
����������
�������

Citation: Fatimi, A.; Okoro, O.V.;

Podstawczyk, D.; Siminska-Stanny, J.;

Shavandi, A. Natural

Hydrogel-Based Bio-Inks for 3D

Bioprinting in Tissue Engineering: A

Review. Gels 2022, 8, 179. https://

doi.org/10.3390/gels8030179

Academic Editor: Shengfu Chen

Received: 17 February 2022

Accepted: 10 March 2022

Published: 14 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Review

Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue
Engineering: A Review
Ahmed Fatimi 1,2,* , Oseweuba Valentine Okoro 3 , Daria Podstawczyk 4 , Julia Siminska-Stanny 3,4

and Amin Shavandi 3,*

1 Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila,
Beni-Mellal 23000, Morocco

2 ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila,
Beni-Mellal 23000, Morocco

3 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB),
Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; oseweuba.okoro@ulb.be (O.V.O.);
julia.siminskastanny@ulb.be (J.S.-S.)

4 Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry,
Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
daria.podstawczyk@pwr.edu.pl

* Correspondence: a.fatimi@usms.ma (A.F.); amin.shavandi@ulb.be (A.S.)

Abstract: Three-dimensional (3D) printing is well acknowledged to constitute an important tech-
nology in tissue engineering, largely due to the increasing global demand for organ replacement
and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the
ink employed is impregnated with cells, without compromising ink printability. This allows for
immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or
bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regen-
eration. Recognizing the importance of such bio-inks, the current study comprehensively explores
the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as
cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress
in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and
limitations and prospects concerning future trends in human-scale tissue and organ fabrication are
also presented.

Keywords: 3D bioprinting; hydrogel; biopolymers; bio-ink; rheological properties; printability

1. Introduction

Tissue engineering is an emerging discipline, aimed at regeneration, repairing or
building up of functional tissues or organs similar to human organs [1]. Hydrogels are
widely studied for tissue engineering applications, via the provision of matrices capable
of sustaining both differentiated and non-differentiated cells, alive, in three-dimensional
(3D) constructs [2,3]. A hybrid tissue or cell-engineered biological construct (e.g., half-
synthetic/half-biological) is produced either to reconstruct a damaged element of the host
organism or to simulate the pathophysiology of the studied tissue to reveal the molecular
processes behind it [4,5].

In tissue engineering, hydrogels’ ability to crosslink in situ eliminates the need for
open surgery to implant them. They can be crosslinked after the implantation process
under different conditions. Both chemical and/or physical modification can be employed to
induce gelation, provided that the encapsulated cells survive and proliferate afterwards [6].

The use of bio-ink containing other biomaterials may provide additional mechani-
cal support for the bioprinted cells, helping them to organize, migrate and differentiate
autonomously to form functional tissues [7]. It is, therefore, possible to manufacture
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physiologically complex human heterogeneous tissues in a personalized manner. Prior
to implantation, 3D bioprinted patches or tissues can also be enriched with molecules of
biological interest, such as growth factors, known for their regenerative properties [8].

3D bioprinting can facilitate the creation of biological structures from a bio-ink to
obtain a synthetic extracellular matrix (ECM). To date, the majority of the 3D bioprinting
technologies for scaffold-based fabrications can be classified under four leading categories,
namely extrusion-based, droplet-based, laser-assisted and bioprinting based on vat poly-
merization [9–11]. The most common 3D bioprinter, the extrusion bioprinter, is in fact
based on the same principle and involves material deposition layer by layer, typically
using pneumatic, piston or screw syringes [12]. However, there are other 3D bioprinters
that deposit thermal (or piezoelectric) bio-ink drop by drop (inkjet bioprinter), similar to a
traditional material jet printer [13], and others using lasers as a source of energy (e.g., laser-
assisted bioprinter) [14] or utilizing photo-initiators to enhance the crosslinking mechanism
of polymers (e.g., vat polymerization-based bioprinter) [10,11].

Finding an appropriate bio-ink is of paramount importance in 3D bioprinting, as it
provides a tissue-specific microenvironment that can support cellular growth and mat-
uration. Among the variety of bioprinting materials employed in the manufacture of
physiologically complex heterogeneous human tissues, several biomaterials have been
explored, such as synthetic hydrogels (Polyethylene glycol [15,16], polyurethane [17],
Poly(vinyl alcohol) [18], polylactide and derivatives [19–22]) and natural hydrogels such
as collagen [23–34], fibrin [35–37], silk [23,32,38–49], hyaluronic acid [33,34,50–57], chi-
tosan [24,46,58–62], cellulose [21,43,49,63–66], agarose [32,46,67–70], carrageenan [71–73],
bacteria [74], etc. Additionally, some decellularized extracellular matrix (dECM) hydro-
gels, which are an amalgamation of various proteins in the ECM of a native tissue/organ,
are considered as native hydrogels and may be used as bio-inks [29,30,75–81]. From a
design viewpoint, a 3D bioprinted dECM scaffold has the capability to meet all clinical
challenges, including some performance elements that other bio-inks do not have. This type
of bioprinting material is known to have higher regenerative potential than conventional
commercial hydrogels [82,83]. Crucially, the capacity of 3D bioprinting of hydrogel-based
bio-inks has been demonstrated in the regeneration of several types of damaged tissues,
including heart [84], cartilage [50,63,66,78], bone [85–88], muscle [81,89,90], kidney [29,89],
skin [30,49,90–92], blood vessels [53,93,94], adipose tissue [95,96], intestinal tissue [97],
liver [98], trachea graft [37], breast tissue [99], ocular tissue [100] and other engineered
biological tissues [101,102].

Recognizing the potential widespread applications of hydrogels, several previous
researchers have sought to undertake studies in the area [103,104]. For instance, the study
of Kundu et al. [103] explored the potential of employing different celluloses as natural
biopolymers for applications including wound healing. Similarly, Yang et al. [104] studied
the utilization of polysaccharide hydrogels in tissue engineering. Functionalization and
modification of polysaccharides enabled the formation of hydrogels, and the introduction
of versatile side groups helped to regulate cell behavior. Tang et al. [105] also assessed
protein-based hydrogels with respect to their common fabrication methods, properties
and suitability in multiple applications, such as tissue engineering and drug delivery. A
consideration of these previous studies shows that most research in this area tends to
focus on only natural-based hydrogels (i.e., either polysaccharide or protein based). In
this regard, the present review discusses recent progress in the design and development of
hydrogel-based, natural bio-inks for 3D bioprinting in tissue engineering and regenerative
medicine, in a comprehensive manner. The present study will also discuss the formulation
and the use of natural hydrogel-based bio-inks and their characteristics, such as rheology,
printability, etc. Additionally, the functionality of multicomponent bio-inks consisting
of various protein-based hydrogels, dECM and/or polysaccharide-based hydrogels will
be discussed. Finally, challenges, future outlooks and tendencies associated with the 3D
bioprinting of natural hydrogel bio-inks are addressed.
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2. 3D Bioprinting and Process Parameters
2.1. 3D Bioprinting

Tissue engineering and regenerative medicine have new meaning thanks to 3D bio-
printing. Furthermore, 3D bioprinting has a great potential to improve the biomedical field,
as it includes the design, prototyping and fabrication of 3D tissue structures that could be
used for regeneration, repair or building up of functional tissues or organs similar to those
of a human being. The “bioprinting material” utilized in 3D bioprinting techniques, also
referred to as bio-ink, often includes living biological cells, hydrogels, chemical factors and
biomolecules, to form a physical and functional 3D living structure [106]. 3D bioprinting
was first demonstrated using the conventional inkjet process. The inkjet printing trans-
lates a digitalized computer image of data or character and reproduces it contactless on
a specific substrate in the form of droplets [107]. In the early 1980s, a graphics plotter
for precise deposition of cells and a commercially accessible inkjet printer delivered by
Hewlett-Packard, employing thermal, drop-on-demand technology, were used to deposit
cells using cytoscribing technology and a hydrogel solution as the bio-ink [108].

To successfully create bioprinted tissues or organ-like structures that facilitate cell
proliferation, it is essential to initially generate a set of printing instructions and select
suitable bioprinting materials, bio-inks (e.g., synthetic-based hydrogels, protein-based
hydrogels, polysaccharide-based hydrogels and dECM-based hydrogels) and cells. The
last steps, involving control of the bioprinter prior to starting the process of fabrication and
quality control after printing, are also important [9].

Generally, an ideal 3D bioprinting process should follow a typical manufacturing
workflow for bioprinted tissues. The process of 3D bioprinting is composed of several
stages, namely Pre-bioprinting (data acquisition and 3D modelling), Cell and bio-ink
preparation, Bioprinting process and Post-bioprinting/applications [9,109] (Figure 1).
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Figure 1. Typical manufacturing workflow for 3D bioprinting process and bioprinted tissues.

2.1.1. Pre-Bioprinting

In this stage, a digital file for the bioprinter is created. This file contains 3D models
and is obtained via the acquisition of imaging data for the 3D representation of tissue or
organ. In some cases, imaging data are acquired via X-ray, computed tomography (CT), or
magnetic resonance imaging (MRI) techniques or is created directly with a computer-aided
design (CAD) software. The feasibility is then verified using computer-aided manufacturing
(CAM) software [110–112]. The print file is then converted to a printer readable file, which
is stereolithography (STL) [113], and the paths for the printheads are created using a
process analogous to the preparation of samples for histology [114,115]. The data are then
translated to enable the estimation of the material amount needed to be extruded, which
depends on the desired layer height and width in accordance with bio-ink shape (e.g.,
droplets or filaments) [39].
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2.1.2. Cell and Bio-Ink Preparation

Cells from the tissue biopsy are initially isolated, expanded and differentiated in vitro.
The choice of cells depends on the application and can be patient- and/or organ-specific
primary or stem cells [9]. The bio-ink containing the isolated cells, growth factors and
bioprinting materials is then prepared according to the physiological temperature, pH and
requirements of printed structures [9]. A live-cell imaging system is used before bioprinting
to ensure there are enough cells to bioprint a tissue model successfully [9].

2.1.3. Bioprinting Process

Prior to the bioprinting process, an appropriate configuration of the device must be
maintained and followed by setting bioprinting parameters. Nevertheless, observation
during the printing process is essential to make adjustments when problems occur [116].
Depending on the structure to build, the multiple print heads are calibrated in position,
and the cell-laden bio-ink is loaded into the cartridge, respecting physiological temperature
and pH. When the bioprinting starts, the bioprinter follows the instructions of designed
paths and deposits bio-inks, systematically building the 3D tissue or organ according to a
series of 2D slices [9,109]. Bioprinting resolution is specific to the bioprinter used and the
type of bio-ink used for bioprinting; usually, the greater the resolution, the longer the time
of object fabrication [117].

