain, food process-
ing, restaurants, supermarkets, and households during pro-
duction and processing. Generally, one-third of produced 
foods (1.3 billion tons per year) is wasted by humans during 
consumption (Haberl et al. 2011). According to the European 
Commission, about 39% and 42% of the European annual 
waste is produced during food processing and households, 
respectively (Figure 1a) (Nuutinen et  al. 2019; EC-Europa 
and  European Commission 2020). Yearly per capita waste 
food from the household of some countries around the 
world in 2020 is shown in Figure 1b (Statista 2022). 
Nevertheless, the scale of the food waste that is produced 
in Europe is more in the consumption stage. It is estimated 
that around 1.89 million tons of waste are generated 

annually in the European food industries (Table 1) (Zhu, 
Gavahian, et  al. 2020).

In light of the food industry products, according to 
International Food Container Organization (IFCO) report, 
α  45% of fruits and vegetables, 35% of all fish and seafood, 
30% of all cereals, 20% of all dairy products, and 20% of 
all meat and poultry products are wasted (Figure 1c). Table 
1 also includes an estimate of the mass of waste generated 
by European food industries, with the fruit and vegetable 
industry producing the most waste.

Food waste generation means wasting of all-natural 
sources such as water, land, and energy which are used for 
food production. The food processing industry, consumed 
117 petajoules of energy in 2017 and is the fourth largest 
industrial energy user that is linked to producing large-scale 
greenhouse gas and pollution (Ladha-Sabur et  al. 2019). 
This is an economic burden with environmental conse-
quences, such as pollution, climate change, the burden on 
scarce landfill, and an imbalance in standard environmental 
bioconcentrations (Mekonnen, Mussone, and Bressler 2016; 
Nayak and Bhushan 2019; Prandi et  al. 2019). Therefore, it 
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is essential to manage food waste and loss. Hence, in 2017, 
the department of the environment and energy of national 
food waste introduced a strategy to reduce, recycle and 
recover food waste. Figure 1d shows their hierarchy classi-
fication which is ranked from the most preferred to the 
least preferred approach, which is avoiding, reusing, recy-
cling, reprocessing, recovering energy, and finally disposing 
of. The European Commission and its member for 2030 
aim to halve food waste per capita (European 
Commission 2020).

By developing technology, there are many approaches and 
methods such as using chemical and biological sensors, 
smart packaging, and algorithms for monitoring the state 
of foods are in progress to reduce food waste (Aschan 2020). 
Several digital platforms and mobile applications like 
Pepperplate, Food.com, UBO, ECO dal frigo, PucciFrigo, 
Instock, Twiga Foods, Cheetah, and Plantix have been devel-
oped to track food consumption.

Extraction of high value-added components such as pro-
teins, polysaccharides, fibers, aromatic compounds, and 

Figure 1. A ) The percentage of the food waste during manufacturing, wholesale and retail, food services, and households in Europe (Nuutinen et  al. 2019; 
EC-Europa and  European Commission 2020), B) Annual per capita waste food from household of some countries around of the world at 2020 (Statista 2020), 
C) The percentage of food waste for various categories of food products according to food and agriculture organization (FAO) (Zhu, Gavahian, et  al. 2020), and 
D) Accepted waste management hierarchy approaches (most preferred to least preferred) (PECB).



 

Critical Reviews in Food Science and Nutrition 3

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

phytochemicals from food waste is a primary technique to 
use the extracted components as nutritional and pharmaco-
logically functional ingredients (Ng et  al. 2020; Abduh 2016; 
De Schouwer et  al. 2019). The type of biomolecule, the 
production scale (laboratory or industrial), the desired purity, 
and the economic value of the extracted compounds all play 
a role in selecting an appropriate extraction technique (Ng 
et  al. 2020; Mekonnen, Mussone, and Bressler 2016; De 
Schouwer et  al. 2019). To extract proteins from food-by-
products, a variety of procedures have been developed, 
including enzymatic methods (Gaurav Kumar et  al. 2017), 
high pressure and high temperature (Fowler et  al. 2012), and 
acid or alkaline-based (Hukmi and Sarbon 2018) approaches. 
Collagen, gelatin, keratin, silk fibroin, sericin, and elastin are 
the primary proteins found in bio-waste (Biswal, Kumar 
BadJena, and Pradhan 2020; Liu et  al. 2019; Rajabi et  al. 
2020; Feroz et  al. 2020; Cascone and Lamberti 2020). These 
proteins are nontoxic, biodegradable, processable and easy 
to modify in terms of physiochemical structure and therefore 
have widely used in biomedical engineering (Biswal, Kumar 
BadJena, and Pradhan 2020; Liu et  al. 2019; Rajabi et  al. 
2020; Feroz et  al. 2020; Cascone and Lamberti 2020). Several 
studies (Diogo et  al. 2018; Manikandan et  al. 2018; Wang, 
Sun, et  al. 2019; Ang et  al. 2020; C. Ding et  al. 2020; 
Ghorbani et  al. 2020) have indicated that incorporating pro-
tein polymers into tissue engineering scaffolds improves cell 
adhesion and proliferation. Drug delivery methods with con-
trollable biodegradability and enzyme immobilization capa-
bilities in the form of micro/nano-scale particles, fibers, films, 
and 3 D printed scaffolds have also made extensive use of 
protein-based biomaterials (Silva et  al. 2014; Costa, Silva, 
and Boccaccini 2018a; Zhang, Lu, et  al. 2021; Han et  al. 
2022; Agnieray et  al. 2021).

Cao et  al. currently reviewed the preparation, extraction, 
and application of animal by-products collagen (Cao et  al. 
2021). A comprehensive review of silk sericin and its appli-
cation for tissue engineering has been published by Maria 
C. Arango (Arango et  al. 2021). However, there is a lack 
of a comprehensive review article on protein from animal 
by-products to help readers to realize the differences 
between these proteins’ composition, properties, extraction, 
isolation methods, purification process, and their potential 
as a biomaterial for biomaterials engineering. Herein, we 
discuss the composition of common proteins, including 
collagen, gelatin, keratin, silk fibroin, and elastin; review 

the protein extraction and purification methods; and crit-
ically summarize these proteins’ applications for biomaterials 
engineering.

Protein by-products derived from animals

The demand for meat and meat products has increased 
globally over the last 20 years (González et  al. 2020). In 
2020, more than 400 million metric tons of fish, poultry, 
pig, beef and veal, and Atlantic salmon were consumed 
globally (Statista 2022). Figure 2a shows the daily per capita 
protein supply in 2017 in different countries; most countries 
supply more than 80 g of protein per day, indicating that 
animal is a major source of protein (FAO 2017). It is antic-
ipated that a 30% rise in the current world population will 
result in a 70% increase in food demand by 2050. According 
to FAO and IFCO classifications, waste from animal 
by-products (fish and seafood, as well as meat and poultry 
products) accounts for 50 to 55% of total food waste at all 
stages(González et  al. 2020).

Farm animals, dairy products, fishing, and the textile 
industry are just a few of the industries that generate waste 
from animal products (Abascal and Regan 2018). Farm ani-
mal waste, such as carcasses, hides and skin, feathers, wool, 
hooves and horns, offal, eggshell, bones, fats, meat trim-
mings, blood, and other fluids; waste from fishing, other 
than by-catches, shells, bones, skins, fins, viscera, oils, and 
blood are examples of industrial processing waste of animal 
origin (Uranga et  al. 2020; Flachowsky, Meyer, and Südekum 
2017; Alao et  al. 2017). Non-conforming wool and silk fibers 
are among the textile industry’s waste (Abascal and Regan 
2018). We, therefore, require novel and green technologies 
and methods for repurposing animals’ waste.

The use of animal by-products is determined by their 
classification. Animal by-products are classified based on 
structure, shape, muscularity, and color, and the classification 
varies by country (Fayemi et  al. 2018). Non-carcass meat 
that is safe for human consumption (as determined by a 
licensed public health inspector) and non-meat 
(non-consumable) by-products are two categories. The ani-
mal liver, tongue, heart, and kidney are non-carcass meat, 
while bones, skin, hide, horns, hair, feather, hove, and bristle 
are placed into the non-meat group (Fayemi et  al. 2018). 
These by-products are high in proteins, amino acids, 

Table 1. E stimates of the mass of waste generated in the European food industries (Zhu, Gavahian, et  al. 2020).

Industrial sector Amount of waste (*1000 tons) Waste (%)

Production, processing, and preserving of meat 
and meat products

150 2.5

Production, processing, and preserving of fish 
and fish products

8 3.5

Production, processing, and preserving of fruits 
and vegetables

279 4.5

Manufacture of vegetable and animal oils and 
fats

73 1.5

Dairy products and the ice cream industry 404 3
Production of grain and starch products 245 1.5
Manufacture of other food products 239 2
Drinks industry 492 2
Total 1890
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important nutrients such vitamins B1, B2, B6, minerals, and 
unsaturated fat, and can be used for human and animal 
food, as well as fertilizer, cosmetics, pharmaceuticals, and 
biomedical engineering (Figure 2b). It has been reported 
that over 2 billion people worldwide, specifically in devel-
oping countries, suffer from deficiency of vitamins and 
minerals, including iron and zinc. Approximately 20 g/day 
of protein from meat, fish, egg, and milk is necessary to 
meet these people’s dietary needs. As a result, edible proteins 
sources can be used to compensate for insufficient protein 
intake (Cao et  al. 2021). The inedible animals’ by-products 
cannot be used by humans, so are rejected as waste, or 
reproduced into the secondary components. Table 2 sum-
marizes the inedible animal by-product’s and current pri-
mary uses and applications. For example, cattle manure, pig 
waste, poultry litter, and solid waste generated from meat 
processing are used in the biogas industry as fuel in the 
cyclonic combustor and electric power production (Alao 
et al. 2017). The hides and skins removed from a slaughtered 
animal are used in the cosmetic and fabric industry to 
produce shoes, belts, bags, gelatin, and keratin (Alao et  al. 
2017; Falowo et  al. 2018). Moreover, some research has 
shown that chemical and biochemical extracts from animal 
by-products can be used to treat a variety of medical dis-
eases. However, some issues related to the use of inedible 
proteins should be considered, such as the accumulation of 
heavy metals in the dried rumen or the disease that can be 
transmitted from animal to human such as bovine spongi-
form encephalopathy infection (Alao et  al. 2017).

Structure, composition, and sources of common 
animal by-products proteins

The properties of the proteins such as elastin and silk are 
intrinsically linked to their composition, typically multiple 
tandem repeats of short amino acid sequences. Depending 
on how these amino acids are connected, a protein will be 
endowed with certain qualities (Biswal, Kumar BadJena, and 
Pradhan 2020; De Schouwer et  al. 2019; Lo and Fauzi 2021). 
Figure 3 shows animal sources and primary structures of 
some common proteins.

Collagen

Collagen is the most abundant protein in the Extra cellular 
Matrix (ECM) of the human body that comprises 25-35% 
of the total body content (Lim et  al. 2019), which is known 
as a viscoelastic material with high tensile strength. At least 
29 types of collagens have been identified to date, varying 
in function, distribution, and range in tissues (Lim et  al. 
2019). Over 90% of the available collagen in the human 
body is the type I, while other common collagens are types 
II, III, and IV (Abascal and Regan 2018; Lim et  al. 2019; 
Ocak 2018; Yavuz et  al. 2020). Table 3 presents the most 
common collagen types in mammalian tissues.

Collagen is a trimeric molecule whose fundamental struc-
ture with three polypeptide α chains, two amino acid α1 
chains, and one amino acid α2 chain (Figure 4a(left)) with 
a diameter of 10 to 500 nm, a molecular weight of 285 kDa, 
and a length of 1400 amino acids (Jafari et  al. 2020; Avila 
Rodríguez, Rodríguez Barroso, and Sánchez 2018; Subhan 
et  al. 2021). Collagen has a characteristic tertiary triple helix 
structure dominated by the X-Y repeats of glycine, where 
X is generally hydroxyproline, and Y is proline, which is 
associated with homo- or heterotrimeric (Figure 4a(right)) 
(Jafari et  al. 2020). The presence of hydroxyproline in col-
lagen is believed to contribute to its thermo-stability; muta-
tions that suppress hydroxyproline at various points in the 
collagen sequence significantly decrease its thermal dena-
turation temperature (Abascal and Regan 2018). Glycine and 
alanine make up more than 50% of the amino acids in 
collagen, while proline and hydroxyproline make up about 
20%. The presence of glycine is vital for the rotational free-
dom required to form the helical structure of collagen. This 
tertiary triple helix collagen structure assembles more com-
plex supramolecular structures such as fibrils, beaded fila-
ments, hexagonal networks, and anchoring fibrils (Coppola 
et  al. 2020; Abascal and Regan 2018; Liu et  al. 2019; Ocak 
2018). Covalent bonds are formed between several collagen 
molecules in cross-sections to form collagen fibrils’ basic 
units (Ahmed, Haq, and Chun 2019).

Gelatin

Gelatin is a biopolymer made from native collagen that has 
been denatured. It has comparable structures to collagen. 
Gelatin ensues from the partial acid or alkaline hydrolysis 
of animal collagen extracted from bovine (Cao, Wang, et  al. 

Figure 2. A ) The daily per capita protein supply at 2017 for each country (FAO 
2020), B) Some of the applications for animal by-products.
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2020), fish (Mahjoorian et  al. 2020), and porcine (Rohman 
et  al. 2020) connective tissues such as skin and bones 
(Al-Hassan 2020; Tan, Karim, et  al. 2020; Kim, Ham, et  al. 
2020). By means of alkali or acid pretreatment, the 
triple-helical collagen structure is cleaved into single protein 
chains, and this reaction yields gelatin as a water-soluble 
hydrolysis product (Figure 4b). The triple-helical structure 
of collagen chains is changed to a random coil structure 
(helix-to-coil transition) in gelatin production using heat 
that destroys the hydrogen and covalent bonds. Therefore, 
the ensuing gelatin shows a lower molecular weight of poly-
peptides between 16 to 150 kDa. Gelatin consists of ∼ 
98-99% (by dry weight) protein and contains 18 amino 
acids, including eight of the nine amino acids essential for 
humans (Ahmad et  al. 2019). Gelatin is water-soluble, and 
has the ability to form thermally reversible gels (Ahmad 
et  al. 2019).

Keratin

After collagen, keratin is the most important structural bio-
polymer found in animal bodies (Chilakamarry et  al. 2021). 
As depicted in Figure 4c (left), keratin has some similarities 
and differences with collagen. α -helix polypeptide chains 
of both proteins constitute a well-defined amino acid 
sequence that is made of smaller amino acid residues such 
as alanine and glycine. In collagen, three α -helices (tropo-
collagen) twist together to form the collagen fibril, while, 
in keratin, coiled-coil is formed with two polypeptide chains 
twisting together (α -keratin) (Figure 4c (right)) [54]. 
Keratin, unlike collagen, is a non-vascularized tissue because 
keratinocytes (keratin-producing cells) die after producing 
keratin (Chilakamarry et  al. 2021; Reddy et  al. 2021). Based 
on the sulfur content, keratin can be classified into two 

groups: a) hard keratin–with ∼ 5% of sulfur content, which 
is found in hair, horns, nails, and feather and has high 
strength due to its high content of cysteine; and b) epider-
mal keratin with 1% of sulfur content, known as soft keratin 
(Nuutinen et  al. 2019). β � -helix and α  sheet are two 
conformations that can be seen in the keratin ( β  -keratin 
and α  -keratin). Even though both α  -keratin and α  
-keratin are rich in cysteine and have large number of disul-
fide crosslinks, they are very different in their secondary 
and tertiary structures. β -keratin is a helical protein, which 
forms into coils and finally turns into helical filaments 
(Wang et  al. 2021). β -keratin and � -keratin in their func-
tional form are usually incorporated into an amorphous 
matrix (Wang et  al. 2021). °C -keratin exhibit other func-
tions as well, such as the structure and color in birds’ feath-
ers (Qiu et  al. 2020).

Silk fibroin

Silk is a natural protein mainly derived from Nephila clavipes 
and Araneus diadematus spiders, Bombyx mori (B. mori) 
domestic silkworms, Antheraea pernyi, and Samia cynthia 
ricini wild silkworms (Costa, Silva, and Boccaccini 2018b). 
Silk mainly comprises a core protein fibroin (72-81%) and 
its glue-like coating sericin (19-28%) (Figure 4d), and small 
amounts of fat, color, and ash (1.8-2.4%). Each silk fiber 
constituents of two silk fibroin filaments that are assembled 
from microfibrils and nanofibrils with a diameter of 20-200 
and 3-5 nm, respectively (Ling et  al. 2018).

Silk fibroin consists of two chains with different molec-
ular weights; a heavy chain with a molecular weight of 
∼390 kDa and a light chain with terminal C and N groups 
with a molecular weight of >∼26kDa (Guo, Li, and Kaplan 
2020). Silk fibroin chain structure presents a non-covalently 

Table 2. S ummary of current primary uses and applications of the inedible animal by-product and their extracted components.

Animal By-Products Reprocessed Products Major Uses Ref

Bone Extraction of collagen Collagen, gelatin, and bone meal (Irshad and Sharma 2015; Bah et  al. 2013; ur Rahman, 
Sahar, and Khan 2014; Alao et  al. 2017; Atef et  al. 
2020; He, Lan, et  al. 2020; Sousa et  al. 2020; Tan, 
Karim, et  al. 2020; Kim, Ham, et  al. 2020)

Skin, Hide Cured hides and skin, textile, 
leather

Leather clothes, belts, household 
upholsteries, bags, footwear, 
drums, luggage, wallets, sports 
goods, gelatin, etc.

(Irshad and Sharma 2015; Rahman, Sahar, and Khan 
2014; Bai, Wei, and Ren 2017; Atef et  al. 2020; He, 
Lan, et  al. 2020; Sousa et  al. 2020; Tan, Karim, et  al. 
2020; Kim, Ham, et  al. 2020)

Hair, Wool Keratin extraction and textile Keratin, cloth, carpet, matters, 
woven fabrics, and insulators, 
adhesive, biocomposites

(Scobie et  al. 2015; Liu et  al. 2013; Shavandi and Ali 
2018; Shavandi and Ali 2019b, 2019a; Ramya, 
Thangam, and Madhan 2020; He, Xu, et  al. 2020; Su 
et  al. 2020; Ge et  al. 2021; Tasaki 2020; Wang et  al. 
2018; Rajabinejad et  al. 2018)

Organ, Gland Medicinal and pharmaceutical Heparin, enzymes, steroid, trypsin, 
insulin, estrogen, corticotrophins 
and progesterone

(Irshad and Sharma 2015; Rahman, Sahar, and Khan 
2014; Alao et  al. 2017; Grønlien et  al. 2019; Vidal 
et  al. 2020; Araújo et  al. 2021; Schmidt et  al. 2020; 
Saenmuang, Phothiset, and Chumnanka 2020; 
Mirzapour‐Kouhdasht et  al. 2019)

Horns, Hoof Hoof and horns meal, 
extraction of keratin and 
collagen

Collagen, keratin, buttons, plates, 
fertilizer, glue, gelled food,

(Alao et  al. 2017; Karjalainen et  al. 2021; Purwaningsih 
and Triono 2019; Feroz, Muhammad, Ratnayake, et  al. 
2020; Pataridis, Romanov, and Mikšík 2019)

Blood Pharmaceutical products and 
blood meal

Tennis strips, fertilizer, animal feed, 
stabilizer, emulsifier and blood 
pudding

(Irshad and Sharma 2015; Rahman, Sahar, and Khan 
2014; Alao et  al. 2017; De Boeck et  al. 2018; Tabani 
et  al. 2018)

Intestine Sausage casting, suture, and 
musical instruments

Burn dressing, pet food, human 
food, meat meal, sausage, string 
for musical instruments

(Irshad and Sharma 2015; Alao et  al. 2017),
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Figure 3. N atural sources and primary structures of common proteins extracted from animal by-products (Adapted from (Abascal and Regan 2018)).

