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Perspective

The land-to-ocean loops of the global carbon 
cycle

Pierre Regnier1 ✉, Laure Resplandy2, Raymond G. Najjar3 & Philippe Ciais4

Carbon storage by the ocean and by the land is usually quantified separately, and does 
not fully take into account the land-to-ocean transport of carbon through inland 
waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean 
aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial 
period and perturbed by direct human interventions, including climate change. In our 
view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon 
from terrestrial ecosystems to the open ocean through rivers, is reinforced by two 
‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and 
from tidal wetlands to the open ocean. Using a mass-balance approach, we find that 
the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems 
transferred to the ocean and outgassed back to the atmosphere amounts to 
0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the 
cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, 
and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and 
submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an 
overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of 
carbon per year, and an underestimation of sedimentary and oceanic carbon storage. 
We identify knowledge gaps that are key to reduce uncertainties in future assessments 
of LOAC fluxes.

The land and the ocean carbon reservoirs are key gatekeepers con-
trolling atmospheric carbon dioxide (CO2) and Earth’s climate on 
annual to centennial timescales. In most carbon budgets, terra firme 
ecosystems on land and the open ocean (see Box 1 for definitions) are 
viewed as silos that exchange CO2 with only the overlying atmosphere1–3.  
In reality, some of the carbon taken up as CO2 by terra firme ecosystems 
is transported to the ocean by the ‘land-to-ocean aquatic continuum’ 
(LOAC)4–8 (Box 1), and may return to the atmosphere or be trapped in 
sediments at each step of its journey9–16. The transport and transfor-
mation of carbon along the LOAC involve natural processes that have 
been substantially perturbed by human activities8,14,17. Knowledge of 
this transport and redistribution by the LOAC is required to separate 
natural and anthropogenic fluxes from total CO2 fluxes estimated by 
observational analyses, such as atmospheric inversions, surface-ocean 
CO2 surveys or upscaling of eddy covariance ecosystem exchange meas-
urements18. Despite recent advances in understanding LOAC processes, 
for example, refs. 19,20, the separation of natural and anthropogenic CO2 
fluxes still relies on the assumption that the LOAC is a ‘river pipeline’ 
of natural carbon flowing from the land to the ocean. This approach, 
proposed by Sarmiento and Sundquist21, continues to be used by the 
Intergovernmental Panel on Climate Change (IPCC)1,2 and the Global 
Carbon Project (GCP)3.

A standard estimate of the LOAC pre-industrial natural carbon 
flux outgassed in the open ocean using the river pipeline conceptual 

model is 0.45 ± 0.18 PgC yr−1 (ref. 2). This number is derived from 
present-day observations of carbon transport at river mouths 
(0.71 PgC yr−1)5,22,23 assuming that a fraction of this carbon is buried in 
the ocean (0.26 PgC yr−1) and the rest is outgassed back to the atmos-
phere23 (Fig. 1a). This estimate has four main shortcomings: the river 
input (0.71 PgC yr−1) is lower than recent assessments (for example, 
refs. 2,9) giving 0.90 PgC yr−1; it assumes that carbon is transported 
passively in rivers; it neglects the anthropogenic perturbation of the 
river carbon transport; and it assumes that all the carbon transported 
at river mouths then reaches the open ocean, ignoring the role of 
estuaries, tidal wetlands and continental shelf waters. More recently, 
Resplandy et al.24 revised the pre-industrial river carbon transport 
upwards to 0.78 ± 0.41 PgC yr−1, arguing that a higher riverine supply 
was needed to match the observed meridional transport of carbon in 
the ocean (Fig. 1b). After subsequently using the former (for example, 
ref. 25) and latter3,26 estimates, the GCP has most recently evaluated the 
land-to-ocean carbon flux using the average of both estimates (that is, 
0.61 PgC yr−1)27. These estimates provide, however, limited understand-
ing of the LOAC contribution to the global carbon cycle, as they either 
do not consider all key carbon pathways or rely on indirect constraints 
from ocean-tracer observations alone (Fig. 1).

In this Perspective, we replace the river pipeline conceptual model 
by a more detailed description of the LOAC. Building on recent assess-
ments of global LOAC fluxes8,19,20,28–55, we estimate pre-industrial and 
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anthropogenic LOAC carbon transfers using the more complete repre-
sentation given in Fig. 1c. We discuss the magnitude and underlying pro-
cesses of land-to-ocean carbon transfers during pre-industrial times, 
how much have human activities perturbed these transfers, and how 
this perturbation has decoupled the uptake of anthropogenic CO2 from 
carbon storage in the terra firme and ocean reservoirs. We conclude by 
identifying key knowledge gaps in LOAC research and discussing how 
to reduce uncertainties in future estimates of LOAC fluxes.

Perturbed LOAC carbon cycle
The realistic conceptual framework drawn in Fig. 1c is used to quan-
tify each LOAC carbon flux and provide a full closure of the global 
carbon budget from terra firme ecosystems to the open ocean.  
We apply a mass-balance approach, relying on the recent advances and 
syntheses of LOAC observational data, complemented by statistical 
and process-based models. We quantify these fluxes for present-day 
conditions (roughly 1990 to present), then estimate the anthropogenic 
perturbation for each of the LOAC fluxes, and finally quantitatively 
constrain the pre-industrial equilibrium state (see Supplementary 
Information for details). Our approach differs from the global carbon 
budgets of the IPCC and GCP, which did not fully resolve the complex-
ity of the LOAC and assumed that LOAC fluxes remained equal to their 
pre-industrial values2,3. A latitudinal decomposition is also performed, 
which enables an independent comparison with the revised independ-
ent top-down estimate from ref. 24.