2.1.4. Post-Bioprinting

At this stage, the printed structures are usually crosslinked to enhance their stabil-
ity and later examine them via microscopy imaging techniques, providing information
regarding the in vivo cell distribution in a defined area or volume of the 3D bioprinted
scaffold. The dispersal and the cell functionality in the construct are also checked [116].
The successfully cell-filled constructs are kept in an incubator or a bioreactor for culturing
and maturation, after which the resulting artificial tissue constructs are used either for
implantation or as platforms for vitro studies [118].

Having covered the underlying aspects of 3D bioprinting, the associated technologies
utilized in 3D bioprinting are discussed in the subsequent section.

2.2. 3D Bioprinters and Technologies

Conventional additive or layered manufacturing techniques gave rise to many of
the 3D bioprinting methods. However, what significantly hinders the 3D bioprinting
techniques, in comparison to AM-based methods of scaffold fabrication, is attributed to the
direct involvement of biological living materials during the fabrication process. Several
companies are already in the business of making 3D bioprinters that are capable of printing
tissues and organs of clinically relevant shape and size (Table 1).

According to different technological approaches and bioprinting materials, the most
used scaffold-based 3D bioprinting is classified as (Figure 2); extrusion or droplet-based,
laser-assisted or vat-based polymerization bioprinting [9–11,116].

Generally, bioprinters based on the extrusion process deposit bio-inks to form unbro-
ken filaments for the assembly of 3D structures; droplet-based bioprinting creates discrete
droplets of bio-inks and incrementally stacks them into 3D structures; laser-assisted bio-
printing uses laser energy in the form of impulses to transfer bio-inks to a substrate in a 3D
spatial arrangement; and vat polymerization-based bioprinting uses ultraviolet or infrared
radiation to build 3D structures in a reservoir while using liquid photocurable bio-ink [119].
A detailed classification of the most used scaffold-based 3D bioprinting processes is shown
in Figure 3 and further discussed in subsequent sections [116,120].
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Table 1. Examples of 3D bioprinters using hydrogel-based bio-inks in tissue engineering and regener-
ative medicine.

Company Bioprinter Features Tissues or Organs References

ORGANOVO
(San Diego, CA, USA)

NovoGen
MMX™

Able to create biological tissues of the
liver, kidneys, intestines, skin, pancreas
and more.
Includes two printheads, one for
extracting cells, the other for hydrogels,
scaffolds or soft biomaterials.

Kidney,
tissue-engineered muscle,
liver, human intestinal
tissue.

[89,97,98,121]

ENVISIONTEC
(Gladbeck, Germany) 3D Bioplotter®

Can process a variety of biomaterials
(e.g., hydrogels, soft polymers,
bioceramics, etc.).
Used in bone regeneration, cell and organ
pressure, production of cartilage and
skin.

Blood vessels, adipose
tissue, tracheal graft,
tooth tissue, adipose
tissue.

[37,93,95,96,122]

CELLINK
(Gothenburg, Sweden) Inkredible+™

Based on the extrusion principle.
Equipped with dual heated printheads.
Allows 3D bioprinting with different cell
types and bio-inks in the same structure.
Several biomaterials can be used,
including those of too-high viscosity at
room temperature.
Equipped with a built-in UV crosslinking
system.

Cartilage and skin tissue,
vascularized soft tissues,
skin constructs.

[49,92,123]

CELLINK
(Gothenburg, Sweden) BIO X™

Integrates three different printheads.
Based on the principle of extrusion.
Could design structures from any type of
cell (e.g., endothelial cells, stem cells or
fibroblasts).
Equipped with UV-C germicide that
allows sterilizing light in the printing
environment.

Engineered neural
tissues, skin constructs,
wound dressings, bone
tissue.

[57,86,92,124]

ASPECT BIOSYSTEMS
(Vancouver, BC, Canada) RX1™

Able to manufacture physiologically
complex heterogeneous human tissues in
a personalized way.
Bioprinting of high cell densities with
high viability and preserved phenotype.
Uses low viscosity biomaterials.

Engineered neural
tissues, brain tissue, renal
tissue, 3D contractile
smooth muscle tissues,
neural tissues.

[125–129]

GESIM
(Radeberg, Germany) BioScaffolder®

Bioprinting of very different hard and
soft biopolymers with or without cells.
Design and bioprinting of porous and
multi biomaterial structures for tissue
engineering.
Sequential bioprinting, co-axial extrusion,
nanoliter pipetting.

Vaginal wall repair,
periodontal tissue,
cardiac tissue.

[130–132]

ALLEVI
(Philadelphia, PA, USA) Allevi

Uses LED photo-curing with blue and
UV light.
Allows working with several
biomaterials (e.g., collagen, matrigel,
methacrylate, graphene, etc.).

Veterinary dosage forms,
bone graft, osteochondral
constructs.

[133–135]

REGENHU
(Fribourg, Switzerland)

3D Discovery®

Evolution

Enables fabrication in macro and nano
dimensions using a single unit.
Generates tissue structures analogous to
those seen in nature.
Provides 11 different printhead
technologies with only a single
instrument.
Configuration and specification can be
modified and adapted.

Cartilage tissue
constructs engineered
biological tissues.

[101,102,136]

REGENHU
(Fribourg, Switzerland) Biofactory ®

Adapted to a wide range of bioprinting
techniques, including extrusion and
droplet bioprinting techniques.
- Enables work with a vast range of
biomaterials, including
photo-crosslinkable hydrogels, proteins
and high viscosity biomaterials.
Provides a system built into the laminar
flow hood, which maintains a sterile
environment with regulated temperature,
humidity and gas composition.

Skin, air–blood tissue
barrier, skin tissue
regeneration, 3D tubular
construct.

[137–140]
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Table 1. Cont.

Company Bioprinter Features Tissues or Organs References

CLUSTER
TECHNOLOGY
(Osaka, Japan)

DeskViewer™

Based on the principle of piezo-electronic
inkjet printing.
Equipped with four injectors with
different-sized nozzles.
Able to print different kinds of cells or
protein solutions.
Both the volume and diameter of the
drop from the nozzle can be modified
and adapted.

Human tissue chips. [141]

REGEMAT
(Granada, Spain) Bio V1

Optimized for osteochondral tissues and
able to be used in other similar
applications.
Exchangeable printheads allow for a
wide spectrum of applications.

Bone tissue, articular
cartilage constructs. [50,85,142]

POIETIS
(Pessac, France NGB-R™

Characterized by high precision and
resolution.
Provided with a built-in in-line
monitoring system capable of controlling
the accuracy of each layer applied, thus
producing controlled 3D cellular
structures and reproducible tissue
designs.

Skin model. [143]

2.2.1. Extrusion-Based Bioprinters

Bioprinting techniques based on the extrusion process cover pneumatic, piston and
screw-driven bioprinting [116,120]. Extrusion bioprinters, first introduced in 2002 [144],
are the most frequently used in bioprinting, mainly due to their versatility, practicality,
affordability and possibility their ability to generate large-scale 3D structures [145].

A typical extrusion bioprinter has two or more printing heads capable of extruding
bio-ink composed of cells, growth factors and/or bioprinting materials (e.g., hydrogels),
by applying a continuous pressure, enabling the dispersion of bio-ink filaments through a
small, or even a micro-sized nozzle. The direction of layer deposition may vary between
bioprinter models. In the major cases, the cartridge is fixed to a print arm moving in
the z–y direction over a collector moving the x-axis, and this enables the creation of 3D
patterns [146].

The main advantage of the relatively low speed and/or pressure extrusion lies in
circumventing the harsh conditions (shear, shock, heat, etc.) that the cells may encounter
in other bioprinting approaches. Other advantages of pressure extrusion include the
use of a broad range of viscosities of biomaterial-based bio-inks, a high cell density and
different concentrations of cells [147,148]. Disadvantages of this approach include hydrogel
deformations, relatively low resolution, potential nozzle clogging and the apoptosis of
embedded cells, mainly due to the induced pressure imposed within the nozzle [146].

Extrusion-based bioprinting is undoubtedly the most common modality employed
in current bioprinters due to its ease of use and lower start-up and conservation costs.
Extrusion-based bioprinters represent 57% of the commercial bioprinters of the global 3D
bioprinting market [149–151].

Additionally, compatible with extrusion bioprinting are the coaxial and multi-material
techniques, suitable for different sorts of applications. However, in general, the extru-
sion bioprinting approach has been used to fabricate 3D tissues and biological constructs
including kidney [89], liver [98], blood vessels [93], tissue-engineered muscle [121], hu-
man intestinal tissue [97], adipose tissues [95,96], tracheal graft [37], tooth tissue [122],
vascularized soft tissues [123], skin constructs [92], engineered neural tissues [126], brain
tissue [127], renal tissue [128], cartilage tissue constructs [50,137,143], bone tissue [85] and
other engineered structures [103,104].
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2.2.2. Droplet-Based Bioprinters

Introduced in 1988, droplet-based bioprinting approaches can be further divided into
electro-hydrodynamic jetting, inkjet, acoustic or microvalve-based bioprinting [108]. Inkjet
bioprinting was the first droplet-based bioprinting approach to be developed [108]. The
inkjet bioprinting method can be divided into continuous bioprinting and drop-on-demand,
where single droplets are deposited according to a defined path. The drop-on-demand
technique is based on three different droplet generation mechanisms: piezoelectric, thermal
and electrostatic [116,120].

The continuous inkjet bioprinting technique, as it requires conductive bio-inks, is not
well adapted to bioprinting; moreover, the contamination risk from ink recirculation is
high. On the other hand, the drop-on-demand approach is of fundamental importance
in bioprinting due to the pulsed character of the printing. A cartridge is loaded with
cell-laden bio-ink and then printed in well-distributed droplets, which are generated
from the printhead controlled by the thermal or piezo actuator. The bio-ink droplets, if
needed, are ejected through the nozzle opening by a pressure pulse inside the microfluidic
chamber [152].

The main advantages of the drop-on-demand method are low costs, as the devices
used are similar to the commercial equipment and can print at high speed due to the ability
of printheads to work in parallel, and high cell viability [153]. Disadvantages of the drop-
on-demand method include its narrow material selectivity, temperature variations during
the printing process and frequent printhead clogging [152]. To alleviate existing problems
and achieve better performance, hybrid cell printing techniques have been developed and
studied [154].

The second most popular mode within the current bioprinters is inkjet-based bioprint-
ing. Bioprinters of that type represent 10% of the commercial bioprinters globally. Just a
few manufacturers offer inkjet printing of cells, as there is a technical challenge of obtaining
uniform droplets as well as a practical challenge of obtaining higher cell densities hidden
behind this technique [150].