Table 3. D istribution of the most common collagen types within mammalian tissues (Coppola et  al. 2020; Bielajew, Hu, and Athanasiou 2020; Shulman et  al. 
2021; Senadheera, Dave, and Shahidi 2020; Kim, Kim, Yeon, et  al. 2018; Zhang et  al. 2018; Davis et  al. 2020; Akram and Zhang 2020b).

Collagen type Tissue Application/ function in the human body

I Bone, skin, ligaments, cornea Membranes for guided tissue regeneration
II Cartilage, vitreous body, nucleus pulposus, cornea, reticular fiber Arthritis treatment and cartilage repair
III Skin, vessel walls, reticular fibers of lungs, liver, spleen Hemostats and tissue sealants
IV Basement membranes Enhancer for cell attachment and diabetic nephropathy 

indicator
VI Cornea (often associated with type I collagen), dermis, lungs, 

cartilage, intervertebral disk, placenta
Hemostat
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linked glycoprotein with a molecular weight of 27.7 kDa and 
provides integrity to the whole structure, which their molar 
ratio is 6:6:1(Nguyen et  al. 2019). Silk is a large protein 
(approximately 200-350kDa or more) that interrupts repet-
itive modular hydrophobic domains of its structure by small 
hydrophilic groups (Figure 4d (right)). The hydrophobic 
domains are composed of glycine-x (45.9%), where “x” can 
be either alanine (30.3%), serine (12.1%), tyrosine (5.3%), 
or valine (1.8%) that transited into the β-sheet structure 
(Ma, Wang, and Dai 2018). In comparison, the random coils 
and helical structure are assembled by hydrophilic domains 
with alanine (14%), serine (10%), glycine (9%), and acetyl-
ated N-terminal. The random coil structure can be trans-
formed into a structure of β-sheet by mechanical stretching 
and absorption of moisture (Ma, Wang, and Dai 2018). 
Different chemical groups such as amines, carboxyl, alcohols, 
and thiols make silk fibroin an ideal material for chemical 
modifications.

Sericin is made up of 18 amino acids, 70% of which 
are hydrophilic with an isoelectric point of around 4, 
allowing it to absorb considerable amounts of water while 
remaining partially soluble (Vickers 2017). The main con-
figuration of sericin is amorphous (63%) that can easily 
change to the β-sheet by mechanical stretch and moisture 
absorption. Sericin, based on its molecular weight, solu-
bility, and distance from silk fibroin is divided into three 
groups: type A is the outer layer and is soluble in water 
at a temperature of 60 > , type B is the middle layer and 
has the same solubility as type A, and type C is the 

innermost layer and is soluble in water at more than 83 >  
(Arango et  al. 2021). The molecular weight of sericin has 
been reported to range from 10-400 kDa, depending on 
the extraction method, pH, temperature, and processing 
time (Arango et  al. 2021).

Elastin

With a half-life longer than 70 years (Wen, Mithieux, and 
Weiss 2020), elastin is one of the most stable proteins. It 
has been shown that elastin positively influences cell 
growth, phenotype, adhesion, and proliferation (Wen, 
Mithieux, and Weiss 2020; Cabello et  al. 2018). Elastin is 
synthesized by elastogenic cells such as smooth muscle, 
fibroblasts, and endothelial cells (Wen, Mithieux, and Weiss 
2020). By encoding a single-copy ELN gene, these cells 
secrete tropoelastin, a water-soluble precursor of elastin 
comprising 65-70 KDa hydrophobic and hydrophilic domains 
(Wen, Mithieux, and Weiss 2020). Predominantly hydro-
phobic residues constitute valine, alanine, proline, and gly-
cine, whereas lysine and alanine compose the hydrophilic 
domains. The insoluble elastin fibers are produced from 
tropoelastin through extensive cross-linking with the matrix 
(Wen, Mithieux, and Weiss 2020; Cabello et  al. 2018), fol-
lowed by oxidation by the lysyl oxidase. This enzyme oxi-
dizes most of the lysine residues in tropoelastin to form 
further covalent crosslinks (Halabi and Mecham 2018). Four 
lysine residues from desmosine and isodesmosine are the 

Figure 4. A ) Collagen fibers, fibrils, and triple helix structure which are dominated by the glycine-proline-hydroxyproline repeats(left), collagen amino acid 
chains structure (right) (Adapted from (Jafari et  al. 2020)), B) Transformation of the triple-helical structure of collagen chains into the gelatin chain by using 
heat (Adapted from (Kaewdang 2014)), C) microfibril, intermediate filament, and coiled-coil of two α-helixes structure of keratin (left) (Lee et  al. 2014) and 
schematic representation of the coiled-coil structure of keratin, the anti-parallel orientation of two dimers join side-by-side, two protofilaments intertwine to 
form protofibrils (right) (Adopted from (Banerjee et  al. 2014)), and D) schematic represents two fibroin fibers of silkworms are covered by sericin, and an 
amorphous matrix containing β-sheet crystallite of silk fibroin fibers (left), and schematic represents hydrophobic and hydrophilic domains of the heavy chain 
of silk fibroin (right) (Adapted from (Jao, Mou, and Hu 2016)).
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major crosslinks in elastin. Other less frequent crosslinks 
in elastin are lysinonorleucine, and allysine aldol (as shown 
in Figure 5) (Halabi and Mecham 2018).

Pretreatment, extraction, recovery, and purification 
of common animal by-products proteins

The process of producing proteins from animal by-products 
is divided into four main stages, and the quality of the 
extracted proteins highly depends on the performance of 
these steps: preparation, pretreatment, extraction, recovery, 
and purification (Jafari et  al. 2020). Although some pre-
treatment and extraction methods are similar for all animal 
by-product proteins, usually the method can vary depend-
ing on the target protein. Summary of extraction methods 
for proteins documented in the literature is listed in 
Table 4.

Collagen and gelatin pretreatment and extraction
Non-collagen components should be eliminated before 
extracting collagen from animal by-products. Some pretreat-
ment processing like swelling, degreasing, demineralization, 
and degreasing are used for this purpose. Using alkali treat-
ment with NaOH, raw materials swells and the non-collagen 
components are removed. Although NaOH concentration 
and solvents temperature can be varied based on the raw 
materials and degree of collagen crosslinking, it has been 
reported to prevent using a concentration higher than 
0.5 − 1 M NaOH at the temperature of 4 to 20 °C to avoid 
damage to the collagen structure. Hydrochloric acid and 
EDTA are used to demineralize the collagen, which is a key 
step in the extraction process. At the same concentration 
of hydrochloric acid and EDTA, EDTA showed better decal-
cification than hydrochloric acid from animal bones and 
fish scales. Ethanol, n-hexane, and ethyl ether are used to 

remove the fats. It has been reported that the effect of the 
pretreatment method on the degree of hydrolysis of bovine 
collagen was significant so that the effectiveness trend of 
treatment methods was Boiled >  high preussure >
 untreated (Zhang et  al. 2013). New techniques such as high 
pressure, microwave, ultrasound, and pulsed electric fields 
can also assist traditional collagen pretreatment methods 
(Chotphruethipong, Aluko, and Benjakul 2019a, 2019b). The 
cavitation produced by a high frequency of ultrasound irra-
diation can damage raw materials and break them into 
smaller pieces, so the contact area for protein extraction 
increases (Zou et  al. 2020a). The shear rate produced by 
cavitation bubbles is inversely proportional to their size, so 
when the higher ultrasonic frequency is applied, the shear 
rate increases while the length of the bubbles decreases 
(Figure 6c (right)) (Zou et  al. 2020a; Ojha et  al. 2020). 
Boiling and high-pressure pretreatment influences the degree 
of hydrolysis of bovine collagen, with boiling having a higher 
efficacy than high pressure (Hong et  al. 2019).

Enzymatic hydrolysis is the most common method for 
collagen extraction, as it is a mild reaction with minimum 
side effects and minimal damage to the structure of the 
extracted protein (Jin et  al. 2019). The use of pepsin as an 
enzymatic pretreatment agent allows for the cleavage of the 
telopeptide regions of the triple helix, which is called pepsin 
soluble collagen (PSC). Consequently, pepsin facilitates the 
leaching of collagen peptides in solution and eventually 
increases the extraction yields (Grønlien et  al. 2019). 
Trypsin, papain, alkaline protease, bromelain, pancreatin, 
and lactase are some of the other enzymes that have been 
used to extract collagen. Factors such as type of enzyme, 
enzyme concentration, hydrolysis time, and the ratio of solid 
to liquid (S/L) affect the enzymatic extraction process. The 
degree of hydrolysis of bovine collagen with various enzymes 
has been reported to be as follows: alcalase > collagenase °C  
proteinase °C trypsin ≈ thermolysin ( )NH SO4 2 4 pepsin (Zhang 
et  al. 2013).

The second common method for collagen extraction is 
chemical hydrolysis like acid, alkali, and salt, which are 
cheaper and more straightforward than enzymatic hydrolysis 
(Dhakal et  al. 2018). Acid-soluble collagen (ASC) (Figure 
6a) is a method to demineralize and extract collagen at low 
temperatures by using organic or inorganic acids. Organic 
acids have a higher extraction rate than inorganic acids. Acid 
breaks the inter and intramolecular bonds present in the 
collagen helix and enhances the extraction efficiency, acids 
can depolymerize the heavy-weight proteins into shorter 
peptides. Hydrochloric acid and acetic acid are often used 
for collagen extraction (Jafari et  al. 2020; Coelho et  al. 2017; 
Noorzai et  al. 2019; Chinh et  al. 2019). The acid concentra-
tion is crucial in the production of ASC, and it typically 
varies from 0.5 to 1 M. This acid concentration must break 
inter and intramolecular crosslinks while not affecting the 
collagen chain structure (Blanco et  al. 2019; Bai, Wei, and 
Ren 2017). A small negative effect on the yield was observed 
when the acetic acid concentration was the highest (1.05 M) 
caused by undesirable side reactions such as a change in the 
collagen chain structure (Meng et al. 2019). Other parameters 

Q2

Figure 5. T he chemical structures of crosslinking elastin’s amino acids: tetra 
functional desmosine, isodesmosine, allysine, and lysinonorleucine (Adapted 
from (Schräder et  al. 2018)).
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Table 4. S ummary of "Extraction methods for proteins," documented in the literature.

Composition Waste sources Extraction Type Solvent/Enzyme
Pretreatment, extraction 
parameters and yield (Y) Remarks Ref

Collagen Giant croaker, 
(Nibea japonica)

PSC Pepsin S/L = 1:60
Time = 8.5 h
T = 4 °C
AcOH = 0.5 M
Pepsin = 1389 U/g,
Y = 84.85%

triple-helical structure of psc 
zqs reserved.

(Coelho et  al. 
2017)

Bull, calf, cow, 
face-pieces, and 
ox-hides

ASC, PSC, and 
modified 
acid-enzyme 
solubilization 
(MAPSC)

Acetic acid 
Pepsin

Y = 75.13% MAPSC, 
74.45% PSC, and 3.80% 
ASC

MAPSC was inefficient for 
collagen extraction

(Noorzai et  al. 
2019)

Carp Fish Scale ASC Acetic acid AcOH = 0.5 M
T = 4 °C
Time = 48 h
Y = 13.6%

collagen contains 18 amino 
acids with tryptophan

(Chinh et  al. 
2019)

Turkey tendon ASC and PSC Acetic acid and 
pepsin

AcOH = 0.5 M
T = 4 °C
Time = 48 h

Collagen type I and III with 
preserved native triple 
helix. High thermal 
stability

(Grønlien et  al. 
2019)

Codfish skins DES extraction ChClOA (oxalic), 
ChCl-HAC 
(acetic), 
ChCl-La 
(lactic), 
ChCl-EG 
(ethylen 
glycol), and 
ChCl-G 
(glycerol), as 
well as ChCl-U 
(urea)

T = 25-75 °C
Time = 1-7 h
L/S = 60:1-160:1
Y = 11.45-99%

extraction abilities: ChClOA >  
ChCl-HAC >  
ChCl-La > ChCl-EG > 
 ChCl-G > ChCl-U,

(Bai, Wei, and 
Ren 2017)

clown featherback 
(Chitala ornata) 
skin

ASC and ultrasound Acetic acid AcOH = 0.5 M
S/L = 1:15
Time = 48 h 
T = 4 °C
Frequency = 20 kHz
Ultrasound treatment 

time = 10-30min
Y = 23.46-57.35%

By increasing ultrasonication 
time yield of collagen 
increased

(Petcharat et  al. 
2021)

Nile tilapia skin 
(Oreochromis 
niloticus)

ASC Acetic acid AcOH = 0.35-1.05 M
Time = 31-65 h
T = 4-20 °C
Y = 13.5-19%

Lower acid concentration and 
higher temperature and 
time obtained better yield. 
Higher temperature and 
time maintained triple 
helix integrity

(Menezes et  al. 
2020)

P. olivaceus skin PSC Pepsin AcOH = 0.5 M
Pepsin = 1:100
Time = 24 h
T = 4 °C
Y = 29.30%

increasing collagen yield 
without damaging to the 
its structure

(Chandika et  al. 
2021)

lamb and sheep 
by-products

PSC Pepsin AcOH  = 0.5 M
Time = 3 days
T = 4 °C
Y = 18% lamb and 12.5% 

by-products

collagen type I and an MW 
between 100 and 5 kDa.

(Vidal et  al. 2020)

Chicken sternal 
cartilage

PSC and 
ultrasound-PSC

Pepsin AcOH = 0.5 M
Time = 96 h
T = 4 °C
Frequency = 20-25 kHz
Ultrasound treatment 

time = 36 min
Y ≅
 40-80%

Ultrasound treatment time 
changed secondary 
structure of collagen

(Akram and 
Zhang et  al. 
2020c)

Chicken feet ASC and PSC Acetic acid and 
pepsin

AcOH = 0.5 M
Time = 24 h
S/L = 1:10 (w/v)
T = 4 °C

(Araújo et  al. 
2021)

Sturgeon fish skin ASC and PSC Acetic acid and 
pepsin

AcOH = 0.5 M
Time = 48 h
T = 4 °C
Pepsin = 20 U.g-1

S/L = 1:15
Y = 9.98% ASC, and 9.08% 

PSC

collagen type I, Glycine 
content was 21.14% and 
21.58% for ASC and PSC, 
respectively.

(Atef et  al. 2020)

(Continued)
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1112 

1113 

1114 

1115 

1116 

1117 

1118 

1119 

1120 

1121 

1122 

1123 

1124 

1125 

1126 

1127 

1128 

1129 

1130 

1131 

1132 

1133 

1134 

1135 

1136 

1137 

1138 

1139 

1140 

1141 

1142 

1143 

1144 

1145 

1146 

1147 

1148 

1149 

1150 

1151 

1152 

1153 

1154 

1155 

1156 

1157 

1158 

1159 

1160 

1161 

1162 

1163 

1164 

1165 

1166 

1167 

1168 

1169 

1170 

1053 

1054 

1055 

1056 

1057 

1058 

1059 

1060 

1061 

1062 

1063 

1064 

1065 

1066 

1067 

1068 

1069 

1070 

1071 

1072 

1073 

1074 

1075 

1076 

1077 

1078 

1079 

1080 

1081 

1082 

1083 

1084 

1085 

1086 

1087 

1088 

1089 

1090 

1091 

1092 

1093 

1094 

1095 

1096 

1097 

1098 

1099 

1100 

1101 

1102 

1103 

1104 

1105 

1106 

1107 

1108 

1109 

1110 

1111 

Pig skin PSC Pepsin AcOH = 0.5 M
pH = 2.2
T = 4 °C
Time = 18 h

The initial enzyme 
concentration has a 
significant effect on 
immobilization.

(He, Lan, et  al. 
2020)

Tilapia and Gray 
mullet scales

ASC Acetic acid AcOH = 0.5 M
T = 4 °C
Time = 3 days
Y = 40%

all the extracted collagens 
have inhibitory activity

(Shalaby et  al. 
2020)

Atlantic cod (Gadus 
morhua) skins

Supercritical fluids 
technology

CO2 T = 37 °C
P = 50 bar
Time = 3 h
Y = 13.8%

Supercritical fluids technology 
is an environmentally 
sustainable process

(Sousa et  al. 
2020)

Chicken lung PSC and 
ultrasound-PSC

Pepsin Pepsin = 2000 (U. g-1)
Time = 5-50 h
AcOH = 0.5 M
Ultraound power = 0-200 W 
Max yield = 31.25%

collagen containing more 
imino acid has more 
thermal stability

(Zou et  al. 2020a)

Chicken meat 
residue

PSC Pepsin AcOH = 0.5 M
Pepsinα
 400
S/L = 1:15 (w/v)
Time = 3 days
T = 4 °C

The degree of hydrolysis was 
obtained using Alcalase 
was 36.11%, and 
Flavourzyme was 12.02%.

(Schmidt et  al. 
2020)

Fringescale 
sardinella 
(Sardinella 
fimbriata) waste

ASC and PSC Acetic acid and 
pepsin

AcOH = 0.5 M
Time = 30 and 36 h
T = 4 °C
Y = 7.48% ASC and 0.96% 

PSC

no remarkable difference 
between collagen 
extracted by ASC and PSC

(Hamdan and 
Sarbon 2019)

Gelatin Camel skin 
(Camelus 
dromedarius)

Thermal and chemical 
pretreatment 
method

Distilled water Ca(OH)2 = 1.3 M
Ammonium sulfate = 4% 
TimeP* = 48 h 
TP* = 25 °C
Time = 5 h
T = 75 and 90 °C
Y = 36.8-42.4%

Gel bloom was 72.08–
122.87  g, melting point 
18.4–21.6  °C and a gelling 
point 15.2–11.1  °C.

