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A multiple scattering model of a quantum particle interacting with a random Lorentz gas of fixed
point scatterers is established in an Euclidean space of arbitrary dimension. At the core of the
model, the scattering amplitude for the point scatterers is derived in detail, and expressed in terms
of the scattering length. The fundamental properties of the model, such as the cross section and
the scattering matrix, are calculated. In addition, the model is shown to verify the optical theorem
and thus probability conservation. Finally, the differential and total cross sections are numerically
computed in two situations whether the Lorentz gas is smaller or larger than the mean free path. A
distinct Airy diffraction peak is obtained for a large enough number of scatterers. This observation
is related to the extinction paradox.

I. INTRODUCTION

Multiple scattering theory is a long-standing topic in
wave mechanics. This umbrella term covers several meth-
ods of choice to solve wave equations in complex media
consisting of a periodic or disordered ensemble of im-
mobile scatterers. An important one is the Foldy-Lax
method [1–6] which considers point-like scatterers ran-
domly distributed in space. The scattering of the inci-
dent wave is thus described by s waves, because the size
of the scatterers is assumed to be small compared to the
wavelength. This kind of model is also referred to as the
random Lorentz gas [7–13].

Another important method is the Kohn-Korringa-
Rostoker (KKR) method [14–16] which considers non-
overlapping spatially extended scatterers. This method
can be regarded as a generalization of the Foldy-Lax
method to finite-sized scatterers for which the wave func-
tion must be expanded over a partial wave basis on each
scattering site. The KKR method is often used in op-
tics [17], in solid state physics to compute electronic band
structures [18], but also more fundamentally to study
classically chaotic quantum models, such as quantum
Sinai billiards [19, 20].

Foldy’s original investigations [1, 2] led him to develop
an integral transport equation for the average intensity of
the wave function in the disordered medium. Nowadays,
his equation is well understood in the diagrammatic ap-
proach as a consequence of the ladder approximation [21–
24]. A corollary of his transport equation is the existence
of two different regimes of propagation depending on the
size of the system compared to the scattering mean free
path: the ballistic regime for small systems and the dif-
fusive regime for large systems [21–25].

One of the practical advantages of the Foldy-Lax
method is that the same formalism can be used regardless
of the positions of the scatterers or the number of spa-
tial dimensions. This also includes the one-dimensional
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case. In addition, this method avoids the use of large
discretization lattices that may not be appropriate at rel-
atively small wavelength. In the three-dimensional case,
similar methods arise in many fields of physics, such as
acoustics [5, 26, 27], seismology [28], optics [29–32] and
matter waves [33–35].

In the present paper, we aim at understanding the
propagation of a quantum particle of matter, such as an
electron, in a disordered medium. This propagation in-
volves many different processes and, in particular, multi-
ple scattering and diffraction, which are the topic of the
present paper. Our long-term motivation is to model a
matter-wave particle evolving in a gaseous particle detec-
tor.

For this purpose, we first introduce elastic scattering
theory in arbitrary dimension. Although being a rela-
tively straightforward generalization of the well-known
3D scattering theory [36–39], this topic is underrepre-
sented in textbooks.

Second, we develop an accurate scattering model for
the point scatterers, based on the theory of zero-range po-
tentials [40–45]. This theory supersedes the model used
in our previous paper [46]. This point scattering model is
expressed solely in terms of the scattering length, which
is a universal parameter for low-energy scattering [22, 36–
38, 40, 41, 47–50].

Last but not least, we establish the Foldy-Lax method
for a random Lorentz gas of point scatterers in a general
formulation which does not depend on the number of spa-
tial dimensions. Particular attention is paid to the appli-
cability of the method to complex values of the wavenum-
ber through analytic continuation, although this question
mostly concerns the analytic structure of the Green func-
tion. Based on the tools developed in this paper, we pave
the way to a more advanced study of the random Lorentz
gas in the complex plane of the wavenumber which con-
tinues in the next paper [51].

This paper is organized as follows. We start by giv-
ing a brief introduction to scattering theory in arbitrary
dimension in Sec. II. This section includes important con-
cepts such as the Green function in Subsec. II A, the cross
section in Subsec. II B, and the optical theorem in Sub-
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sec. II C.
Then, in Sec. III, we develop a point scattering model

intended for the scatterers. The point scattering ampli-
tude is derived in Subsecs. III A and III B, and compared
to the delta-like model of Ref. [42]. The scattering length
is then related to the wave function in Subsec. III C, and
the cross section is specialized to the point collision in
Subsec. III D.

The random Lorentz gas model is finally considered
in Sec. IV. The Foldy-Lax multiple scattering equations
are derived in Subsec. IV A. They are shown to conserve
probability in Subsec. IV B. In addition, a position-space
scattering matrix is derived in Subsec. IV C, and its prop-
erties are discussed. In Subsec. IV D, a numerical study
of the differential cross section of the random Lorentz gas
is presented in the ballistic and the diffusive regimes.

Since we consider any number of spatial dimensions in
this paper, the notations Bd and Sd frequently appear.
They respectively refer to the unit d-ball and the unit
d-sphere embedded in the space Rd, such that Sd is the
external border of Bd. In addition, the corresponding
volume and surface area of the unit d-ball read

Vd =
π

d
2

Γ(d2 + 1)
and Sd = Vdd =

2π
d
2

Γ(d2 )
, (1)

where Γ(z) denotes the Gamma function [52]. In 3D for
instance, this gives V3 = 4π

3 and S3 = 4π.

II. SCATTERING THEORY IN ARBITRARY
DIMENSION

In this section, we outline scattering theory in ar-
bitrary dimension, emphasizing fundamental properties
such as the scattering amplitude and the cross section.
Although being a relatively straightforward generaliza-
tion of 3D case, scattering theory in arbitrary dimension
is not always presented in textbooks [36–38]. In addi-
tion, normalization choices may vary throughout the lit-
erature, especially regarding the Green function [18, 21–
23, 36–39]. Therefore, we believe it is useful to present
ours here.

A. Green function in free space

One considers a spinless particle freely propagating in
d spatial dimensions. The Green function describes, in
the stationary picture, the propagation of the particle
starting from a source point, and is thus at the core of
scattering theory. We define this function, denoted as
G(k, r | r′), as the solution of [18, 21, 22, 36]

(∇2 + k2)G(k, r | r′) = δ(d)(r− r′) , (2)

where ∇2 =
∑d
n=1 ∂

2
xn

is the Laplace operator in Rd, and

δ(d)(r− r′) is the d-dimensional Dirac delta function.

In Eq. (2), k = 2π/λ is the wavenumber and λ is the
wavelength. It should be noted that this wave equation
embeds the dispersion relation between wavenumber and
frequency within k(ω). In case of a non-relativistic par-

ticle, this relation is parabolic: k(ω) = (2mω/~)
1
2 . If,

on the contrary, the particle is relativistic, the relation

is hyperbolic: k(ω) = ((~ω)2 − (mc2)2)
1
2 /(~c). There-

fore, the present considerations may also be extended to
electromagnetic waves [21, 22, 39]. In this paper, we will
consider k as the main variable of the system, instead of
the energy E = ~ω, in order to avoid loosing generality
due to the choice of the dispersion relation. The same
approach is followed in Ref. [21].

The resolvent operator associated with Eq. (2) can be
written in Fourier space as [18, 21, 22, 36]

Ĝ(k) =
1

k2 − q̂2 ∀k ∈ C \ R , (3)

where q̂ = −i∇ denotes the momentum operator. The
eigenfunctions of this operator associated with the eigen-
value k read

〈r|k〉 = eik·r . (4)

In Eq. (3), the real axis of k is excluded from the domain
of the resolvent due to the branch cut singularity, as we
will see soon. The sought Green function is given by the
inverse Fourier transform of Eq. (3) [18, 21, 22, 36]

G(k, r | r′) = 〈r| Ĝ(k) |r′〉 =
1

(2π)d

∫
Rd

eiq·(r−r′)

k2 − q2
ddq .

(5)
To calculate the integral (5), we separate the radial and
directional parts, and we first integrate over the direc-
tional part. The latter part is given by [52]∮

Sd
eiz1·Ω dΩ = (2π)

d
2 z−

d−2
2 J d−2

2
(z)

= Sd 0F1(d2 ,−
z2

4 ) ,

(6)

where 1 is a real unit vector of fixed arbitrary direc-
tion, Jν(z) is the Bessel function of the first kind, and

0F1(a, z) =
∑∞
n=0

Γ(a)
Γ(a+n)

zn

n! is the generalized hyperge-

ometric function [52]. The second expression of Eq. (6)
better highlights the smooth behavior of the integral at
small z. In particular, one can notice that it is an even
function of z. Using the notations r = ‖r− r′‖ and
G(k, r) = G(k, r | r′), the integral (5) becomes

G(k, r) =
1

2π

∫ ∞
0

( q

2πr

) d−2
2

J d−2
2

(qr)
q dq

k2 − q2
. (7)

The integral path can be closed in the upper com-
plex half-plane of q by separating the two exponential
parts of the Bessel function with the property Jν(z) =(
H+
ν (z) +H−ν (z)

)
/2 in terms of the Hankel functions

H±ν (z) [52]. This leads to the contour integral

G(k, r) =
1

4π

∮
Γ+

( q

2πr

) d−2
2

H+
d−2
2

(qr)
q dq

k2 − q2
, (8)
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where Γ+ denotes the counter-clockwise half-circle con-
tour running on the real q-axis and closing to itself in the
upper half-plane of q, as shown in Fig. 1. Note that, in

Re q

Im q

cut

+k

−k

Γ+
Im

q

∣ ∣ H
+ ν

(q
r
)∣ ∣

FIG. 1. Integration contour used in Eq. (8). The left-hand
side depicts the exponential behavior of the integrand along
the imaginary axis of q.

contrast to the Bessel function Jν(z), the Hankel func-
tions H±ν (z) are singular at z = 0 and possess a branch
cut at arg z = π when ν is an integer. This branch cut
is only encountered in even dimensions. This is why the
contour in Fig. 1 should generally avoid the negative real
axis. Note, in addition, that choosing the symmetric con-
tour with respect to the real q axis and replacing H+

ν (qr)
by H−ν (qr) does not change the final result of the inte-
gral in Eq. (8). The integral can then be evaluated with
the residue theorem [22, 36, 38, 52] at either q = +k or
q = −k depending on which pole is encircled by Γ+. The
result is

G(k, r) =

{
G+(k, r) if Im k > 0 ,

G−(k, r) if Im k < 0 ,
(9)

where the two functions are given by

G±(k, r) = ± 1

4i

(
k

2πr

) d−2
2

H±d−2
2

(kr) . (10)

Equation (9) confirms the existence of the branch cut of
G(k, r) on the real k axis, as already mentioned in Eq. (3).
This discontinuity means that G(k, r) amounts to either
G+(k, r) or G−(k, r) depending on the imaginary part,
however small, of k. These functions asymptotically be-
have as [52]

G±(k, r)
r→∞−−−→ ± 1

2ik

(
∓ik

2πr

) d−1
2

e±ikr , (11)

and can thus be interpreted as the outgoing Green func-
tion with the upper signs, and the incoming Green func-
tion with the lower signs. In the three commonest di-
mensions, the Green functions read [18, 21, 22]

G±(k, r) =


e±ikr/(±2ik) for d = 1 ,

±H±0 (kr)/(4i) for d = 2 ,

− e±ikr/(4πr) for d = 3 .