To constrain the present-day LOAC fluxes, we have prioritized spa-
tially and temporally resolved, observation-based assessments (Table 1) 

derived from a systematic search of more than 100 peer-reviewed pub-
lications, of which about half have been published over the past decade 
(Supplementary Table 2). The vast majority of LOAC fluxes are quanti-
fied using spatially resolved climatologies (albeit at different resolu-
tions, Table 1), except the estuarine burial, the tidal wetland fluxes and 
the submerged vegetation fluxes, which are based on a global mean 
area-based flux density. It is, however, important to stress that even in 
the cases based on flux density, we used distinct values per estuarine 
type (tidal systems and deltas, lagoons, and fjords) and vegetation 
type (mangroves, marshes, seagrasses and macroalgae). When stud-
ies did not report the time frames covered by their assessment, we 
assumed that present-day LOAC fluxes were broadly representative 
of the past three decades (1990 to present; Supplementary Table 2) 
and that these fluxes have remained constant over this relatively short 
period. Only in a few cases, where the spatial resolution of the model 
products was unambiguously better than the observational evidence, 
we have selected model-derived estimates. These cases include the 
continental shelf carbon burial (and accumulation), which was partly 
derived from model estimates, and the river-to-estuary export flux, 
which was constrained using a hybrid approach. At the global scale, 
these model-derived estimates match reasonably well the spatially 
coarser, observation-based assessments (Supplementary Section 1, 
Supplementary Table 2).

The present-day carbon cycle
The starting point in evaluating the present-day carbon budget (roughly 
1990 to present) shown in Fig. 2a (step 1 in Supplementary Section 0) 
is the lateral flux at river mouths where the water enters estuaries: 
this is the best-constrained lateral carbon transport along the LOAC20. 
Our estimate of this lateral flux, 0.95 ± 0.15 PgC yr−1 (FIE, see Table 1 
and Fig. 1c for LOAC flux names) is based on the latest assessments of 
carbon carried by rivers28–31, but also includes groundwater sub-sea 
carbon discharge32,33 (Supplementary Section 1). The groundwater 
carbon discharge is highly uncertain32,33, but it is a relatively minor 
pathway for land-to-ocean carbon transfers, probably not exceeding 
0.1–0.2 PgC yr−1. Downstream of river mouths, we estimate using recent 
syntheses (Supplementary Section 1)34–38 that the net uptake of atmos-
pheric CO2 by tidal wetlands, estuaries and continental shelf waters 
(FAW − FEA + FAC) adds 0.40 ± 0.15 PgC yr−1 to the carbon carried by rivers 
towards the open ocean. This atmospheric CO2 uptake is incidentally 
in balance with carbon burial in coastal sediments (FWS + FES + FCS; Sup-
plementary Section 1)39–45, so that the net lateral transfer of carbon at the 
river-–estuary boundary (FIE) equals the transfer between continental 
shelf waters and open ocean (FCO; Fig. 2a).

Moving upstream to the continental segments of the LOAC (left side  
of Fig. 1c), we note that the amount of carbon leached from the land 
to the LOAC cannot be assessed from observations. Therefore, this 
flux was constrained from mass balance, starting again from the 
well established lateral flux at river mouths, FIE. Upstream of the 
river–estuary interface, we revised the estimates of carbon evasion 
from inland waters to the atmosphere (FIA = 1.85 ± 0.50 PgC yr−1; 
Supplementary Section 1)19,46–48 and the inland-water carbon burial 
(FIS = 0.15 ± 0.10 PgC yr−1; Supplementary Section 1)49. These estimates 
of carbon evasion and burial account for the contribution of streams, 
rivers, ponds, lakes and reservoirs, but exclude the largely unknown 
and yet potentially large fluxes from floodplains. Despite significant 
uncertainties, these revisions yield a massive lateral carbon loss from 
terra firme ecosystems to inland waters of 2.95 ± 0.55 PgC yr−1 (FLI).

To recast the present-day LOAC carbon fluxes in the context of the 
global carbon budget, we select the 2005–2014 decade as an example. 
Selecting a shorter time frame is needed to constrain the rapidly evolv-
ing fossil fuel emissions, atmospheric CO2 growth rate and open-ocean 
uptake. During this period, the open-ocean CO2 uptake from the atmos-
phere (FAO) is estimated at 1.85 ± 0.95 PgC yr−1 using three data-driven 
products based on surface-ocean partial pressure of CO2 (pCO2

) meas-

Box 1

The land-to-ocean aquatic 
continuum
The LOAC can be viewed as a succession of connected, chemically 
and physically active aquatic biogeochemical systems, linking 
upland soils to the open ocean. The segmentation of the LOAC 
mostly follows that proposed by ref. 8. In this segmentation, land 
should be understood as ‘terra firme’ terrestrial ecosystems, 
whereas inland waters comprise streams, rivers, floodplains, 
lakes, ponds and reservoirs. Coastal waters include estuaries 
and continental shelf waters36. They receive land-derived carbon 
inputs from inland waters through both river flows and subsurface 
discharge from fresh groundwater32,33.