(Al-Hassan 2020)

Black tilapia skin Water extraction Citric acid and 
water

NaOH = 0.5 M
TimeP = 4 h
TP = 25 °C
Citric acid = 0.3 M
T = 45, 55, 65, and 75 °C
Time = 12 h
Y = 10.79, 11.52, 14.91, 

and 18.27%

Increasing the gelatin yield 
by temperature

(Tan, Karim, et  al. 
2020)

Duck skin Water bath extracting 
method

tap water T = 60 °C
Time  = 10min
Y = 11.71%

Assessment to the highest 
gelatin yield with the 
superheated steam 
extraction method

(Kim, Ham, et  al. 
2020)

Sonication extraction 
method

T = 60 °C
Time  = 10min
Frequency = 40 kHz
Y = 26.15%

Superheated steam 
extraction method

T = 150 °C
Time  = 10min
Y = 44.02%

Microwave extraction 
method

Frequency = 2450 MHz
Power  = 200W
Time  = 10min
Y = 28.51%

Camel skin Water extraction water Sulfuric acidP = 0.1 M
TimeP = 3 days
TP = 10 °C
Time = 3-5 h
T = 50 °C
Ymax = 29.1%

The maximum gelatin yield 
from camel skin was 
obtained at 71.87 °C and 
pH 5.26 after 2.58 min.

(Kim, Ham, et  al. 
2020)

Black-bone and 
skin chicken 
by-products

Water extraction Water NaOHP1 = 0.025, 0.050, and 
0.075 N

TimeP1 = 80 min
TP1 = 22 °C
Sulfuric acidP2 = 15% (v.v-1)
TimeP2 = 40 min
Time = 15 h
T = 40 °C
Y = 9.53-10.59%

The NaOH concentration did 
not show a strong effect 
on the physicochemical 
properties of gelatins.

(Saenmuang, 
Phothiset, and 
Chumnanka 
2020)

Table 4.  (Continued).

Composition Waste sources Extraction Type Solvent/Enzyme
Pretreatment, extraction 
parameters and yield (Y) Remarks Ref

(Continued)
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1230 

1231 

1232 

1233 

1234 

1235 

1236 

1237 

1238 

1239 

1240 

1241 

1242 

1243 

1244 

1245 

1246 

1247 

1248 

1249 

1250 

1251 

1252 

1253 

1254 

1255 

1256 

1257 

1258 

1259 

1260 

1261 

1262 

1263 

1264 

1265 

1266 

1267 

1268 

1269 

1270 

1271 

1272 

1273 

1274 

1275 

1276 

1277 

1278 

1279 

1280 

1281 

1282 

1283 

1284 

1285 

1286 

1287 

1288 

1171 

1172 

1173 

1174 

1175 

1176 

1177 

1178 

1179 

1180 

1181 

1182 

1183 

1184 

1185 

1186 

1187 

1188 

1189 

1190 

1191 

1192 

1193 

1194 

1195 

1196 

1197 

1198 

1199 

1200 

1201 

1202 

1203 

1204 

1205 

1206 

1207 

1208 

1209 

1210 

1211 

1212 

1213 

1214 

1215 

1216 

1217 

1218 

1219 

1220 

1221 

1222 

1223 

1224 

1225 

1226 

1227 

1228 

1229 

Bovine bone Water extraction Water AcOHP = 0.05 M
Hydrochloric acidP = 0.05 M
Citric acidP = 0.05 M
TimeP = 26 h
TP = 25 °C
T = 70 °C
Time = 7 h
pH = 5 
Y = 4.25-11.75%

citric acid disrupted more 
collagen structure than 
acetic acid and 
hydrochloric acid

(Cao, Wang, et  al. 
2020)

Crap by-products Water extraction Water (1) Ultrasound assistedP
PowerP1 = 50, 100, and 

150 W
TimeP1 = 5, 24, and 45 min
TP1 = 50 °C
Y = 19.80-27.00%
(EC-Europa) Microwave 

assistedP
PowerP2 = 350 W
TimeP2 = 1,3, and 5 min
Time = 2 h
T = 60 °C
Y = 0.82-1.27%

Yield of microwave was lower 
than ultrasound 
pretreatment

(Mirzapour‐
Kouhdasht 
et  al. 2019)

Keratin Red sheep’s hair Alkali and reduction Aqueous solution Sodium sulfide  = 0.125M
Time = 4 h
T = 40 °C
Y = 54.98%

MW of obtained keratin was 
40-60 kDa

(Ramya, Thangam, 
and Madhan 
2020)

Sodium hydroxide  = 0.5N
Time = 3 h
T = 60 °C
Y = 57.78%
Urea = 8 M
Cysteine = 0.165 M
Time = 5 h
T = 75 °C
Y = 64.52%
Urea = 8 M
SDS = 0.26 M
Mercaptoethanol = 1.66 M
T = 50 °C
Time = 12 h
Y = 88.96%
Urea = 8 M
Sodium metabi 

sulfite = 0.5 M
Time = 2 h
T = 65 °C
Y = 77.42%
Urea = 8 M
Sodium metabi 

sulfite = 0.5 M
SDS = 0.1 M
T = 65 °C
Time = 12 h
Y = 96%

Poultry feathers Reduction Distilled water Mercaptoethanol = 1.168 mL
Urea = 31.89 g
Time = 48 h
T = 70 °C

All the methods have 
antioxidant potency.

(Alahyaribeik and 
Ullah 2020)

Sodium sulfite = 10 g
Urea = 31.89 g
Time = 48 h
T = 70 °C
Sodium sulfite = 10 g
SDS = 5 g
Urea = 31.89 g
Time = 48 h
T = 70 °C

Table 4.  (Continued).

Composition Waste sources Extraction Type Solvent/Enzyme
Pretreatment, extraction 
parameters and yield (Y) Remarks Ref

(Continued)
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1348 

1349 

1350 

1351 

1352 

1353 

1354 

1355 

1356 

1357 

1358 

1359 

1360 

1361 

1362 

1363 

1364 

1365 

1366 

1367 

1368 

1369 

1370 

1371 

1372 

1373 

1374 

1375 

1376 

1377 

1378 

1379 

1380 

1381 

1382 

1383 

1384 

1385 

1386 

1387 

1388 

1389 

1390 

1391 

1392 

1393 

1394 

1395 

1396 

1397 

1398 

1399 

1400 

1401 

1402 

1403 

1404 

1405 

1406 

1289 

1290 

1291 

1292 

1293 

1294 

1295 

1296 

1297 

1298 

1299 

1300 

1301 

1302 

1303 

1304 

1305 

1306 

1307 

1308 

1309 

1310 

1311 

1312 

1313 

1314 

1315 

1316 

1317 

1318 

1319 

1320 

1321 

1322 

1323 

1324 

1325 

1326 

1327 

1328 

1329 

1330 

1331 

1332 

1333 

1334 

1335 

1336 

1337 

1338 

1339 

1340 

1341 

1342 

1343 

1344 

1345 

1346 

1347 

Wool Reduction Water/ ethanol 
co-solvent

SDS = 2.5 g
L-cysteine 

hydrochloride = 2.5 g
Na2SO3 = 1 g
Ethanol 70% = 100 mL
T = 50 °C for 1 h and 65 °C 

for 2 h
Y = 67%

ethanol destroyed partial 
hydrogen bonds and 
hydrophobic interactions.

(He, Xu, et  al. 
2020)

Wool Enzymatic Water Keratinase = 100,000 U
Time = 48 h
T = 50 °C

MW of keratin was 
approximately 45 and 
28 kDa

(Su et  al. 2020)

Rabbit hair Reduction Water Urea = 8 M
L-cysteine = 0.165 M
pH = 11
Time = 5 h
T = 85 °C 
Y = 61%

L-cysteine was used as a 
reduction agent

(Ge et  al. 2021)

Hog hair Thermal hydrolysis 
process

water Deionized water = 1 L
Heating rate = 3 °C.min-1

T = 100-220 °C
Time = 1 h
Pressure = equal to the 

saturated water vapor 
pressure at any given 
temperature

Y = 70%

MW was from 10-100 kDa (Tasaki 2020)

Feathers chicken Microwave and 
ultrasound 
irradiation

Water and water/ 
ethanol

Microwave
Power = 960 W
Frequency = 2450 kHz
Time = 5, 10, and 15 min
T = 70 °C

The microwave irradiation 
promotes the growth of 
the beta-sheet over the 
alpha helix.

(Rodríguez-Clavel 
et  al. 2019)

Ultrasound
Power = 3.8 W
Frequency = 45 kHz
Time = 5, 10, and 15 min
T = 70 °C

Poultry feathers DES Aqueous DES NaOAc: urea = 1:2 and 1:3
ChCl: urea = 1:2 as a 

reference solution
Time = 2-24 h
T = 80-100 °C 
Y = 45%

86% of the feathers were 
dissolved

(Nuutinen et  al. 
2019)

Rabbit hair DES DES solution ChCl: oxalic acid = 1:2
T = 80-120 °C
Time = 2 h

MW ranging was from 3.8 to 
5.8 kDa with a high 
proportion of serine, 
glutamic acid, cysteine, 
leucine, and arginine.

(Wang et  al. 
2018)

Wool Oxidative Aqueous solution 
of 2% w/v 
peracetic acid

Peracetic acid = 2% (w/v)
Time = 24 h
T = room temperature
Y = 31%

Keratin extracted with 
oxidative, characterized by 
stronger ionic interaction 
and higher molecular 
weight, is the most 
temperature stable keratin.

(Rajabinejad et  al. 
2018)

Redaction Aqueous solution Tris = 0.5 M
DTT = 0.14 M
EDTA = 6 mM
Time = 2.5 h
T = 25 °C
Y = 29%

Sulfitolysis Aqueous solution Urea = 8 M
Sodium 

metabisulfite = 0.5 M
NaOH = 5 M
T = 65 °C
Time = 2.5 h
Y = 32%

Superheated water 
hydrolysis

Superheated 
water

T = 170 °C
Time = 30 min
Y = 31%

Table 4.  (Continued).

Composition Waste sources Extraction Type Solvent/Enzyme
Pretreatment, extraction 
parameters and yield (Y) Remarks Ref

(Continued)



 

Critical Reviews in Food Science and Nutrition 13

1466 

1467 

1468 

1469 

1470 

1471 

1472 

1473 

1474 

1475 

1476 

1477 

1478 

1479 

1480 

1481 

1482 

1483 

1484 

1485 

1486 

1487 

1488 

1489 

1490 

1491 

1492 

1493 

1494 

1495 

1496 

1497 

1498 

1499 

1500 

1501 

1502 

1503 

1504 

1505 

1506 

1507 

1508 

1509 

1510 

1511 

1512 

1513 

1514 

1515 

1516 

1517 

1518 

1519 

1520 

1521 

1522 

1523 

1524 

1407 

1408 

1409 

1410 

1411 

1412 

1413 

1414 

1415 

1416 

1417 

1418 

1419 

1420 

1421 

1422 

1423 

1424 

1425 

1426 

1427 

1428 

1429 

1430 

1431 

1432 

1433 

1434 

1435 

1436 

1437 

1438 

1439 

1440 

1441 

1442 

1443 

1444 

1445 

1446 

1447 

1448 

1449 

1450 

1451 

1452 

1453 

1454 

1455 

1456 

1457 

1458 

1459 

1460 

1461 

1462 

1463 

1464 

1465 

Feathers Ionic 
liquids + ultrasound 
irradiation

Solution A Potassium iodide = 0.4 M
Sodium hydroxide = 0.05 M
Ammonium 

heptamolybdate 
tetrahydrate = 1.6α

10-4

Power = 100, 200, and 
280 W

Frequency = 20 kHz

Improved dissolution of 
feather waste by 
ultrasound technology.

(Azmi, Idris, and 
Yusof 2018)

Solution B Potassium hydrogen 
phthalate = 0.1 M

Power = 100, 200, and 
280 W

Frequency = 20 kHz
Silk Silk cocoon Enzymatic + ultrasound 

irradiation
Pancreatin, 

protease, 
papain, or 
bromelain

NaOH = 0.1-1.0N
Power = 750 W
Amplitude = 80%
Pulse = 20 s/20s
T = 25 °C
Enzyme = 0.5% (w/v)
pH = 7.0
Time = 3-24 h 
Y = 12.83-81.48%

Ultrasound treatment 
decreased solvent use and 
increased silk yield. MW of 
Silk peptide was <5  kDa.

(Eom et  al. 2020)

B. mori cocoon DES DES solution ChCl: LA = 1:1
Time = 30 h
ChCl: MA = 1:1
Time = 50 h
T = 100 °C

DESs increased the swelling 
of silk fibers

(Tan, Wang, et  al. 
2020)

B. mori cocoon Ionic liquid Choline based 
ionic liquid

Time = 15 min-6h
T = 40, 50, and 60 °C
Choline hydroxide 

aqueous solution = 46% 
w/w

The optimized conditions 
were T = 50 °C for 2 h to 
achieve maximum 
dissolution, i.e. 25%.

(Samie et  al. 
2020)

B. mori cocoon Organic solvent Acetone Na2CO3 = 2% (w/v)
Time = 2 h
T = 80 °C
LiBr = 9.3 M
Silk fiber: acetone = 1:3 

and 1:8
T = 50 °C

Acetone decreased the 
dialysis time

(Wang, Zhang, 
and Wei 2020)

Eri silk Water Distilled water Marseilles soap = 10 g.L-1

Sodium carbonate = 1.5 g. 
L-1

Time = 30-120min
Pressure = 0 and 103 kPa

Alkali method for silk 
degumming had the most 
effect, especially when 
pressure cooked at 
103 kPa. During soap and 
water, degumming led to 
incomplete sericin 
removal.

(Oduor et  al. 
2020)

Soap Marseilles soap
Alkali Sodium carbonate

B. mori Hot water Deionized water T = 120 °C
Time = 30 min

the crystalline index and 
crystallite diameters were 
found 39.66% and 
2.179 nm, respectively

(Saha et  al. 2019)

Elastin Raw hide trimming 
wastes

Thermo-chemical 
treatment method

Alkali solvent Water = 300%
Lime = 10%
NaOH = 5%
NaCl = 5%
Shaking for 8 h/ day for 

7 days

The denaturation temperature 
was 275 °C

(Yoseph et  al. 
2020)

Broiler skin Hot alkali Alkali solvent NaCl = 1 M
Time = 24 h
NaOH = 0.1 M
Time = 15 min
T = boiling water bath

The extracted elastin showed 
antioxidant activity.

(Nadalian et  al. 
2019)

*Index P means pretreatment, and S/L means the ratio of solid to liquid.

Table 4.  (Continued).

Composition Waste sources Extraction Type Solvent/Enzyme
Pretreatment, extraction 
parameters and yield (Y) Remarks Ref



 

14 P. GHAFFARI-BOHLOULI ET AL.

1584 

1585 

1586 

1587 

1588 

1589 

1590 

1591 

1592 

1593 

1594 

1595 

1596 

1597 

1598 

1599 

1600 

1601 

1602 

1603 

1604 

1605 

1606 

1607 

1608 

1609 

1610 

1611 

1612 

1613 

1614 

1615 

1616 

1617 

1618 

1619 

1620 

1621 

1622 

1623 

1624 

1625 

1626 

1627 

1628 

1629 

1630 

1631 

1632 

1633 

1634 

1635 

1636 

1637 

1638 

1639 

1640 

1641 

1642 

1525 

1526 

1527 

1528 

1529 

1530 

1531 

1532 

1533 

1534 

1535 

1536 

1537 

1538 

1539 

1540 

1541 

1542 

1543 

1544 

1545 

1546 

1547 

1548 

1549 

1550 

1551 

1552 

1553 

1554 

1555 

1556 

1557 

1558 

1559 

1560 

1561 

1562 

1563 

1564 

1565 

1566 

1567 

1568 

1569 

1570 

1571 

1572 

1573 

1574 

1575 

1576 

1577 

1578 

1579 

1580 

1581 

1582 

1583 

that influence the yield of collagen extraction in this process 
are temperature, time, and S/L. A synergistic interaction 
between these parameter has been illustrated for yield of 
Nile tilapia collagen. By increasing in extraction time from 
45 h to 65 h and temperature from 4 °C to 20 °C, the yield 
increased from 15.3-19% (Menezes et  al. 2020). The alkaline 
extraction method, due to collagen denaturation, low yield, 
and poor performance, has rarely been employed alone and 
is often combined with acid and enzyme methods (Meng 
et  al. 2019). ASC and PSC were used and compared for 
collagen extraction from surf clamshell (Coelomactra anti-
quata) by Wu et al. (Wu et al. 2019). Their collagen extraction 
yield for ASC was 0.59% and for PSC was 3.78%. In another 
study, the effects of operating parameters such as acetic acid 
concentration, pepsin content, and time of the enzymatic 
hydrolysis on the yield of collagen extraction from chicken 
feet have been determined. Although collagen yield increased 
by increasing pepsin content, the yield of extracted collagen 
had an inverse result by increasing hydrolysis time. The 
highest collagen yield (72.98%) was obtained when the acetic 
acid was 0.7 M pepsin 0.2%, and hydrolysis time 12 h (Araujo 
et  al. 2018).

Acid extraction methods are the most used approaches 
for collagen extraction. However, high acidity, high energy 
consumption, prolonged processing time, limited a low 
extraction yield, and high temperature could adversely influ-
ence the final product, resulting in increased solubility, bit-
terness, nutritional loss, and poor functionality. Combining 
ultrasonic electric fields with acidic and enzymatic extraction 
methods increases the collagen extraction yield in a short 
time. The utilization of ultrasound for 36 min improved the 
collagen extraction from chicken sternal cartilage from 32% 
to ∼ 85%, and it was founded that an increase in sonication 
time increased the yield (Akram and Zhang 2020a). One of 
the latest techniques is using of deep eutectic solvents (DES), 
which is a mixture of two compounds, hydrogen bond 
acceptor (HBA) and hydrogen bond donor (HBD) (Amani 
et  al. 2021). Figure 6b (top) shows the HBA, and HBD 
structure used to separate aromatic-aliphatic hydrocarbons 
azeotropic by DES method (Gouveia et  al. 2016; Li et  al. 
2016). Common DES components are based on choline 
chloride, oxalic acid, urea, and ethylene glycol, which are 
low toxic, biodegradable, low cost, and readily available (Bai, 
Wei, and Ren 2017; Florindo et  al. 2014). DES-based meth-
ods have been employed in various areas of chemistry, such 
as metal dissolution, material chemistry, organic synthesis, 
electrochemistry, and enzyme reaction. Furthermore, recently, 
newer applications of DES have been uncovered based on 
the interaction between HBD and HBA that provide unique 
insight for the extraction and separation of bioactive com-
ponents, including lignin, flavonoids, DNA, phenolic acid 
separation, as well as extraction of collagen peptides (Bai, 
Wei, and Ren 2017; Duan et  al. 2016; Alvarez-Vasco et  al. 
2016). Bai et  al.(Bai, Wei, and Ren 2017) used six different 
varieties of DESs to extract collagen peptides from cod skin. 
Figure 6b (bottom) shows a schematic of the interaction 
between the choline chloride-oxalic acid with collagen pep-
tides. Such extraction system results in higher efficiency 
(91-93%) and purity (96-100%) compared to other solvents 

and hence was selected as optimal isolation solvent (Bai, 
Wei, and Ren 2017).

Another extraction method for the isolation of proteins 
from by-products is supercritical fluid extraction (SFE) 
which has several advantages: higher extraction yield, lower 
environmental effect, better fractionation, and improved 
selectivity compared to traditional extraction processes like 
ASC and PSC (Sousa et  al. 2020). Although SFE is an envi-
ronmentally friendly method, it may lead to changes in 
extracted protein structure(Hung, de Kok, and Verbeke 
2016). Sousa et  al. extracted collagen from Atlantic cod 
skins using acidified water with CO2 (Figure 6c (left)), and 
the yield was reported as 13.6% (Sousa et  al. 2020).