(12)

(a)

Re k

Im k

cut

G+(k, r)

G−(k, r)

Im
k

|G
(k
,r
)|

G
+

G
−

(b)

Re k

Im k

cut

G−(k, r)

G+(k, r)

Im
k

|G
(k
,r
)|

G
+

G
−

FIG. 2. Panel (a): Structure of the first (physical) Riemann
sheet of G(k, r) from Eq. (9). The left-hand side highlights
the exponential behavior of G±(k, r). Panel (b): Structure
of the second (unphysical) Riemann sheet of G(k, r) obtained
by analytic continuation.

The structure of the function G(k, r) in Eq. (9) is de-
picted in Fig. 2(a) on the first Riemann sheet. As one
can see, G(k, r) displays a branch cut along the real axis
of k. It should be noted that G(k, r) is square integrable
for all k ∈ C \ R because of the exponentially vanishing
behavior shown in Eq. (11). This sheet is thus called the
physical sheet [36–38]. On the second Riemann sheet,
shown in Fig. 2(b), the function G(k, r) behaves as an
increasing exponential in space, and is thus not square
integrable anymore. This is why the second sheet is re-
ferred to as the unphysical sheet [36–38]. This sheet is
also considered in scattering theory because it typically
contains the resonance poles [36–38].

Furthermore, we introduce the auxiliary function
I(k, r), which is a regularized version of the Green func-
tion at r = 0. We define this function for k ∈ C
as [18, 21, 22]

I(k, r) = − Im[G+(k, r)] = −G
+(k, r)−G−(k, r)

2i
. (13)

If one again uses the relation between H±ν (z) and Jν(z)
in Eq. (13), one finds [52]

I(k, r) =
1

4

(
k

2πr

) d−2
2

J d−2
2

(kr) . (14)

In the three commonest dimensions, this function reads

I(k, r) =


cos(kr)/(2k) for d = 1 ,

J0(kr)/4 for d = 2 ,

sin(kr)/(4πr) for d = 3 .

(15)
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Note that, in contrast to G(k, r), the function I(k, r) is
an entire function of r2 and regular at r = 0. The value
at this point is

I(k, 0) =
π

2

Sd
(2π)d

kd−2 . (16)

In addition, an important alternative way of defining the
function I(k, r), which better highlights its connection
with the density of states (DOS) [18, 21, 22, 53] in the
special case of real values of k, is

I(k, r | r′) = π 〈r| δ(k2 − q̂2) |r′〉 . (17)

The Dirac delta in Eq. (17) can be interpreted as a pro-
jector onto the spherical energy shell

δ(k2 − q̂2) =
kd−2

2(2π)d

∮
Sd
|kΩ〉 〈kΩ|dΩ , (18)

where the plane wave states, |kΩ〉, are defined by Eq. (4).
Thus, one possible way to the expression (13) of I(k, r)
is to directly insert Eq. (18) into Eq. (17) and then inte-
grate using Eq. (6). Another way is to use the Sokhotski-
Plemelj decomposition of the Dirac delta for k ∈ R [54]

δ(k2− q̂2) = lim
ε→

>
0

(
(2πi)−1

k2 − iε− q̂2 −
(2πi)−1

k2 + iε− q̂2

)
, (19)

which immediately relates Eq. (17) to the general defini-
tion (13) using Eqs. (3) and (5).

It is worth noting that, according to Eq. (17), the func-
tion I(k, r) is closely related to the DOS per unit of k2

in free space [21, 22]

ρ0(k2) = Tr[δ(k2− q̂2)] =

∫
V
〈r| δ(k2− q̂2) |r〉ddr , (20)

where V denotes some region of space with volume V .
Therefore, one deduces from Eq. (17) that

ρ0(k2) =
V

π
I(k, 0) . (21)

Given that the energy goes as E ∝ k2 for a non-
relativistic particle, one finds from Eqs. (16) and (21)

that ρ0(E) ∝ E
d−2
2 , which is the known behavior of the

free-space DOS in arbitrary dimension [21, 22, 53].
Finally, we define the real part of the Green func-

tion (10) as

P (k, r) = Re[G+(k, r)] =
G+(k, r) +G−(k, r)

2
. (22)

More explicitly, this function reads

P (k, r) =
1

4

(
k

2πr

) d−2
2

Y d−2
2

(kr) , (23)

where Yν(z) is the Bessel function of the second kind [52].
In this way, the Green function can be fully decomposed
into its real and imaginary part as

G±(k, r) = P (k, r)∓ iI(k, r) . (24)

B. Differential cross section

We derive the relation between the scattering am-
plitude and the cross section in arbitrary dimension.
For this purpose, we consider the Schrödinger equa-
tion [18, 21, 22, 36, 37]

(∇2 + k2 − U(r))ψ(r) = 0 , (25)

where U(r) denotes a potential function centered at the
origin (r = 0) with the typical range R such that U(r) =
0 for ‖r‖ > R. We assume that the particle initially
enters the collision process in the plane-wave state φ(r) =
〈r|kΩ0〉 = eikΩ0·r of incident direction Ω0. Therefore, in
the asymptotic region where the potential U(r) is zero,
the particle wave function ψ(r) is given by [18, 21, 22, 36–
38]

ψ(r) = φ(r) + T (k,Ω)G+(k, r | 0) , (26)

where Ω = r/ ‖r‖ denotes the outgoing direction with
respect to the incident one. Expression (26) can also be
regarded as the practical definition of the scattering am-
plitude T (k,Ω). Accordingly, the scattering amplitude
has the units of length to the power (d − 2). It should
be noted that the value of T (k,Ω) depends on the nor-
malization of the Green function G+(k, r). Due to our
definition (2), T (k,Ω) is −4π times the standard scatter-
ing amplitude in the three-dimensional case [22, 36–38].
This choice is motivated by the systematic generalization
of scattering theory to other dimensions. In addition,
with this normalization, T (k,Ω) coincides with the for-

mal transition operator T̂ (k) [18, 21, 22, 36–38]. Indeed,
they are related by

T (k,Ω) = 〈kΩ| T̂ (k) |kΩ0〉 , (27)

where the plane wave states, |k〉, are defined by Eq. (4).
Of course, this specific normalization has no physical con-
sequence on scattering observables.

The differential cross section is usually defined as the
ratio between the rate of particle detection in the solid
angle dΩ and the incoming particle current [22, 36, 37,
39], that is to say

dσ

dΩ
(k,Ω) = lim

r→∞

‖Jout(r)‖
‖Jin‖

rd−1 , (28)

where the distance r is supposed to be arbitrarily large
with respect to the wavelength. The incoming current of
the incident plane wave reads

Jin = Re[φ∗(r)(−i∇)φ(r)] = kΩ0 . (29)

Similarly, the outgoing particle current after the colli-
sions is given, according to the wave function (26), by

Jout(r) = |T (k,Ω)|2 Re[G−(k, r)(−i∇)G+(k, r)] . (30)

The fact that we neglect the angular dependence of the
scattering amplitude T (k,Ω) when computing the gradi-
ent in Eq. (30) comes from the assumption of the far-field



5

regime (kr → +∞) that we made in Eq. (28). In this
regime, the gradient in Eq. (30) can be approximated by
−i∇G+(k, r) ' kΩG+(k, r), and Eq. (30) becomes

Jout(r)
r→∞−−−→ |T (k,Ω)|2 kΩ

∣∣G+(k, r)
∣∣2 . (31)

The function
∣∣G+(k, r)

∣∣2 asymptotically behaves as

O(1/rd−1) according to Eq. (11). In this regard, a useful
asymptotic expression can be written, using Eq. (16), as

∣∣G+(k, r)
∣∣2 r→∞−−−→ I(k, 0)

kSdrd−1
. (32)

Then, combining Eqs. (29), (31) and (32) into Eq. (28),
we obtain the differential cross section [21, 22, 36–38]

dσ

dΩ
(k,Ω) =

I(k, 0)

kSd
|T (k,Ω)|2 . (33)

Note that this expression can be applied to any, however
complex, potential U(r). This includes either point scat-
terers or random media, as we will see later. Finally, the
total cross section is given by the integral of Eq. (33) over
all the outgoing directions [22, 36–38]

σ(k) =

∮
Sd

dσ

dΩ
(k,Ω) dΩ . (34)

C. Optical theorem

We also derive the probability conservation law, better
known in scattering theory as the optical theorem [21–
23, 36–39, 55]. One way is to use the total probability
current

J(r) = Re[ψ∗(r)(−i∇)ψ(r)] , (35)

where the wave function ψ(r) is given by Eq. (26). Since
ψ(r) contains two terms, the total current (35) splits
in three terms: the incident current Jin, the outgoing
current Jout(r), and the interference current Jitf(r). All
these contributions are summed up in [36]

J(r) = Jin + Jout(r) + Jitf(r) . (36)

The probability conservation, ∇ ·J(r) = 0, expresses the
fact that the spherical flux integral of the total current
J(r) around the scattering site amounts to zero. In other
words, one has [36]

I =

∮
Sd

J(rΩ) ·Ωrd−1 dΩ = Iin + Iout + Iitf = 0 , (37)

where the fluxes Iin, Iout and Iitf are defined in the same
way as I. In Eq. (37), we consider the far-field limit
(kr → +∞) as before, in order to simplify the expres-
sions. First, the incident term, Iin, is equal to zero be-
cause, due to Jin = kΩ0, everything that enters the in-
tegration sphere ends up leaving it. Therefore, we may

omit this term from now on. Second, the outgoing term
can be related to the total cross section using Eqs. (28)
and (34)

Iout =

∮
Sd

Jout(rΩ) ·Ωrd−1 dΩ = kσ(k) . (38)

The only non-trivial term in Eq. (37) is the interference
term Iitf . This term is the combination of the two cross
product terms which appear when inserting Eq. (26) into
Eq. (35). It reads

Jitf(rΩ) = k(Ω + Ω0) Re[φ∗(r)T (k,Ω)G+(k, r)] . (39)

The corresponding flux integral is

Iitf = Re

[
kG+(k, r)rd−1

×
∮
Sd

(1 + Ω0 ·Ω) e−ikrΩ0·ΩT (k,Ω) dΩ

]
.