Coastal waters are also strongly connected to tidal wetlands 
(mainly tidal marshes and mangroves), which extract CO2 from 
the atmosphere and export carbon laterally towards estuaries 
and continental shelf waters64. In addition, submerged vegetation 
(seagrass and macroalgae) present in estuaries and on continental 
shelves has an important role in carbon burial and air–water CO2 
exchange34. Our analysis explicitly accounts for tidal wetlands 
and submerged vegetation—together referred to as ‘blue carbon’. 
Estuaries comprise alluvial estuaries dominated by the tide, small 
deltas, lagoons and fjords112, and carbon fluxes through the air–
water interface were estimated separately for each type, whereas 
burial was estimated separately for fjords and collectively for the 
other estuarine types. Continental shelf waters correspond to 
the shallow part of the ocean down to the shelf break, typically 
located at around 200-m water depth36. The open ocean is defined 
here as the global ocean minus the portion covered by continental 
shelves.

Pierre Regnier
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urements, which show remarkable agreement over the given time frame 
(Supplementary Table 2)56–58. Closure of the present-day atmospheric 
carbon budget using this ocean uptake, our new LOAC fluxes and fos-
sil fuel emissions (8.90 PgC yr−1), and the atmospheric CO2 growth rate 
(4.40 PgC yr−1) reported by the GCP3 yields a CO2 uptake by terra firme 
ecosystems of 4.10 ± 1.50 PgC yr−1 (FAL; Fig. 2a; see Supplementary Sec-
tions 0, 1 for further details). A substantial fraction of this carbon uptake 
is not stored in situ but feeds into the LOAC where it is largely recycled 
back to the atmosphere, suggesting a rapid carbon turnover between 
terra firme ecosystems and inland waters.

The anthropogenic perturbation
Instead of using the concept of a river pipeline, we revise the anthropo-
genic carbon budget to include each segment of the LOAC (Fig. 2a, step 
2 in Supplementary Section 0, see details in Supplementary Section 2). 
We find that the anthropogenic perturbation notably increased the lat-
eral transfer of carbon from terra firme ecosystems to inland waters by 
0.60 ± 0.40 PgC yr−1 (F′LI; Supplementary Section 2). This enhancement 
of the carbon leached from terra firme ecosystems mostly intensifies 
inland water outgassing and burial (Supplementary Section 2)50–52 so 
that the carbon flux at the river–estuary interface increases by only 
0.10 ± 0.05 PgC yr−1 (F′IE) from its pre-industrial value, in agreement with 
global and regional assessments31,50,53,54. In addition, the anthropogenic 
perturbations of atmospheric CO2 exchanges and burial downstream 
of the river–estuary interface largely offset each other8,39,55. As a result, 

the net anthropogenic transport perturbation only marginally grows 
from the river–estuary interface to the shelf–open-ocean interface 
to reach 0.15 ± 0.15 PgC yr−1 (F′CO; Fig. 2a, Supplementary Section 2).

The open-ocean anthropogenic CO2 sink59,60 (F′AO; Fig. 2a) is estimated 
to be 2.50 ± 1.00 PgC yr−1, as derived from the present-day total CO2 
uptake (1.85 ± 0.95 PgC yr−1; ref. 56) minus the pre-industrial outgassing 
derived from our LOAC assessment (0.65 ± 0.30 PgC yr−1; see next sec-
tion). The anthropogenic change in carbon storage in the open ocean, 
however, amounts to 2.65 ± 1.00 PgC yr−1. It is larger than the anthropo-
genic CO2 uptake by the ocean because 0.15 ± 0.15 PgC yr−1 of anthro-
pogenic carbon is received laterally from shelf waters (Supplementary 
Section 0). Conversely, the anthropogenic CO2 sink of terra firme eco-
systems obtained from closure of the anthropogenic carbon budget 
amounts to 2.30 ± 1.50 PgC yr−1 (F′AL; Supplementary Section 2). This 
sink is substantially larger than the net anthropogenic carbon storage 
on land of 1.70 ± 1.55 PgC yr−1, because of the leaching of anthropogenic 
carbon to inland waters. We note that partly owing to the propagation 
of significant uncertainties in lateral carbon fluxes, the impact of the 
LOAC on the anthropogenic carbon storages in the land and the open 
ocean is subject to uncertainties of the order of 50–100% at the 2σ level.

Pre-industrial LOAC carbon cycle
In our conceptual framework, we derived the pre-industrial state for all 
LOAC fluxes (Table 1) by subtracting the anthropogenic perturbation 
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Fig. 1 | Approaches to quantify the pre-industrial carbon budget.  
a, According to the ‘river pipeline’ model23. b, According to the meridional 
carbon transport by the ocean24. c, According to the LOAC carbon loop model 
from this study. The LOAC loop model explicitly accounts for LOAC segments 
ignored in traditional global carbon budgets. It splits ‘land’ into ‘terra firme 
ecosystems’ and ‘inland waters’ and adds the overlooked contributions of 
‘estuaries and tidal wetlands’ and ‘continental shelf waters’ to the overall 