Finally, despite the drawbacks, such as low yield, long 
processing time, the toxicity of solvents, denaturation of 
protein during extraction, and poor performance, enzymatic 
and acidic extraction methods are still the most commonly 
used methods for collagen extraction. However, combining 
traditional techniques with pretreatment methods has 
increased their effectiveness; there are still many obstacles 
and difficulties. Pulsed electric field, ultrasound, high hydro-
static pressure, microwave, SFE, and DES introduced many 
advantages for extraction but can be combined with tradi-
tional methods to be more efficacious (Cao et  al. 2021).

Keratin pretreatment and extraction
Unlike collagen, the complex 3 D structure of keratin 
requires chemical conditions to reduce or oxidize disulfide 
bonds, allowing for its dissolution and extraction (Shavandi, 
Silva, et  al. 2017). The various inter and intra-molecular 
chemical bonds of keratin that increase the stability and 
strength of this molecule are illustrated in Figure 7a. Over 
the last years, several methods have been reported to extract 
keratin from animal by-products, classified into two main 
categories: protein denaturation and protein degradation 
(Shavandi, Silva, et  al. 2017). Methods based on denaturation 
are divided into reductive, oxidative, and solphitolysis and 
extraction methods based on degradation are divided into 
alkaline, ionic liquid, enzymatic and microbial (Vineis et  al. 
2019). Table 5 shows the relative advantages, disadvantages, 
and applications of the extraction methods for keratin. Due 
to the high content of cysteine linkages and hydrophobic 
amino acids, it is difficult to dissolve keratin in a single 
polar or nonpolar solvent (Costa, Silva, and Boccaccini 2018a).

All methods based on the denaturation of keratin 
employ chemicals, surfactants, and denaturing agents, 
which have a crucial role in extraction, that can break 
down disulfide bonds without degrading the keratin chain 
or decreasing the molecular weight. At first, denaturing 
agents and surfactants increase the wettability and swelling 
of the keratin source by breaking the hydrogen and weak-
ening of hydrophobic bonds between the protein chains, 
respectively. Step two involves breaking the disulfide bonds 
with a chemical that are classified as oxidative, reductive, 
and sulphitolysis based on their reaction mechanism 
(Vickers 2017). Guanidine or urea is the most common 
denaturing agent for increasing the keratin solubility in 
water, which facilities the reducing agents’ functionality. 
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However, the performance of the surfactants depends on 
their interactions type with keratin that can be changed 
from source to source or structure to structure (tertiary 
or secondary); anionic surfactants are more effective than 
cationic and neutral surfactants. Some studies have found 
that the utilization of sodium dodecyl sulfate (SDS) as a 
keratin surfactant increases the extraction rate (Shavandi, 
Silva, et  al. 2017; Chilakamarry et  al. 2021). The value of 
SDS that remains in the final products has been proved 
to be nontoxic (Shavandi, Silva, et  al. 2017; Chilakamarry 
et  al. 2021). The reduction mechanism is a two-step nuc-
leophilic displacement reaction in which two reduction 
agents produce kerateines. 2-mercaptoethanol, thioglycolic 
acid, and dithiothreitol have been used as reducing agents. 

Temperature, incubation time, reduction agent ratio, and 
mass of the keratin source have been found to effect on 
the rate of keratin extraction from chicken feather (Table 
4) (Kamarudin et  al. 2017). Moreover, because keratin 
decomposes at pH greater than 11, most reduction 
extraction methods are carried out at alkaline conditions. 
Mercaptoethanol is often used in the reduction process 
but is undesirable due to its unpleasant odor, it is expen-
sive, and is also toxic (Shavandi, Silva, et  al. 2017; Shavandi, 
Carne, et  al. 2017; Chilakamarry et  al. 2021).

To break the disulfide bonds of keratin into cysteic acid 
residues, peracetic acid and performic are commonly used 
(Shavandi, Carne, et  al. 2017; Donato and Mija 2019). 
Keratin extracted by oxidation methods can be divided into 

Figure 6. A ) Similarities and differences between the acid-soluble collagen (ASC) method and the pepsin-soluble collagen (PSC) extraction method (Adapted 
from (Jafari et  al. 2020)), B) Examples of the structure of hydrogen bond acceptors (Amani et  al. 2021) and hydrogen bond donors (HBD) used at deep eutectic 
solvent method (Cholinium Chloride, [Ch]Cl, BenzylCholiniumchloride, [BzCh]Cl, and Tetrabutylammonium chloride, [N4444]Cl as HBA as well as levulinic acid, 
LevA as an HBD) (top) (Adapted from (Gouveia et  al. 2016)), and schematic the reaction process between choline chloride − oxalic acid with cod skin collagen 
peptide (bottom) (Adapted from (Bai, Wei, and Ren 2017)), C) Schematic showing acidified water with CO2 which is used for extraction of collagen (left) 
(Adapted from (Sousa et  al. 2020)), and (f ) Schematic illustration of the ultrasound-assisted extraction process and the bubble cavitation phenomenon involved 
in this extraction technique (right) (Adapted from (Zou et  al. 2020b)).
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α-, β- and γ-keratose, which are soluble in specific range of 
pH. Therefore, after extraction, they can be separated from 
one another (Chilakamarry et  al. 2021). Other method that 
can be used to break disulfide bonds is sulfitolysis, including 
the use of sodium sulfide (NaSO3), sodium disulfite (NaS2O5), 
and sodium bisulfite (NaHSO3), which are major sulfites 
that exist in aqueous solution (Shavandi, Silva, et  al. 2017; 
Chilakamarry et  al. 2021). Cysteine thiol and S-sulfonated 
are produced by sulfitolysis of a cysteine and S-sulfonated 
residue (Shavandi, Silva, et  al. 2017). Sulfite ions concentra-
tion enhances with a pH increase up to 9, making the sul-
fitolysis reaction faster than bisulfite ions. To cleave disulfide 
bonds in wool, Li et  al. (Li et  al. 2019) used a new organic 
phosphonic compound named LKS-610, (Figure 7b). Based 
on the results from the valence state of the sulfur element 
on the fiber surface, they observed that when disulfide link-
ages bonds with the LKS-610 reagent, thiol groups are 
formed. The mass percentage of cysteine in wool fibers 
treated for 60 min at 80 ≈  was reduced from 10.09% to 
1.05%, showing that most disulfide bonds were cleaved.

Alkaline extraction is an irreversible method that employs 
hot and alkali solutions to break amide bonds and convert 
them to amino acids like cysteine (the main amino acid in 
keratinous) (Shavandi, Silva, et  al. 2017). A high concen-
tration of alkaline solution can separate the hydrogen from 
sulfate and carboxylic groups. The solubilization of wool is 
improved under such conditions (Shavandi, Silva, et  al. 
2017); however, the peptide chains could be damaged. The 
breakdown of peptide chains forms the alkaline sulfide 
during the treatment process, which has a very objectionable 
odor. Although the alkaline method is a simple process, 
there are several obstacles for scaling up this method, 
namely consumption of large amounts of alkali reagents 
which calls for high amounts of acid to neutralize and 
recover the protein, and damage and dissociation of the 

protein backbone (Shavandi, Silva, et  al. 2017; Alahyaribeik 
and Ullah 2020). In alkali concentrations lower than 15%, 
there is a direct relationship between the keratin solubility 
and the alkali concentration. In the study performed by 
Smith et  al., an alkali concentration higher than 15% 
increased the strength of wool fiber by ∼30% when the 
concentration of NaOH was increased from 15% to 38%. 
However, cysteine a major amino acid in wool is decom-
posed in a high alkaline solution. Therefore, adjusting the 
process parameters to preserve cysteine during the protein 
extraction process is necessary (Vineis et  al. 2019).

Ionic liquids (ILs) have been used for various applications 
such as biomass extraction, inorganic synthesis, and elec-
trochemistry as ion conductive media and catalysts. Besides, 
due to their unique physicochemical properties, including 
green solvent, low vapor pressure, non-flammability, high 
solvation, high ion conductivity, high thermal stability, ILs 
are widely used as a solvent for silk, wool, cellulose, and 
chitin (Shavandi, Silva, et  al. 2017; Shavandi et  al. 2021). 
Wang et   a l .  (Wang and Cao 2012)  used 
1-hydroxyethyl-3-methylimidazolium bis (trifluoromethane-
sulfonyl) as a hydrophobic ILs to extract keratin from 
chicken feathers. The influences of ILs, NaHSO3 (reduction 
agent), reaction time, and temperature have been investi-
gated on the extraction yield, which revealed that with the 
increase of mass ratio, keratin yield increases from ∼7.5% 
to 17%. However, when the mass balance was 1:1, the 
increase in extraction yield was insignificant. Temperature 
is another vital factor affecting the yield of keratin extraction 
as the dissolution rate of feather keratin has been studied 
at different temperatures (70-100 GDNF ). The temperature 
influence on yield was found in three stages: 1) an increase 
from 70 to 80 °C increased the yield; 2) an increase from 
80-90 °C did not affect the yield, and 3) an increase from 
90-100 °C decreased the yield markedly.

Table 5. A dvantages, disadvantages, and applications of the extraction methods for keratin (Shavandi, Silva, et  al. 2017; Alahyaribeik and Ullah 2020; Eslahi, 
Dadashian, and Nejad 2013; Agarwal et  al. 2019; Ji et  al. 2014; Ramya, Thangam, and Madhan 2020).

Method Advantage Disadvantage Application

Mechanical extraction Simple process, low cost, high 
efficiency

High cost equipment requirements, 
high energy consumption, not 
easy to control

Animal feed

Reduction Mild conditions, high keratin yield, 
large molecular weight

Complicated operation process, 
unstable keratin solution

Spinning; adsorbent

Oxidation Simple process, low pollution Low molecular weight Animal feed
Acid/alkali hydrolysis Simple process, small damage to 

cystine
Causing amino acid loss, corrosion 

equipment, secondary pollution, 
not easy to control

Animal feed, leather auxiliaries

Enzymatic hydrolysis Mild conditions, environmentally 
friendly

Higher costs Food packaging film, cosmetics, 
biomedical materials

Microwave irradiation Short operation time, 
environmentally friendly, small 
side reaction

Low molecular weight, causing 
amino acid loss

Biomedical materials, fertilizers

Ionic liquid extraction Low vapor pressure, high ion 
conductivity, non-flammability, 
high thermal stability, high 
solvation for specific solutes, and 
nonvolatility

Potentially toxic, higher costs, poor 
biodegradability, complex 
process, poor keratin spinnability, 
not soluble in water, difficult 
isolation

Protein fiber blended membrane, 
regenerated keratin fiber

Deep eutectic solvent (DES) Green, environmentally friendly, 
biocompatibility, simple process, 
low cost, less time-consuming 
method, a low vapor pressure, 
relatively wide liquid-range, 
non-flammability, easy isolation

High viscosity Biomedical applications
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Supercritical water and steam explosion are greener 
hydrolysis processes with low environmental impact and 
cost (Ramya, Thangam, and Madhan 2020). A steam flash 
explosion has been reported for keratin extraction by Zhang 
et  al. (Zhang, Zhao, and Yang 2015). In this process, the 
material is initially exposed to high-temperature steam for 
a short time to allow the steam to penetrate the substance. 
After that, decompression and explosion occur in a 
millisecond-long reaction. The mechanical energy from ther-
mal conversion in fast decompression results in physical 
tearing and dissociation of biomass (Chilakamarry et  al. 
2021). Figure 7c illustrates a schematic of the function of 
steam flash explosion for keratin extraction (Shavandi, Silva, 
et  al. 2017). The high temperature at this method might 
defect the disulfide bonds in the keratin fiber. Zhang et  al. 
(Zhang, Zhao, and Yang 2015) applied a steam flash explo-
sion process followed by alkali treatment for keratin 
extraction from duck feathers. Their results showed that a 
combined steam flash explosion with alkali treatment could 
promote the dissolution of feather keratin. The effect of 
pressure (1.4-2.0 MPa) and the duration of applied pressure 
(0.5-5) have also been investigated and under the optimal 
extraction condition, the extraction rate and yield were 
65.78% and 42.78%, respectively.

Microbial and enzymatic methods can be used to degrade 
and hydrolyze keratin to peptides (Falco 2018; Qiu et  al. 
2020). However, the exact mechanism for keratin degrada-
tion by bacteria has not been reported. One of the microbial 
proteases that can hydrolyze keratin is keratinases produced 
by certain microorganisms (Qiu et  al. 2020). Keratinases 
have a wide range of applications, including finishing treat-
ment of textiles, cleaning and treatment of obstruction in 
a sewage system, and mild and gentle removal of hair from 

the hide in the leather industry (Shavandi, Silva, et  al. 2017; 
Eslahi, Dadashian, and Nejad 2013). The hydrolysis of ker-
atin by microbial enzymes under certain processing condi-
tions does not damage the protein backbone and preserves 
its functional properties (Qiu et  al. 2020).

Figure 7d illustrates a new eco-friendly extraction 
method developed for extraction keratin at laboratory and 
scale-up pilot.by Cassoni et  al. (Cassoni et  al. 2018) for 
keratin extraction at laboratory and scale-up pilot. A com-
mercial detergent has been used belonging to the degreaser’s 
category capable of efficient and fast dissolution of pig hair. 
After removing residues by simple filtration, the obtained 
solution is submitted to an ultrafiltration process. Finally, 
a solution is obtained with protein purity of up to 70% 
and a yield extraction of 50%.

The source and extraction method define the potential 
applications of extracted keratin. Reduction, oxidation, and 
sulphitolysis are keratin-based denaturation extraction 
method that can selectively break hydrogen bonds and 
inter/intra disulfide bonds without damaging the keratin 
structure. Although these methods produce keratin with 
the highest molecular weight, it takes longer and utilizes 
a lot of chemicals, which can be toxic and pollute the 
environment. The usage of l-cysteine and sulphitolysis for 
reduction can be scaled up to industrial applications. The 
molecular weight of keratin extracted by eco-friendly meth-
ods such as ionic liquid, steam explosion, alkali, microwave, 
and superheated water depends on the process parameters. 
The extracted keratin has a molecular weight of lower than 
10 kDa, which makes it unsuitable for structural materials. 
Thermal methods for keratin extraction (superheated water, 
steam explosion, and microwave) that destroy keratin by 
hot water and high pressure (without employing chemicals) 

Figure 7. A ) Various inter and intra-molecular chemical bonds such as hydrogen, ionic, and disulfide bonds of keratin that increase stability of keratin (Adapted 
from (Shavandi, Silva, et  al. 2017)), B) Chemical structure of LKS-610 (Adapted from (B. Li et  al. 2019)), C) Schematic of the function of steam flash explosion 
process for keratin extraction (Adapted from (Shavandi, Silva, et  al. 2017)), D) Schematic representation of new eco-friendly keratin extraction method from 
pig skins developed at laboratory scale and scale-up pilot (Adapted from (Cassoni et  al. 2018)).
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are such green methods, while their yield is low. The con-
version and yield of the keratin extracted by an enzymatic 
process are not explicit, and it is a very high-cost process. 
Therefore, more research and development are needed to 
access cost effective and set up a green and sustainable 
approach to generate reproducible keratin with the same 
physicochemical properties based on keratin source and 
extraction method that can obtain keratin usable in bio-
medical applications.

Silk and sericin pretreatment and extraction
Amorphous sericin is extracted by a thermo-chemical pro-
cess, also known as degumming (DeBari et  al. 2021) which 
is a hydrolytic or enzymatic catalysis process of peptide 
bonds cleavage to remove harsh and stiff sericin (Kim, 
Kwon, and Kim 2016; DeBari et  al. 2021). Conventional 
degumming processes entail extraction with boiling or hot 
water with soap, alkaline, organic acid solution, and syn-
thetic detergent (Kim, Kwon, and Kim 2016). The applied 
degumming process influences the final fate of regenerated 
fibroin; various degumming reagents, advantages, and dis-
advantages of various degumming protocols for silk 
extraction are listed in Table 6.

Although Marseilles soap, which is made from olive and 
vegetable oil is known as a traditional hard soap, is recom-
mended for the degumming process, it is costly and cannot 
compensate for the acidity of sericin hydrolysis products 
(Kim, Kwon, and Kim 2016). Nowadays, synthetic detergents 
have replaced soaps for the continuous degumming system 
where strong alkaline compounds are added to the degum-
ming bath (Kim, Kwon, and Kim 2016); NaOH and Na2CO3 
are the most used alkaline compounds for the silk degum-
ming process. After sericin removal, the degummed fibers 
should be dissolved in organic or aqueous solvents to regen-
erate fibroin protein solutions, depending on the cocoon 
source (Kim, Kwon, and Kim 2016). Various solvent systems 
like urea (Abdullah et  al. 2021), LiBr (Wang, Zhang, and 
Wei 2020), CaCl2/ethanol/water (Sinna et  al. 2021), LiSCN 
(Abdullah et  al. 2021), and NaOH (Eom et  al. 2020), have 
been reported. The purification of the fibroin after 

evaporation of the solvent is realized by dissolving it in 
1,1,1,3,3,3-hexafluoro-2-propanol, and formic acid. Kundu 
et  al. (Kundu et  al. 2014) investigated four degumming 
methods, including urea buffer, NaCl solution, Na2CO3 
method, and modified NaOH based extraction for fibroin 
isolation from silkworm species such as Bombyx mori/mul-
berry, Antheraea mylitta/Indian tropical tasar, Antheraea 
proylei/Temperateoak tasar, Antheraea assamensis/Muga, as 
well as Philosamia ricini/Eri (Figure 8a). Treatment with 
Na2CO3 in all silkworms except B. mori and A. proylei 
showed the highest percentage of extracted sericin. However, 
these methods are common for removing the sericin, releas-
ing toxic materials (soap, acid, and alkali) into water streams, 
and degrading proteins into peptides with a molecular 
weight of 5-20 kDa are among the downsides of this method 
(Toprak, Anis, and Akgun 2020).

Recently, enzymatic degumming processes have drawn atten-
tion because they are more environmentally friendly, and the 
obtained product has improved quality and mechanical prop-
erties. Enzymatic degumming is carried out with proteolytic 
enzymes that are very effective in removing sericin (Shen 
2019). Enzymes can hydrolyze both sericin and fibroin; how-
ever, the hydrolysis of amorphous sericin sections is easier 
than the high crystalline fibroins (Figure 8b). It should be 
noted that enzymatic degumming cannot remove sericin com-
pletely (Guo, Li, and Kaplan 2020). Table 7 summarizes some 
of the proteolytic enzymes that degrade silk fibroin. The enzy-
matic degradation starts with the hydrophilic amorphous 
domains, including the N-termini, C-termini, linker segments 
in the chains (heavy and light chains) (Shen 2019; Guo, Li, 
and Kaplan 2020). Using ultrasound, infrared radiation, and 
steam autoclave can modify sericin extraction and improve 
environmentally friendly and economic yield. A comparative 
study of ultrasonic degumming of silk sericin using citric acid 
(acid), Na2CO3 (alkaline), and papain (enzymatic) as a degum-
ming agent showed that the ultrasonic method is more effective 
than the conventional heating bath (Wang, Pan, et  al. 2019); 
lower frequency results in a greater degumming rate for all 
three degumming agents. Papain had the highest effect for 
sericin removal with a degumming rate of 22% at 60 °C under 
ultrasonic irradiation at 40 kHz. Negligible change in the fiber 

Table 6. A dvantages and disadvantages of various process and reagents used for silk degumming.