(40)

This integral cannot be evaluated exactly for all T (k,Ω).
However, we notice that this integral is highly oscilla-
tory in every direction expect in the incident direction
Ω = Ω0. Since the oscillations get faster as r → ∞,
the contribution from all the directions are suppressed
except the incident one, so the integrand is proportional
to a directional Dirac delta δ(Ω −Ω0). To get the pro-
portionality constant, we consider the same integral but
with T (k,Ω) replaced by 1. Using Eq. (6), we find∮
Sd

(1+Ω0 ·Ω) e−ikrΩ0·Ω dΩ
r→∞−−−→ −iSd

G−(k, r)

I(k, 0)
. (41)

With Eq. (41), expression (40) reduces to

Iitf = kSdr
d−1 |G+(k, r)|2

I(k, 0)
Im [T (k,Ω0)] . (42)

This can be further simplified with Eq. (32). We ulti-
mately obtain

Iitf = Im[T (k,Ω0)] . (43)

Now, inserting Eqs. (38) and (43) into Eq. (37), we get
the general expression of the optical theorem in arbitrary
dimension [21–23, 36–39, 55]

σ(k) = −1

k
Im[T (k,Ω0)] . (44)

This fundamental result is also very handy to calcu-
late the total cross section without resorting to the in-
tegral (34) whose evaluation may be delicate. We will
come back to Eq. (44) several times in this paper.

It should be noted that, in the three-dimensional case,
the optical theorem is often shown with an additional fac-
tor of −4π in the right-hand side of Eq. (44) [22, 23, 36–
39, 55]. This is again due to our choice of normalization of
the free-space Green function G(k, r) in Eq. (2). The nor-
malization (2) avoids possibly cumbersome dimension-
dependent prefactors in Eq. (44).
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D. One-dimensional case

Here, we give more insight into the one-dimensional
case. In particular, we show that the cross section is
also well defined in 1D, although it is much more rarely
used than in higher dimensions [56]. First of all, σ1D(k)
is dimensionless, since the cross section is measured in
units of length to the power (d − 1). Furthermore, the
scattering wave function (26) reads

ψ(x) = eikx +

{
T+(k) e+ikx/(2ik) if x > 0 ,

T−(k) e−ikx/(2ik) if x < 0 ,
(45)

where T+(k) and T−(k) are respectively the forward and
backward scattering amplitudes. In one dimension, it is
customary to define the transmission and reflection co-
efficients, that we denote AT and AR, respectively [56].
These coefficients can be related to the scattering ampli-
tudes by

AT(k) = 1 +
T+(k)

2ik
and AR(k) =

T−(k)

2ik
. (46)

Note the additional unit term in AT, coming from the
interference between the incident wave eikx and the for-
wardly scattered wave. The total cross section σ(k) can
be obtained from Eqs. (33) and (34)

σ1D(k) =
|T+|2 + |T−|2

(2k)2
= |AT − 1|2 + |AR|2 . (47)

Using the optical theorem (44), one finds another expres-
sion for the total cross section

σ1D(k) = −1

k
ImT+ = 2(1− ReAT) . (48)

If one imposes the equality between Eqs. (47) and (48),
one gets a condition on the transmission and reflection
coefficients. After some simplifications, this condition
can be written as

|AT|2 + |AR|2 = 1 . (49)

This is precisely how probability conservation is supposed
to constrain the reflection and transmission coefficients
in 1D [56]. This result shows us that the cross section is
indeed properly defined in 1D. This also implies that AT

and AR are smaller or equal to unity in absolute value.
A consequence is that, according to Eq. (48), the one-
dimensional cross section possesses an upper bound

0 ≤ σ1D(k) ≤ 4 . (50)

This property is unique to dimension one and has no
counterpart in higher dimensions, because the forward
scattering amplitude, T (k,Ω0), is not bounded in gen-
eral. The maximum value, σ1D = 4, corresponds to
the case (AT, AR) = (−1, 0), and the minimum value,
σ1D = 0, to (AT, AR) = (+1, 0). Therefore, in both

cases, the scatterer is transparent in the sense that it
does not reflect the incident wave. When the reflection
is maximum, the transmission is zero (AT = 0) and the
cross section has the intermediate value σ1D = 2. We
will come back to Eq. (50) in the framework of point
scattering in Subsec. III D.

E. Fraunhofer diffraction

We derive the scattering amplitude and cross section
due to a large opaque scatterer of typical radius R in
dimension d ≥ 2. When the size parameter kR is large,
the dominant feature of the scattering amplitude is the
forward peak predicted by the Fraunhofer diffraction [37,
39, 55, 57] that we briefly expand here. We start from
the integral form of the Schrödinger equation (25) known
as the Lippmann-Schwinger equation [18, 36–38]

ψ(r) = eikΩ0·r +

∫
Rd

G+(k, r | x)U(x)ψ(x) ddx , (51)

where G+(k, r | x) is the free Green function defined
in Eq. (2), and U(x) is the potential of the scatterer.
The scattering amplitude T (k,Ω) is defined in the Fraun-
hofer (far-field) regime of the wave function, that is to say
r � kR2/2. In this regime, we can use the asymptotic
approximation

G+(k, r | x)
r→∞−−−→ G+(k, r | 0) e−ikΩ·x , (52)

where Ω = r/ ‖r‖ is the outgoing direction of the scatter-
ing. The choice of the central position r = 0 in the expan-
sion of Eq. (52) has of course no consequence on the scat-
tering observables. The scattering angle θ is defined as
the angle with respect to the incident direction, such that
cos θ = Ω · Ω0. Then, inserting Eq. (52) into Eq. (51),
we can identify the scattering amplitude T (k,Ω) defined
by Eq. (26) as [36, 37]

T (k,Ω) =

∫
Rd

e−ikΩ·xU(x)ψ(x) ddx . (53)

We assume that the potential in Eq. (53) reads

U(x) =

{
U0 for x ∈ V ,
0 otherwise ,

(54)

where V denotes the finite region of Rd occupied by the
scatterer. Since the scatterer is opaque, the potential (54)
tends to infinity (U0 → +∞) to obstruct the way of the
incident wave. In Eq. (53), we need a convenient approxi-
mation for ψ(x) ∀x ∈ V which holds even for such a large
potential. Of course, this excludes the Born approxima-
tion which treats the potential U(x) as a perturbation.
For this purpose, we will resort to a semi-classical, or
eikonal, approximation [36, 37, 39], and consider that
the incident rays essentially obey a 1D wave equation in
the longitudinal direction. If we decompose the position
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x into the longitudinal and transverse coordinates with
respect to the incident direction using

x = zΩ0 + x⊥ , (55)

then the wave function can be approximated as

ψ(x) '

{
eikz +AR e−ik(z−h) if z < h(x⊥) ,

AT ei
√
k2−U0(z−h) if z ≥ h(x⊥) ,

(56)

where AR and AT are reflection and transmission coef-
ficients, respectively. In Eq. (56), the coordinate z =
h(x⊥) controls the coordinates of the impact point of the
ray on the scatterer surface. This position still depends
on the impact coordinates x⊥. The actual wave function
is given by the solution of Eq. (56) for (AR, AT) based
on the continuity conditions at the interface z = h. The
result is

AR =
k −
√
k2 − U0

k +
√
k2 − U0

eikh , AT =
2k

k +
√
k2 − U0

eikh .

(57)
Therefore, in the limit U0 → +∞, the wave function
within the scatterer behaves as

ψ(x) ' − 2ik√
U0

eikh e−
√
U0(z−h) . (58)

As a consequence, the product of Eq. (58) with the po-
tential (54) gives rise to a Dirac delta function located
on the illuminated face of the scatterer

U(x)ψ(x)
U0→∞−−−−→ −2ik eikhδ(z − h) . (59)

If we insert Eq. (59) into Eq. (53), we get

T (k,Ω)

−2ik
=

∫
V

e−ikΩ·x eikhδ(z − h) ddx . (60)

The longitudinal coordinate z can be integrated out with
the Dirac delta, leading to

T (k,Ω)

−2ik
=

∫
S⊥

e−ikΩ·x⊥ e−ikΩ·Ω0h eikh dd−1x⊥ , (61)

where S⊥ denotes the cross-sectional surface of the scat-
terer, that is to say the scatterer silhouette. In Eq. (61),

we notice that e−ikΩ·Ω0h eikh = eikh(1−cos θ) ' 1 for suf-
ficiently small scattering angles θ. Therefore, Eq. (61)
reduces to

T (k,Ω)

−2ik
=

∫
S⊥

e−ikΩ·x⊥ dd−1x⊥ . (62)

This result highlights the well known property in optics
that the Fraunhofer diffraction pattern is given by the
Fourier transform of the scatterer silhouette [37, 39]. The
integral (62) also shows that, in the forward direction
(Ω = Ω0), the scattering amplitude is just T (k,Ω0) =

−2ik S where S is the cross-sectional area of the scatterer.
The optical theorem then leads to the total cross section

σ(k) = −1

k
Im[T (k,Ω0)] = 2S , (63)

which is twice the geometrical cross section of the scat-
terer, whatever its shape or the number of spatial di-
mensions. This may seem paradoxical because, in the
semi-classical limit of small wavelengths, one would ex-
pect that the total cross section tends to the geometrical
cross section without the factor two. This issue is known
as the extinction paradox [32, 37, 39, 55, 57–59]. It can
be interpreted as a constructive interference effect in the
far-field region beyond the shadow cone of the scatterer
(r � kR2/2). This subtlety can be traced back from
the limit of infinite distance in the definition of the cross
section in Eq. (28). To retrieve geometrically admissible
cross sections, a possible workaround is to define another
cross section with the additional constraint r � kR2/2
in Eq. (28). In this way, the interference effect behind
the shadow does not contribute to the cross section.

In the special case of a spherical scatterer, the silhou-
ette is the disk S⊥ = Bd−1(R). It is thus useful to write
the integral (62) in spherical coordinates x⊥ = x⊥ξ,
where ξ is a unit vector contained in the transverse plane.
We can write

TA(k,Ω)

−2ik
=

∫ R

0

dx⊥ x
d−2
⊥

∮
Sd−1

dξ e−ikx⊥Ω·ξ . (64)

We define the new unit vector Ω⊥ as the projection of Ω
in the transverse plane. With this notation, the outgoing
direction can be decomposed as

Ω = cos θΩ0 + sin θΩ⊥ , (65)

and the dot product of Eq. (64) reads Ω ·ξ = sin θΩ⊥ ·ξ.
Therefore, we identify the inner integral of Eq. (64) as
Eq. (6). After performing the radial integral of Eq. (64),
we finally obtain the Airy scattering amplitude [39, 55]

TA(k,Ω) = −2ik

(
2πR

k sin θ

) d−1
2

J d−1
2

(kR sin θ) . (66)

Since this formula is valid for small θ, we can write sin θ '
θ. We will come back to Eq. (66) in Sec. IV D.