carbon budget. The full LOAC loop can be decomposed into one long-range 
carbon loop (green) connecting terra-firme ecosystems to the open ocean and 
two short-range carbon loops respectively connecting terra firme ecosystems 
to inland waters in the upstream portion of the LOAC (grey), and tidal wetlands 
and shelf waters to the open ocean in the downstream portion of the LOAC 
(blue). The units in panels a, b are PgC yr–1. OC stands for organic carbon and 
PIC for particulate inorganic carbon. See Table 1 for LOAC flux nomenclature.
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from the present-day LOAC budgets described in the previous sections 
(step 3 in Supplementary Section 0, Fig. 2b). As a result, the uncertain-
ties in the pre-industrial carbon fluxes grow further, highlighting the 
challenge to reach a closure of the carbon budget that includes the LOAC 
before human perturbations. Our analysis suggests that pre-industrial 
terra firme ecosystems were taking up 1.80 ± 0.75 PgC yr−1 of atmos-
pheric carbon, as CO2 (F°AL), which was entirely channelled to inland 
waters. The weathering of the bedrock22,29,61,62 (F°WI; see Supplementary 
Box 0 for the nomenclature of geological fluxes) and the lateral trans-
fer of eroded petrogenic and old soil organic carbon28 (F°FI) added 
0.40 ± 0.15 PgC yr−1 and 0.15 ± 0.20 PgC yr−1, respectively, leading to a 
total lateral transfer of 2.35 ± 0.70 PgC yr−1 from soils to inland waters 

during pre-industrial times. Most of this carbon was processed in inland 
waters by the upstream short-range carbon loop (grey, Fig. 1c), and only 
0.85 ± 0.20 PgC yr−1 flowed through the river–estuary interface (F°IE) 
as part of the long-range carbon loop (green, Fig. 1c).

Downstream of the river–estuary interface, the CO2 uptake by tidal 
wetlands in the downstream short-range carbon loop (blue, Fig. 1c) was 
twice that of today (F°AW − F°EA = 0.20 ± 0.15 PgC yr−1; Supplementary 
Sections 1, 2) and continental shelf waters were also taking up a small 
amount of atmospheric CO2 (F°AC = 0.10 ± 0.15 PgC yr−1). Altogether, 
1.15 ± 0.25 PgC yr−1 entered coastal waters during pre-industrial times, 
about three-quarters of which was delivered by rivers and groundwater 
(0.85 ± 0.20 PgC yr−1) and one-quarter taken up from the atmosphere by 