To date, inkjet-based bioprinting has been utilized to create 3D tissues and biological
constructs, including 3D replicas of cartilage [155], engineered neural tissues [126,129],
brain tissue [127], renal tissue [128], 3D contractile smooth muscle tissues [125], skin
tissue [137,138], air–blood tissue barrier [139], human tissue chips [141], branched vascula-
tures [156], liver [157] and other complex heterogeneous tissue constructs [158]. Moreover,
inkjet-based bioprinting could be beneficial in areas such as wound healing, since individ-
ual droplets of cell-laden bio-ink could be used to fill empty wounds in a layer-by-layer
manner, with varied cell populations applied as a function of depth [159].

2.2.3. Laser-Assisted Bioprinters

Introduced in 1999, laser-assisted bioprinting shows a resemblance to direct writing
methodologies [14]. Laser-assisted bioprinting includes laser-induced forward transfer,
laser-induced forward transfer supported by an absorption film and direct matrix-assisted
laser evaporation writing. Notably, other techniques, such as biological laser processing
and laser-guided direct-write, are regarded as derived or modified versions of one of three
of the first techniques [116,120].

Laser-assisted bioprinting is neither a cheap nor an easy technique. To transfer ma-
terials to a substrate, this technique employs pulsed laser energy. A typical laser-assisted
bioprinter is mainly composed of a pulsed laser source, optics necessary for the beam
delivery, a target in the form of a ribbon coated with the bio-ink to be bioprinted, and a
receiving substrate. However, since laser-assisted bioprinting is a nozzle-free process, it is
not hindered by clogging problems generated by cells or biomaterials, which characterizes
some other bioprinting techniques, e.g., extrusion-based bioprinting [153].

The laser-assisted bioprinting method also has the advantage of bioprinting with
biomaterials of high cell density and viscosity. It enables printing at high resolution
while avoiding the high shear stress related to the material passing through a nozzle
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(inkjet-based bioprinting) or a needle (extrusion-based bioprinting) [160]. As an optical
technique, it is possible to visually identify and position cells and biomaterials in real
time for subsequent deposition. Thus, laser direct-write techniques provide an appealing
alternative to bioprinting multicellular structures in space-ordered patterns with near single-
cell resolution. It is a non-contact, orifice-free technique offering the ability of biological
material deposition with microscale precision [161,162]. Thus, laser-assisted bioprinting
can overcome the lack of precision with respect to the shape of the microscale structure,
which characterizes other bioprinting techniques [163]. It also results in higher cell viability
compared to inkjet and extrusion mechanisms [150].

Laser-assisted bioprinters that are not yet commercially available may be assembled
depending on the desired capabilities [149]. Laser-assisted bioprinters represent 3% of
commercial bioprinters in the global 3D bioprinting market, with only the POIETIS (Pessac,
France) company focusing on the production of laser-assisted bioprinters [143,150] as well
as built-in monitoring systems capable of controlling the quality of each layer of the bioprint,
thus producing controlled and reproducible 3D cell structures and tissue models [143].
These bioprinters are suitable for fabricating complex 3D tissue constructs, including hollow
tubular tissue constructs [164,165], skin tissue [166,167], bone tissue [168] and other 3D
tissue grafts [169]. In addition, a patterned biomimetic human liver model using laser-
assisted bioprinting was successfully developed and 3D bioprinted. It mimicked the liver
lobule structure, which is difficult to fabricate using extrusion or inkjet bioprinting [163].

2.2.4. Vat Polymerization-Based Bioprinters

Vat polymerization-based bioprinting was first introduced in 1984. It is an up-and-
coming bioprinting technique suitable for various tissue engineering applications, thanks
to its high manufacturing accuracy [170]. This bioprinting technique employs different
photo-initiators during the bioprinting process to promote crosslinking, which are needed
to fabricate complex, high-resolution tissue constructs [11,171].

Several vat polymerization-based biofabrication technologies, such as stereolithog-
raphy, digital light processing and two-photon polymerization, have been developed to
photo-shape cell embedded hydrogels into complex three-dimensional tissue constructs.
These approaches involve layer-by-layer patterning of light, intended to photo-crosslink de-
fined regions of a bio-ink consisting of a photo-crosslinkable hydrogel precursor [171,172].
The most representative one is stereolithography bioprinting, a light-based technique com-
patible with photo-sensitive bio-inks only [11,173]. Stereolithography was the first patented
method that facilitated 3D object printing from digital data [170,174]. Compared to previ-
ous technologies, stereolithography bioprinting has several advantages. For instance, it is a
nozzle-free process without the clogging problems of bio-inks. Furthermore, the printing
time is independent of the complexity of the construct, since the whole pattern is projected
on the printing substrate. This technique provides the highest spatial resolution of all
existing bioprinting methods and is faster than nozzle-based bioprinting systems [11,173].

As vat polymerization-based bioprinting technology has found applications in the area
of tissue engineering, various materials containing cells, biomaterials and photo-initiators
have been developed. The possibilities of using vat polymerization-based fabrication
methods for biomedical applications are numerous. In particular, vat polymerization-based
bioprinting has been used to obtain cranial implants, customized heart valves, ear-shaped
implants and aortas [171]. Vat polymerization-based bioprinting encapsulates cells in
fabricated structures with higher cell densities [175–177]. It is important to note that the
functionality of each bioprinting technique is also a function of the peculiar properties of
the bio-ink.

2.3. Critical Process Parameters and Important Considerations for 3D Bioprinting Using
Hydrogel-Based Bio-Inks

In general terms, bio-inks should have properties such as favorable viscoelastic and
in situ gelation properties, high resolution during printing and short post-printing time
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for maturation [178]. Additionally, possible degradation end-products, generated during
the process, must not lead to unfavorable immunological effects on cells [178]. However
for the different bioprinting technologies, several unique properties of the bio-inks are
required. For instance, while higher viscosities of the bio-ink may enhance the stability of
the construct, highly viscous bio-inks may have unfavorable effects on extrusion pressure,
with more pressure required for higher viscosities when the extrusion-based bioprinting
technology is employed. Thus, bio-inks showing a viscosity of 10 mPa·s will be best suited
for droplet-based printers, while extrusion-based bioprinters and laser-assisted bioprinters
require bio-inks with viscosities of 30 to 6 × 107 mPa·s and 1 to 8000 mPa·s [178,179],
respectively. For the vat polymerization bioprinting, bio-inks with viscosities from 250
to 10,000 mPa·s are preferred. The high viscosity requirement of bio-inks employed in
extrusion-based bioprinters suggests that the higher shear thinning property is necessary for
such bio-inks to compensate for the higher shear stress occurring during the printing [178].
A similar requirement is necessary to ensure the proper functioning of droplet-based
bioprinters [178]. Notably, the ability of a bio-ink to present thixotropy properties also
suggests its suitability for utilization in extrusion-based bioprinting, since such bio-inks
have the capacity to reduce their viscosity when shear stress is applied [180]. In vat
polymerization-based bioprinting, bio-inks equipped with a laser-solidification mechanism
are crucial [181]. Vat polymerization requires that the bio-inks also contain a non-toxic
photo-initiator and display favorable viscosity and density to avoid cell decantation during
the printing process [182].

The application functionality of the 3D bioprinted tissues and biological constructs is
determined by printing fidelity (e.g., complexity, resolution, construct size, shape stability,
etc.) and cell function retention (e.g., viability, proliferation, differentiation, tissue formation,
etc.). However, these important characteristics are dependent on multiple parameters,
such as nozzle diameter and geometry, the pressure applied, printing speed, volumetric
flow rate, as well as the rheological properties of bio-inks [183–185]. Table 2 provides a
simple comparison of different bioprinting techniques. Further discussions relating to
the parameters that influence the performance of different printing techniques are also
presented in Table 3.

Table 2. Comparison of different bioprinting techniques.

Parameters
Bioprinting Approaches

Extrusion-Based Inkjet-Based Laser-Assisted Vat Polymerization-Based

Printing process Line-by-line Drop-by-drop Dot-by-dot Layer-by-layer

Bio-ink viscosity 30–6 × 107 mPa·s 3.5–12 mPa·s 1–300 mPa·s No limitation

Resolution 200–1000 µm 10–50 µm 10–100 µm <50 µm

Post-printing cell
viability 40–80% >85% >95% >85%

Cell density High
Cell spheroids

Low
<106 cells·mL−1

Medium
~108 cells·mL−1

Medium
~108 cells·mL−1

Printing speed Slow
10–700 mm·s−1

Fast
>103 droplets·s−1

Moderate
200–1600 mm·s−1

Fast
Multi layers·s−1
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Table 3. Major parameters that influence the performances of different bioprinting techniques.

Printing Technique Parameters That Influence Printing Performance References

Inkjet-based 3D printing

The performance of this printing technique may be influenced by parameters such
as printing speed and ink formulation. Indeed, the printing speed can be a
challenge for constructing millimeter or centimeter scale biostructures, as
maintaining cell viability during many hours of printing is very demanding.
Bio-ink formulation influences its volumetric flow rate (i.e., the bio-ink volume
that passes through the needle or nozzle per unit of time) and is essential to
determine the shape of bioprinted filaments or droplets. In general, higher flow
rates are associated with lower printing speeds, leading to an increase in the
filament diameter. On the contrary, small flow rates combined with higher
printing speeds reduce the filament diameter. Another factor that influences
inkjet-based 3D printing is nozzle/extrusion temperature. This is because this
parameter dictates the layer thickness of the ink, the printing fidelity and the
durability of the cells.

[186–189]

Extrusion-based 3D printing

Factors such as the applied pressure, nozzle orifice size and geometry play a
critical role regarding the printing outcome, since these factors can influence the
construct properties such as layer thickness and building orientation.
They are also dominant factors that may cause cell damage when printing
cell-laden hydrogels. It has been confirmed that cell mortality upon printing is
proportional to the nozzle diameter and system pressure employed (increased
printing pressure decreases cell viability).

[160,190–
194]

Laser-assisted 3D printing

This printing technique is influenced by parameters such as ink formulation,
extruder temperature and laser orientation. Ink formulation is particularly
relevant since, in addition to influencing the flowrate of the bio-ink, it also
influences the rheological properties of bio-inks. These properties dictate printing
fidelity, flow behavior, viscosity, shear stress and viscoelasticity of the bio-ink and
viability of the cells.

[70,192,193,
195–197]

Vat polymerization-based
printing

The performance of this printing technique will be influenced by parameters such
as rheological properties, layer thickness, post-curing time and orientation. Other
factors such as exposure time to determine the exposure duration of a single layer,
lifting height and speed and lowering speed are crucial parameters that influence
the photopolymerization of the associated biopolymer and thus are crucial to
determining the printing fidelity.

[198–200]

2.3.1. Nozzle Orifice Size, Geometry and Applied Pressure

Previous studies suggest that the applied pressure and the nozzle orifice size and
geometry play a critical role in the printing outcome, since they influence cell viability in
printed cell-laden hydrogels. Indeed, the percentage of cell mortality is dependent on the
nozzle diameter and system pressure employed [163,194,195], with reduced cell viability
observed as the printing pressure increases and nozzle aperture decreases [192].