Degumming method Degumming reagents Advantage Disadvantage Ref

Soap Marseille, sodium myristate, sodium 
laurate, and sodium stearate

soaps can prevent 
degummed fibers 
coagulation and improve 
their luster

It is possible that insoluble 
metal soaps be present 
in fibers

(Chopra and Gulrajani 1994; 
Biswal et  al. 2022; Kim, 
Kweon, and Jo 2021)

Alkali Na2CO3, NaHCO3, Na2HPO4, Na3PO4, 
Na2[B4O5(OH)4].8H2O

Improved productivity, low 
cost, and easy processing

When they are used alone, 
may fibers get a 
yellowish color

(Chopra and Gulrajani 1994; 
Luo et  al. 2019; Rastogi 
and Kandasubramanian 
2020; Biswal et  al. 2022)

Acid Oxalic acid, tartaric acid, lactic acid, 
citric acid, glacial acetic acid, 
and dichloroacetic acid

Fast degumming rate and 
needless heat

The acids may damage 
degummed fibers surface 
and structure

(Chopra and Gulrajani 1994; 
Gulrajanid, Sethi, and 
Gupta 1992; Rastogi and 
Kandasubramanian 2020; 
B. Biswal et  al. 2022)

Enzyme protease XIV, α-chymotrypsin, 
proteinase K, papain, matrix 
metalloproteinases-1, matrix 
metalloproteinases-2, and 
collagenase

Minor damage to the 
structure and surface of 
the fiber (moderate

temperature and pH)

Due to the use of moderate 
temperature and pH, this 
method cannot remove 
all hydrophobic 
impurities

(Chopra and Gulrajani 1994; 
Rastogi and 
Kandasubramanian 2020; 
Biswal et  al. 2022)
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structure was observed by using Fourier Transform infrared 
spectroscopy (FTIR) and X-ray diffraction (XRD) when papain 
was used as a degumming agent (Wang, Pan, et  al. 2019).

Degumming methods, either based on chemical treatments 
or enzymatic methods, can damage the protein structure, 
and break them into low molecular weight peptides and 
pollute the downstream flows by their residues. Moreover, 
purification of the final products is necessary. The hot water 
degumming method with a maximum recovery percentage 
and minimum protein damage is a reliable method that can 
be merged with autoclave and infrared irradiation. Although 
lyophilization is a common method and it has been proved 
that sericin extracted by this method has good biological 
and physical properties, it is an energy-intensive method 
that can damage the protein. Alternative to lyophilization, 
salt leaching or spray drying are more environmentally 
friendly and need less energy. Due to faint development and 
production on a small scale, sericin, and silk do not yet 
have international and industrial markets. To reach 

international markets, a sustainable method with a high yield 
for producing high-quality sericin and silk is necessary.

Elastin pretreatment and extraction
Insoluble elastin could be obtained after removing fats, sol-
uble proteins, and collagen. Hot alkali treatment followed 
by heating at temperatures near 100 °C is ideal for achieving 
a purer and soluble elastin protein; however, these conditions 
may cause partial hydrolysis of elastin. Undesirable peptide 
bond cleavage occurs at a high temperature when treatment 
prolongs longer than 50 min (Halabi and Mecham 2018). 
Autoclaving, which is milder than hot alkali because the 
final product is less degraded. However, it has also been 
used for purification. However, autoclaved elastin contains 
additional impurities (Halabi and Mecham 2018). To min-
imize elastin damage, several approaches have been devel-
oped and are summarized in Table 8. The purity of elastin 
cannot be evaluated by using standard techniques such as 

Figure 8. A ) Non-woven unprocessed surface structure and electron micrographs of the fibroin-sericin combination of Bombyx mori/mulberry, Antheraea 
mylitta/Indian tropical tasar, Antheraea proylei/Temperateoak tasar, Antheraea assamensis/Muga, and Philosamia ricini/Eri (Reprinted from (Kundu et  al. 
2014) with permission from Elsevier), B) Schematic representation of enzymatic dissolution and degradation of amorphous sericin section and crystalline fibroin 
section (Adapted from (Guo, Li, and Kaplan 2020)).

Table 7. S ummary of some of the proteolytic enzymes for silk fibroin degradation (Guo, Li, and Kaplan 2020; Brown et  al. 2015; Wongpinyochit, Johnston, and 
Seib 2018).

Enzyme Cleavage sites No. of cleavage sites in silk fibroin

protease XIV Tyrosine, Phenylalanine, Tryptophan, Histidine, Lysine, Arginine ∼390
α-chymotrypsin Tyrosine, Phenylalanine, Tryptophan, Valine, Isoleucine, Leucine ∼520
proteinase K Histidine, Phenylalanine, Tryptophan, Tryptophan, Alanine, 

Isoleucine, Leucine, Proline, Valine, Methionine
∼2200

papain Lysine, Arginine ∼40
matrix metalloproteinases-1 Glycine-Isoleucine, Glycine-Leucine <10
matrix metalloproteinases-2 Glycine-Isoleucine, Glycine-Leucine, Glycine-Valine, 

Glycine-Phenylalanine, Glycine-Asparagine, Glycine-Serine
∼600

collagenase X-Glycine-Proline ∼15
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chromatography or electrophoresis because elastin is an 
insoluble protein. However, chromatography technique can 
be used for detection of remaining contaminations after 
elastin purification. Instead, characteristics such as the lack 
of collagen (hydroxylysine and high hydroxyproline) and 
carbohydrates, the content of total amino acid composition 
and glycine, cysteine residues could be used to determine 
the product quality. The crosslinking amino acids liberated 
by acid hydrolysis, namely desmosine and isodesmosine have 
been used to test elastin content and purity (Ferraro, Anton, 
and Santé-Lhoutellier 2016). Yoseph et  al. used raw hide 
trimming waste as a source for extracting elastin through 
a thermo-chemical treatment method using alkali pretreat-
ments (Yoseph et  al. 2020); the yield was ∼ 90%.

Recovery

Recovery of extracted protein is a prerequisite; some recov-
ery methods are being used, such as salting out, electro-
phoresis, membrane filtration, and chromatography. in the 
recovery stage, the focus is on separation of the proteins of 
interest from the solution or precipitate generated following 
dissolving. Spray drying to make thermally sensitive protein 
powder is the most popular method for protein recovery 
based on drying the sample water. The covalent and 
non-covalent bonds of proteins can be damaged by heat 
during the drying process by hot gas (spray drying) and 
influence on physicochemical properties of final products 
(Dehnad, Mahdi Jafari, and Afrasiabi 2016). An alternative 
method for drying and recovering proteins by avoiding heat 
damage is freeze-drying. Freeze drying is a high-performance 
method for drying and concentrating proteins and peptides 
because they are more stable in solid form. Freeze-drying 
increased the gelatin yield recovered from Labeo rohita swim 
bladder by NGF 13 g (per 100 g dry weight of raw material) 

over spray drying (Kanwate, Ballari, and Kudre 2019). 
Although freeze-drying and spray drying are simple, and 
have a high recovery rate, they raised the impurity of final 
protein by trapping additional large and heavy components 
during the drying (Cao et  al. 2021).

One of the commonly applied recovery methods is the 
isoelectric process-isoionic point of any proteins defined by 
type, number, the dissociation constant of proteolytic groups. 
The isoelectronic method can be performed and carried out 
in analytical, preparative, microscale, and microfluidic chan-
nels, capillaries, and multi-compartment electrolyze (Pergande 
and Cologna 2017). Therefore, by re-adjusting the pH in 
the protein-rich solution after the solubilization step, the 
proteins precipitate. Thus, it could be further separated from 
the solution by methods such as filtration and centrifugation 
(Zhao et  al. 2018; Malik and Saini 2019). In some case, 
urea and thiol compounds can be used to boost the recovery 
rate of less soluble and sensitive proteins (Malik and 
Saini 2019).

Salting out is another purification method that reduces 
protein solubility in the solution. Polar amino acids and 
charged proteins are dissolved in water due to their hydro-
philic interactions. In a high ionic strength aqueous envi-
ronment, the molecules with the least solubility in water 
precipitate at a certain ionic strength because water mole-
cules have better interactions with ions than them. Salting-out 
method relies on the solubility of proteins in aqueous solu-
tion based on their ionic interaction, which depends on the 
type of salt, size, surface area, and charge of the protein, 
and the ratio of salt/protein, which type, and concentration 
of the salt can be varied to access optimum precipitation. 
The ability of some of salts (anion and cations) in interac-
tion of water and solutes has been organized by Franz 
Hofmeister that the arrangement for cations is NH4

+> K+> 
Na+ >Li+ >Mg2+ >Ca2+ and for anions is F- ≥ SO4

2-> 

Table 8. S ummary of various elastin isolation methods.

Isolation method Requirement Advantage Disadvantage Ref

Harsh methods Hot alkali NaOH, boiling water Easy process, low cost Harsh extraction 
conditions, 
extensive peptide 
bonds cleavage

(Halabi and Mecham 
2018; Gundiah, 
Ratcliffe, and Pruitt 
2007)

Autoclaving Autoclave Milder than hot alkali, 
less degradation of 
peptides

contamination, need 
an autoclave

(Halabi and Mecham 
2018; W. Daamen 
et  al. 2001)

Mild methods 
(incorporating 
enzyme treatment 
and reduction 
agents

Starcher method 
(containing 6 steps)

Na2HPO4, NaCl, EDTA
Water, autoclave
Tris buffer, CaCL2, 

trypsin
Formic acid, cyanogen 

bromide
Tris buffer urea, α

-mecaptoethanol
Ethanol, acetone, water

More purified products, 
less damage to 
peptides,

Long process, higher 
cost

(Halabi and Mecham 
2018; Starcher and 
Galione 1976; 
Daamen et  al. 2005)

Daamen method NaCl, ethanol
Chloroform, methanol, 

acetone, ether 
Formic acid, cyanogen 

bromide
Water, tris-HCL, urea, 

β -mecaptoethanol
NH4HCO3, trypsin
NaCl, water
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H2PO4
-> H3CCOO-> Cl-> NO3

-> Br-> ClO3
-> I->ClO 

(Libretexts 2020). Thus, for salting in NaCl and for salting 
out CNTF  are chosen. Although the salting out system is 
easy to scale up and efficient, they release a large amount 
of salts in down flow that must be recycled to decrease the 
cost and prevent of them toxic effect on environment (Tu 
et  al. 2018). Another issue for using salting out is colored 
matters in the upper phase due to partial partitioning. By 
replacing a hydrophilic solvent with hydrophobic one, how-
ever, the recovery will be decreased. Therefore, more 
research is needed to find a method to maximize recovery 
while reducing coloring materials in salting out method 
(Mohammadpour 2018). Moreover, salt recovery and down-
stream recycling methods and approaches must be used. 
The isoelectronic process showed a higher yield (× 3) than 
salting out method for extracted collagen from bigeye tuna 
skins. It produced less water waste than salting-out due to 
the low salt concentration (Lin et  al. 2019).

Ultrafiltration is a greener method for protein recovery 
that is based on membrane separation, in which membranes 
capable of retaining particles with a size of 0.001 to 0.02 
microns are used in solutions for the recovery and separa-
tion of proteins (Boye and Barbana 2012). The type of the 
membrane, size of the pores, operating pressure, solvent 
pretreatment, and temperature are parameters that remark-
ably influence filtration (Krishnan et  al. 2020; 
Jaramillo-Quiceno et  al. 2021). The advantages of this type 
of filtration are the selective separation of proteins, which 
leads to the extraction of desired proteins by adjusting the 
porosity and type of the membrane. Membranes based on 
polymers, especially polysulfone and silicon are used to 
filtrate food waste. Waste streams of poultry industry con-
taining protein pass through the polysulfone membrane with 
an MW=30KDa to collect the proteins (Shahid, Srivastava, 

and Sillanpää 2021). It is reported that the most effective 
way to reduce the environmental impact and economic costs 
for scale-up a protein extraction from fish waste process is 
water recovery system by ultrafiltration and nanofiltration 
(Abejón et  al. 2018). The process’s total expenses depended 
on the amount of fresh water that could be decreased by 
adding an additional nanofiltration so that the final cost of 
process diminished between 25 to 49% (Abejón et  al. 2018). 
When employing membranes for separation, two challenges 
must be considered: 1) effective approaches to clean the 
membrane to avoid of decreasing of performance (membrane 
fouling), 2) minimizing the nutrients concentration in the 
downstream to reach high quality products (Shahid, 
Srivastava, and Sillanpää 2021). Membrane fouling, an irre-
versible deposition can develop during the recovery process 
as a result of pore blocking and concentration polarization 
effect, reducing flow, efficiency, and recovery rate, and as 
a result increasing process costs especially on an industrial 
scale (Issaoui and Limousy 2019).

However, single methods like salting out, filtration, 
isoelectronic are very common for protein recovery; a com-
plete protein recovery is it is challenging. Therefore, the 
combined methods are used for protein recovery and 
increased recovery rate. Further investigations are needed 
to increase the efficiency of current techniques or develop 
new large scalable technologies to cover the future need.

Purification

After recovery of the desired proteins, it is time to increase 
the purity and finally dry the product. Frequent washing 
steps, applying different solvents, adjusting pH during wash-
ing, centrifugation, and filtering effectively remove the 

Figure 9. A pplication of protein-based biomaterials in tissue engineering and drug delivery.
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impurities to a large extent (Goldring 2019); however, to 
further increase the purity of the product and minimize 
batch-to-batch variation, diafiltration has been shown as a 
practical approach (Baldasso et  al. 2022). In this method, 
various ultrafilters are used repeatedly while the washing 
process is performed between the steps. A simulation showed 
using ultrafiltration and diafiltration (a coupled process) 
may increase the whey protein yield up to 98.6% (Baldasso 
et  al. 2022). Furthermore, it has been illustrated that by 
coupling ultrafiltration and diafiltration facilities purification 
(Opdensteinen et  al. 2018). Dialysis is also another very 
effective way of purifying proteins in non-industrial scales, 
especially when it comes to removing small molecules with 
a semipermeable membrane. Another common approach is 
chromatography, and various techniques such as ion 
exchange, gel filtration, and reversed-phase are exploited to 
remove residual agents and impurities from the network of 
recovered proteins. Repeating the purification and recovery 
steps provide the product for the renaturation process of 
the target proteins. After the purification process, which 
can, in some cases, increase the purity up to 10%, the 
obtained proteins are dried by freeze-drying, drum drying, 
or spray drying to remove the remaining solvent and attain 
the final product . The efficiency of protein separation pro-
cesses is ultimately evaluated by the measurement of several 
factors such as protein recovery (%), protein yield (%), and 
protein purity (%).

Protein-based biomaterials

Given proteins’ pivotal structural and functional roles in 
living systems, particularly in the ECM, protein-based bio-
materials have been among the most popular candidates for 
appliances in biomaterials and biomedical engineering. In 
the tissue engineering field, it is essential to fabricate a cyto/
biocompatible scaffold that closely mimics the physical and 
chemical properties of the native ECM in the targeted tissue 
(Abedi, Hasanzadeh, and Tayebi 2019; Babaie et  al. 2020). 
For instance, in cardiac muscle tissue, electrical conductivity 
is of great importance, while in musculoskeletal tissues such 
as bone and cartilage, biomechanical properties come first 
(Qin, Hu, and Li et  al. 2020). Protein-based biomaterials 
have shown promising results (Asadpour et  al. 2020). In 
addition to their biocompatibility and biodegradability, 
protein-based biomaterials present great variation in com-
position, structure, and shape that can meet the require-
ments in a wide range of tissue engineering applications. 
Some of the recent biomedical applications of collagen, 
gelatin, keratin, silk fibroin, and elastin-based biomaterials 
are deliberated in the following sections (Table 9).

Collagen

Collagen is widely used in tissue engineering, especially in 
scaffold fabrication (Silva et  al. 2014; Lo and Fauzi 2021) 
as collagen-based materials have shown great potential for 
skin tissue regeneration because it composes the main bio-
molecules present in the skin. Although different types of 

collagens can be produced from animal by-products, colla-
gen type I is the most abundant collagen, as seen in Tables 
4 and 9. Collagen type I, on the other hand, account for 
90% of the total collagen in the human body. The content 
and composition of amino acids in collagen structure explain 
its properties, especially hydroxyproline, responsible for tem-
perature stability, rigidity, and denaturation temperature 
(Oosterlaken, Vena, and de With 2021). The hydrogen bonds 
between the hydroxyproline and hydroxylysine via their 
hydroxyl groups increase the collagen thermal stability (Babu 
and Ganesh 2001; Li et  al. 2021). Therefore, the expected 
properties can determine the collagen source and extraction 
method. The potential of type I collagen derived from tilapia 
skin was investigated by Li et  al. (Li et  al. 2018) as a bio-
material for skin tissue engineering. According to the his-
tocompatibility and tissue adaptation examinations, it was 
revealed that after 15 days of in vivo implantation, the 
microfibrous collagen matrix scaffold of tilapia skin was 
degraded into tiny fragments. After 20 days of implantation, 
the scaffolds were absorbed entirely and degraded. In addi-
tion to marine animal-derived collagen, mammalian-derived 
collagen is widely utilized as biomaterials in tissue regen-
eration applications. Fauzi et  al. have developed thin films 
(aligned collagen film and random collagen film) from ovine 
tendon collagen for applications in tissue engineering (Fauzi 
et  al. 2016). Human dermal fibroblasts exhibited higher 
attachment and growth rates as indicated by live and dead 
cell staining and the percentage of cell attachment on ovine 
tendon collagen films compared to a polystyrene surface.

Despite these exciting results, low mechanical strength 
and rapid in vivo degradation limit collagen applications 
(Zhang et  al. 2020). Therefore, to improve its properties, 
several methods have been recently reported, such as using 
suitable cross-linkers and synthesis of hybrid hydrogels 
based on blending collagen with other polymers and 
nanoparticles (NPs) (Nikolova and Chavali 2019; Yang 
et  al. 2018; Kolanthai et  al. 2018; Türk et  al. 2018). For 
example, Sun et  al. (Sun et  al. 2020) fabricated sponge-like 
scaffolds from Nile tilapia skin by lyophilization using 
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the 
presence of N-hydroxysuccinimide (EDC/NHS) as the 
crosslinking agents; macro morphology of non-cross-linked 
and EDC/NHS cross-linked collagen sponges are shown 
in Figure 10a. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-d
iphenyl tetrazolium bromide) assay results showed that 
EDC/NHS cross-linking does not negatively affect fibro-
blast cell viability and proliferation. The EDC/NHS 
cross-linked collagen sponge sample exhibited the best 
blood clotting ability with a bleeding time of 137 s, blood 
loss of 0.95 g, and hemostatic efficiency in vivo (rat femoral 
artery hemorrhage model) (Figure 10a). In another study, 
Govindheraj et  al. used extracted collagen from Eel fish 
skin to design a 3 D scaffold by blending collagen with 
alginate (Govindharaj, Kiran Roopavath, and Narayan Rath 
2019). The ensuing material was used for 3 D bioprinting 
Human umbilical derived mesenchymal stem cells (Figure 
10b). After seven days of culture, the metabolic activity 
was significantly improved (p < 0.01), and similarly live/
dead staining revealed that the number of live cells was 
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Table 9. S ummary of biomaterials applications by protein type, recent data from the literature. 