Table 1 | Quantification of the LOAC carbon fluxes and their 2σ uncertainties

Symbol Name Present 
day

Confidence Uncertainty Method Spatially 
resolved 
flux

Temporal 
variability

Perturbation 
F′

Confidence Uncertainty Pre-industrial 
F°

Uncertainty

FIA
a Outgassing 

from inland 
waters

1.85 L/M 0.51 d Yes No 0.40 L 0.40 1.45 0.65

FIS
a Burial in 

inland waters
0.15 L/M 0.10 d Yes No 0.10 L 0.05 0.05 0.11

FIE
a Lateral flux 

from inland 
waters to 
estuaries

0.95 M/H 0.17 d, mb Yes S, IAVc 0.10 L 0.05 0.85 0.18

FLI
d Lateral flux 

from land to 
inland waters

2.95 L/M 0.54 b NA NA 0.60 L 0.41 2.35 0.68

FAW − FEA
a C uptake 

by tidal 
wetlands—
estuarine 
outgassing

0.10 L 0.12 d Yes/SA 
onlye

No −0.10 L 0.07 0.20 0.13

FWS + FES
a C burial 

in tidal 
wetlands and 
estuaries

0.10 L/M 0.03 d SA onlyf No −0.05 L 0.05 0.15 0.06

FEC
d Lateral 

flux from 
estuaries to 
continental 
shelf waters

0.95 L/M 0.21 b NA NA 0.05 L 0.10 0.90 0.23

FAC
a C uptake by 

continental 
shelf waters

0.30 M/H 0.08 d Yes Sc 0.20 L 0.10 0.10 0.13

FCS
a Burial on 

continental 
shelves 
and DIC 
accumulation 
in the water 
column

0.30 L/M 0.11 mb Yes No 0.10 L 0.05 0.20 0.12

FCO
d Lateral C 

export from 
continental 
shelf waters 
to the open 
ocean

0.95 L/M 0.25 b NA NA 0.15 L 0.15 0.80 0.29

Throughout the paper, a present-day flux from reservoir A to reservoir B is denoted by FAB = F°AB + F′AB, with F°AB and F′AB corresponding to pre-industrial and anthropogenic perturbation terms, 
respectively; see Supplementary Box 0 for carbon flux nomenclature. Confidence in the values selected for this study is specified for the present-day fluxes, using the IPCC nomenclature 
(VL, very low; L, low; M, medium; H, high; VH, very high). The confidence for all LOAC perturbation fluxes is considered low (L). Methodology (d, data; m, model; b, budget closure) and the 
spatiotemporal resolution of each flux are also reported (NA, not applicable). See Supplementary Table 1 for non-rounded present-day fluxes and a quantification of terrestrial, open-ocean and 
geological fluxes of the global carbon budget. 
aFluxes derived from bottom-up estimates. 
bFIE modelled values for dissolved inorganic carbon (DIC) and DOC, except subsurface flux, hybrid approach for particulate organic carbon (POC, observed POC yields combined with simulated 
sediment loads); FCS semi-empirical model for particulate inorganic carbon; reactive-transport model driven by observed forcing fields for POC; modelled DIC accumulation. 
cSeasonal variability (S) and interannual variability (IAV) for dissolved carbon compounds. 
dFluxes calculated from mass balance. 
eFlux computed from (partly) spatially resolved flux density per estuary type and from a global mean flux density per vegetation type, both combined with spatially resolved surface areas (SAs). 
fFlux computed from global mean flux density (per estuary/coastal vegetation type) and spatially resolved SA.
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estuaries, tidal wetlands and shelf waters (0.30 ± 0.20 PgC yr−1). Of this 
total influx of carbon to coastal waters, about 30% (0.35 ± 0.15 PgC yr−1) 
was buried in coastal sediments (Supplementary Sections 1, 2), yielding 
a carbon transfer from continental shelf waters to the open ocean of 
0.80 ± 0.30 PgC yr−1 (F°CO). In the open ocean, 0.15 ± 0.05 PgC yr−1 of 
this transfer was permanently buried in sediments (F°OS), whereas the 
remaining 0.65 ± 0.30 PgC yr−1 was outgassed to the atmosphere (F°AO). 
This perspective on the global carbon cycle therefore suggests that 
the three pre-industrial carbon loops were transferring a net amount 
of 0.65 ± 0.30 PgC yr−1 from the atmosphere to the land and the LOAC, 
and back from the open ocean to the atmosphere.

Despite significant uncertainties in our quantitative assessment, 
two independent lines of evidence support our diagnosis of the 
pre-industrial LOAC carbon loops. The first is based on two distinct 
estimates of the open-ocean anthropogenic CO2 sink (Supplementary 

Table 2). We derived our estimate of this anthropogenic sink by adding 
the present-day observed open-ocean sink (1.85 ± 0.95 PgC yr−1; ref. 56) 
and our LOAC-based pre-industrial outgassing (0.65 ± 0.30 PgC yr−1), 
yielding 2.50 ± 1.00 PgC yr−1 for the 2005–2014 period (Fig. 2a). This 
value is, within uncertainties, the same as the independent estimate 
of 2.53 ± 0.20 PgC yr−1 by ref. 59 (after correction for the anthropogenic 
perturbation of 0.20 ± 0.10 PgC yr−1 on continental shelf waters; Sup-
plementary Section 2). This conclusion holds irrespective of the choice 
for the present-day open-ocean sink product56–58. Our result is also in 
agreement with ocean interior observations, which indicate that the 
ocean is taking up 31% of anthropogenic emissions60 (0.31 × 8.90 − 
0.20 = 2.56 PgC yr−1 once corrected for the 0.20 PgC yr−1 taken up by 
continental shelf waters).

The second line of evidence is the consistency of our estimates of 
the LOAC lateral fluxes for broad latitudinal bands with independent 
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Fig. 2 | The global carbon budget with LOAC fluxes. a, The contemporary 
global carbon budget (numbers in black, period 2005–2014) and its 
anthropogenic perturbation (numbers in red). b, The pre-industrial global 
carbon budget. The decomposition of the pre-industrial carbon cycle into the 
inorganic weathering loop and a non-weathering loop driven by organic carbon 
fluxes is presented in Supplementary Section 3. All fluxes in italics are derived 

from bottom-up estimates; other fluxes were constrained from a mass balance. 
The methodology for constraining uncertainties is described in 
the Supplementary Information, applied to both present-day fluxes 
(Supplementary Section 1) and anthropogenic perturbation fluxes 
(Supplementary Section 2). The units are PgC yr−1. All fluxes have been rounded 
to ±0.05 PgC yr−1.
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calculations based on ocean-tracer distributions (Fig. 3). Indeed, 
the pre-industrial carbon loops connect not only the land and ocean 
through LOAC lateral transfers but also the Northern and Southern 
hemispheres through ocean meridional transport63. From the latitu-
dinal distribution of the open-ocean fluxes (with LOAC, atmosphere 
and sediments), we can estimate the steady-state ocean carbon trans-
port between the Southern and Northern hemispheres, also called the 
pre-industrial interhemispheric carbon asymmetry (Fig. 3). We find that 
both the carbon asymmetry due to the LOAC (A°CO = −0.18 PgC yr−1) and 
the net carbon asymmetry (A° = −0.39 PgC yr−1; sum of asymmetries due 
to LOAC, sediment and atmospheric fluxes) agree with the independ-
ent estimates based on ocean interior tracers of ref. 24 (A°land-to-ocean =  
−0.17 PgC yr−1 and A° = −0.43 PgC yr−1). This latitudinal decomposi-
tion of pre-industrial LOAC fluxes also highlights that the atmospheric 
carbon uptake and burial in coastal regions (estuaries, tidal wetlands 
and shelves combined) of the Northern and Southern hemispheres 
roughly compensate each other (Fig. 3). As a result, the ocean trans-
port asymmetry due to the LOAC scales with the asymmetry in riverine 
carbon exported to estuaries. Despite the uncertainties, this latitudinal 
decomposition will facilitate the integration into carbon budgets3 and 
the interpretation of atmospheric inversions23.