III. POINT SCATTERING THEORY

In this section, we establish the scattering amplitude
for a single point scatterer. The topic of point poten-
tial has been extensively studied in the literature, espe-
cially in Refs. [40–45], but generalizations to an arbitrary
number of spatial dimensions are rarely considered. In
this section, we develop a simple s-wave scattering model
valid in arbitrary dimension inspired by the approach of
Ref. [41].
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A. s-wave scattering

First of all, it should be noted that s-wave models nec-
essarily apply to situations where the wavelength is large
compared to the range of the interaction potential, as it
is the case, for instance, in the low-energy limit (k → 0).
These situations also include the zero-range limit of some
arbitrarily shaped potential [40, 41]. Therefore, different
calculations will lead to different s-wave models with dif-
ferent parameters, the common point being that all the
models must behave in the same way in the low-energy
limit. The model derived here is no exception to the rule,
and provides the correct low-energy behavior. In addi-
tion, for practical reasons, we parametrize our model in
term of the scattering length, which is a commonly used
parameter in scattering theory [22, 36–38, 40, 41, 47]. We
will say more about this parameter in Subsec. III C.

We consider a generic potential u(r) of finite, and ac-
tually small, range b. The Schrödinger equation reads

(∇2 + k2 − u(r))ψ(r) = 0 . (67)

Since the potential range is assumed to be much smaller
than the particle wavelength (kb � 1), the scattering
amplitude in Eq. (26) is isotropic and independent of
the direction Ω [36–38]. To stress this fact, we will use
the notation F (k) for the scattering amplitude of the
point potential, instead of our general notation T (k,Ω)
in Eq. (26). Moreover, it is convenient to define the radial
projection of the wave function by integration over the
directions

ψ(r) =
1

Sd

∮
Sd
ψ(rΩ) dΩ . (68)

If one applies this radial projection to Eq. (26), then,
with the help of Eq. (6), one gets

ψ(r) =
I(k, r)

I(k, 0)
+ F (k)G+(k, r) . (69)

The incoming and outgoing parts of this wave function
can be separated using Eq. (13). This leads to

ψ(r) =
G−(k, r)− [1− 2iI(k, 0)F (k)]G+(k, r)

2iI(k, 0)
. (70)

In Eq. (70), one identifies the scattering matrix element
between square brackets

S(k) = e2iδ(k) = 1− 2iI(k, 0)F (k) . (71)

The notation δ(k) stands for the s-wave scattering phase
shift. Equation (71) shows us that the scattering ampli-
tude F (k) is related to the phase shift by

F (k)−1 = I(k, 0) (i− cot δ(k)) . (72)

The conservation of probability requires the phase shift
δ(k) to be a real function of k, but it does not fix it [36,
37]. This is the purpose of the next subsection.

B. Determination of the s-wave phase shift

In order to determine the phase shift δ(k) in Eq. (72),
we need to solve the Schrödinger equation (67) in the
inner region of the scatterer potential (r < b). If we
assume that the potential u(r) is spherically symmetric,
then Eq. (67) can be written in radial coordinates as(

∂2

∂r2
+
d− 1

r

∂

∂r
+ k2 − u(r)

)
ψ(r) = 0 . (73)

Denoting ψ(r) the solution to Eq. (73) in the inner region,
the continuity conditions at the boundary r = b between
ψ(r) and the asymptotic function (69) impose that [36,
37]

∂rψ(r)

ψ(r)

∣∣∣∣
r=b

=

∂rI(k,r)
I(k,0) + F (k)∂rG

+(k, r)

I(k,r)
I(k,0) + F (k)G+(k, r)

∣∣∣∣∣∣
r=b

. (74)

Note that the logarithmic derivative of ψ(r) at r = b in
Eq. (74) is also related to the inverse of the R matrix
in scattering theory [60, 61]. Solving Eq. (74) for F (k)
leads to

F (k)−1 = −I(k, 0)
W[G+(k, r), ψ(r)]r=b
W[I(k, r), ψ(r)]r=b

, (75)

where W[f(r), g(r)] = f(r)∂rg(r) − g(r)∂rf(r) denotes
the Wronskian with respect to r [52]. Using the decom-
position (24) of G+(k, r) in Eq. (75), one may identify the
cotangent of the phase shift from Eq. (72). This leads to

cot δ(k) =
W[P (k, r), ψ(r)]r=b
W[I(k, r), ψ(r)]r=b

. (76)

The function (76) is more suitable to an analysis than
Eq. (75), because the phase shift is a real function in
contrast to F (k)−1. Of course, being related by Eq. (72),
both equations are equivalent. Let us rewrite the Wron-
skians of Eq. (76) in terms of logarithmic derivatives. So,
we have

cot δ(k) =
P (k, b)

I(k, b)

1− ψ(b)
ψ′(b)

P ′(k,b)
P (k,b)

1− ψ(b)
ψ′(b)

I′(k,b)
I(k,b)

, (77)

where the prime denotes the derivative with respect to r.
In the denominator of Eq. (77), the logarithmic derivative
of I(k, b) tends to zero at low energy

I ′(k, r)

I(k, r)
= −k

2r

d
+O(k4r3) for k

>−→ 0 . (78)

Thus, Eq. (77) simplifies to

cot δ(k) =
P (k, b)

I(k, b)

(
1− ψ(b)

ψ′(b)

P ′(k, b)

P (k, b)

)
︸ ︷︷ ︸

A

. (79)
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Two important remarks have to be made about the right
hand-side of Eq. (79). First, it turns out that the pref-
actor behaves as a power law at small k

P (k, b)

I(k, b)
=
Y d−2

2
(kb)

J d−2
2

(kb)
= O

(
(kb)2−d) . (80)

Secondly, we notice that the underbraced factor, A, be-
haves as a constant in the same limit. Therefore, it is
legitimate to absorb A into the power law (80) by re-
placing the length scale b by α. In this way, Eq. (79)
becomes

cot δhs(k) =
P (k, α)

I(k, α)
=
Y d−2

2
(αk)

J d−2
2

(αk)
. (81)

The free real parameter α is known as the scattering
length [22, 36–38]. Our general definition of the scat-
tering length, valid in arbitrary dimension, is consistent
with Ref. [41]. Inserting Eq. (81) into Eq. (72) leads to
the corresponding expression for the scattering amplitude

Fhs(k)−1 = −I(k, 0)
G+(k, α)

I(k, α)
. (82)

Note that this scattering model is only valid for αk � 1,
because it is based on the power law behavior (80). We
will explicitly calculate α in Subsec. III C.

In addition, it should be noted that Eqs. (81) and
thus (82) can also be obtained in the special case of an
infinite potential barrier (u(r) → ∞). In this case, the
wave function ψ(b) in Eq. (79) vanishes, and the scat-
tering length α coincides with b. This shows that α can
also be interpreted as the radius of a hard sphere. This
is why we will refer to Eq. (81) as the hard-sphere s-wave
model, although it actually holds for any potential u(r)
under the low-energy assumption.

As we explained before, any point scattering model
exhibiting the low-energy behavior of Eq. (81) is a valid
model. Therefore, another obvious scattering model may
be derived from the first order expansion of Eq. (81) at
αk = 0. This operation gives the delta-like model of
Ref. [42]

cot δdl(k) =


−

Γ(d−2
2 )Γ(d2 )

π

(
αk

2

)2−d

for d 6= 2 ,

2

π

(
ln

(
αk

2

)
+ γ

)
for d = 2 ,

(83)
where γ = 0.57721 . . . is the Euler-Mascheroni con-
stant [52]. The name of this model comes from the fact
that, if one solves Eq. (73) with the properly renormal-
ized Dirac delta potential of Ref. [42], one would obtain
the phase shift of Eq. (83).

C. Determination of the scattering length

Here, we relate the scattering length α to the potential
u(r) in Eq. (73) through the wave function ψ(r) which

is assumed to be known in the inner region (r < b). In
principle, Eq. (79) should be compatible with Eq. (81)
in the low-energy limit. Therefore, imposing the equality
between Eqs. (79) and (81), and writing everything in
terms of Bessel functions, we get

Y d−2
2

(αk)

J d−2
2

(αk)
=
Y d−2

2
(kb)

J d−2
2

(kb)

(
1 +

ψ(b)

ψ′(b)

k Y d
2
(kb)

Y d−2
2

(kb)

)
. (84)

In order to solve Eq. (84) for α, we have to expand the
ratios of Bessel functions in power series for small ar-
guments (k → 0). The first ratio of Bessel functions
appearing in the left- and right-hand sides of Eq. (84)
behaves as

Y d−2
2

(z)

J d−2
2

(z)

z→0−−−→

−
Γ(d−2

2 )Γ(d2 )

π

(z
2

)2−d
for d 6= 2 ,

2

π

(
ln
(z

2

)
+ γ
)

for d = 2 .

(85)
In addition, the second ratio of Bessel functions in the
right-hand side of Eq. (84) behaves as

Y d
2
(z)

Y d−2
2

(z)

z→0−−−→


d− 2

z
for d 6= 2 ,

− 1

z
(
ln( z2 ) + γ

) for d = 2 .
(86)

We notice that, in dimension two, the function Y0(z) be-
haves logarithmically for z → 0, in contrast to the other
dimensions. For this reason, the special case d = 2 should
be treated separately. Inserting Eqs. (85) and (86) into
Eq. (84), and solving for α gives us the general expression
of the scattering length in arbitrary dimension

α =


b

(
1 + (d− 2)

ψ(b)

b ψ′(b)

)− 1
d−2

for d 6= 2 ,

b exp

(
− ψ(b)

b ψ′(b)

)
for d = 2 ,

(87)

where the wave function ψ(r) is computed in the limit
k → 0 [47–50]. Note that the second row of Eq. (87) is
still consistent with the first row in the limit d→ 2. This
is not trivial because the corresponding rows in Eqs. (85)
and (86) do not apparently match in the limit d→ 2.

The formulas in Eq. (87) can also be retrieved by solv-
ing ψ(α) = 0 for α using one step of a variant of the
Newton root-finding method [52] based on the ansatz
ψ(r) = c0 + c1/r

d−2, if c0 and c1 are constants. This
ansatz comes from the general solution of Eq. (73) for
k = 0 in the external region where u(r) = 0. In par-
ticular, when d = 1, Eq. (87) reduces to the standard
Newton method. The appearance of the Newton method
highlights the geometrical interpretation of the scatter-
ing length as the root of the asymptotic wave function
for k = 0 [36].