2.3.2. Printing Speed

The printing speed influences the efficiency of constructing millimeter or centimeter
scale biostructures since maintaining cell viability after sustained printing duration is very
demanding. Control over the printing speed may be performed electronically, and it ranges
from picoliter to nanoliter per min. It is determined by the motion ability of the robot
motors and is a decisive factor in both total printing time and the filament or droplet final
dimensions [192].

2.3.3. Volumetric Flow Rate

Volumetric flow rate, corresponding to the volume of printed bio-ink passing through
the nozzle per unit of time, is essential for specifying the geometry of bio-printed filaments
or droplets [186,187]. Assuming that the effects of hydrogel swelling and deformation
are negligible, filament or droplet size may be estimated using a simple mathematical
model developed based on the relationship between the volumetric flow rate and printing
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speed [186]. A high flow rate in combination with a lower printing speed maximizes the
filament diameter, while a low flow rate in association with a greater printing speed reduces
its size [187].

2.3.4. Rheological Properties of Bio-Inks

Bio-inks’ rheological properties influence printing fidelity and cell durability. As
bioprinting technology advances, rheology will become an even more important parameter
for the optimization of hydrogel-based bio-inks. The major rheological properties affecting
the final characteristics of the 3D bioprinted tissues and biological constructs include flow
behavior, viscosity, shear stress and viscoelasticity [195].

Flow Behavior

The flow properties of hydrogels indicate their resistance to shear deformation and
are characterized by the interplay between shear stress (or viscosity) and shear rate
(Figure 4). According to this flow, behavior is generally categorized as Newtonian or
non-Newtonian [201]. Bio-ink flow behavior characterization is of great significance in
3D bioprinting. Generally, hydrogel-based bio-inks exhibit non-Newtonian flow, with the
preferred bio-inks reported to exhibit shear-thinning behavior to enable the bio-ink flow
readily without causing clogging [202,203] while also improving the printing fidelity and
stability of 3D bioprinted structures [201,204].
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Viscosity

Viscosity constitutes an important rheological property of bio-inks, since higher vis-
cosity may enhance the stability of the bioprinted structure at the expense of cell viability,
while lower viscosity provides cells with a friendly environment but hinders printability.
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Furthermore, high viscosity may create clogging at the nozzle tip, so it should be adjusted
based on the size of the nozzle tip. For the bio-ink formulations, viscosity can be controlled
by regulating molecular weight, polymer concentration, the mass of additives, temperature
and pre-crosslinking [16].

Shear Stress

The viscosity of bio-inks determines shear stress during bioprinting processes and
thus can influence cell survival and proliferation. This is because higher shear stress levels
may cause possible cell damage [196]. Thus, hydrogel-based bio-inks with low shear stress
rates at moderate pressures are preferred, since they allow for ideal printing fidelity and
the ability to preserve cells alive in in vitro and in vivo conditions [70,196,200,201].

Viscoelasticity

Viscoelasticity of hydrogel-based bio-inks is determined by undertaking dynamic
measurements of storage and loss modulus as a function of shear stress, strain, frequency
or time. The storage modulus, also called elastic modulus (G’), expresses the energy that is
stored within the material or recoverable during each deformation cycle. On the other hand,
the loss modulus, also called modulus of viscosity (G”), refers to the energy that is lost as
viscous dissipation per cycle of deformation (Figure 5). Therefore, in 3D bioprinting, G’
and G” are associated with elastic shape retention and viscous flow, respectively [205,206].
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Viscoelasticity can be highly dependent on the hydrogel type, concentration and
applied crosslinking and plays an important role in cell-hydrogel interactions, porosity and
degradation of 3D bioprinted structures. Moreover, it determines hydrogels’ structural
stability and integrity and affects cell proliferation and differentiation [207]. Importantly,
bio-inks with higher storage modulus exhibit more solid-like behavior, providing structural
stability, but may lead to clogging and breaks in filaments. On the contrary, hydrogel-based
bio-inks of higher loss moduli can be easier to work with but may lead to the formation of
less stable 3D structures [206].

Another viscoelastic parameter, known as damping factor (tan(δ) = G”/G’) or loss
tangent, provides valuable information concerning the relationship between viscous and
elastic deformational properties. It can also help to predict the structural integrity and
bioprinting uniformity during and after the bioprinting process. An ideal hydrogel-based
bio-ink could develop a proper balance between the structural integrity of the hydrogel
and bioprinting uniformity of the bio-ink when the damping factor ranges from 0.2 to 0.6.
However, when tan(δ) is lower than 0.2 or higher than 0.6, we see nozzle blockage and bad
shape retention, respectively [206,208].

3. Formulation and Use of Natural Hydrogel-Based Bio-Inks
3.1. Definition of Bio-Ink

Term bio-ink refers to cells or cell aggregates that are positioned in 3D or within
biomaterials [82]. In addition, in the bioprinting field, it is necessary to distinguish between
bio-inks (i.e., cell-laden) and biomaterial inks (i.e., cell-free). Thus, biomaterials constituting
bio-inks must act as cell carriers for the delivery of cells during formulation and bioprinting
processing, while biomaterial inks can be printed but can only be seeded with cells after
printing [209]. Hence, biomaterial inks do not qualify as bio-inks, as cells are usually
introduced within the bioprinted biomaterial scaffold in a separate process of seeding.
This however reduces the biological constraints impacting the ink properties and behavior
(Figure 6).
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bio-inks (upper image), cells are intrinsic components of the printing formulation (e.g., seeded onto
microcarriers, embedded in microgels, formulated in a physical hydrogel or formulated with hydrogel
precursors). In biomaterial inks (bottom image), cells are introduced within the 3D bioprinted
biomaterial scaffold, reducing the biological constraints on the inks (created in BioRender.com,
adapted from Groll et al., 2018 [82]).

Notably, some works have explored the use of biomaterial-free ‘inks’ composed of
only cell cultures in the fabrication of 3D structures [210]. This alternative approach
is in response to the risk of the included biomaterial leading to unfavorable effects on
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cell functions, such as cell anchorage, morphogenesis and, indeed, cell survival [211].
Such biomaterial-free inks exist mainly as 3D cultures of spheroids and organoids [212].
Spheroids are free-floating aggregates that are formed based on the presence of homotypic
cell–cell adhesion. Their 3D functionality is induced either via the superficial tension-
aided suspension of cultivated cells, cultivation of cells on non-adherent surfaces or cell
cultivation with nanoparticles such that the structure based on cell clusters is formulated
using magnetic fields [212,213]. A review of the literature also highlights several studies
relating to the employment of spheroids in the 3D fabrication of constructs [214,215].

In the study of Arai et al. [214], spheroids were employed in the fabrication of scaffold-
free cardiac tubular constructs. The spheroids were composed of cardiomyocytes ob-
tained from induced pluripotent stem cells (iPSCs), endothelial cells (ECs) and fibroblasts
(FBs). The tubular cardiac constructs were subsequently fabricated using a Bio-3D printer
equipped with a needle array. The study was able to show that the construct responded
to electrical stimuli as manifested by the variations in the beat rate. Further histological
analysis established the presence of cellular reorganization in the cardiac constructs, thus
highlighting the future functionality of utilizing scaffold-free Bio-3D printing techniques in
the fabrication of cardiac pumps. In another study, a 3D printed culture model of HepG2
liver spheroids was developed in mini-fabricated hydrogel constructs and subsequently
evaluated for drug-induced hepatotoxicity [216]. The study was able to show that 3D
HepG2 spheroids provided improved resistance to nefazodone-induced mitochondrial
permeability transition compared to 2D HepG2 cells. It was therefore demonstrated that
the HepG2 liver spheroid platform constituted a potential tool for the appraisal of drug-
induced hepatotoxicity.

Organoids are multicellular in vitro constructs that are more complex than spheroids
and are designed to mimic organs. These constructs are typically composed of stem cells
that are either pluripotent or are adult stem cells recovered from specific organs (i.e., liver,
stomach, etc.) [212,213]. These organoids exploit the self-organization ability of stem cells
to facilitate the creation of multi-cellular tissue proxies [217]. For instance, in the study
undertaken in [218], a 3D heart-like organoid struct was fabricated via the encapsulation
of free-suspended human pluripotent stem cells in Matrigel, after which biphasic WNT
pathway modulation with small molecules was employed to initiate cardiac differentiation.
The cell differentiation to produce cardiomyocytes enabled the development of a 3D heart-
like structure characterized by cell layer patterns and an endoderm structure. The 3D
heart-like organoid was shown to be able to replicate the heart tissue with respect to
its early heart development morphology, epicardial layer and endothelial cell network.
Crucially, since these constructs of organoids and spheroids do not require the introduction
of biomaterials, further discussions of these so-called “biomaterial-free inks” are outside the
scope of the present study, and they will not be discussed further, since biomaterial-based
bio-inks constitute the focus of the present study.

Most bioprinting studies use biomaterials that are hydrogel precursors for the for-
mulation of bio-inks as they might be crosslinked into hydrogels in the post-fabrication
gelation process. Examples include polyurethane synthetic-based hydrogels [17], gelatin
protein-based hydrogels [28] and alginate polysaccharide-based hydrogels [45,219]. In
addition to a recent intermediate approach in the bioprinting field, pre-crosslinking of
hydrogel precursors’ solution to a higher viscosity state is often applied. Later, after the
fabrication process, it is followed by a complete crosslinking to fully stabilize a printed
structure [16].

Hydrogel materials are the most commonly used for obtaining bio-inks; however,
in general, bio-inks are not narrowed down to molecular solutions of hydrogel precur-
sors [220]. Bio-inks can also contain microcarriers [221], nanoparticles serving as drug-
releasing platforms [222] or nanofibers improving rheological and mechanical characteris-
tics [48]. In addition, microgels that are loaded with cells [223] or microspheres [126] can
be used as bio-ink components, endowing it with additional functionalities.
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3.2. Hydrogels and Tissue Engineering

Tissue engineering techniques involve the cultivation of living cells on a 3D structure
and are characterized by three requirements: (1) the availability of a matrix suitable for
transplantation and maintenance of cells; (2) supporting the repair of cells that form a
functional matrix; (3) availability of active biological molecules, e.g., cytokines and growth
factors, facilitating the formation of new tissues.

The synthetic matrix is the structure on which the tissue architecture must organize.
The cells are either those of the host, which will proliferate on the synthetic matrix in vivo,
or the cells of the host cultivated in vitro on the matrix and then secondarily autografted to
the patient. Cells are responsible for regenerating new tissue by synthesizing new ECM.
The synthetic structure acts as a framework, providing mechanical stability and guidance
for 3D cell growth. The cell/hydrogel interaction is therefore a crucial factor for the success
of an application in tissue engineering.