Composition Extraction method Waste source Biomaterial form Application Ref

Collagen ASC and PSC Nile tilapia skin Sponge As hemostatic dressings (Sun et  al. 2020)
ASC and PSC giant croaker (Nibea 

japonica) swim 
bladders

Sponge Antioxidant properties of giant 
croaker (Nibea japonica) 
swim bladders collagen and 
wound healing evaluation

(Chen et  al. 2019)

– Porcine Sponge Curcumin loaded chitosan NPs 
incorporated into collagen/ 
alginate scaffolds for diabetic 
wound healing

(Karri et  al. 2016)

PSC Bovine tendon Sponge Silver NPs loaded within 
collagen/chitosan scaffolds to 
promote wound healing

(You et  al. 2017)

– Fish Nanofibers Collagen nanofiber containing 
silver nanoparticles for 
improved wound healing

(Rath et  al. 2016)

PSC Bovine tendon Hydrogel Bacterial cellulose/collagen 
hydrogel for wound healing

(Moraes et  al. 2016)

ASC Tilapia skin Sponge Electrospun tilapia collagen 
nanofibers accelerate wound 
healing

(Zhou et  al. 2016)

ASC Rat tail tendon Nanoparticles Collagen/ ZnO scaffolds for 
wound healing applications

(Vedhanayagam, Nair, and 
Sreeram 2018)

ASC Shark skin (Prionace 
glauca)

Sponge Marine collagen/apatite 
composite scaffolds to hard 
tissue applications

(Diogo et  al. 2018)

ASC and PSC Blue shark skin Blue shark skin collagen as a 
biochemical for bone tissue 
engineering

(Elango et  al. 2018)

ASC Jellyfishes Sponge Keratin/jellyfish collagen/
eggshell-derived 
hydroxyapatite osteoinductive 
biocomposite scaffolds for 
bone tissue engineering

(Arslan et  al. 2017)

purchased Porcine Composite 
scaffold

Dexamethasone-loaded biphasic 
calcium phosphate 
nanoparticles/collagen porous 
composite scaffolds for bone 
tissue engineering

(Ying Chen, Kawazoe, and 
Chen 2018)

PSC modified Rat tail tendon Hydrogel The hydrogel containing naringin 
to sciatic nerve regeneration

(Samadian et  al. 2019)

Acetic acid and HCL Rat tail tendon Sponge olibanum‐collagen‐gelatin 
scaffolds for efficient neural 
tissue regeneration

(Ghorbani et  al. 2020)

Modified ASC 
(autoclaved 0.6% 
acetic acid in 
phosphate-buffered 
saline (PBS) at a 
final concentration 
of 20 mg/mL)

Rat tail tendon Hydrogel The hydrogel containing chitosan 
nanoparticle loaded by insulin 
for sciatic nerve regeneration

(Ai et  al. 2019)

purchased Rat tail and chicken 
sternal

Hydrogel Collagen type I and II blended 
hydrogels for articular 
cartilage tissue engineering

(Vázquez-Portalatı ́n et  al. 
2016)

ASC Eel fish skin 3D printing Biomaterial for tissue engineering (Govindharaj, Kiran Roopavath, 
and Narayan Rath 2019)

ASC Tilapia skin Microfiber 
collagen 
matrix

Potential application in 
biomedical scaffold material 
for tissue engineering

(Li et  al. 2018)

ASC Fish scales Sponge Chitosan/fish scale collagen/
lovastatin nanocomposites for 
drug delivery

(Tran et  al. 2020)

Supercritical fluids 
technology

Atlantic cod (Gadus 
morhua) skins

– The extracted collagen 
demonstrated nontoxicity; so 
it can be used for health care 
applications

(Sousa et  al. 2020)

Keratin Reduction Human hair Sponge Human hair keratin for the 
regeneration of peripheral 
nerves

(Gao, Zhang, et  al. 2019)

Purchased Human hair Nanoparticles Two recombinant trichocyte 
keratins, including human 
type I hair keratin 37 and 
human type II hair keratin 81 
to accelerate dermal wound 
healing

(Gao, Li, et  al. 2019)

Q11

(Continued)
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Reduction Human hair Membrane Photo-crosslinked keratin/
chitosan membranes as 
potential wound dressing 
materials

(Lin et  al. 2018)

Reduction (Shindai 
solution)

Human hair Hydrogel Carboxymethyl cellulose/keratin 
hydrogel with controlled 
clindamycin release as an 
antibacterial wound dressing

(Sadeghi et  al. 2020)

Reduction Human hair Nanofibrous Electrospun polyurethane/keratin/
AgNP biocomposite mats as 
an antibacterial wound 
dressing

(Wang et  al. 2016)

Oxidized Human hair 3D printing 3 D printed keratin-based 
hydrogel for biomedical 
application

(Placone et  al. 2017)

Reduction Wool Nanofibers keratin/polycaprolactone 
nanofiber membranes for cell 
culture

(Wu et  al. 2018)

Reduction (Shandai 
solution)

Goat hoof Film Keratin/gelatin/sodium alginate 
base biofilm for tissue 
engineering application

(Kumar, Anandhavelu, and 
Swathy 2019)

Reduction Hair Hydrogel Keratin/chitosan hydrogels for 
use in tissue engineering

(Lu et  al. 2020)

Alkali and reduction Red sheep’s hair Valuable material for biomedical 
applications.

(Ramya, Thangam, and 
Madhan 2020)

Reduction Feather, wool, hair Self-assemble 
hydrogel

Feather, wool, and hair keratin 
hydrogel for biomedical 
applications

(Esparza et  al. 2018)

Reduction Wool Nanofibrous Keratin-polybutylene succinate 
nanofibrous mats for drug 
delivery and cells culture

(Guidotti et  al. 2020)

Reduction Human hair Nanoparticles Doxorubicin loaded keratin 
nanoparticles for drug 
delivery

(Li et  al. 2017)

Reduction 
(Sulphitolysis)

Merino wool Film Keratin-hydrotalcite hybrid films 
for drug delivery applications

(Posati et  al. 2018)

Reduction Human hair Nanoparticles quercetin loaded stable human 
hair keratin nanoparticles 
intended for anticancer drug 
delivery

(Kunjiappan et  al. 2018)

Reduction Human hair sponge keratin/jellyfish collagen/
eggshell-derived 
hydroxyapatite osteoinductive 
biocomposite scaffolds for 
bone tissue engineering

(Arslan et  al. 2017)

Enzymatic Wool – The extracted keratin showed 
good antioxidant activity and 
promoted the growth of cells

(Su et  al. 2020)

Silk fibroin Hot water and Na2CO3 B. mori Film silk fibroin/paramylon blend films 
for chronic wound healing

(Arthe, Arivuoli, and Ravi 
2020)

Hot water and Na2CO3 Cocoon Nanofibers Manuka honey/silk fibroin fibrous 
matrices as a potential wound 
dressing

(Yang et  al. 2017)

Hot water and Na2CO3 B. mori Sponge Chitin/silk fibroin/TiO2 
bio-nanocomposite as a 
biocompatible wound dressing 
bandage

(Mehrabani, Karimian, 
Rakhshaei, et  al. 2018)

Hot water and Na2CO3 B. mori Sponge Silk fibroin/chitin/silver 
nanoparticles 3 D scaffolds as 
a bandage for antimicrobial 
wound dressing

(Mehrabani, Karimian, 
Mehramouz, et  al. 2018)

Hot water and Na2CO3 Spring silkworm 3D printing Mesoporous bioactive glass/silk 
fibroin composite scaffolds for 
bone tissue engineering

(Du et  al. 2019)

Hot water and Na2CO3 B. mori Nanofibrous Electrospun 
poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate)/silk fibroin 
nanofibers as a scaffold for 
bone tissue engineering

(Ang et  al. 2020)

Hot water and Na2CO3 B. mori Nanocomposite Gold nanorods reinforced silk 
fibroin nanocomposite for 
peripheral nerve tissue 
engineering applications

(Afjeh-Dana et  al. 2019)

Hot water and Na2CO3 B. mori Sponge Silk fibroin/hyaluronic acid as a 
nerve conduit

(Yoseph et  al. 2020)

Table 9.  (Continued). 

Composition Extraction method Waste source Biomaterial form Application Ref

(Continued)
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Hot water and Na2CO3 Cocoon silkworm Hydrogel A silk fibroin/decellularized 
extract of Wharton’s jelly 
hydrogel intended for 
cartilage tissue engineering

(Basiri et  al. 2019)

Hot water and Na2CO3 B. mori and P. ricini 3 D printing Cross-linker-free silk–gelatin 
bioink for cartilage tissue 
engineering.

(Singh, Bandyopadhyay, and 
Mandal 2019)

Hot water and Na2CO3 B. mori Sponge Silk fibroin/collagen/hyaluronic 
acid scaffold incorporating 
pilose antler polypeptides 
microspheres for cartilage 
tissue engineering

(Jianhua Wang, Sun, et  al. 
2019)

Hot water and Na2CO3 Tussah Film Nonmulberry silk film for 
potential tissue engineering 
applications

(Zhang et  al. 2019)

Hot water and Na2CO3 Silkworm cocoon Nanofibrous Electrospun polyurethane/silk 
fibroin hybrid nanofibers as 
potential scaffolds for soft 
and hard tissue engineering

(Dehghan-Manshadi et  al. 
2019)

Hot water, sodium 
lauryl sulfate and 
Na2CO3

B. mori Microparticles Control drug release behavior of 
polyurethane filament and the 
effect of silk fibroin 
microparticles on it.

(Zhuang et  al. 2019)

Hot water B. mori Film Silk fibroin films for potential 
applications in controlled 
release

(Huang et  al. 2017)

Gelatin Ultrasonic-assisted 
water

Fish biowaste Fibers Gelatin coated phosphate-glass 
fibers for wound-healing 
application

(Sghayyar et  al. 2020)

Obtained Bovine Hydrogel Cellulose nanocrystals/ gelatin/ 
hyaluronic acid composite 
hydrogel as a wound dressing

(Yin, Lin, and Zhan 2019)

Water extraction 
modified with 
0.05 M phosphoric 
acid

Unicorn Leatherjackets 
(Aluterus 
monoceros) skin

Sponge Gelatin from fish skin reinforced 
with chitosan for bone tissue 
engineering

(Saah, Oungbho, and Benjakul 
2017)

Purchased Porcine skin Nanofibers Silk fibroin/gelatin nanofibrous 
scaffolds crosslinked with 
glutaraldehyde vapor for 
tissue engineering

(Mohammadzadehmoghadam 
and Dong 2019)

Purchased Porcine skin Hydrogel Gelatin hydrogels for potential 
applications in nerve 
regeneration with control the 
fate of human umbilical cord 
mesenchymal stem cells

(Li et  al. 2020)

Purchased Porcine skin Nanofibrous Nanofibers of modified 
gelatin-tyrosine in cartilage 
tissue engineering

(Agheb et  al. 2017)

Purchased Bovine 3D printing Cross-linker-free silk–gelatin 
bioink for cartilage tissue 
engineering.

(Singh, Bandyopadhyay, and 
Mandal 2019)

Heating Fish scale Sponge Engineered fish scale gelatin for 
tissue engineering.

The extracted fish collagen was 
subjected to pressure heating 
for 4–6 h at >70 °C.

(Manikandan et  al. 2018)

Elastin Purchased Bovine neck ligament Hydrogel Elastin and alginate hydrogel for 
tissue engineering 
applications

(Silva et  al. 2018)

Purchased Bovine neck Hydrogel Hyaluronic acid and α-elastin 
based hydrogel for 3 D culture 
of vascular endothelial cells

(Fiorica et  al. 2018)

Purchased Porcine skin Hydrogel Cross-linked elastin in gelatin/
PEG hydrogels for wound 
healing

(Cao, Lee, et  al. 2020)

Obtained Bovine neck Nanofibers Nanofiber scaffold constructed 
from tyrosinase-treated fibroin 
and elastin for biomedical 
applications.

(Hong et  al. 2016)

Table 9.  (Continued). 

Composition Extraction method Waste source Biomaterial form Application Ref
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increased after seven days. In another interesting work, a 
self-healing collagen-based hydrogel has been developed 
based on dynamic network chemistry by Ding et  al., that 
consists of dynamic imine linkages between dialdehyde 
guar gum and NH2 collagen (Ding et  al. 2020) and 
diol-borate ester bonds between borax and guar gum. The 
results of this study revealed that the denaturation 

temperature of native collagen hydrogel increased from 
40.2 °C to 52.8 °C after cross-linking, indicating an improve-
ment of collagen thermal stability via modification by 
dialdehyde-modified guar gum due to the formation of 
dynamic imide bonds which also paved the way for 
self-healing ability of the collagen-based hydrogel 
(Figure 10c)

Figure 10. A ) Macro morphology images of non-cross-linked and cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of 
N-hydroxysuccinimide (EDC/NHS) collagen sponges (Sun et  al. 2020), Representation of femoral artery hemorrhage model after hemostasis and using non-cross-
linked and cross-linked with -ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of N-hydroxysuccinimide (EDC/NHS) collagen sponges to control 
bleeding (Reprinted from (Sun et  al. 2020) with permission from Elsevier), B) Fabrication a 3 D printed scaffold based on extracted collagen from Eel fish skin 
and its biocompatibility (Adopted from (Govindharaj, Kiran Roopavath, and Narayan Rath 2019) with permission from Elsevier), C) Macroscopic images of the 
self-healing ability of collagen, collagen-guar gum (CGG), and collagen/collagen-guar gum with 1/1, 2/1, and 4/1 ratios hydrogel (Reprinted from (C. Ding et  al. 
2020) with permission from Wiley), D) the SEM micrograph images of olibanum/rat tail derived collagen/gelatin scaffolds after 3 days cultured with bone marrow 
stromal cells (BMSCs) (Reprinted from (Ghorbani et  al. 2020) with permission from Wiley) E)The results of the hematoxylineosin staining (H&E) of the sciatic 
nerve, and gastrocnemius muscle after 8 weeks of surgery. Magnification for muscle: ×400, the magnification of nerve:×200 (left), sciatic functional index results 
of positive control, negative control, collagen and collagen/naringin scaffolds at 30 and 60 days after implantation (right) (Reprinted and adopted from (Samadian 
et  al. 2019) with permission from Springer).
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Various composites of collagen have been used to con-
struct scaffolds for neural tissue engineering. For instance, 
3 D shape scaffolds based on collagen extracted from rat 
tail followed by olibanum and gelatin for efficient neural 
tissue regeneration were fabricated by Gorbani et  al. 
(Ghorbani et  al. 2020). The scanning electron microscope 
images of scaffolds after three days of culture with bone 
marrow stromal cells (BMSCs) showed that these composite 
scaffolds supported cell attachment and ingrowth (Figure 
10d). In another work, Samadian et  al. fabricated and char-
acterized a type I collagen and naringin scaffold for periph-
eral nerve damage treatment (Samadian et  al. 2019). The 
results of their in vitro study showed that the proliferation 
of Schwann cells on the collagen/naringin hydrogel scaffold 
was higher than the control group (tissue culture plate). 
The in vivo study of the same system after 60 days of 
implantation implied that the functional sciatic index sig-
nificantly increased when the collagen/naringin hydrogel 
system was compared to the negative control Figure 10e. 
The same group prepared rat tail tendon collagen hydrogel 
containing chitosan NPs loaded with insulin for sciatic nerve 
regeneration. Histological assessment revealed remarkable 
improvements in myelin sheath regeneration where the scaf-
fold treated groups had more resemblance to the normal 
sciatic nerve (Ai et  al. 2019).

Research on musculoskeletal tissue engineering has also 
significantly benefited from collagen-based scaffolds. The 
ECM produced by chondrocytes mainly comprises collagen 
type II (90-95%), a promising scaffold material for articular 
cartilage. Vazquez-Portalatin et  al. blended collagen type I, 
extracted from rat tail, with lyophilized chicken sternal col-
lagen type II and characterized the cartilage tissue regen-
eration potential of the scaffold (Vázquez-Portalatı ́n et  al. 
2016). They claimed the sample with a 3:1 collagen type I 
to collagen type II ratio has the potential to be used for 
cartilage tissue engineering.

Collagen has also investigated by several researchers for 
drug delivery purpose. For example, Zhang et  al. fabricated 
two different nanofibrous drug delivery systems using col-
lagen (Zhang et  al. 2016). The blend and coaxial electrospun 
nanofibers of Rana chensinensis skin collagen (RCSC)/Poly 
(l-lactide) (PLLA) containing 5 wt% vancomycin (VCM) have 
been evaluated for their local and temporal drug delivery 
properties. While the amount of loaded drug was almost 
entirely released after 48 h from both nanofibers, the cumu-
lative release from the blend sample was 97% and from the 
coaxial sample was 80%, two different nanofibrous systems 
showed differing release behaviors for VCM.

Gelatin

Gelatin is a mixture of polypeptides derived from collagen 
by the partial hydrolysis of the protein backbone. Gelatin 
possesses many desirable characteristics for tissue engineer-
ing, including biodegradability, biocompatibility, and adapt-
ability endowing gelatin with various applications from 
wound healing to tissue regeneration (Sghayyar et  al. 2020; 
Rubio-Valle et  al. 2021; Askari et  al. 2021; Fonseca et  al. 
2019). Like collagen, gelatin suffers from weak mechanical 

strength and rapid dissolution in an aqueous medium. 
Hence, many attempts have been made to strengthen the 
gelatin-based scaffolds and improve their hydrolysis resis-
tance (Rajabi et  al. 2021; Sheikhi et  al. 2021; Zhang, Qu, 
et  al. 2021). Sghayyar et  al. investigated the wound healing 
potential bioresorbable phosphate-based glass fibers coated 
by gelatin (Sghayyar et  al. 2020) extracted from the tilapia 
scale (Figure 11a). The cross-linked gelatin hydrogels by 
glutaraldehyde revealed accelerated in vitro artificial wound 
closure in the scratch test with 28.5% more closure than 
the untreated wound within 24 h (Figure 11a). Li et  al. (Li 
et  al. 2020) fabricated a new injectable dual-enzymatically 
cross-linked hydrogel using porcine skin-derived gelatin to 
investigate its potential in nerve regeneration. The in vitro 
and in vivo assays claimed that their injectable gelatin 
hydrogel holds enormous potentials in nerve regeneration 
and nervous disorders therapy.