Finally, let us illustrate the use of Eq. (87) in the spe-
cial case of the square well potential

u(r) =

{
−w2 for r < b ,

0 otherwise .
(88)
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In this case, the radial wave function in the inner region
reads

ψ(r) = I(
√
k2 + w2, r) , (89)

where I(k, r) is defined in Eq. (14). Note that this is the
only solution to Eq. (73) which is regular at r = 0. If,
in addition, the well is deep enough (w � k), then the
wave function can be approximated by ψ(r) = I(w, r).
Therefore, knowing the logarithmic derivative

ψ′(r)

ψ(r)
= −

w J d
2
(wr)

J d−2
2

(wr)
, (90)

then, for this special case, Eq. (87) becomes

α =


b

(
1− (d− 2)

J d−2
2

(wb)

wbJ d
2
(wb)

)− 1
d−2

for d 6= 2 ,

b exp

(
J0(wb)

wbJ1(wb)

)
for d = 2 ,

(91)
as given by Eqs. (37) and (38) of Ref. [41]. These results
can also be generalized to a potential barrier, assuming
that w in Eq. (88) is purely imaginary. This has the
effect of replacing the Bessel function Jν(z) in Eqs. (90)
and (91) by the modified Bessel function Iν(z) [52].

D. Cross section of the point scatterer

We determine the expression of the total cross section
for a single point scatterer, and we show how this cross
section must be constrained to satisfy probability con-
servation. Since the potential of the scatterer has zero
range, the differential cross section (33) does not depend
on the outgoing direction. Thus, the integral over the
outgoing directions, which gives the total cross section,
is immediate

σpt(k) =
1

k
I(k, 0) |F (k)|2 . (92)

Furthermore, we can check that the optical theorem (44)
holds for a point scatterer. Indeed, inserting Eq. (92)
into Eq. (44) leads to

I(k, 0) |F (k)|2 = − Im[F (k)] . (93)

Using the general property Im(1/z) = − Im(z)/ |z|2,
Eq. (93) is equivalent to

Im[F (k)−1] = I(k, 0) . (94)

Now, we notice that the condition (94) is always satisfied
by Eq. (72), as long as the scattering phase shift δ(k) is
a real number. This criterion is indeed satisfied by the
scattering models (81) and (83).

The total cross sections associated with the mod-
els (81) and (83) are shown in Fig. 3. The oscillations

0
1

2

σ
p
t
(k
)

(a) 1D, σmax(k) = 2

0
5

1
0

1
5

σ
p
t
(k
)

(b) 2D, σmax(k) = 4/k

0 2 4 6 8

0
5

1
0

1
5

αk

σ
p
t
(k
)

(c) 3D, σmax(k) = 4π/k2

Hard sphere

Delta-like

σmax(k)

FIG. 3. Total cross section (92) of the point scatterer for both
the hard-sphere s-wave model of Eq. (81) (solid line), and the
delta-like model of Eq. (83) (dashed). The dotted line depicts
the upper bound given by Eq. (96). Panels (a)–(c) correspond
to the dimensions d = 1, 2, 3, respectively.

of the hard-sphere model are due to the function I(k, α)
in Eq. (82), but are not physically relevant because of
the low-energy assumption αk � 1. As expected, we no-
tice that the curves indeed match each other in the limit
k → 0. Moreover, it is remarkable that d = 2 is the only
dimension in which the cross section tends to infinity at
zero energy [40].

Finally, if we insert the s-wave scattering amplitude
F (k) from Eq. (72) into the cross section (92), we obtain

σpt(k) =
sin2 δ(k)

k I(k, 0)
. (95)

Since sin2 δ is always between 0 and 1, this relation high-
lights the existence of the following maximum value for
the cross section of the point scatterer

σmax(k) =
1

k I(k, 0)
. (96)

The upper bound (96) decreases with k as σmax(k) ∝
1/kd−1. It is worth noting that this upper bound is uni-
versal because it does not depend on the choice of the
potential u(r) or the scattering length α. However, this
only applies to purely isotropic scattering, and can be ex-
ceeded if higher order partial waves are added. As shown
in Fig. 3, the upper bound (96) gives the correct envelope
for both the hard-sphere and the delta-like models.
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In the one-dimensional case, the upper bound (96) re-
duces to σ1D ≤ 2. This is more restrictive than our
previous bound σ1D ≤ 4 from Eq. (50), because of the
assumption that the scattering is isotropic in Eq. (96).
The bound (50) holds in the more general case of the
anisotropic scattering.

IV. RANDOM LORENTZ GAS MODEL

In this section, we consider the case of a particle under-
going elastic collisions without loss of energy in a random
Lorentz gas of scatterers in d spatial dimensions [10–12].
The wave function ψ(r) of this particle obeys the station-
ary Schrödinger equation

(∇2 + k2 − U(r))ψ(r) = 0 , (97)

where the potential U(r) consists of a sum of N short-
range interaction potentials located at the fixed positions
xi ∀i ∈ {1, . . . , N}. It reads

U(r) =

N∑
i=1

u(r− xi) . (98)

We suppose that the potential u(r) has a finite spatial
range b much smaller than the wavelength (kb � 1), so
that the point scattering theory of Sec. III can be applied.
In the following subsections, we will use the s-wave hard-
sphere model of Eq. (82), although the main results are
not affected by this specific choice.

We assume that the positions {x1,x2, . . . ,xN} of the
scattering sites in Eq. (98) are contained in a region V
of finite volume V . These positions are understood as
independent and identically distributed random variables
uniformly placed in V. The constant density of scatterers
in V is thus

n =
N

V
=

1

ςd
, (99)

where ς (sigma) is the mean inter-atomic distance. Ex-
cept otherwise stated, we will treat ς as our unit length.
In addition, we assume that the shape of the Lorentz gas
is spherical with the radius

R =

(
N

Vd

) 1
d

ς , (100)

where Vd is the volume of the unit d-ball given by Eq. (1).
In this way, the density (99), and then the unit length
ς, are kept constant. A consequence of Eq. (100) is that
the addition of new scatterers increases the gas size. The
idea is to maintain the gas properties well defined in the
limit N →∞, in anticipation of future work.

An example of a random configuration of the scatterers
is shown in Fig. 4 for N = 1000 in the two-dimensional
case. According to Eq. (100), the radius is such a gas is

R = (1000/π)1/2ς ' 17.84 ς.

−20 −10 0 10 20−
2
0

−
1
0

0
1
0

2
0

x/ς

y
/
ς

FIG. 4. Typical example of a random configuration of inde-
pendently and uniformly distributed points in a 2D disk for
N = 1000. The circle highlights the radius of Eq. (100).

A. Multiple scattering method

We establish a system of equations to solve the
Schrödinger equation (97) for the random Lorentz gas.
This method is especially useful for numerical compu-
tations, because it avoids the use of heavily discretized
methods that may not be appropriate to study the prop-
agation of waves at relatively small wavelength.

Given the nature of the potential (98), the particle
wave function ψ(r) should have the form [1, 2, 4, 6]

ψ(r) = φ(r) +

N∑
i=1

aiG
+(k, r | xi) , (101)

where φ(r) is the incident wave, and ai ∀i ∈ {1, . . . , N}
is the amplitude scattered by the ith scatterer. This am-
plitude is given by the value of the total incident wave
function on xi, including the waves coming from the
other scatterers according to Eq. (101), multiplied by
the single-atom scattering amplitude F (k). Therefore,
the self-consistent equation for the amplitudes reads

ai = F (k)

φ(xi) +

N∑
j( 6=i)

ajG
+(k,xi | xj)

 . (102)

This equation has the same self-consistent structure as
the Lippmann-Schwinger equation that we already en-
countered in Eq. (51), but the role of the wave func-
tion is played by the amplitudes ai. Equation (102)
can be more compactly written in matrix form using
the vector notations φ = (φ(x1), φ(x2), . . . , φ(xN ))

ᵀ
and

a = (a1, a2, . . . , aN )
ᵀ
. The result is

M(k) a = φ . (103)

The N ×N matrix M(k) in Eq. (103) has the elements

Mij(k) = F (k)−1δij −G+(k, rij)(1− δij) , (104)
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where rij = ‖xi − xj‖ is the distance between each pair
of scatterers. More explicitly, this matrix has the form

M(k) =

 F (k)−1 −G+(k, r1,2) · · ·
−G+(k, r2,1) F (k)−1 · · ·

...
...

. . .

 . (105)

Thus, the matrix M(k) contains the inverse scattering
amplitude along the diagonal, and minus the Green func-
tions between each pair of scatterers off the diagonal. It is
also convenient for the following calculations to introduce
the Green matrix G(k) with the off-diagonal elements

Gij(k) = G+(k, rij)(1− δij) . (106)

It should be already noted that M(k) and G(k) are
symmetric under matrix transpose due to the fact that
rij = rji. This can be viewed as a consequence of the
time reversal symmetry of the Schrödinger equation (97).
However, M(k) and G(k) are not Hermitian because the
Green function has complex values in general. Therefore,
the eigenvalues of these matrices are also complex. In ad-
dition, M is not normal for N ≥ 3, meaning that it does
not commute with its own adjoint

[M,M†] 6= 0 . (107)

This somewhat complicates the study of this matrix, as
we will see in Sec. IV C.

We will refer to M(k) in Eq. (105) as the multiple
scattering matrix. More general matrices of the form
Aij = f(‖xi − xj‖) are called Euclidean matrices by
some authors [62–65]. Furthermore, the method based on
Eq. (103) is often referred to as the Foldy-Lax method [1–
6]. It is also worth noting that this method can be
generalized to describe finite size scatterers by includ-
ing other partial waves. If, in addition, appropriate peri-
odic boundary conditions are used, this method is known
as the KKR method [14–16]. It can be successfully ap-
plied to the computation of electronic bands in solid state
physics [18], for instance.