Hydrogels are defined as hydrophilic and crosslinked polymers that can absorb and
swell in water and biofluids and transform into insoluble 3D networks. Hydrogels can
be obtained from a variety of water-soluble materials, including both synthetic and nat-
ural polymers, proteins and other molecules. Their structure is mainly determined by
a crosslinking process, during which an insoluble network in environmental biofluid is
formed. Furthermore, the network stays in balance in an aqueous environment due to the
balance between elastic forces of the crosslinked polymer and osmotic forces coming from
the liquid (Figure 7).
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The chemical structure composition and crosslinking density define the structure’s
swelling rate and permeability. Hydrogel crosslinking endows it with an elastic response
when subjected to stress. Furthermore, the structure’s elasticity and the presence of a high
amount of water enables resemblance to diverse biological tissues, which therefore can be
used for a wide range of biomedical applications [224].

The first hydrogel was synthesized to produce an ideal and biocompatible prod-
uct [225]. The obtained hydrogel was used for the engineering of a soft contact lens. Specifi-
cally, in order to obtain a hydrogel, the molecular chains of 2-hydroxyethyl methacrylate are
linked together by consecutive chemical bonds to form a uniform molecular microstructure
in compliance with the following four Wichterle design criteria: (i) to avoid solubilization
of hydrogel macromolecules in biofluids; (ii) to form a stable chemical and biochemical
structure; (iii) to achieve high permeability of nutrients and biological residues; and (iv) to
reconstitute physical features analogous to native biological tissues [226].

Based on the four Wichterle criteria [226], synthetic matrices must be compatible
with biological materials and must adjust their shapes and structures to the target tissue.
Hydrogels must also maintain close proximity to tissues with minimal adhesive effect.
Additionally, synthetic matrices must be able to envelop cells and promote cell proliferation
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without damaging them under the effect of osmotic pressure. Synthetic matrices must be
therefore highly porous to promote the diffusion of nutrients and metabolites among cells
and the surrounding environment [227].

In tissue engineering, some hydrogels can crosslink in situ, which makes it possible
to perform minimally invasive operations and avoid open surgery [21]. Hydrogels can be
also crosslinked under different conditions, provided that the embedded cells survive the
chemical or physical transition associated with the gelation [59].

A selection of characteristics, currently studied in the scientific literature, are discussed
in the following sections, with attention to crosslinkability, biocompatibility, cell viability,
swelling, diffusion, degradability, printability and mechanical strength.

3.2.1. Bio-Ink Crosslinking Ability

Crosslinkability refers to how easily a material can be crosslinked and constitutes a
fundamental factor in hydrogel formulation, shape and degradation. For successful biomed-
ical applications, the control of crosslinking is crucial. In tissue engineering, crosslinking
can be divided into chemical or physical types [228], which aids in enhancing the print-
ability of bio-inks. An example of chemical crosslinking is covalent crosslinking, which
can be initiated by radical polymerization, enzymatic catalysis, high energy irradiations
(gamma radiation) or condensation reactions [228]. When chemical crosslinking should be
achievable via radical polymerization, polymers generally require modification by adding
polymerizable units. For instance, acrylate has been added to functional groups of polyethy-
lene glycol to facilitate covalent associations in the polymer. Radical polymerization may
be initiated by light systems [229]. In such light systems, photo-polymerization is achieved
in the presence of a photo-initiator [228], with such light-curing considered ideal for clinical
implantation, since it strengthens the three-dimensional and temporal–spatial control of the
hydrogel. The inks can thus be injected, formed and solidified in situ [230]. This concept is
compliant with non-invasive surgical procedures and can be used in craniofacial surgery
with arthroscopic light-curing using a fiber optic light source [231].

Physical crosslinking, on the other hand, avoids the use of potentially harmful chemical
crosslinking agents and may be used in the creation of biomimetic hydrogels using bioactive
factors. The resulting hydrogels have been reported to exhibit unquestionable compatibility
with both cells and fragile molecules [228]. Moreover, the presence of hydrogen bonds,
hydrophobic interactions and Van der Waals forces facilitate physical crosslinking [232].

Physical crosslinking is also demonstrated in molecular self-assembly, which refers to
a molecular construction following a sequence of activities to form a stable and well-defined
network; the reverse crosslinking is prevented by physical interaction between polymer
chains [232]. In molecular self-assembly, gelation kinetics is affected by the length and num-
ber of coiled-coil strains. Electrostatic and hydrophobic interactions maintain self-assembly
properties and thermal stability. However, they may be tuned by manipulating the length
of amino acid sequences and coiled-coil domains [233]. In addition, hydrophobic inter-
actions can induce thermo-sensitive gelation due to temperature changes [228]. Another
type of physical crosslinking occurs through ionic interactions. In this case, the polymer
solution generally forms a hydrogel through the creation of ionic bonds in the presence
of divalent or polyvalent cations. The main feature of ionic-sensitive inks is their ability
to form reversible gels of great water-absorption capacity [234]. The ionic interactions are
weaker than covalent crosslinking, and the hydrogels formed undergo rapid solubilization
in physiological solutions [234].

3.2.2. Bio-Ink Biocompatibility

The biocompatibility is the ability of the biomaterial to perform a specific role with a
suitable host response [235]. For a more global assessment of the hydrogel-based bio-ink
biocompatibility, we must consider the polymer, additives, residues and/or manufacturing
contaminants and degradation products, as well as the interaction of all the components
and characteristics of the finished product.
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In addition, there is no absolute definition of biocompatibility, since the world of
biomaterials is constantly evolving. However, from a theoretical standpoint, the desired
host response is any positive interaction between the material implanted and the tissue
remaining in close contact with it. Biocompatibility is a bidirectional, dynamic process
involving the temporal reaction of host to material and material to host [236].

3.2.3. Bio-Ink Cell Viability and Proliferation

Hydrogels fulfil a number of key roles in in vitro tissue engineering and are used to
develop a controlled extracellular environment to study 3D cell/cell and cell/ECM types
of interactions. The design and synthesis of new tissues with specific properties demand
extensive knowledge of how cells interact with other cell types and how they may respond
to other bioactive agents and the microenvironment.

The presence of the bioactive factors (e.g., bone morphogenetic protein, growth and
differentiation factors, transforming growth factor, etc.) within an ink can enhance cell
viability and proliferation. It has been observed that after incorporation of bioactive factors
into bio-inks where cells are cultured, cell proliferation, production of extracellular matrix
and collagen were increased compared to hydrogels without bioactive factors [237,238].

Cells’ ability to proliferate in inks depends on the type of ink, its concentration and the
time after encapsulation. Another factor affecting cell viability is the bioprinting method,
as the mechanical disturbances caused by the bioprinting process are also reported to affect
cell viability [192].

In addition, the bioprinted dECM retains one of the greatest cell viability levels among
bio-inks; over 95% cell viability has been noted [83]. Cell aggregate-based bio-ink materials,
if small, can sustain high cell viability. However, cell viability rates in the core decrease
radically when the aggregate size increases [145].

3.2.4. Bio-Ink Printability

Printability of bio-ink is related to both the bio-ink formulation and its interaction
with the substrate during printing, which, if well adjusted, results in printing an accurate,
high-quality 3D pattern [9]. Printability is usually related to the surface tension of the
supporting structures and affects attachment proliferation and differentiation of cells. In 3D
scaffold fabrication, the matrix ink should maintain surface tension in the vertical direction
and also have a large contact angle. Furthermore, for an ink with a high hydrophilic
character, a substrate should exhibit a hydrophobic nature [239].

Bio-ink printability is measured based on its processability and the mechanical prop-
erties of the 3D construction after bioprinting [197]. An important aspect in evaluating
the printability is the rheological measurements. Generally, when a bio-ink exhibits pseu-
doplastic, shear-thinning behavior, it may be classified as a printable material. Moreover,
printability is affected by the crosslinking mechanism, the surface tension, thermal conduc-
tivity and other rheological properties such as viscosity and yield stress [206].

3.2.5. Hydrogel Water Content and Swelling Behavior

An important feature of hydrogels applicable for tissue engineering is their ability
to absorb body fluids. Moreover, they should be capable of permeating and transporting
nutrients and metabolic products. The swelling properties of the hydrogels are among
the most crucial parameters of tissue engineering that define the physical properties of
hydrogels. The swelling is inversely proportional to the crosslink density and depends
strongly on the chemical structure of the hydrogel [240].

In 1943, Flory and Rehner were the first to correlate crosslink density with polymer
swelling in an organic solvent to quantify rubber characteristics [241]. In this model,
swelling is considered to be a balance between the intrinsic elastic forces in the polymer
structure and the thermodynamic forces due to the interaction between the polymer and
the solvent. In 1977, the Flory–Rehner theory was modified by Peppas and Merrill who
proposed another model applicable to hydrogel synthesis from polymer solutions [242]. The
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variation of chemical potential in the system with water is mostly due to elastic forces [227].
Moreover, the chemical structure impacts the swelling, as favorable chemical groups are
present within the hydrogel. Generally, hydrogels with a majority of hydrophilic groups
swell faster than those with hydrophobic groups [227].

In terms of smart hydrogels whose volume changes depend on the surrounding
conditions, swelling can be affected by several parameters, like pH, temperature or the
crosslinking mechanism. A swelling equilibrium can be determined experimentally or
calculated theoretically. By accurately measuring equilibrium swelling, it is possible to
determine crosslink density, network mesh size and diffusion coefficients. Empirical
methods for measuring hydrogel swelling rate include gravimetric measurements after
immersion in liquid and measurement of dimensional changes. Swelling measurements
are the established standard, but in certain applications, as a sustained release of active
substances, dynamic measurements can be more suitable [243].

3.2.6. Hydrogel Diffusion and Solute Transportation

Controlled diffusion and solute transportation are among the key challenges in devel-
oping 3D scaffolds for tissue engineering. The ideal solution to facilitate tissue growth is
to place a scaffold in the structure and pump with a culture medium rich in nutrients to
deliver to the cells at the same time as removing waste products [244].

The rate of diffusion of the solute is an important parameter for determining the
kinetics of the release of active ingredients, the transport of nutrients and wastes in tissue
engineering. The diffusion of nutrients, gases, wastes or other solutes depends on a
multitude of factors, including the morphology of the macromolecular network, the water
content, the composition of the hydrogel type and its concentration, the degradation
kinetics and the rate of swelling. These fundamental factors can be combined to create
chemical effects or friction effects that slow the diffusion of the solute. A chemical effect
describes the force of attraction between the solute and the hydrogel matrix, while the
physical size of exclusion represents the primary frictional effect on diffusion through a
hydrogel [245].