In another study, a bone scaffold based on chitosan and 
sandfish skin gelatin extracted from unicorn leatherjackets 
(Aluterus monoceros) exhibited biocompatibility without any 
adverse effect after 24 h of the cells culture on all samples, 
and higher cells adhesion was reported on the fish gelatin 
containing scaffold compared to pure chitosan scaffold 
(Saah, Oungbho, and Benjakul 2017). Ashwin et  al. (Ashwin 
et  al. 2020) used different concentrations of mucic acid in 
combination with gelatin to coat 3 D polylactic acid (PLA) 
scaffolds and enhance their osteogenic potential. The mRNA 
expression of ALP, type I collagen (Col-1), and osteocalcin 
(OCN) was significantly increased in cells-seeded PLA/gel-
atin/mucic acid scaffolds compared to cells-seeded PLA/
gelatin scaffolds. Due to its several bioactive motifs (RGD, 
which stands for glycine, l-arginine, and l-aspartic acid pep-
tides), gelatin induces cell adhesion on the surface and sup-
ports their growth and proliferation (Agheb et  al. 2017; 
Ahammed et  al. 2021; J. Liu, Zhang, et  al. 2021).

In addition to the several crosslinking methods for resolv-
ing the easy dissolution of gelatin, surface modification is 
another strategy to modify its chemical, mechanical, and 
biological properties. Agheb et  al. used tyrosine-protein and 
1,2,3-triazole ring to functionalize gelatin extracted from 
porcine skin and chemical cross-linkers such as glutaralde-
hyde and EDC/NHS to fabricate electrospun nanofibrous 
scaffolds for cartilage tissue engineering (Agheb et  al. 2017). 
The mechanical properties of modified gelatin nanofibers 
improved by 10-20 folds in terms of Young’s modulus. The 
modified gelatin nanofibrous did not induce any cytotoxic 
effect on chondrocyte cells, and gelatin scaffolds cross-linked 
with EDC/NHS resulted in enhanced cell proliferation when 
compared with the control group (Agheb et  al. 2017). Singh 
et  al. developed a cross-linker-free bioink for cartilage regen-
eration with optimal rheology (Singh, Bandyopadhyay, and 
Mandal 2019). To this end, they utilized silk fibroin 
(extracted from B. mori and P. ricini) and blended it with 
bovine gelatin. They asserted that these two naturally-derived 
proteins interacted through physical crosslinking and entan-
glement (Figure 11b). The hydrogel showed a sol-gel tran-
sition (G’>G’’) in the temperature ranges of 4-25 °C and 
35-45 °C while exhibiting a sol behavior at 25-35 °C, which 
paves the way for 3 D printing of the bioink at this 
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temperature range considering its low viscosity. Better still, 
since the rheological properties of the bioink turn into solid 
dominant area at higher and lower temperatures, the ink 
could preserve its shape and serve as a good candidate for 
3 D bioprinting of hydrogels in cartilage tissue engineering. 
Figure 11b depicts the images of Calcein AM-stained, 
DAPI-labelled bright blue cells, and hematoxylin-eosin 
(H&E)-stained cell-laden 3 D bioprinting networks.

Ahmad et  al. fabricated gelatin NPs coated with Eugragit 
s-100 for targeted oral delivery of 5-amino salicylic acid 
(5-ASA) in ulcerative colitis (Figure 12a (top))(Ahmad et  al. 
2021). The release profile was studied in a period of 90 h and 
at two acidic (2.0 and 4.5) and neutral pH. The results revealed 
that only 1.3% of the drug was released at pH 2.0 (which 
represented the gastric acidic environment), 7.5% of the drug 
was released at pH 4.5 (representing the proximal intestine 
environment), and thus, most of the loaded drug remained 
for the pH 7.4 (which represents the colon environment). Over 
four days, a sustained release was observed under this condi-
tion (Figure 12a (bottom, right)). Thus, few studies on 
protein-based micro/nanoparticles for drug delivery systems 
indicate the great potential of such platforms to be adopted 
for specific target delivery purposes. Ramadoss et al. prepared 
3 D gelatin/keratin and gelatin/silk composites with highly 
interconnected pores by freeze-drying technique as a potential 
candidate for sustained drug release (Ramadoss et  al. 2017). 
Gelatin/keratin scaffolds exhibited rather sustained-release com-
pared to the gelatin/silk scaffolds, and the observation was 
attributable to more hydrophobicity of keratin than gelatin.

Gelatin methacryloyl (GelMA) is a gelatin-based com-
pound that has been validated for biomedical application 
(Shie et  al. 2020). GelMA has been prepared through the 
reaction of gelatin with methacrylic anhydride, and via alter-
ation of feed ratio (gelatin/methacrylic anhydride), the 
degree of substitution and mathacryloylation can be adjusted 
that are the main influential factors on ultimate properties 
of GelMA (Shie et  al. 2020; Rastin et  al. 2020). GelMA can 
be used as a good candidate for tissue engineering, drug 
delivery, and 3 D printing because it displays biocompati-
bility, enzymatic cleavage, cell adhesion, and tailorable 
mechanical properties (Rastin et  al. 2020; Shie et  al. 2020; 
C. Kim, Young, et  al. 2020). GelMA hydrogel samples have 
been prepared with high and lowly substituted versions, and 
then their protein structure, mechanical properties, degra-
dation, and cell viability have been studied (Zhu et  al. 2019). 
Lue et  al. have investigated a gelatin methacrylate (GelMA) 
MNs patch for sustained delivery of doxorubicin (Luo et  al. 
2019). To fabricate MNs, doxorubicin was mixed with 
GelMA, cast into a micro-mold, and crosslinked using UV 
(Figure 12b (top)). GelMA MNs could successfully penetrate 
through and bypass the mouse SC due to their high stiffness 
(Figure 12b (bottom)). GelMA MNs exhibited controllable 
mechanical properties, degradation, and drug release rate 
via tunning the crosslinking time.

Since gelatin is hydrolyzed from collagen, it is affected 
by all parameters that affect collagen properties. Hence, 
gelatin quality is determined by factors such as raw mate-
rials, tissue type, animal age, collagen extraction, 

Figure 11. A ) Fabrication of the hydrogel based on bioresorbable phosphate-based glass fibers that was coated with gelatin extracted from tilapia scale for 
potential wound healing applications and images of wound scratch assay after 24 h (Reprinted and adopted from (Sghayyar et  al. 2020) with permission from 
Elsevier), B) Schematic representation of bioink formulation and entanglement and interaction of silk fibroin extracted from B. mori, P. ricini, and bovine gelatin 
(left), and the images of Calcein AM-stained, DAPI-labelled bright blue cells, and hematoxylin-eosin (H&E)-stained of 3 D bioprinting network based on silk 
fibroin extracted from B. mori, P. ricini, and bovine gelatin (right) (Reprinted from (Singh, Bandyopadhyay, and Mandal 2019) with permission from ASC 
publications.
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purification method, and hydrolysis method. For example, 
high temperature extraction decreases the physical prop-
erties of gelatin and its capacity to produce gel. It is not 
necessary to use pure collagen in skin tissue engineering 
or cartridge with good mechanical characteristics. By com-
bining gelatin with high mechanical polymers, gelatin has 
been used in hard tissue engineering, such as bone, to 
improve cell attachment, proliferation, and differentiation. 
However, gelatin is being used in different biomedical 
applications, regarding target tissue should be modified 
via crosslinking, blending, replacement functional 
groups, etc.

Keratin

Many researchers have studied the applications of keratin 
derived from animal by-products in tissue engineering and 
drug delivery (Ramya, Thangam, and Madhan 2020; Gao, 
Zhang, et  al. 2019; Gao, Li, et  al. 2019; Lin et  al. 2018; 
Sadeghi et  al. 2020; Wang et  al. 2016; Placone et  al. 2017) 
and in recent years, keratin’s intrinsic cell attachment and 
proliferative effects, biocompatibility, biodegradability, and 
natural abundance have attracted considerable attention for 
the wound healing process (Wang et  al. 2017). Ramya et  al. 
evaluated the extraction yield, keratin content, and process 

Figure 12. A ) Schematic representation of the synthesis of gelatin loaded 5-ASA NPs coated with Eugragit s-100 preparation process (top), TEM photograph 
of gelatin loaded 5-ASA NPs coated with Eugragit s-100 (bottom, left), and 5-ASA release profile under simulated physiological condition (bottom, right) 
(Reprinted from (A. Ahmad et  al. 2021) with permission from Elsevier), B) Schematic representation of gelatin methacrylate (GelMA) MNs patch preparation 
and their release mechanism (top). Microscopy images of mouse skin, before and after MNs penetration (bottom, left), and Doxorubicin (DOX) release from 
the fabricated MNs under different crosslinking duration (bottom, right) (Reprinted from (Luo et  al. 2019) with permission from Wiley.
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cost of six different chemicals for extracting keratin from 
red sheep’s hair (Ramya, Thangam, and Madhan 2020). 
Keratin enhances collagen deposition, keratinocyte migra-
tion, and fibroblast adhesion through binding to the adaptor 
protein in wounded stratified epithelia because of the abun-
dance of peptide sequences of Leucine − Aspartic acid − Valine 
and Arginine − Glycine − Aspartic acid (Gao, Li, et  al. 2019). 
Gao et  al. fabricated NPs from human hair keratin to accel-
erate dermal wound healing (Gao, Li, et  al. 2019). Using a 
bacterial expression system, they expressed two recombinant 
trichocyte keratins, including type I hair 37 and human 
type II hair keratin 81. In the live/dead viability/cytotoxicity 
assay, it has been shown that with increasing keratin NPs 
concentration from 0.25 to 1.00 mg.ml−1, the percentages of 
viable cells increased (Figure 13c (right)). Wounds treated 
with both fabricated NPs closed faster than the control 
group after seven days, as demonstrated in Figure 11c (left). 
Keratin-based scaffolds have also shown promise in the 
treatment of peripheral nerve damage. Gao et  al. showed 
that keratin extracted from human hair promotes the regen-
eration of peripheral nerves in a rat sciatic nerve model 
(Gao, Zhang, et  al. 2019). The proliferation of rat Schwann 
cell strain significantly increased on day 5 (P < 0.05) and 7 
(P < 0.01) in the keratin group compared with the control 
group. Moreover, the mRNA levels of the Glial cell 
line-derived neurotrophic factor (× ), nerve growth factor 
( ≅ ), and ciliary neurotrophic factor (× ) were much higher 
in the keratin group on the first day. Although the levels 
of GDNF, NGF, and CNTF remained higher in the keratin 
group throughout the experiment, the secretion of neuro-
trophic factors decreased gradually. The schematics and 
photographs of the surgery and implantation of the keratin 
sponge are represented in Figure 13d (left). The footprint 
changes in two groups of control and keratin, where their 
damaged nerve was distorted by keratin sponge, were eval-
uated after 3, 7, 10, 13, 17, and 21 days from surgery (Figure 
13d(right)). Keratin has also been used in combination with 
other proteins to enhance the quality of the scaffolds pro-
duced. For instance, biocomposite scaffolds based on 
jellyfish-derived collagen, human hair-derived keratin, and 
eggshell-derived nano-hydroxyapatite (nHA) were fabricated 
by the freeze-drying method for bone tissue engineering 
(Arslan et al. 2017). When comparing the collagen-keratin-nHA 
scaffolds to the keratin-free scaffolds, Alizarin red histo-
chemical staining revealed calcified matrix formation by the 
cells on the collagen-keratin-nHA scaffolds.(Arslan et  al. 
2017). In another study, Naderi et  al. evaluated the effect 
of chicken feather-derived keratin on the physical, mechan-
ical, and biological properties of poly (3-hydroxybutyrate) 
electrospun scaffolds, particularly for bone tissue regenera-
tion (Naderi et  al. 2020). These examples collectively reveal 
the potential capabilities of keratin in fabricating scaffolds 
for tissue engineering, either alone or in combination with 
other biopolymers. In another study, human hair keratin 
NPs were used to control doxorubicin release. Keratin NP 
size showed a narrow size distribution with PDI and an 
average diameter of 0.108 and 214.8 nm, respectively. 
Guidotti et  al. prepared wool keratin-polybutylene succinate 

nanofibrous mats to study the drug release behavior of such 
carriers for diclofenac (Figure 13e (left and middle)) 
(Guidotti et  al. 2020). Pure polybutylene succinate mats and 
blended keratin mats released 15.3 and 165.2 μg.cm−2 of the 
drug after 6 h, respectively. The release after 8 h was ∼10 
times higher in the case of blended mats (Figure 13e (right)), 
showing that keratin incorporation increased the drug 
release rate of the nanofibrous due to the repulsive phe-
nomena between negatively charged keratin and negatively 
charged diclofenac, as well as the narrower diameter distri-
bution of keratin-based mats, compared to that of pure 
polybutylene succinate mats which facilitates drug diffusion.

The keratin extracted by denaturation method has a 
higher molecular weight, mechanical properties, lower polar-
ity, and lower solubility than keratin extracted via degrada-
tion methods. Therefore, for biomedical applications that 
require higher mechanical properties and lower degradation 
rates, such as bone, nerve, and cardiovascular tissues, keratin 
extracted by denaturation methods can be used. In contrast, 
keratin extracted by degradation methods has good potential 
for wound dressings, cartilage, and drug delivery. 
Nevertheless, the keratins extracted from both methods have 
been used in various biomedical applications (Tables 4 and 
9). In addition to the extraction method, keratin source 
influences ultimate properties; rheological properties of 
feather keratin are more than wool and hair. The properties 
of scaffolds based on keratin can be tunable by molecular 
alteration weight, extraction method, modification with 
functional groups, adding nanoparticles, and other polymers. 
Although various forms of keratin scaffold showed cell via-
bility and proliferation, further investigation is needed to 
better understand how they interact. Clinical studies of the 
effectiveness of keratin in biomedical applications as well 
as development of developing a new green method for ker-
atine extraction with a high recovery percentage while pre-
serving its structure could be the next step.

Silk fibroin

Some outstanding features that highlight the potential appli-
cations of silk fibroin for tissue engineering are high 
mechanical strength, biocompatibility, stability to heat and 
humidity, high oxygen permeability, and tunability (Costa, 
Silva, and Boccaccini 2018a). In 2019, for the first time, a 
scaffold made up of solubilized or reconstituted silk protein, 
known as Silk Voice, was approved by the food and drug 
administration (FDA) (Chouhan and Mandal 2020). A novel 
bioactive film was produced based on silk fibroin and 
paramylon to mimic the properties of the ECM. The effect 
evaluation of pure and blended films on HEK 293 T cells’ 
viability revealed that the samples did not show any notice-
able toxicity with at least 90% viability compared to the 
respective controls (Arthe, Arivuoli, and Ravi 2020). The 
raw tussah silk film was investigated for its potential tissue 
engineering applications in another study; MTT results 
affirmed that water-rinsed silk film has higher cell survival 
than the control sample at at 2 and 66 days after cell seeding 
(Zhang et  al. 2019). The effect of elastomeric polyurethane 
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Figure 13. A ) Fluorescence microscopic images of Calcein AM and DAPI staining of NIH3T3 cells at 3, 5, and 7 days after cells seeding on collagen and keratin 
(Reprinted from (Ramya, Thangam, and Madhan 2020) with permission from Elsevier), B) Color photograph and storage modulus-frequency sweeps of keratin 
extracted from feather, wool, and hair (Reprinted from (Esparza et  al. 2018) with permission from Elsevier), C) Fluorescent images of live and dead HaCaT cells 
treated with various human type I hair keratin 37 and human type II hair keratin 81 nanoparticles (NPs) concentration after 24 h of incubation(left), healing 
progression and rate of wound closure wound treated with human type I hair keratin 37, human type II hair keratin 81, and keratin nanoparticles (NPs) on 
days 0, 7, 14, and 28 (right) (Reprinted from (F. Gao, Li, et  al. 2019) with permission from ACS Publications), D) a schematic diagram of surgery and the cor-
responding surgical photographs of repair of sciatic nerve injury by human hair keratin sponge (left) and the footprint changes images after 3, 7, 10, 13, 17, 
and 21 of surgery in the control group and keratin group that their damaged nerve was warped by human hair keratin sponge (right) (Reprinted from (J. Gao, 
Zhang, et  al. 2019), Springer nature, open access), E) Visual images and scanning electron micrographs of poly(butylene succinate) and keratin- poly(butylene 
succinate) 50-50 (left), SEM micrograph of NIH-3T3 on poly(butylene succinate) and keratin- poly(butylene succinate) 50-50 (middle), cumulative amount (µg/
cm2) of diclofenac sodium released from poly(butylene succinate) patch and keratin- poly(butylene succinate) 50-50 patches after 6 and 8 hours. Error bars 
represent mean ± SD. (right) (Reprinted from (Guidotti et  al. 2020) with permission from Elsevier).

type and ratio on the physicochemical properties of elec-
trospun polyurethane/silk fibroin extracted from natural 
silkworm hybrid nanofibers has been studied as potential 
scaffolds for tissue engineering. With an increasing concen-
tration of silk from 0 to 100%, the tensile strength increased 
from 1.3 to 3 MPa while the Young’s modulus increased 
from 1 to 40 MPa. The proliferation of fibroblast cells from 

human neonatal foreskin increased along with the culture 
time, as revealed by MTT assay, and hematoxylin-eosin 
(H&E) staining images (Figure 14a). The cells proliferation 
was also increased by increasing silk content in the nano-
fibrous scaffolds (Dehghan-Manshadi et  al. 2019).

In bone tissue engineering, biodegradable scaffolds ought 
to possess high mechanical and osteogenic properties, 
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whereas silk fibroin has been suggested as an ideal material 
for bone scaffolds (Zhang et  al. 2014; Du et  al. 2019; Ang 
et  al. 2020; Cao, Wang, et  al. 2020). Du et  al. fabricated 
various cocoon-derived silk fibroin scaffolds combined with 
mesoporous bioactive glass (Du et  al. 2019) using 3 D bio-
printing for bone tissue engineering (Figure 14b). The 

expression of bone morphogenetic protein-2 (BMP-2) on 
composite scaffolds was ∼ 22 folds higher compared to the 
control scaffolds indicating that the composite could enhance 
osteogenic differentiation. Similarly, osteocalcin (OCN) 
expression showed much higher expression on the composite 
scaffolds. In another work, osteogenic differentiation of 

Figure 14. A ) Hematoxylin-eosin (H&E) staining micrographs of fibroblast cells from human neonatal foreskin (YhFF#8) cells cultured on polyurethane/silk 
fibroin extracted from natural silkworm hybrid nanofibers scaffolds with various ratios for 3 and 7 days (Reprinted from (Dehghan-Manshadi et  al. 2019) with 
permission from Elsevier), B) optical image of cocoon-derived silk fibroin scaffolds combined with mesoporous bioactive glass by using 3 D bioprinting (top, 
left), SEM image of hBMSCs attached on bioactive glass/silk fibroin composite scaffold after 7 days (top, right), confocal laser scanning microscopy images of 
cells seeded on mesoporous bioactive glass/silk fibroin composite scaffolds for 1, and 7  days. (bottom) (Reprinted from (Du et  al. 2019), Elsevier open access), 
C) Histological analysis of osteogenic differentiation of the human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with Alizarin Red staining at day 
21 on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin, and silk fibroin cultured in osteogenic dif-
ferentiation media, DMEM, and blank media (left), qPCR analysis of gene expression level of alkaline phosphatase (ALP) and osteocalcin (OCN) during osteo-
genesis on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin, and silk fibroin at day 21 after the 
human umbilical cord-derived mesenchymal stem cells seeding (right) (Reprinted from (Ang et  al. 2020) with permission from Elsevier), D) Immunocytochemistry 
staining (primary antibody to nestin and NSE (green), nuclei stained by PI (red)) of PC12 cells on gold nanorods reinforced silk fibroin nanocomposite and silk 
fibroin scaffolds (Reprinted from (Afjeh-Dana et  al. 2019) with permission from Elsevier).
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Table 10. T he underlying mechanism, advantage, and disadvantage of common extraction methods for collagen.