B. Cross section and optical theorem

We calculate the total cross section of the Lorentz gas,
and we establish the relationship with the optical theo-
rem. As seen before in Sec. II B, the scattering ampli-
tude T (k,Ω) is defined far away from the scattering site
by Eq. (26). Since the Green function asymptotically ap-
proaches the Fraunhofer approximation (52), that is to
say

G+(k, r | xi)
r→∞−−−→ G+(k, r | 0) e−ikΩ·xi , (108)

then the asymptotic behavior of Eq. (101) reads

ψ(r)
r→∞−−−→ φ(r) +G+(k, r | 0)

N∑
i=1

ai e−ikΩ·xi . (109)

Comparing with Eq. (26), the sought scattering ampli-
tude can be identified as the sum in the right-hand side
of Eq. (109)

T (k,Ω) =

N∑
i=1

ai e−ikΩ·xi . (110)

It should be noted here that Eq. (110) also gives us the

formal transition operator T̂ (k) of the system. Indeed,
inserting a = M−1φ in Eq. (110), we have

T (k,Ω) =

N∑
i,j

〈kΩ|xi〉 [M−1]ij 〈xj |kΩ0〉 , (111)

where the plane wave states, |k〉, are defined by Eq. (4).
Note that Eq. (111) assumes that the incident wave is the
momentum eigenstate φ(r) = 〈r|kΩ0〉. Now, identifying

T̂ (k) defined in Eq. (27) with Eq. (111), we get

T̂ (k) =

N∑
i,j

[M−1]ij |xi〉 〈xj | . (112)

Beside this, the differential cross section of the whole gas
can be derived using Eqs. (33) and (110). We have

dσ

dΩ
(k,Ω) =

I(k, 0)

kSd

N∑
i,j

a∗i aj eikΩ·(xi−xj) . (113)

Then, the total cross section can be obtained by integrat-
ing Eq. (113) over the directions with Eq. (6)

σ(k) =
1

k

N∑
i,j

a∗i I(k, rij)aj =
1

k
a† I(k) a . (114)

The new matrix I(k) in Eq. (114) is defined as

Iij(k) = I(k, rij) , (115)

where I(k, r) is given by Eq. (14). In contrast to G(k),
the matrix I(k) has the nonzero value I(k, 0) on the di-
agonal. More importantly, one notices that I(k) defines
a positive-definite quadratic form in Eq. (114) for k ∈ R.
This is due to the fact that the total cross section is given
by the integral of the positive quantity (113) and is thus
necessarily positive. A consequence is that the eigenval-
ues of I(k) are all positive.

Furthermore, according to the optical theorem (44),
the total cross section is also given by

σ(k) = −1

k
Im[T (k,Ω0)] = −1

k
Im[φ† a] . (116)

In Eq. (116), the scattering amplitude in the forward
direction is calculated from Eq. (110) using the fact that
φi = eikΩ0·xi . Substituting Eq. (103) into Eq. (116), we
get

σ(k) =
1

k
a†

M(k)−M†(k)

2i
a . (117)
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Then, identifying Eq. (117) with Eq. (114) leads to

M(k)−M†(k)

2i
= I(k) . (118)

Since Eq. (118) is verified for all the matrix elements
due to Eq. (13) off the diagonal, and Eq. (94) on the
diagonal, this proves that the optical theorem (116) is
valid and that the multiple scattering equations satisfy
probability conservation.

Another consequence of Eq. (118) is that the eigenval-
ues of M(k) have a positive imaginary part for k ∈ R. To
see that, we consider the eigendecomposition

M(k)vi = µivi ∀i . (119)

If we project both sides onto v†i , and take the imaginary
part of the whole, we get

Imµi = v†i I(k)vi > 0 . (120)

Since I is positive definite due to Eq. (114), expres-
sion (120) shows that the imaginary parts of the eigenval-
ues of M are positive [66]. However, the property (120)
does not mean that the imaginary parts Imµi are related
in any way to the eigenvalues of I because [M, I] 6= 0. In
other words, there is no common eigenbasis for both M
and I.

C. Position-space scattering matrix

Beside the cross section, another fundamental quan-
tity is the scattering operator, Ŝ(k), defined in formal
scattering theory as [22, 36–38]

Ŝ(k) = 1̂− 2πiδ(k2 − q̂2)T̂ (k) , (121)

where the transition operator T̂ (k) is given by Eq. (112).

Instead of writing Ŝ(k) in the eigenbasis of the free
Hamiltonian, i.e., the momentum basis |k〉, as is cus-
tomary [36–38], the nature of the multiple scattering

model suggests to project Ŝ(k) onto the position states
of the scatterers, i.e., |xi〉 ∀i ∈ {1, . . . , N}. This leads
to a rather unconventional but simpler expression for the
scattering operator. However, care should be taken to
the fact that the position states have no finite norm:
〈r|r′〉 = δ(r − r′). The remedy is to define an arbitrar-
ily small volume B = Vdb

d for the scatterers, b being
their radius. The orthonormality relation then becomes
〈xi|xj〉B = δij , and we can write

〈xi| Ŝ(k) |xj〉B = 〈xi|xj〉B

− 2πi
∑
i′j′

〈xi| δ(k2 − q̂2) |xi′〉 [M−1]i′j′ 〈xj′ |xj〉B .

(122)

Defining the scattering matrix as Sij = 〈xi| Ŝ |xj〉B and
using Eqs. (17) and (115), we get

Sij(k) = δij − 2i
∑
i′

Iii′(k)[M−1]i′j . (123)

Equation (123) can be simplified further with Eq. (118).
We ultimately obtain the result

S(k) = M†(k)M(k)−1 . (124)

It should be noted that, strictly speaking, the scat-
tering matrix (124) is not unitary because neither S†S
nor SS† is equal to the identity matrix. This is due to
the non-normality of the matrix M of Eq. (107) which is
transmitted to S. Despite of this, we can show that the
eigenvalues of S lie on the unit circle. To this end, we ex-
press Eq. (124) in terms of the decompositions M = R+iI
and M† = R− iI. We have

S = (R− iI)(R + iI)−1 . (125)

Since I is symmetric and positive definite as shown in
Eq. (114), it admits the Cholesky factorization I = LLᵀ

for some invertible lower triangular matrix L [67]. So, we
can write from Eq. (125)

L−1SL =
L−1R(L−1)

ᵀ − i

L−1R(L−1)
ᵀ

+ i
. (126)

We notice that L−1R(L−1)
ᵀ

in Eq. (126) is a real sym-
metric matrix because Rᵀ = R. Its eigenvalues are thus
real. Therefore, we deduce that S is similar to the mani-
festly unitary matrix in the right-hand side of Eq. (126),
and that its eigenvalues lie on the unit circle. This non-
trivial spectral property of S would have not hold if I was
not positive definite, because the eigenvalues of the non-
symmetric matrix RI−1 in Eq. (125) could be complex in
general. This shows that the positive definiteness of I is
indeed a necessary condition for probability conservation.

D. Numerical differential cross section

In this subsection, we numerically compute the dif-
ferential cross section of the whole random Lorentz gas
from Eq. (113) by solving the linear system (103) with
LAPACK [68]. We consider the scattering observables
for both particular configurations of the scatterer posi-
tions and averages over many configurations. We assume
that the wavelength is small compared to the mean inter-
scatterer distance, but still large compared to the size of
the scatterers, so as to remain consistent with the as-
sumptions made in Sec. III. In this case, two regimes can
be observed for the cross section depending on the size
of the Lorentz gas compared to the scattering mean free
path ` = (nσpt)

−1.
In order to reach the diffusive regime with a limited

number of scatterers, we restrict the simulations to the
2D case. Indeed, according to Eq. (100), the radius of the
gas is larger in low dimensions for a fixed density. The
scatterers are thus better exploited in 2D. Nevertheless,
certain results can also be verified in higher dimensions.
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1. Ballistic regime

In the first regime, we assume that the gas is small
compared to the mean free path, i.e., nσptR � 1. This
case is also known as the ballistic regime [21–25], and
is typically encountered for small systems (N . 10). In
this case, the number of collisions is small enough for the
Born approximation to be applied to the inverse of the
multiple scattering matrix

M−1 = (F−1 − G)−1 = F + F 2G + F 3G2 + · · · . (127)

This means that a ' Fφ at the first order of pertur-
bations in Eq. (127). In other words, the amplitudes are
approximately proportional to the incident wave function
φ(r). Therefore, using the incident wave φ(r) = eikΩ0·r,
the configurational average of the square modulus of the
scattering amplitude (110) reads

〈
|T (k,Ω)|2

〉
' |F (k)|2

N∑
i,j

〈
eik∆Ω·(xi−xj)

〉
. (128)

where ∆Ω = Ω − Ω0. The sum in Eq. (128) contains
two kinds of term: the diagonal terms (i = j) which are
just 1, and the off-diagonal terms (i 6= j). We explicitly
separate these terms as〈
|T (k,Ω)|2

〉
' |F (k)|2 [N +N(N − 1)c(k,Ω)] , (129)

where c(k,Ω) denotes the average of a single off-diagonal
term in Eq. (128), that we define as

c(k,Ω) =
〈

eik∆Ω·(x1−x2)
〉

=
1

V 2

∫∫
V

eik∆Ω·(x1−x2) ddx1 ddx2 .
(130)

Indeed, it should be noted that the scatterer positions
are all independently distributed. Therefore, the off-
diagonal terms in Eq. (128) are identical, and then we
may consider a specific pair (x1,x2) to do the calcula-
tion in Eq. (130). The factor N(N − 1) in Eq. (129)
accounts for the number of identical off-diagonal terms
in Eq. (128).

In addition, the function c(k,Ω) can also be calculated
for a ball-shaped medium using the integral [52]

1

V

∫
Bd(R)

eiq·r ddr = Γ(d+2
2 )

(
2

qR

) d
2

J d
2
(qR) , (131)

where V = VdR
d is the volume of the ball-shaped Lorentz

gas, and q = ‖q‖ is the Fourier variable. In the context of
Eq. (130), this variable is related to the scattering angle
θ by [36, 37]

q = k ‖∆Ω‖ = 2k sin(θ/2) . (132)

The sought function of Eq. (130) thus reads

c(k,Ω) =

[
Γ(d+2

2 )

(
2

qR

) d
2

J d
2
(qR)

]2

. (133)

Using Eqs. (33) and (92), the average (129) leads to the
approximate differential cross section

dσ

dΩ
(k,Ω) ' N σpt(k)

Sd
[1 + (N − 1)c(k,Ω)] . (134)

1
0
−
2

1
0
−
1

1
0
0

d
σ
/

d
Ω

(u
n

it
s

o
f
ς)

(a) Sample curve

Ballistic

1 2 5 10 20 45 90 1801
0
−
2

1
0
−
1

1
0
0

θ (deg)

d
σ
/

d
Ω

(u
n

it
s

o
f
ς)

(b) Mean curve

Interquartile

Ballistic

FIG. 5. Differential cross section of a 2D disk-shaped Lorentz
gas for N = 10 and k = 10 ς−1, using the model of Eq. (82)
with α = 10−3 ς. Panel (a): Sample curve for a single ran-
dom configuration of the scatterer positions. Panel (b): Av-
erage over 218 random configurations. The filled region is the
interquartile range. The dashed curve depicts the ballistic
approximation (134) with c(k,Ω) from Eq. (133).

The approximation (134) is compared to the actual
differential cross section numerically computed from
Eq. (113) in Fig. 5 for the two-dimensional case. Very
similar curves can be obtained in higher dimensions
too. The cross section of a single scatterer in Fig. 5 is
σpt ' 0.0399 ς, and the scale parameter is thus nσptR '
0.0711 < 1.