3.2.7. Hydrogel Degradability

The degradability of hydrogels is related to hydrogel type, concentration, employed
crosslinking processes, temperature, physiological conditions (in vitro and/or in vivo)
and the presence of additional constituents. Undoubtedly, the degradation rate of the
3D cell-laden hydrogels should be matched to the desired biomedical application [239].
This remains a major challenge, as it is difficult to match the appropriate functional and
mechanical properties of a hydrogel to a specific tissue characteristic. Moreover, cellular
components should be able to replace the hydrogel, within the time of the degradation
process, with newly formed ECM constituents, therefore facilitating tissue remodeling.
Thus, the degradability of the hydrogel should be carefully tuned after taking into account
the characteristics of the target tissue [239].

3.2.8. Hydrogel Mechanical Properties

The mechanical properties that characterize hydrogels are crucial, since hydrogel-
based scaffolds are expected to provide a stable condition for cell attachment, proliferation
and differentiation and thus promote ECM production [246]. Of these mechanical proper-
ties, the most important are strain, shear stress and elastic modulus. It is well known that
dynamic interactions between cells and hydrogels can significantly influence cell adhesion
to the hydrogel matrix [247]. Under the influence of stress, the swollen hydrogel should
show elastic behavior [227]. The mechanical properties of a hydrogel-based scaffold are
defined by scaffold geometry, ink inherent properties and type of bulk polymer. These
properties may also change with hydrogel concentration.

For example, polymer chains exhibiting higher crystallinity typically demonstrate
higher tensile strength. However, if the processing method reduces the crystallinity of the
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polymer, the strength of the hydrogel is not free of its impact, and hence the lifespan of the
hydrogel is also compromised.

3.3. Natural Hydrogel-Based Bio-Inks
3.3.1. Protein-Based Bio-Inks
Collagen

Collagen is hailed as one of the most often-used biopolymers in biomedical research
and cell cultures. It is undeniably the most essential component of most types of tissues’
ECM. Collagen is a cationic flexible polymer and is considered as the main structural
protein in vertebrates, which primarily contain hydrophobic peptide motifs. The isolation
and purification of collagen is well established, particularly for collagen type I [248,249].

Collagen allows the formation of robust and biodegradable 3D hydrogels as a result of
its triple-helix structure and low antigenicity, excellent biocompatibility, low immunoreac-
tions, clear association with other biological species and polyelectrolyte behavior [250–252].
Collagen-based hydrogel scaffolds have been proven useful in many biomedical applica-
tions, e.g., corneal substitutes [251,252], wound healing [249], bone tissue engineering [248]
and the 3D bioprinting of cellularized structures [19–22].

According to Osidak et al., due to the biocompatibility of collagen, it is believed to be a
promising material for 3D bioprinting [20]. The printability of collagen-based bio-inks has
also been shown to be, irrespective of the cell density, absent of side effects in terms of the
functionality or viability of printed cells [19]. A further review of the literature shows that
type I collagen, which is the fibril-forming subfamily of collagens, characterized by three
alpha-helices, is widely employed in 3D bioprinting [253,254]. In spite of the favorable
biocompatibility of collagen, its employment in direct 3D bioprinting is limited by poor
mechanical stability, especially when combined with cells or tissue spheroids, and slow
gelation rate at physiological temperatures [20]. These limitations hinder its capability to
maintain structural integrity once extruded. To resolve these issues, two major strategies
have been employed in the literature, namely the use of sacrificial supports, which are
removed after printing, and the modification of bio-ink characteristics using concentration
or crosslinking strategies [253]. The use of such sacrificial supports was highlighted in
the research undertaken by Moncal et al. They proposed a bio-ink composed of type I
collagen and Pluronic® F-127, with Pluronic serving as a sacrificial material in bioprinting
operation due to its thermoreversibility and extrudability [255]. The study highlighted the
viability of utilizing Pluronic as the sacrificial support, since it could readily diffuse out of
the constructs without disrupting collagen fibers [255]. Another study by Stratesteffen et al.
showed that blending methacrylated gelatin with collagen facilitated the creation of bio-inks
that were equipped with drop-on-demand 3D printability for constructs characterized with
favorable biological and rheological properties, while also promoting angiogenesis [256].
The improvement in the properties of collagen via crosslinking was demonstrated in another
study [22]. Kim et al. investigated the use of genipin as a crosslinking agent with collagen-
bio-ink at the optimal processing condition of ∼1 mM and 1 h of incubation in genipin
solution [22]. The group was able to show that the modified collagen bio-inks could be
employed in fabricating three-dimensional, pore-linked, cell-laden constructs comprising
osteoblastic cells and human adipose tissue stem cells. In another study, riboflavin-induced
photo-crosslinking of collagen was demonstrated [257]. The study was able to show that the
riboflavin-induced photo-crosslinked collagen was characterized by improved mechanical
properties and displayed a favorable delay in the enzyme-triggered collagen scaffold
degradation. Apart from the introduction of crosslinking agents, collagen properties for
bio-ink application can also be improved via the imposition of temperature changes [178].
The approach of utilizing temperature changes for the improvement of the properties
of collagen-based bio-ink was demonstrated by Ahn et al. [258]. In the study, printing
using collagen-based hydrogel was achieved with a direct cryogenic plotting method, for
the deposition of low-viscosity hydrogel. The hydrogel was used in the fabrication of a
hierarchical 3D scaffold with a controllable size of pores. According to the study results,
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the obtained scaffold showed elevated initial cell attachment and compactness between
scaffold pores. In spite of the strides in research into collagen-based bio-inks, Marques et al.,
among many others, have stated that more investigation is required to further improve the
applicability of collagen-based bio-inks [259].

Gelatin

A water-soluble protein, gelatin, is produced by partial hydrolysis of collagen, extracted
from the boiled bones, skin and connective tissues of animals such as domesticated cattle and
pigs, and therefore may differ in terms of the molecular weight (20 kDa < Mw < 250 kDa).
Gelatins may be type A or type B, depending on whether it is produced via acidic or basic
hydrolysis, respectively. These treatments cause de-amidation of asparagine and glutamine
residues, increasing the number of aspartic and glutamic acids, respectively [260].

Gelatin is a peptide sequence mixture, soluble in warm aqueous solutions while
preserving the ability to form simple gels via hydrophobic crosslinking at low temperatures.
Unfortunately, the melting point of gelatin gels is in the range of 30–35 ◦C, thus limiting
its use in applications undertaken at physiological temperatures or higher. Because of
this limitation, gelatin frequently requires secondary chemical modification, alternative
crosslinking processes or integration with different polymers or proteins prior to the
implementation in 3D cultures [23,24,34,96,124]. Gelatin may be loaded with biomolecules,
since its intrinsic features enable the control of drug loading and release kinetics via the
modification of the crosslinking and the gelatin molecular weight [261]. Moreover, a variety
of biomedical applications such as cell encapsulation mention the use of gelatin-based
hydrogels for cell encapsulation [262]. Gelatin for wound healing approaches may be
loaded with biomolecules due to its intrinsic features, and it can offer the possibility of
controlling both drug loading and release kinetics with control of the crosslinking and
the gelatin molecular weight [261]. Gelatin-based hydrogels may be employed for nerve
regeneration [263], soft tissue reconstruction [264], bone repair [265] and 3D bioprinting of
cellularized structures.

Although gelatin is recognized as a good candidate for bio-inks due to its biocom-
patibility and biodegradability, its use is limited by low-printability concerns. Several
studies have therefore employed gelatin only after the incorporation of different crosslink-
ing agents [25]. The improvement of gelatin’s rheological properties may also be achieved
via blending with other components, as demonstrated in a previous study by Shin and
Kang [266]. They prepared mixtures of gelatin containing hyaluronan and glycerol as
additives, which were evaluated for their printability. The study was able to show that the
mixture containing 10 mg and 20 mL of 300/90–100 bloom gelatins, 3 mg/mL of hyaluronic
acid and 10% v/v glycerol leads to a uniform bio-ink with excellent printing resolution.
The gelatin-based bio-ink was shown to be capable of fabricating a line of approximately
200 µm in width, which retained cells while accurately localizing in the 3D structure.
Gelatin rheological properties may also be improved using crosslinking agents such as
tyrosinase and genipin, which facilitate enzymatic and chemical crosslinking approaches,
respectively [267–269]. The enzymatic crosslinking using tyrosinase was observed to lead
to significant increments in the molecular weights, enhanced in the presence of phenolic
molecules, and facilitated enhanced stability of a crosslinked network of gelatin [270–272].
Gelatin modification by metacrylation has also been extensively employed in the fabri-
cation of extracellular matrix-derived biopolymers, able to be chemically crosslinked via
radical-induced reactions [273,274]. Crucially, while the enzymatic (i.e., tyrosinase) and
the chemical gelation mechanisms have been shown to increase the stability of gelatin,
high cost and cytotoxicity concerns have so far limited the acceptability of enzymatic
crosslinking and chemical crosslinking to enhance gelatin properties. Photo-crosslinking
was therefore suggested as more appropriate when gelatin is to be employed as bio-ink
in cell printing [130]. In line with this suggestion Duchi et al. investigated the photo-
crosslinking of Gelatin-methacryloyl/hyaluronic acid methacryloyl (GelMa/HAMa) and
discovered that bio-ink facilitated the generation of core-shell structures of GelMa/HAMa
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scaffolds [275]. These gelatin-based bio-scaffolds were shown to present stiffness of nearly
200 kPa after 10 s of exposure to a UV-A source (to 365 nm, 700 mW/cm2). Interestingly
the bio-scaffolds were also able to retain high cell proliferative capacity, with over 90% of
viable stem cells maintained. Similarly, in another study, a novel hybrid system was devel-
oped and consisted of gelatin macromers synthetically modified with methacrylate [276].
The novel hybrid system facilitated the photo-encapsulation of cells while maintaining
mechanical integrity.

Fibrin

Fibrin, as the name indicates, is a fibrous protein participating in the clotting of
blood. It is comprised of fibrinogen monomers that are polymerized spontaneously in the
presence of thrombin and further crosslinked by the transglutaminase activity of the blood
coagulation factor XIII-A [277].

In the human body, fibrin biopolymer plays a pivotal role in wound healing cascade
and also tumor growth. Due to its fast crosslinking rates, fibrin gels in glue-like form have
been extensively used in the clinic as a hemostatic agent, sealant and surgical glue [278].