Implications for the global carbon cycle
Overlooked short-range LOAC loops
Our diagnosis of a pre-industrial open-ocean CO2 outgassing 
(0.65 ± 0.30 PgC yr−1) results from the superposition of one ‘long range’ 
and two ‘short range’ LOAC carbon loops (Figs. 1c, 2b). The long-range 
loop carries carbon from terra firme ecosystems and provides a global 
river and groundwater carbon flux to estuaries of 0.85 ± 0.20 PgC yr−1, 
slightly higher than in previous work8,20,21,23 but consistent with the 
traditional view of the long-range pre-industrial river loop. Our Perspec-
tive highlights the role of the upstream short-range loop that recycles 
about 80% of the carbon leached from terra firme ecosystems back to 
the atmosphere before reaching the river–estuary interface, minimiz-
ing the transfer of carbon from the land to the ocean (grey, Fig. 1c). 
Furthermore, we identify the existence of a downstream short-range 
loop carrying carbon from coastal vegetation (tidal wetlands and 
submerged vegetation) and shelves to the open ocean, which largely 
offsets carbon burial in these LOAC segments and contributes to the 
open-ocean pre-industrial outgassing (blue, Fig. 1c).

The pre-industrial uptake of ‘blue carbon’ (that is, uptake by tidal wet-
lands and submerged vegetation) estimated here is in line with recent 
findings34,64,65. Our results suggest that this downstream short-range 
loop was more active during pre-industrial times than today, and that 
the uptake of atmospheric carbon by coastal vegetation has decreased 
by 25–50% under the anthropogenic perturbation, consistent with 
previous work34,66–69. Mean loss rates are about 1.5–2.0% per year 
for saltmarshes, mangroves and seagrasses34,69, whereas changes 

for macroalgae remain uncertain35,70,71. The processes involved pos-
sibly include the loss of salt marshes, mangroves and seagrasses by 
human interventions such as land reclamation and pollution, and 
intensified climate disturbances such as cyclones. The downstream 
short-range LOAC carbon loop is also fed by a small—admittedly uncer-
tain—pre-industrial CO2 sink on the continental shelves39,55. This sink is 
probably controlled by the strong uptake in ‘cold’ biologically active 
shelf regions37,55, the efficient exchange72 of land-derived and marine 
organic carbon across the shelf55, and the efficient carbon uptake by 
submerged vegetation35.

Evidence for a downstream short-range LOAC carbon loop feeding 
the pre-industrial ocean outgassing is corroborated by a recent Earth 
system modelling study29, suggesting that the long-range loop explains 
only a pre-industrial outgassing of about 0.3 PgC yr−1, so that there is a 
missing carbon input that we advocate comes from coastal vegetation 
and shelves. The existence of this additional input is consistent with 
observational work showing that macroalgae export about 90% of their 
dissolved organic carbon (DOC) to the deep ocean35, that mangroves 
are the main source of terrigenous DOC in the tropical ocean73 and that 
seagrasses may export up to 30% of their organic carbon across the 
shelf break74. In addition, inorganic carbon export from mangroves and 
tidal marshes to the ocean probably acts as a larger long-term carbon 
sink than burial in situ75,76, and this pathway could be a dominant term 
in the tidal wetland budget76. The efficient lateral carbon export to the 
open ocean is supported by the recently evidenced short residence 
time of water masses on the shelves55,72 resulting from the intense 
three-dimensional circulation and exchanges with the open ocean77. 
This suggests that shelves are less efficient at processing carbon than 
previously thought17, thereby reinforcing the imprint of the land and 
LOAC carbon cycles on the open ocean.

LOAC dissociates CO2 fluxes from storage
The anthropogenic perturbation of the LOAC has important implica-
tions for quantifying the partitioning of anthropogenic carbon stor-
age between the land and the ocean. Part of the anthropogenic CO2 
fixed by terra firme ecosystems increases vegetation and soil carbon 
stocks, whereas the rest is leached into the LOAC loops. Our quantita-
tive analysis suggests that terra firme ecosystems take up an amount 
of anthropogenic carbon equal to 26 ± 17% of fossil fuel emissions but 
store only 19 ± 17%. The rest is leached to inland waters, and subse-
quently outgassed back to the atmosphere via the upstream short-range 
carbon loop, or stored in sediments and the ocean. As a result of this 
leakage of anthropogenic CO2, the storage of anthropogenic carbon 
in terra firme ecosystems is lower (by 0.6 ± 0.4 PgC yr−1) and the stor-
age in the open ocean is slightly higher (by 0.15 ± 0.15 PgC yr−1) than 
estimated by IPCC assessments that do not fully take into account the 
transfers of anthropogenic carbon by the LOAC2. In addition, because 
of the net anthropogenic CO2 emissions by the LOAC, the uptake of 
anthropogenic CO2 by terra firme ecosystems is also larger than in 

A° from LOAC = –0.18 PgC yr–1

A° from air–sea �uxes = –0.21 PgC yr–1

A° from burial = 0.0 PgC yr–1

A° total = –0.39 PgC yr–1

Air–sea flux

LOAC

1.47

0.61

0.20

0.07

0.42

0.31

Burial
0.06

0.06

0.04

South

North

Tropics

20° N

20° S

Fig. 3 | Bottom-up estimates of the pre-industrial open-ocean carbon 
budget in three latitudinal bands. The pre-industrial air–sea flux (blue) is 
estimated from present-day observations56 and an assessment of the 
anthropogenic perturbation59. Interhemispheric asymmetries are quantified 
from the pre-industrial carbon inputs to the open ocean polewards of 20° N and 

20° S (F°N and F°S, defined positive into the ocean) using A° = (F°S − F°N)/2  
(ref. 24). All fluxes have been rounded to ±0.01 PgC yr−1. Ocean transport and 
asymmetry are positive northwards. See Supplementary Section 4 for a 
detailed latitudinal decomposition of the LOAC fluxes (green). Burial (brown) 
corresponds to burial in the open ocean only.
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the IPCC assessment. There might be a silver lining to this view of the 
anthropogenic CO2 budget, as sediments and the ocean offer argu-
ably more stable repositories than biomass and soil carbon, which are 
vulnerable to droughts, fires and land-use change.