Methods Mechanism Chemicals Advantages Disadvantages Ref

Salting out method Collagen proteins have 
the properties of 
salt soluble and 
salting out.

NaCl, citrate, 
phosphate, and 
Tris-HCl solution

It is suitable for type I 
collagen 
precipitation

Unstable Limitation in 
utilization

(Gendaszewska et  al. 
2016)

Alkali method Hydrolysis (large 
amounts of 
hydrolyzed collagen 
proteins are 
produced).

NaOH, Na2CO3, and 
MnO2.

Simple techniques 
Easy to handle
Mild reaction
Fast hydrolyzation

Water, air, and soil 
pollution 

Long cycle extraction 
process. 

Corrosion of 
equipment

(Jafari et  al. 2020; 
Gendaszewska et  al. 
2016)

Acid method Destroy the salt bonds 
between molecules 
and Schiff bases

AcOH, citric acid, or 
hydrochloric acid.

High yield 
Fast hydrolyzation

Corrosion of 
equipment

High pollution
Damage to the 

collagen structure

(Devita et  al. 2021; 
Abasi, Naghdi, and 
Mousavi Nadushan 
2021; Jafari et  al. 
2020; Gendaszewska 
et  al. 2016)

Enzymatic method Enzymes act on 
non-helix peptide 
chains of collagen 
protein

Pepsin, papain, 
trypsase.

Selectivity at reaction 
Less damage to 

collagen structure 
High purity 
Stable physical and 

chemical properties
Mild condition

Hydrolysis is not 
complete. 

Reaction time is 
extended. 

De-chroming is 
required. 

High cost

(Devita et  al. 2021; 
Abasi, Naghdi, and 
Mousavi Nadushan 
2021; Pap et  al. 
2022; Gendaszewska 
et  al. 2016)

Microbial method Fermentation by 
reproduced 
microbial

Microbe Cheaper than the 
enzymatic method,

Low yield (Zinina, Merenkova, 
and Galimov 2021; 
Zhang et  al. 2022)

Ultrasound Shear and cultivation Ultrasound wave, 
ultrasonic

Low cost, high yield, 
simple operation, 
and time-saving

– (Shaik, Chong, and 
Sarbon 2021; 
Petcharat et  al. 
2021)

Microwave Converting microwave 
energy to heat 
energy

Microwave Low cost and simple 
treatment process 
improve the 
extraction yield

– (Feng et  al. 2022;Viji 
et  al. 2022; Feng 
et  al. 2021)

High hydrostatic 
pressure

Cleavage of the intra 
bonds between the 
collagen structure

Green method, short 
time,

High cost, damage to 
the protein 
structure

(Bolat et  al. 2021; 
Rýglová et  al. 2021)

SFE High-pressure cleavage, 
the protein covalent 
bonds

CO2, high pressure Environmentally 
friendly, high yield,

High cost, and lack of 
products safety

(Liu, Tao, et  al. 2021; 
Thirukumaran et  al. 
2022)

Q12

human umbilical cord-derived mesenchymal stem cells on 
electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/
silk fibroin derived from B. mori cocoons was investigated 
(Figure 14c). Mesenchymal stem cells (MSCs) gene expres-
sion analysis revealed the up-regulation of ALP (1.6-fold) 
and OCN (2.8-fold) on the electrospun scaffold when com-
pared to the control sample (Figure 14c) (Ang et  al. 2020). 
In addition to bone tissue engineering, silk fibroin has also 
been used in other musculoskeletal tissues such as cartilage 
and muscle (Hong et  al. 2020; Singh, Bandyopadhyay, and 
Mandal 2019; Zhang, Qu, et  al. 2021). For instance, wang 
et  al. (Wang, Sun, et  al. 2019) prepared a B. mori-derived 
silk fibroin/collagen/hyaluronic acid scaffold incorporating 
pilose antler polypeptides microspheres via admixing, cross-
linking, and lyophilizing processes. Pilose antler polypeptides 
microspheres significantly improved bone marrow stromal 
cell proliferation and cartilage tissue regeneration. To inves-
tigate the potential application of silk fibroin for nerve tissue 
engineering, Afjeh-Dana et  al.(Afjeh-Dana et  al. 2019) eval-
uated the proliferation and attachment of PC12 cells on B. 
mori extracted silk fibroin reinforced gold nanorods scaf-
folds; incorporating gold nanorods into silk fibroin scaffolds 
significantly increased the electrical conductivity of the bulk 
scaffold from 12.5 β 109 to 1.0 β 108 ohm. A higher 

expression level of neuron-specific enolase and neural-specific 
proteins like nestin was observed in the immunocytochem-
istry staining on the silk fibroin/gold nanorods nanocom-
posites than neat silk fibroin scaffolds (Figure 14d). Kim 
et  al.(Kim, Yeon, et  al. 2018) created a bioink for digital 
light processing 3 D bioprinting based on silk fibroin meth-
acrylation, which was produced by using glycidyl methac-
rylate during the silk fibroin solution preparation, for tissue 
engineering applications.

Hydrophilic and hydrophobic amino acids of silk fibroin 
empower this amazing material for NPs preparation using 
a self-assembling process (Ghalei et  al. 2020). Moreover, 
because of its tunable β-sheet crystalline formation, drug 
encapsulation and release properties could be controlled 
(Wu et  al. 2020). Therefore, silk fibroin has been widely 
investigated for NPs fabrication and drug delivery 
(Kucharczyk et  al. 2021; Pandey et  al. 2020). Solomun et  al. 
examined the effect of silk processing conditions and two 
fabrication methods on the physicochemical properties of 
the ensued NPs (Solomun et  al. 2020). They used sodium 
carbonate for silk degumming and evaluated the effect of 
degumming time on the NPs size and polydispersity index 
(PDI). The result showed that longer degumming (60-90-min-
ute) results in 100-114 nm particle size and narrow particle 
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Figure 15. A ) Silk fibroin nanofiber loaded by pro-angiogenesis drug desferrioxamine (DFO) fabricated by concentration-dilution process (left) and DFO release 
profile for nanofibers loaded with different amounts of the drug (SD) represents silk fibroin nanofibers loaded with DFO) (right) (Reprinted from (Z. Ding et  al. 
2019) with permission from ACS Publications). B) SEM photograph of gelatin type B nanoparticles (GB-NPs) with (scale bar is equal to 500 nm) (top, left) and 
confocal microscope images of fluorescent died GB-NPs embedded silk nanofibers (scale bar is equal to 10 μm in f and 1 μm) (top, right) (Song et  al. 2017), 
B) Vancomycin release profile from composite nanofibers with different concentrations (0, 20, 33 wt%) of GB-NPs during 14 days (left), and SEM photographs 
of electrospun silk nanofibers loaded with 0, 20, and 33 wt% GB-NPs, respectively (scale bar is equal to 4 μm) (right) (Reprinted from (Song et  al. 2017) with 
permission from Wiley).

size distribution. In contrast, shorter degumming time 
(10 minutes) leads to larger particles (∼168 nm) and broader 
particle size distribution. They did not observe any signif-
icant differences between particle size and PDI of silk NPs 
produced by microfluidic and manual dropping methods. 
However, the NPs generated via the microfluidic system had 
significantly lower zeta potential (−28 to −29 mV) compared 
to those prepared by manual dropping protocol (−39 to 
−43 mV) (Solomun et  al. 2020). Zhuang et  al. investigated 
the influence of silk fibroin microparticles on biomedical 
grade polyurethane filament’s physical properties and drug 
release behavior (Zhuang et  al. 2019); hybrid filament with 
5 wt% silk fibroin microparticles showed the highest drug 
loading, ∼ 3.5% after 48 h from loading time. All samples 
with different concentrations of silk fibroin microparticles 
showed a burst release of drug in initial releasing time 
followed by a continuous release from 10 to 72 h. Due to 
their high aspect ratio, micro/nanofibers have exhibited great 
potential in drug delivery applications (Ghaffari-Bohlouli 
et  al. 2020; Dadras Chomachayi et  al. 2018; Zhang et  al. 
2016) as thin (nanoscale), smooth, and bead-free fibers are 

more suitable (Ghaffari-Bohlouli et  al. 2020); electrospinning, 
self-assembly, and phase separation being the primary 
protein-based micro/nanofibers production methods 
(DeFrates et  al. 2018; Yıldız, Kara, and Acartürk 2020). 
Electrospun nanofibers of silk fibroin (from B. mori) and 
gelatin were fabricated with different concentrations of gel-
atin for controlled release of thyme essential oil and doxy-
cycline monohydrate. Using a concentration-dilution method, 
silk fibrin has been demonstrated to be assembled into 
nanofibers (Figure 15a (left))(Lu et  al. 2012). This method 
includes a concentration and dilution process followed by 
incubation at 60 °C for 24 h to obtain silk fibroin nanofibers. 
By implementing this method, Ding et  al. fabricated silk 
fibroin nanofibers for sustained delivery of a pro-angiogenesis 
drug, desferrioxamine (DFO) (Figure 15a (right)) (Ding 
et  al. 2019). Their results showed that this nanofibrous sys-
tem could provide a sustained release of DFO over 40 days; 
this extended and sustained release prevents DFO burst 
release toxicity. In another interesting methodology, core-shell 
nano/micro-fibers have been produced to preserve sensitive 
drugs and bioactive molecules in their structure and control 
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their release rate (Babitha et  al. 2017; Ojah et  al. 2019; Pant, 
Park, and Park 2019). Song et  al. produced silk-based nano-
fibers embedded with vancomycin-loaded gelatin type B NPs 
(VG-NPs) by electrospinning technique (Song et  al. 2017). 
It has been postulated that negatively charged nanomaterials 
could sustainably release positively charged drugs like van-
comycin. The confocal microscopy images revealed that the 
VG-NPs were successfully embedded within the silk 
fibroin-based fibers (Figure 15b (top, left, and top, right)); 
changing silk per NPs ratios, resulted in the formation of 
fine and bead-less fibers. Their results showed that incor-
porating negatively charged VG-NPs into silk-based nano-
fibrous scaffolds provides more sustain release than direct 
use of vancomycin into nanofibers (Figure 15b (bottom)). 
Yavuz et  al.(Yavuz et  al. 2020) fabricated MN patch for 
delivery of levonorgestrel (LVN) using bombyx mori derived 
silk fibroin and simply by varying the sodium carbonate 
treatment time, obtained low, medium, and high molecular 
weight silk fibroins. They found that while the molecular 
weight of extracted silks does not significantly affect the 
MNs release profile, increasing the silk concentration slowed 
the MNs release rate. Zhu et  al. investigated a composite 
MN patch with silk fibroin/insulin needles and proline/silk 
fibroin/insulin as their pedestal for insulin delivery using 
the micro-moulding method (Mingmei Zhu, Liu, et al. 2020). 
The Bombyx mori-derived silk fibroin MNs possess adequate 
mechanical properties to penetrate the skin. The dissolv-
ability of silk fibroin provides a rapid insulin release, while 
the support could provide a sustained release via the cavities 
created by MNs insertion. The silk fibroin MNs showed 
good storage stability for insulin, preserving more than 90% 
of its biological activity after 30 days.

Due to its unique hierarchical structure, Silk fibroin has 
an excellent mechanical strength that can be used in all 
biomedical applications, especially bone tissue engineering. 
Other properties of silk fibroin such as biodegradability, 
hydrophilicity, B-sheet content, materials morphology, solu-
tion behavior, and cell interactions can be tuned by its 
modification chemistries, which expand its utility in a wide 
variety of biomaterials applications. Moreover, silk sericin 
is a natural polar polymer that can be readily crosslinked 
and conjugated with other polymers, can act as a moistur-
izing agent, increase cell interactions, can facilitate the 
migration and proliferation of collagen type I in the skin 
is used in wound healing and epithelial repair. Easy, effec-
tive, and low-cost extraction of silk fibroin and silk sericin 
and their potential in biomedical application increase 
researcher attention to employing them in nanofabrication, 
3 D printing, smart drug delivery, and multilevel modifica-
tion technologies. However, many attempts to find sustain-
able, eco-friendly, economical technologies and devices and 
clinical investigations are needed for large-scale and industry 
applications.

Biomedical application

Although animal by products can be used in a variety of 
biomedical applications, due to their biocompatibility and 
biodegradability, they are almost exclusively used for specific 

tissue and targets due to their intrinsic and natural nature 
feathers such as hydrophilicity, mechanical and thermal prop-
erties, solubility, molecular weight, amino acid composition 
and content, the interactions with host tissue. Due to their 
hydrophilicity, weak mechanical properties, and high capacity 
for water absorption, collagen, gelatin, and silk sericin have 
been demonstrated to be useful in wound dressing, skin regen-
eration, and tissue repair. Not only they are nontoxic and 
have desired cell viability, but they can also improve 
re-epithelization in skin regeneration and wound healing appli-
cations by enhancing collagen production via keratinocytes 
via the proteins like silk fibroin and keratin, on the other 
hand, are more stable against the thermal and harsh conditions 
and have good mechanical strength, making them a good 
candidate for bone tissue, nerve tissue, and drug delivery 
applications due to their high molecular weight and hydrogen 
and disulfide bonds intertwined in inter their structure. 
Sources and extraction methods, on the other hand, have a 
remarkable effect on the final properties of protein. For exam-
ple, marine collagen has a lower immunological immunology 
response than mammalian collagen, while feathers keratin has 
better mechanical qualities than wool and hair keratin.

Furthermore, some extraction methods can damage the 
protein’s structure and cause it to degrade into lower molec-
ular weight protein, lowering the mechanical properties. 
Acetic, basic, and even enzymatic protein extraction methods 
are in this category. Therefore, regardless of the source, 
extraction, or recovery method, each protein can have a 
wide range of properties and be used in a variety of bio-
medical applications. Moreover, proteins have different 
amino acids in their structure, which allows them to be 
modified modify with functional groups, other polymers, 
and additives to tune and change their properties and 
expand their application. Further investigations are missing 
here to find how cells interact with protein-based scaffolds 
and how to improve their properties. Also, their efficacy in 
clinical tests must be demonstrated before they may be also 
used on a large basis.

Conclusions and future prospective

As the human population grows, the demand for foods; 
especially proteins, which are a vital ingredient of body 
energy, increases. As a result, a tremendous amount of food 
wastes is produced which with current approaches, not only 
requires a large area to landfill, but also generate green 
gases, pollute the earth, and underground waters, spreads 
a spread variety of disease. Therefore, it is critical to make 
effort to reduce food waste and develop methods and 
approaches for recycling and reusing it. Although waste can 
be converted to heat and valuable gases through recycling 
process such as burning and anaerobic digestion. Animal 
waste possess high-value components, including polysaccha-
rides, proteins, and unsaturated fats that can be extracted 
and reused as human and animal feed, pharmaceutical, and 
biomaterials in biomedical applications. Collagen, gelatin, 
elastin, keratin, silk fibroin, and sericin are some of the 
most common proteins that can be extracted extractable 
from animal by-products.
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Removing the undesired materials and preparing the ani-
mal by-products for extraction is the first step. Then, one 
extraction method is employed regarding the target protein, 
desired properties, and available chemicals and equipment. 
For each protein, many extraction methods have been 
reported that generally, traditional methods have a low yield, 
low cost, severe conditions (using toxic chemicals or high 
temperature), long processing time, harmful downstream 
waste that damage protein structure. Hence, some new, 
eco-friendly, economic technologies and methods with high 
extraction rates, more minor side effects on protein structure, 
and recyclable and reusable wastes have been introduced, 
such as supercritical fluid extraction, deep eutectic solvent, 
and ionic liquids. In addition, to improve protein yield from 
animal by-products, combining traditional methods with new 
technologies or using pretreatment methods following 
extraction methods has been suggested. Acidic, alkalic, enzy-
matic, ultrasonic, and microwave irradiation are some pre-
treatment methods used for protein extraction and sometimes 
can be used together. To recover extracted and isolated pro-
teins, methods like spray and freeze drying, salting in and 
out, gradient pH, and filtering can be employed to separate 
them from solvents, chemicals, and impurities. Although the 
efforts to develop green and highly efficient protein extraction 
methods have yielded promising results, further research and 
study is needed to achieve sustainable, ecofriendly, and 
cost-effective approaches that can be scaled up.

Biocompatibility, biodegradability, and the ability to 
design in different forms are common feathers of extracted 
proteins from animal by-products, making them good can-
didates for biomedical appliances. Their intrinsic properties 
have been used in divorce tissue engineering and drug deliv-
ery applications, with promising results. Moreover, a variety 
of protein modification have been reported to tune and 
change their properties to access scaffolds with a similar 
feather as target tissue. Due to the ability to extract protein 
from animals by products to manufacturing, they are used 
in many forms such as films, nanofibers, 3 D printed scaf-
folds, nano, microparticles, etc. Their applications can be 
expanded by using them as a carrier of cells and growth 
factors. Although all proteins extracted, have been illustrated 
good cell attachment, viability, and proliferation, their inter-
action with different cells is missing. Also, it is necessary 
to investigate their clinical potential before applying them 
on a large scale and in the industry.
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FAO	 Food and Agriculture Organization
IFCO	 International Food Container Organization
ECM	 Extracellular matrix
Bombyx mori	 B. mori
ASC	 Acid-soluble collagen
PSC	 Pepsin-aided acid soluble collagen
DES	 Deep eutectic solvent
COD	 Chemical oxygen demand
BOD	 Biological oxygen demand
HBA	 Hydrogen bond acceptor
HBD	 Hydrogen bond donor
SFE	 Supercritical fluid extraction

DSC	 Differential scanning calorimetry
AcOH	 Acetic acid
NaOH	 Sodium hydroxide
FDA	 Food and drug administration
BMP-2	 Bone morphogenic protein 2
EDC/NHS	 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in  
	 the presence of N-hydroxysuccinimide
OCN	 Expression of osteocalcin
ALP	 Alkaline phosphatase
MSCs	 Mesenchymal stem cells
HA	 Hydroxyapatite
SEM	 Scanning electron microscopy
BMSCs	 Bone mesenchymal stem cells
hUC-MSCs	 Umbilical cord mesenchymal stem cells
CCK-8	 Cell counting kit 8
G′	 Storage modulus
G"	 Viscous modulus
PBS	 Phosphate-buffered saline
MW	 Microwave
ILs	 Ionic liquids
MN	 microneedle
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