The hydrogels based on fibrin, which is formed by the polymerization of fibrinogen,
were employed in tissue culture for various cell and tissues types. Later, they were used
in the tissue engineering of scaffolds for regenerative medicine applications [279]. Addi-
tionally, these fibrin-based hydrogel structures have also been applied to promote bone
growth and healing [280] and neuritis extension [281]. The literature highlights that fibrin
(fibrinogen) is a biomaterial that is characterized by good biocompatibility, biodegradability,
and tunable mechanical and nanofibrous structural properties [253]. In addition to these
favorable characteristics of fibrin, it is also regarded as a preferred choice for bio-inks, be-
cause its non-linear elasticity facilitates communication between cells [253]. In this regard,
a bio-ink based on fibrin was employed in the fabrication of complex and functional cardiac
tissue constructs, which were able to contract synchronously and respond to adrenaline
and carbachol stimulation [282]. The use of fibrin also provided guidance to Schwann
cells’, facilitating cell alignment, growth and neural tissue formation [282]. Cubo et al.
also employed plasma-derived fibrin, and together with fibroblasts and keratinocytes,
used it for the bioprinting of skin substitute, which was determined to recapitulate native
skin when tested in vivo [283]. The use of fibrin for 3D biofabrication and bioprinting
may, however, be limited by its poor mechanical properties [284]. For instance, enzymatic
treatment of fibrinogen, using thrombin, to produce fibrin hydrogel was characterized
by high biocompatibility and degradation ability, but presented poor mechanical proper-
ties [285]. Additionally, the high viscosity of fibrin in pre-polymer form may hinder proper
ink extrusion and the ability to maintain shape fidelity [284]. To facilitate the efficient use of
fibrin-based bio-inks, several approaches have been explored in the literature. For instance,
gelatin may be combined with fibrin to enhance rheological properties when used in the
fabrication of 3D structures [286]. Xu et al. demonstrated that a gelatin/fibrin mixture in
the mass ratio of 1:1 presented excellent elasticity modulus and compressive strength and
could be used in the fabrication of complex cell/matrix constructs using automated rapid
prototyping techniques. The gelatin served to improve the rheological properties of the
fibrin-based material due to its gelation capability at room temperature and its capacity
to behave as a fluid at high shear and as a gel at low shear [284]. Additional biomaterials
may also be introduced to further enhance mechanical stability. For instance, another study
by Xu et al. employed the biomaterial mixture of gelatin/alginate/fibrinogen to assem-
ble adipose-derived stromal (ADS) cells and complex in vitro 3D models, fabricated with
gelatin/alginate/fibrin hydrogel [287]. Additionally, the research of Rutz et al. covered
the development of multimaterial bio-ink from polyethylene glycol and fibrin [16]. The
study was able to show that the resulting hydrogels could be employed in customizable
tissue and organ 3D constructs. Human umbilical vein endothelial cells (HUVECs) were
also co-cultured with fibrinogen as a supporting structure for attachment and elongation
in a study by Sriphutkiat et al. [288]. They combined GelMA with fibrinogen to enhance
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bio-ink printability, since the dual crosslinking capacity of GelMA-fibrin was shown to
provide a more robust and stable cell-laden construct. Enhanced stability may be due to
the formation of an interpenetrating polymer network [288].

Silk

Silk, a fibrous insoluble protein, is produced by arachnids and myriapods, such as
spiders and silkworms [289]. Silk chains are comprised of block polymer-like alternat-
ing hydrophilic and hydrophobic regions, giving the material amphiphilic characteristics
and the capability to form semi-crystalline structures through hydrophobic interactions
and crosslinking. Due to the hierarchical self-organization of silk, a variety of processing
techniques have generated different forms of silk (e.g., fibers, solids, hydrogels, threads
and sutures, etc.), which combine favorable strength, elasticity and hypoallergenic proper-
ties [289].

Among the available natural hydrogels, silk-based hydrogels are proposed as a promis-
ing biomaterial for developing tissue grafts that can be used in tissue engineering and
regenerative medicine [290]. These silk scaffolds have been successfully used in the bio-
engineering of tissues [291], wound healing [292], bone regeneration [293], cartilage repair
and regeneration [294], controlled drug release [295] and the 3D bioprinting of cellularized
structures [38–40,296–298].

In the study by Bandyopadhyay and Mandal, a novel silk-based bio-ink was em-
ployed [38]. This bio-ink was composed of silk, fibroin and gelatin and was characterized
by high print fidelity and shear-thinning properties. The silk-based bio-ink could facilitate
the fabrication of a 3D bioprinted meniscus scaffold (laden with meniscus fibrochondro-
cytes) that could biomimic the internal and bulk architecture of the menisci. According to
the study, the use of this novel silk-based bio-ink did not negatively affect the phenotype
or the proliferation of the fibrochondrocyte cells seeded on the scaffolds, with observed
improvements in glycosaminoglycan and collagen synthesis. A similar observation was
also reported in the study by Rodriguez et al. [39], who showed that silk-based bio-inks
could be used in complex soft tissue reconstruction and retained their structural integrity
under physiological conditions, for the promotion of cellular infiltration and tissue inte-
gration. In the study, silk-based bio-inks were developed using gelatin as a bulk material
and performing physical crosslinking with glycerol. It was also demonstrated that the silk-
based bio-ink was biocompatible and promoted cellular infiltration and tissue integration.
In a recent paper by Zheng et al., a silk-based hydrogel system in which silk gelation via
β-sheet structure formation was controlled, using low molecular weight (LMW) polyethy-
lene glycol (PEG), for enhanced hydrogel lubricity, was developed [41]. This silk-based
hydrogel system contained PEG, and both the gelation time and mechanical properties
were determined by variations in the PEG and silk concentrations. The study was able
to show that human bone marrow mesenchymal stem cells in the silk-based hydrogel
system maintained their viability and the cell-loaded constructs for (at least) 12 weeks. The
study also showed that a positive correlation existed between increasing silk concentrations
and cell growth. Further investigations showed that subcutaneous implantation of the
silk-based bio-ink of 7.5% w/v in mice did not negatively affect cell viability, with the
cells shown to survive and proliferate in the silk-based bio-ink for a minimum of 6 weeks
after implantation. Similarly, silk–collagen composite hydrogels have been investigated
for suitability for mesenchymal stem cell preconditioning and myocardial regeneration via
cardiac patch development [296]. The study reinforced the significance of silk in hydrogels,
given that silk–collagen composites presented improved cell survival within the fabricated
scaffolds. Improvements in fine-tuning of silk-based bio-inks with respect to cell-material
interactions were demonstrated by Schacht et al. [299]. In this study, recombinant spider
silk protein was evaluated to assess its potential as a bio-ink. The study was able to show
that when used as a bio-ink together with a cell attachment motif for scaffold fabrication,
the silk protein supported the adhesion and proliferation of cells over a period of one week
in spider silk scaffolds (Figure 8).



Gels 2022, 8, 179 24 of 55

Figure 8. Assessment of the potential of recombinant spider silk protein as a bio-ink for 3D bioprinting
by robotic dispensing: (A) 3D printing schematic. Cells are either seeded on the scaffold (1) or
encapsulated during the printing process (2). (B) Stereo-microscopy and digital images of two-layer
scaffold(C16) and (C,D) eight-layer silk protein bioprinted scaffolds (reprinted from Schacht et al.,
2015 [299], with the permission of John Wiley & Sons Inc., published under license. Copyright © 2022
WILEY-VCH Verlag GmbH & Co. KGaA).

Table 4 provides some examples of protein-based bio-inks hydrogels used for 3D
biofabrication of cellularized structures.

Table 4. Application of natural hydrogel-based bio-inks in the regeneration of several types of
damaged tissues.

Tissues or Organs Bio-Inks References

Cartilage tissue

Cartilage-derived dECM, mixed with chondrocytes and converted into a
photo-crosslinkable hydrogel using methacrylation. [78]

Agarose hydrogel was seeded with mesenchymal stem cells. [67]

Human nasal chondrocytes with agarose hydrogel. [69]

Chondrocytes seeded in nanocellulose–alginate hydrogel. [63]

Alginate-based hydrogel embedded with human mesenchymal stem cells. [142]

Hyaluronic acid and alginate hydrogel with human articular chondrocytes. [50]

Cartilage-resident gelatin methacryloyl hydrogel was laden with
chondroprogenitor cells. [136]

Nanocellulose hydrogel laden with human chondrocytes. [66]

Fibroblasts with nanocellulose-alginate hydrogel [49]

Chondrocytes with gelatin-hyaluronic acid hydrogel, bioprinted and
crosslinked during the deposition process to obtained sculpted 3D structures. [275]

Carrageenan hydrogel laden with chondrogenic cells. [72]

Silk-based hydrogel loaded with platelet-rich plasma (PRP). [300]

Gelatin methacryloyl-based hydrogels with chondroprogenitor cells,
mesenchymal stromal cells and chondrocytes. [209]
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Table 4. Cont.

Tissues or Organs Bio-Inks References

Skin tissue

Fibroblasts with nanocellulose-alginate based hydrogel. [49]
dECM-based hydrogel with multiple cell types. [30]

Hydrogel based on dECM laden with endothelial progenitor cells and
adipose-derived stem cells. [90]

Collagen hydrogel with enveloped keratinocytes and fibroblasts. [91]

Gelatin-methacryloyl hydrogel laden with human fibroblasts. [92]

Neural tissue

Human-induced pluripotent stem cells encapsulated within the fibrin-based
hydrogel. [129]

Schwann cells embedded in methacrylated hyaluronic acid and collagen
hydrogel. [57]

Fibrin-based hydrogel incorporated with neural progenitor cells. [126]

Neural cells embedded within a fibrin-based hydrogel aimed at the modeling
of brain tissue. [127]

Chondral tissue

Human mesenchymal stromal cells incorporated into collagen and
supramolecular hyaluronic acid hydrogel matrix. [54]

Stem cells embedded within silk-based hydrogel. [133]

Surgical printing at a chondral wound site of human adipose stem cells seeded
in gelatin–methacrylamide hydrogel combined with methacrylated hyaluronic
acid hydrogel.

[301]

Alginate hydrogel with incorporated human chondrocytes and osteogenic
progenitors. [302]

Blood vessels

Encapsulation of fibroblasts in sausage-like crosslinked hydrogel comprising
polyethylene glycol, hyaluronic acid and gelatin. [53]

Vascular smooth muscle cell–laden hydrogel comprising gelatin methacryloyl,
polyethylene(glycol) diacrylate and alginate. [93]

Multiple cell types embedded in gelatin methacryloyl hydrogel. [94]

Muscle tissue

Human skeletal muscle cells seeded in dECM-based hydrogel. [81]

Progenitor cells seeded in dECM-based hydrogel. [121]

Primary human airway and intestinal smooth muscle cells seeded in
alginate-based matrix with either collagen or intestinal dECM. [125]

Bone tissue

Alginate-gelatin-agarose hydrogel laden with SaOS-2 cells. [32]

Human osteosarcoma cells seeded in bone-like hybrid hydrogel comprising
chitosan and hydroxyapatite nanocrystals. [85]

Osteoblast cells incorporated in chitosan hydrogel. [86]

Silk-gelatin hydrogel embedded with mesenchymal stem cells. [297]

Biological engineered tissues

Induced pluripotent stem cells contained in crosslinked hydrogel comprising
alginate, chitosan and agarose. [46]

Platelet-rich plasma encapsulated in alginate-gelatin hydrogel. [101]

Agarose hydrogel mixed with human mesenchymal stem cells. [70]

Hyaluronic acid a collagen derivative hydrogel containing human bone
marrow–derived mesenchymal stromal cells. [102]

Cardiac tissue
Human-induced pluripotent and mesenchymal stem cells loaded with dECM. [84]

Alginate hydrogel containing human cardiac-derived cardiomyocyte
progenitor cells. [131]
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Table 4. Cont.