The fact that the anthropogenic CO2 flux into terra firme ecosys-
tems is larger than the anthropogenic carbon storage (Δ′L) implies 
that atmospheric inversions of CO2 fluxes give a systematically higher 
CO2 sink than the actual carbon storage change measured by invento-
ries78. Our results suggest that inversions or CO2 budgeting methods 
could overestimate the increase in terra firme ecosystem carbon stor-
age by about 0.6 ± 0.4 PgC yr−1 (F′AL − Δ′L) globally. To reconcile both 
approaches, a very accurate estimation of inland water evasion and 
burial will be needed78.

Stewardship and management of the carbon buried in the LOAC 
should be considered to prevent its oxidation and the return of CO2 to 
the atmosphere in the future. Blue carbon ecosystems—tidal wetlands 
and submerged vegetation in estuaries and continental shelves—were 
notable pre-industrial carbon sinks. This sink has decreased by up to 
50% owing to the anthropogenic perturbation69,71, adding to the growth 
rate of atmospheric CO2. If left unprotected from, for example, sea-level 
rise, pollution and coastal development79, they will further induce 
a positive carbon climate feedback that needs to be accounted for.

Challenges in LOAC research
Uncertainties in LOAC fluxes limit our ability to quantitatively constrain 
the efficiency with which the long-range and short-range carbon loops 
jointly transfer carbon from the land to the open ocean, as well as the 
decoupling between anthropogenic CO2 uptake and carbon storage. 
Building on recent studies of the LOAC carbon dynamics, we discuss 
how these uncertainties arise from LOAC complexity and spatiotempo-
ral variability, and identify key challenges and gaps in LOAC research.

The LOAC contribution to the carbon budget varies regionally80–83, 
partly reflecting spatial heterogeneities in terrestrial productivity 
and connectivity between terrestrial and aquatic systems51,84,85. At the 
continental scale, inland and estuarine waters go from being a sub-
stantial flux of the land carbon budget in South America, Southeast 
Asia, Russia and North America to being a marginal contributor in 
South Asia, Australia and Africa78. In support of this variable role of 
the LOAC, previous work has shown that the fraction of terrestrial net 
primary production exported as DOC to inland waters is as low as 0.35% 
along the east coast of the United States86 and 0.6% in Europe87, and 
reaches 1.1% in the Congo Basin and 2.9% in the Amazon Basin. The DOC 
exports in these tropical watersheds contribute, however, only about 
one-quarter of the total leaching flux54,88. Therefore, the fraction of ter-
restrial net primary production exported to the inland water network 
as DOC and dissolved CO2 reaches values as high as about 4% and 12% in 
the Amazon and Congo basins, respectively54. This regional variability 
advocates for more analyses at a fine granularity, in addition to those 
that have been conducted for, for example, Europe89,90, North America91 
or boreal forests92. These regional-scale analyses rely on frameworks 
similar to our study, but do not necessarily encompass all LOAC carbon 
fluxes. From the aforementioned assessments, the North American 
one91 includes all components of the LOAC, whereas the one for boreal 
forests92 ignores the contribution of coastal vegetation and shelves, 
and the most up-to-date budget for Europe90 considers only inland 
waters. Furthermore, the assessments of individual LOAC components 
are not consistent. For instance, the contribution of small streams48 is 
incorporated in only certain inland water carbon budgets.

Fully integrated continental-scale assessments are limited by the 
lack of continuous, spatially resolved estimates for a few key LOAC 
fluxes, most notably the ones related to tidal wetlands and submerged 
vegetation, and estuarine carbon burial (Table 1). As it stands, the spa-
tial distribution of these fluxes merely reflects the surface-area distri-
bution of these ecosystems. Another limitation is the contribution of 

floodplains, which is sometimes incorporated in inland water flux 
estimates83,93, but is not incorporated in other syntheses8,19, including 
this one. This is an outstanding issue, given the potentially large con-
tribution of these aquatic systems to the overall carbon budget85,94–96 
(Supplementary Section 1). A proper accounting of floodplains would 
require a fully integrated view of the terrestrial–aquatic interface, as 
shown for instance by the model study of ref. 96 for the Amazon Basin. 
Another issue is the lack of temporally resolved assessments of 
present-day LOAC fluxes, for which even a precise time frame covered 
by observations or model results is often not specified (Supplementary 
Table 2). This knowledge gap is only beginning to be addressed, for 
instance, by resolving the yearly and seasonal variations in the river to 
estuary carbon fluxes31, the diurnal signal in CO2 emissions from the 
global fluvial network97 or the seasonality in the shelf uptake37. Fur-
thermore, methodological uncertainties, such as those arising from 
the estimation of freshwater pCO2

 from carbonate equilibria, introduce 
biases in LOAC fluxes98,99, and future efforts should be devoted to the 
resolution of these methodological shortcomings.