The solid curve in Fig. 5(a) depicts the differential
cross section for a single configuration of the scatterers.
This curve displays a forward peak coming from the term
c(k,Ω) in Eq. (134). This peak can also be interpreted
as a constructive interference between the scatterers due
to the variation of the complex phase of the amplitudes
ai ' F (k)φ(xi). The width of the forward peak can be
estimated from the first zero of Eq. (133), that is to say

θ0 =
j d

2

kR
, (135)

where jν denotes the first zero of the Bessel function
Jν(z). The first useful values are j1 = 3.83 . . . and
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j 3
2

= 4.49 . . .. According to Eq. (135), the width of the

peak in Fig. 5 is θ0 = 12.3◦.
Next to the forward peak, the solid curve in Fig. 5(a)

presents fluctuations which depend on the position of the
scatterers but also the incident direction. To determine
the characteristic angular scale of these fluctuations, we
briefly focus on two scatterers separated by the maximum
possible distance 2R. Without loss of generality, the scat-
terers can be placed on the z axis. The differential cross
section of these two isolated scatterers is roughly given
by

dσ

dΩ
(k, θ) ∝ cos2(kR cos θ) , (136)

where θ is the polar angle between the observation point
and the z axis. The fastest oscillations of Eq. (136) are
located in the plane transverse to the z axis, i.e., in the
vicinity of θ = π

2 . The period of the oscillations in this
region is

∆θ =
π

kR
. (137)

Equation (137) gives a plausible estimate of the angular
scale of the fluctuations in Fig. 5(a). It is also consistent
with the period of the angular oscillations of the function
c(k,Ω) in Eq. (133), and always of the same order of
magnitude as Eq. (135).

In Fig. 5(b), the differential cross section of Eq. (113)
is numerically averaged over a large number of configura-
tions. The statistical dispersion of the differential cross
section around the mean curve is measured by the in-
terquartile range which is computed for each given value
of θ. This range is defined as the interval between the
first and the third quartile of a statistical distribution,
and thus contains 50% of the samples [69]. This range
gives more insight into the statistical distribution than
the standard deviation, as it also reveals the possible
asymmetries. The large dispersion in Fig. 5(b) also con-
firms the sensitivity of the differential cross section to the
configuration of the scatterers for θ & θ0.

Finally, we consider the total cross section of the
Lorentz gas in the ballistic regime. The total cross sec-
tion can be obtained from the integral of Eq. (134) over
the direction. The result can be written as

〈σ(k)〉 = Nσpt(k) [1 + (N − 1)C(k)] , (138)

where the function C(k) is given for a spherical medium
by

C(k) =
1

Sd

∮
Sd
c(k,Ω) dΩ

= 2F3

(
d−1
2 , d+1

2
d+2
2 , d−1, d+1

;−4(kR)2
)
.

(139)

In Eq. (139), pFq(a1, . . . , ap; b1, . . . , bq; z) denotes the
generalized hypergeometric function [52]. Note that,
since c(k,Ω) = 1 for k = 0, one has the property

C(0) = 1. Moreover, for large kR, C(k) decreases as
the power law [52]

C(k)
kR→∞−−−−−→

2dΓ(d2 )Γ(d+2
2 )2

π3/2Γ(d+3
2 )

1

(kR)d−1
. (140)

Therefore, in the limit kR → ∞ and for fixed N , the
total cross section (138) tends to

〈σ(k)〉 ' Nσpt(k) , (141)

which is N times the point cross section σpt of Eq. (92).
This means that, in the ballistic regime, all the collisions
are mainly independent of each other, and the total cross
section is the sum of the individual cross sections of the
scatterers. This property is known as the additive ap-
proximation of the ballistic regime [5, 29, 37, 57]. We
also numerically observed this property in our previous
paper [46] for N ≤ 10 in a many-channel version of the
present model.

Remarkably, if we had used the optical theorem (116)
in conjunction with ai ' F (k)φ(xi) to determine the to-
tal cross section, we would have directly found the addi-
tive approximation (141) without going through the ex-
pected result of Eq. (138). This comes from the fact that
the first-order perturbative approximation of Eq. (127)
does not conserve probability, thus the optical theorem
is not supposed to hold anymore, and Eq. (138) cannot
be obtained in this way.

The approximations (138) and (141) are compared to
the numerical total cross section of the Lorentz gas in
Fig. 6. As expected, the approximation (138) better
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FIG. 6. Total cross section of a 2D disk-shaped Lorentz gas
for N = 10, using the model of Eq. (82) with α = 10−3 ς, and
averaging over 212 random configurations. The dashed curve
is the ballistic approximation (138) with C(k) from Eq. (139),
and the dotted curve is the additive approximation (141).

matches the exact cross section (in solid) than Eq. (141),
and seems valid until k ≈ 1 ς−1. Below this point,
the cross section suddenly changes. This could be ex-
plained by the combination of two facts. First, the single-
scatterer cross section tends to infinity in this region, as
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shown in Fig. 3(b), breaking down the validity of the
Born approximation. Second, the wavelength becomes
much larger than the interscatterer distance, and one
may expect that the multiple scattering be collective in
this case. The vague peak near k = 1 ς−1 results from
the closeness of the resonance band which is highlighted
in the next paper [51].

Finally, note that the small inflection in Fig. 6 near
k ' 103 ς−1 is due to the single-scatterer cross section.
Indeed, with the s-wave hard-sphere model of Eq. (82),
the point cross section vanishes at αk = j d−2

2
, which

corresponds to k ' 2405 ς−1 in Fig. 6.

2. Diffusive regime

Now, we consider the opposite situation when the gas
is much larger than the mean free path (nσptR� 1). In
this case, the number of collisions becomes large, and the
Born approximation does not hold anymore. This situ-
ation is also known as the diffusive regime in reference
to the classical Lorentz gas model for which the diffusion
equation is expected to hold [21–25]. Since the whole gas
obstructs the path of the incident particle in the forward
direction, it is legitimate to approach the forward scat-
tering amplitude with the model of large opaque sphere
of Sec. II E. The forward scattering amplitude of such an
obstacle is given by the Airy diffraction pattern (66)

TA(k, θ) = −2ik

(
2πR

kθ

) d−1
2

J d−1
2

(kRθ) . (142)

At small angles (kRθ � 1), the main peak of the pattern
can be approached by

TA(k, θ) = −2ikVd−1R
d−1

(
1− (kRθ)2

2(d+ 1)
+O(θ4)

)
.

(143)
This expansion shows that the Airy pattern becomes
larger and sharper in θ as the product kR increases. Ac-
cording to Eq. (33), the Airy differential cross section
corresponding to Eq. (142) is

dσA

dΩ
(θ) =

[(
R

θ

) d−1
2

J d−1
2

(kRθ)

]2

. (144)

The Airy cross section (144) is graphically compared
to the actual cross section (113) of the Lorentz gas in
Fig. 7. Very similar curves are obtained in other dimen-
sions d > 2. In Fig. 7, the gas contains N = 1000 scatter-
ers of individual cross section σpt(k) ' 0.65 ς. The scale
parameter is thus nσptR ' 11.6 > 1.

The sample function shown in Fig. 7(a) fluctuates on
the angular scale ∆θ = π/(kR), which is the same for-
mula as Eq. (137) for the ballistic regime. Indeed, as
shown in Eq. (136), this is the smallest oscillation pe-
riod possible for the differential cross section, and it does
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FIG. 7. Differential cross section of a 2D disk-shaped Lorentz
gas for N = 1000 and k = 5 ς−1, using the point scattering
model (82) with α = 0.1 ς. Panel (a): Sample curve for a sin-
gle random configuration of the scatterer positions. Panel (b):
Average over 212 random configurations. The dotted curve
depicts the Airy diffraction pattern (144).

not depend on the number of scatterers involved in the
collisions.

The averaged curves are shown in Fig. 7(b). As ex-
pected, the Airy pattern does not describe the differential
cross section at large scattering angle (θ & 20◦). In this
region, the cross section increases on average with θ, in
contrast to the constant behavior observed for the ballis-
tic case in Fig. 5. This could likely be explained through
a semi-classical approximation [1, 2, 6, 21–24, 31, 70], but
this is beyond the scope of this paper.

In the backward direction (θ = 180◦), we notice a faint
peak that we interpret as the coherent backscattering
peak [6, 21, 22, 24, 31, 70–72]. Indeed, the width co-
incides with the expected angular scale ∆θbs = 1/(k`),
which is about 7.5◦ in Fig. 7.

Regarding the total cross section, the optical theo-
rem (44) allows us to get a reasonable estimate. Using
Eq. (143), the total scattering cross section is given by

σ = −1

k
Im[TA(0)] = 2Vd−1R

d−1 , (145)

or more specifically, σ = 4R, for a 2D Lorentz gas.
The result (145) is twice the geometrical cross section
of the gas σgeom = Vd−1R

d−1. This is the famous extinc-
tion paradox [32, 37, 39, 55, 57–59], already presented in
Sec. II E. This phenomenon has never been highlighted
before for a random Lorentz gas of point scatterers in
arbitrary dimension. However, its involvement in the
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context of multiple scattering is somewhat fortuitous be-
cause it does not rely on the disordered structure of the
system but only the fact that the wave is strongly scat-
tered in all directions save the incident one.
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FIG. 8. Total cross section of a 2D disk-shaped Lorentz gas
for N = 1000, using the model of Eq. (82) with α = 0.1 ς, and
a single random configuration of the scatterer positions. The
dotted line is the Airy approximation (145).

The total cross section numerically computed with
Eq. (116) is shown in Fig. 8, and compared to the es-
timate of Eq. (145). The total cross section displays
a long plateau whose height is approximately given by
Eq. (145). The peak at k = 0 is due to the singular be-
havior of the single-scatterer cross section in 2D, as shown
in Fig. 3, and the decrease for k & 17 ς−1 to the cancel-
lation at k = j0/α ' 24 ς−1. The fluctuations comes
from the fact that only one configuration of the scatter-
ers is considered. They can be explained by the existence
of underlying resonances due to the multiple scattering
of the particle. We will study in detail the distribution
of these resonances from the perspective of the complex
plane of k in the next paper [51].

V. CONCLUSIONS

We began this paper with an extension of elastic scat-
tering theory to an arbitrary number of spatial dimen-
sions, including dimension one. Among the general con-
cepts that we presented, there are the Green function, the
cross section, the optical theorem, and the Airy diffrac-
tion pattern. On top of that, we derived a scattering
model for point scatterers which is expressed in terms of
the scattering length α, which is a universal parameter
for low-energy scattering [22, 36–38, 40, 41, 47–50]. The

latter quantity is explicitly related to the interaction po-
tential through the wave function calculated in the inner
region.