The incorporation of anthropogenic perturbations in regional car-
bon budgets with LOAC fluxes is often missing, incomplete, or pro-
vided for different periods or regional scales, leaving us without a fully 
integrated view covering all ecosystems, carbon pools and processes 
relevant to the land–ocean continuum. Existing assessments of the per-
turbation for the upstream short-range loop include: a human-induced 
increase in carbon burial fluxes tied to damming estimated globally52 
and regionally for European as well as boreal and north-temperate 
lakes100,101, a minor change in the river-to-estuary flux estimated glob-
ally by models31,102–104, and changes in inland water CO2 evasion, which 
vary regionally (Supplementary Table 3). In temperate regions heav-
ily impacted by land-use change and hydraulic management, such as 
the contiguous United States105 and China106, CO2 evasion generally 
decreases, albeit more diverse changes have been observed for Asian 
rivers107. At high latitudes and in the tropics, however, aquatic CO2 
evasion increases owing to accelerated carbon turnover in response 
to global terrestrial CO2 fertilization and climate change50,51,54,108,109. 
Major gaps in our understanding of the upstream loop perturbation 
are estimates of fluxes tied to erosion, and inland water autotrophy. 
Decadal changes in the tropics are also poorly constrained because 
observational constraints are at present lacking. Yet, because low lati-
tudes contribute disproportionally to the inland water outgassing47, we 
suggest that this region has and will continue to dominate the global 
perturbation, as supported by the few available predictions of future 
inland water outgassing (Supplementary Table 3).

Regional estimates of the anthropogenic perturbation in the down-
stream short-range loop are also very limited. Integrated views of 
present-day fluxes are only beginning to be established at scales rang-
ing from individual systems76 to regions and continents91,110. Human 
impacts on these highly heterogeneous systems (estuaries, tidal wet-
lands and so on) are manifold79,111, which renders their quantification 
at the regional scale difficult. Nevertheless, mapping of estuaries, tidal 
wetlands and submerged vegetation distributions will help identify 
regions of the globe where the response of the downstream loop is the 
largest. For example, the continental-scale segmentation of the REC-
CAP (Regional Carbon Cycle Assessment and Processes) programme 
indicates that North America is the region that hosts about 40% of the 
global estuarine and 40% of the saltmarsh surface area, whereas tropical 
Southeast Asia and Africa host 35% and 20% of the mangrove surface area, 
respectively112. Surface-area reductions—probably the dominant driver of 
change since pre-industrial times for tidal wetlands and seagrasses—and 
other anthropogenic drivers evolved at different rates in these regions 
(Supplementary Table 3), and, therefore, more work is needed to assess 
how they impact LOAC fluxes in a spatially resolved framework. Finally, 
recent progress has been achieved in analysing the broad spatial patterns 
of the shelf anthropogenic carbon sink, both from observations and 
models. Data coverage is biased towards mid-to-high latitudinal shelves, 
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for which an efficient sink of anthropogenic CO2 was identified113 and 
corroborated by model results55,114. In contrast, observations in Arctic 
and tropical shelves are few115, and global simulations using physically 
resolved biogeochemical models suggest that coastal waters could be 
less efficient sinks for anthropogenic CO2 in these regions39,55,114.

Closing the knowledge gaps
Our perspective view of the LOAC helps identify a few key priority areas 
for further research, which together will help reduce uncertainties in 
the present-day total and anthropogenic carbon budgets. First, there 
is a critical need to gather and augment observation-based evidence 
to better constrain the spatiotemporal variability in present-day LOAC 
fluxes. In this context, coastal vegetated ecosystems and, to a lesser 
extent, estuaries should be prime targets in terms of spatial cover-
age. Of particular importance for the LOAC budget is the need for an 
improved quantification of the contribution of submerged vegeta-
tion—seagrasses and macroalgae—in the overall atmospheric carbon 
uptake and its subsequent lateral transfer to the open ocean. Better 
knowledge of temporal variability is also critically needed. Virtually 
nothing is known regarding decadal trends in LOAC fluxes and there is 
thus an urgent need to collect long time series of observations against 
which models can be evaluated. Furthermore, mechanistic studies 
on key LOAC processes and their potential sensitivity to anthropo-
genic drivers are also required to build better-informed models. As it 
stands, models are the only quantitative tools to constrain the LOAC 
perturbation over the historical period and in the future. Earth system 
models are only beginning to include LOAC carbon fluxes. Nevertheless, 
a holistic view of the dominant drivers of changes in the LOAC budget 
progressively emerge from regional-scale applications, paving the 
way for global-scale simulations in the near future. Another priority 
is to improve the representation of the missing processes and LOAC 
compartments in Earth system models and introduce a full coupling 
of the land and ocean carbon fluxes in global simulations. As Earth 
system models are typically too coarse to fully resolve the fine scale 
of the LOAC, advancing our understanding of LOAC science will also 
require integrated multiscale approaches, ranging from the local and 
basin scales to the continental and global scales.

Data availability
Source data for Figs. 1–3, Supplementary Figs. 1, 2 are provided with the 
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