Then, we established the Foldy-Lax multiple scattering
equations of a quantum particle in a random Lorentz gas
of fixed point scatterers [1–6]. The problem is completely
described by the symmetric but non-Hermitian multiple
scattering matrix M(k). We verified that the equations
satisfy the optical theorem, and thus probability conser-
vation, exploiting the properties of the free-space Green
function. In this regard, the optical theorem has the im-
portant consequence that the eigenvalues of M(k) have
positive imaginary parts for k ∈ R. We also derived a
position-space scattering matrix S(k). We proved that
this matrix is not unitary in the usual way, due to the
non-normality of M(k), but nevertheless has unit-norm
eigenvalues.

Furthermore, we computed the differential cross sec-
tion of the random Lorentz gas for an incident plane
wave. We considered the ballistic and diffusive regimes.
In the ballistic regime, we showed that the differential
cross section averaged over the scatterer configurations
can be described by the Born approximation. We also
measured the angular fluctuations of the differential cross
section for individual random configurations. In the dif-
fusive regime, a distinct Airy pattern is visible in the
forward direction, meaning that the gas is mostly opaque
for the incident wave. In addition, this observation shows
that the total scattering cross section of the gas is twice
its geometrical cross section. This is a manifestation of
the extinction paradox, a famous paradox in wave me-
chanics [32, 37, 39, 55, 57–59].

Finally, in this paper, we gave a general introduction
on the random Lorentz gas model in arbitrary dimension.
This work will serve as a starting point for a more ad-
vanced study of the random Lorentz gas in the complex
plane of the wavenumber which takes place in the next
paper [51].
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[49] O. L. Ramı́rez Suárez and J.-M. Sparenberg, Phys. Rev.
C 88, 014601 (2013).

[50] D. Baye and E. Brainis, Phys. Rev. C 61, 025801 (2000).
[51] D. Gaspard and J.-M. Sparenberg, arXiv:2111.04410

[quant-ph] (2021).
[52] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.

Clark, NIST Handbook of Mathematical Functions, 1st
ed. (NIST, New York, 2010).

[53] K. F. Brennan, The Physics of Semiconductors: With
Applications to Optoelectronic Devices (Cambridge Uni-
versity Press, 1999).

[54] V. S. Vladimirov, Equations of Mathematical Physics,
edited by A. Jeffrey, Monographs and textbooks in pure
and applied mathematics, Vol. 3 (M. Dekker, 1971) trans-
lated from Russian by Audrey Littlewood.

[55] H. M. Nussenzveig, Diffraction Effects in Semiclassical
Scattering , Montroll Memorial Lecture Series in Math-
ematical Physics No. 1 (Cambridge University Press,
1992).

[56] P. Markoš and C. M. Soukoulis, Wave Propagation: From
Electrons to Photonic Crystals and Left-Handed Materi-
als (Princeton University Press, 2008).

[57] H. C. van de Hulst, Light Scattering by Small Particles,
Dover Books on Physics (Dover Publications, 1981) orig-
inally published by Wiley, 1957.

[58] H. S. W. Massey and C. B. O. Mohr, Proc. R. Soc. A
141, 434 (1933).

[59] L. Brillouin, J. Appl. Phys. 20, 1110 (1949).
[60] E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
[61] P. Descouvemont and D. Baye, Rep. Prog. Phys. 73,

036301 (2010).

https://doi.org/10.1063/1.1703737
https://doi.org/10.1016/j.jcp.2010.02.021
https://doi.org/10.1016/j.jcp.2010.02.021
https://doi.org/10.1121/1.5024361
https://www.cambridge.org/9780521834902
https://www.cambridge.org/9780521834902
https://www.cambridge.org/9780521834902
https://doi.org/10.1103/RevModPhys.54.195
https://doi.org/10.1007/BF01010869
https://doi.org/10.1007/BF01010869
https://doi.org/10.1103/PhysRevA.28.1022
https://doi.org/10.1103/PhysRevA.28.1022
https://doi.org/10.1007/s002200050659
https://doi.org/10.1007/s002200050659
https://doi.org/10.1007/s11511-008-0027-2
https://doi.org/10.1007/s11511-008-0027-2
https://doi.org/10.1007/s00220-006-0158-2
https://doi.org/10.1007/s00220-006-0158-2
https://doi.org/10.1103/PhysRevE.93.022132
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1016/0370-1573(94)90122-8
https://doi.org/10.1103/PhysRevB.51.2068
https://doi.org/10.1007/978-1-4612-1290-4
https://doi.org/10.1016/0003-4916(81)90189-5
https://doi.org/10.1016/S0370-1573(98)00036-2
https://doi.org/10.1007/3-540-29156-3
https://doi.org/10.1007/3-540-29156-3
https://doi.org/10.1017/CBO9780511618833
https://doi.org/10.1017/CBO9780511618833
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1016/j.physrep.2016.12.004
https://doi.org/10.1016/j.physrep.2016.12.004
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1121/1.413616
https://doi.org/10.1103/PhysRevB.91.224202
https://doi.org/10.1029/90JB02012
https://doi.org/10.1029/90JB02012
https://doi.org/10.1364/JOSAA.25.001504
https://doi.org/10.1364/JOSAA.25.001504
https://doi.org/10.1364/JOSAA.25.001514
https://doi.org/10.1364/JOSAA.25.001514
https://doi.org/10.1103/PhysRevA.87.041801
https://doi.org/10.1103/PhysRevA.89.043833
https://doi.org/10.1103/PhysRevA.89.043833
https://doi.org/10.1080/09500340.2013.829264
https://doi.org/10.1103/PhysRevA.63.023615
https://doi.org/10.1103/PhysRevA.63.023615
https://doi.org/10.1103/PhysRevA.77.013621
https://doi.org/10.1038/srep20751
https://lccn.loc.gov/78024542
https://lccn.loc.gov/2002071490
https://books.google.com/books?vid=ISBN9780486450131
https://books.google.com/books?vid=ISBN9780486450131
https://www.cambridge.org/9781108477437
https://www.cambridge.org/9781108477437
https://doi.org/10.1103/PhysRevA.30.1279
https://doi.org/10.1103/PhysRevA.32.1424
https://doi.org/10.1103/PhysRevA.32.1424
https://doi.org/10.1007/978-3-642-88201-2
https://doi.org/10.1063/1.529404
https://doi.org/10.1063/1.529404
https://doi.org/10.1103/RevModPhys.70.447
https://doi.org/10.1103/RevModPhys.70.447
https://doi.org/10.1088/1751-8113/40/2/004
https://doi.org/10.1088/1751-8113/40/2/004
https://arxiv.org/abs/math-ph/0609055
https://arxiv.org/abs/math-ph/0609055
https://doi.org/10.1088/1751-8113/42/3/035202
https://doi.org/10.1142/S0219749919410041
https://doi.org/10.1142/S0219749919410041
https://doi.org/10.1103/PhysRevA.97.042708
https://doi.org/10.1103/PhysRevA.97.042708
https://doi.org/10.1103/PhysRevC.97.044003
https://doi.org/10.1103/PhysRevC.97.044003
https://arxiv.org/abs/1801.08980
https://doi.org/10.1103/PhysRevC.88.014601
https://doi.org/10.1103/PhysRevC.88.014601
https://doi.org/10.1103/PhysRevC.61.025801
https://arxiv.org/abs/2111.04410
https://arxiv.org/abs/2111.04410
https://lccn.loc.gov/2010281142
https://doi.org/10.1017/CBO9781139164214
https://doi.org/10.1017/CBO9781139164214
https://books.google.com/books?vid=ISBN9780824717131
https://doi.org/10.1017/CBO9780511599903
https://doi.org/10.1017/CBO9780511599903
https://press.princeton.edu/books/hardcover/9780691130033/wave-propagation
https://press.princeton.edu/books/hardcover/9780691130033/wave-propagation
https://press.princeton.edu/books/hardcover/9780691130033/wave-propagation
https://lccn.loc.gov/81068483
https://doi.org/10.1098/rspa.1933.0128
https://doi.org/10.1098/rspa.1933.0128
https://doi.org/10.1063/1.1698280
https://doi.org/10.1103/PhysRev.72.29
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1088/0034-4885/73/3/036301


19

[62] S. E. Skipetrov and A. Goetschy, J. Phys. A: Math.
Theor. 44, 065102 (2011).

[63] A. Goetschy and S. E. Skipetrov, Phys. Rev. E 84,
011150 (2011).

[64] A. Goetschy and S. E. Skipetrov, Europhys. Lett. 96,
34005 (2011).

[65] A. Goetschy and S. E. Skipetrov, arXiv:1303.2880 [math-
ph] (2013), review paper.

[66] G. E. Mitchell, A. Richter, and H. A. Weidenmüller, Rev.
Mod. Phys. 82, 2845 (2010).

[67] G. H. Golub and C. F. Van Loan, Matrix Computations,
4th ed., Johns Hopkins Studies in the Mathematical Sci-
ences, Vol. 3 (Johns Hopkins University Press, 2013).

[68] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
3rd ed. (Society for Industrial and Applied Mathematics,
Philadelphia, 1999).

[69] S. M. Ross, Introductory Statistics, 3rd ed. (Elsevier,
Boston, 2010).

[70] E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev.
Lett. 56, 1471 (1986).

[71] B. A. van Tiggelen, A. Lagendijk, and A. Tip, J. Phys.:
Condens. Matter 2, 7653 (1990).

[72] A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270,
143 (1996).

https://doi.org/10.1088/1751-8113/44/6/065102
https://doi.org/10.1088/1751-8113/44/6/065102
https://doi.org/10.1103/PhysRevE.84.011150
https://doi.org/10.1103/PhysRevE.84.011150
https://doi.org/10.1209/0295-5075/96/34005
https://doi.org/10.1209/0295-5075/96/34005
https://arxiv.org/abs/1303.2880
https://arxiv.org/abs/1303.2880
https://doi.org/10.1103/RevModPhys.82.2845
https://doi.org/10.1103/RevModPhys.82.2845
https://lccn.loc.gov/2012943449
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1016/C2009-0-28078-0
https://doi.org/10.1103/PhysRevLett.56.1471
https://doi.org/10.1103/PhysRevLett.56.1471
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1016/0370-1573(95)00065-8

	Multiple scattering model of the quantum random Lorentz gas
	Abstract
	Introduction
	Scattering theory in arbitrary dimension
	Green function in free space
	Differential cross section
	Optical theorem
	One-dimensional case
	Fraunhofer diffraction

	Point scattering theory
	s-wave scattering
	Determination of the s-wave phase shift
	Determination of the scattering length
	Cross section of the point scatterer

	Random Lorentz gas model
	Multiple scattering method
	Cross section and optical theorem
	Position-space scattering matrix
	Numerical differential cross section
	Ballistic regime
	Diffusive regime


	Conclusions
	Acknowledgments
	References