Tissues or Organs Bio-Inks References

Periodontal tissue
Gelatin-alginate hydrogel with human dental pulp stem cells. [122]

Human primary periodontal ligaments cells with gelatin-methacryloyl
hydrogel. [130]

Renal tissue
Human kidney cells with photo-crosslinkable dECM, chemically modified by
methacrylation. [29]

Alginate, gelatin and pectin hydrogel loaded with epithelial endothelial cells. [128]

Adipose tissue
Human adipose-derived mesenchymal incorporated into a gelatin-alginate
hydrogel. [96]

Human adipose-derived stem cell–laden dECM hydrogel. [83]

Tracheal graft Mesenchymal stem cells seeded in fibrin hydrogel, with coated 3D bioprinting
polycaprolactone scaffold. [37]

Vaginal wall Endometrial mesenchymal stem cells embedded in the matrix, alginate-based
hydrogel. [132]

Breast tissue Human adipose-derived stem cells with dECM hydrogel. [99]

Vascular constructs Fibrinogen-gelatin hydrogel with primary neonatal human dermal fibroblasts. [303]

Menisci Silk–gelatin hydrogel seeded with fibrochondrocytes. [38]

Spinal cord Collagen-silk hydrogel with incorporated neural stem cells. [298]

3.3.2. Polysaccharide-Based Bio-Inks
Alginate

Alginate is a water-soluble polysaccharide of natural origin, derived from alginic acid,
obtained from the cell walls of different species of brown seaweed (algae class Phaeophyceae).
It is an anionic copolymer composed of β-D-mannuronic acid (M) and α-L-guluronic acid
(G) residues, linked together with α-(1→4) glycosidic linkages. The proportion and distri-
bution of these two monomers are decisive for a wide expansion of the physicochemical
properties of alginate. Ordinarily, the blocks consist of three different forms of polymer
blocks: consecutive G-residues, M-residues and alternating MG-residues [304]. Its chemical
composition varies between different species and different parts of the algae [305].

The addition of a divalent cation causes the formation of an insoluble hydrogel. The
reagent generally used for crosslinking is calcium dichloride (CaCl2), as well as other
chelators (e.g., sodium citrate, ethylenediaminetetraacetic acid). Alginate crosslinking is
mediated by ionic forces and is entirely reversible by chelation of the previously applied
divalent cations [305]. Alginate is employed frequently in regenerative medicine and
tissue engineering applications due to its ease of forming a hydrogel [304,306]. Due to this
ease, alginate-based hydrogels are popular materials for creating microencapsulation of
cells [307], wound healing [308], drug and cell delivery [309], regeneration of the nucleus
pulposus [310] and bioprinting of various structures [47,153,188,207].

According to Axpe and Oyen, alginate is easy to print, handle and extrude while
protecting the encapsulated cells; however, mechanical and rheological issues may limit
its direct use in 3D bioprinting, with hybrid hydrogels proposed as a strategy to offset
existing limitations [311]. For instance, the use of the hybrid hydrogel of sodium alginate
with carboxymethyl cellulose (CMC) has been reported to present enhanced potential for
application in 3D bioprinting processes, as performed tests showed favorable shape fidelity.
Furthermore, employing composites in the fabrication of 3D scaffolds containing pancreatic
cancer cells produced capability of retaining nearly 90% cell viability after 23 days [43].
In another study, hydrogel nanocomposite inks were investigated in terms of printing a
3D scaffold for enhanced biocompatibility and processability [45]. In the study by Olate-
Moya et al., photo-crosslinkable, modified alginate was bioconjugated with chondroitin
sulfate and gelatin. Graphene oxide nanofiller was used to enhance cell proliferation,
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printability and the fabrication of a suitable cartilage extracellular matrix [45]. Further
enhancements of the cell proliferation capability of alginate-based bio-inks have also been
investigated in the literature [23]. In the study by Jiang et al., a composite alginate-based
hydrogel (alginate-gelatin) was investigated as a cell-laden bio-ink to 3D-bioprint in vitro
breast tumor models [23]. The study was able to show that 3D bioprinted constructs
were mechanically stiffer as the concentration of alginate increased and gelatin decreased.
Moreover, this led to fewer cell-adhesion moieties and less viable multicellular tumor
spheroids. Further increments in cell proliferation may be achieved via the introduction of
a so-called overlay [32]. A study by Neufurth et al. showed the overlay of agarose and the
calcium salt of polyphosphate. The resulting [polyP·Ca2+-complex] was incorporated into
the alginate/gelatin/SaOS-2 cell scaffold, and its effect on cell proliferation was assessed.
The study was able to show that the introduction of this overlay led to an increase in cell
proliferation. Additionally, the mechanical properties of the cell-containing scaffold were
observed to be enhanced with the introduction of 100 µm of polyP·Ca2+-complex, leading
to an increase in Young’s modulus from 13–14 to ~22 kPa [32].

Hyaluronic Acid

Hyaluronic acid (HyalA), a polysaccharide of linear, unbranched structure, can be
found naturally in the ECM of cartilage and synovial fluid. It is a major constituent of
glycosaminoglycans and cartilage. Naturally, HyalA provides joint protection by boosting
the viscosity of the synovial fluid and making joint cartilage more flexible. HyalA is an
anionic copolymer characterized by molecular weights ranging from 103 kDa to 104 kDa and
a chemical structure that consists of β-D-glucuronic acid and N-acetyl-β-D-glucosamine,
linked by alternate glycosidic bonds (1→4) and (1→3) [312].

Regarding its mechanical properties, a single HyalA molecule shows viscoelasticity
dependent on the pH and ionic strength present within its environment [313]. To improve
its mechanical properties and form a robust biomaterial, HyalA can be chemically modified
with a myriad of functional groups. The modified HyalA can be crosslinked to produce
hydrogel that can be loaded with cells or other biomolecules. Different HyalA hydrogels
were formed by photo-crosslinking of methacrylate groups incorporated into the HyalA
chains. These groups, when subjected to ultraviolet irradiation, can undergo free radical
polymerization, forming soft hydrogels [314]. The modified HyalA hydrogels have shown
great potential in both tissue engineering and regenerative medicine applications, such as
cutaneous and corneal wound healing [315,316], bone and cartilage repair [317,318], spinal
cord injury repair [319] and generation of tumor models [314], as well as the 3D bioprinting
of cellularized structures [53,211]. The properties of HyalA may also be fine-tuned via
chemical modification [52]. The use of HyalA in 3D bioprinting is, however, limited by
inherent difficulties associated with the fabrication of a controllable structure with desired
shape and porosity. Several strategies have therefore been explored in order to utilize
HyalA as a bio-ink for biofabrication. The study by Noh et al. [33] mentions a HyalA-based
hydrogel composed of HyalA, hydroxyethyl acrylate and gelatin-methacryloyl, prepared
with an intention to be used as a bio-ink. The resulting HyalA-based hydrogel could be
effectively employed as a bio-ink, since when employed to fabricate lattice construct forms,
no negative effects on embedded bone cell viability were observed. Another HyalA-based
hydrogel that incorporated the thiol-modified HyalA and polyethylene glycol diacrylate
was also prepared and investigated [320]. This new HyalA-based hydrogel was character-
ized by favorable gelation speed (within 1 day), with the resulting hydrogel characterized
by a shear modulus that increased proportionally to the increase in the concentration
of polyethylene glycol diacrylate. Stiffness of the resulting hydrogel depended on the
availability of HyalA-thiols, while the addition of polyethylene glycol diacrylate facilitated
a decrease in the steady-state stiffness post-gelation, in a dose-dependent manner. The
study was able to show that the HyalA-based bio-ink composed of thiol-modified HyalA
and polyethylene glycol diacrylate had cell-adhesive properties and could be tuned for
enhanced cell adhesion and morphology. The possibility of utilizing a HyalA-based bio-ink
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in the fabrication of a tubular construct was demonstrated in the work by Skardal et al. [34].
Skardal et al. were able to show the development of a HyalA-based hydrogel containing
methacrylated ethanolamide (GE-MA), which is a derivative of gelatin. The hydrogel was
developed by utilizing a photo-crosslinking strategy, leading to a hydrogel with extrudable
gel-like properties. The study demonstrated that the HyalA-based hydrogel was biocompat-
ible and could support HepG2 C3A, Int-407 and NIH 3T3 cell attachment and proliferation
in vitro. Furthermore, when the hydrogel was employed as a bio-ink in the fabrication of a
tubular construct, the cells encapsulated in the construct retained their viability in cultures.
Crucially, the construct was able to accurately mimic a naturally secreted extracellular
matrix. The capacity of utilizing HyalA-based bio-ink in the fabrication of complex and
important constructs such as the human leaflet trileaflet heart valve was also demonstrated
in the study by Duan et al. [321] (Figure 9). In the study, a HyalA-based bio-ink containing
HyalA and gelatin gels was prepared, and then human aortic valve interstitial cells were
seeded on the scaffold. The HyalA-based bio-ink was able to show high cellular survival;
moreover, remodeling activity was also observed after 7 days of culturing, thus further
highlighting the utility of the HyalA-based bio-ink in promoting cell differentiation and
mimicking naturally extracellular matrixes [322]. In a study by Lee et al., the HyalA-based
bio-ink composed of HyalA and sodium alginate showed improved cell proliferation rate
(~70% higher than for sodium alginate lone). Furthermore, the CaCl2 crosslinking did
not lead to any significant shrinkage of the constructs, with integrity also maintained in
culture [322].
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Figure 9. Bioprinting of aortic valve conduit: (A) aortic valve model based on micro-CT images. The
root (green) and leaflet (red) regions were identified and rendered separately as 3D geometries, saved
in STL format; (B,C) schematic illustrations of the bioprinting process with two different cell types
and syringes; (B) root region of first layer of hydrogel embedded with SMC; (C) leaflet region of first
layer obtained from VIC hydrogel; (D) fluorescent image of first two layers of aortic valve conduit;
SMC for valve root shown in green and VIC for valve in red; (E) 3D bioprinted aortic valve conduit
(Reprinted from Duan et al., 2013 [321], with the permission of John Wiley & Sons Inc., published
under license. Copyright © 2022 Wiley Periodicals Inc.).

Chitosan

Chitosan is a chitin-derived biopolymer, which can be found in crustacean and inver-
tebrate exoskeletons or fungi. Chitosan in a partially or fully deacetylated chitin, included
in the amino-polysaccharide group with molecular weights between 50 kDa and 2000 kDa.
Chitosans’ degree of deacetylation can range from 40% to 98%. It is a cationic heteropolymer
composed of linear β-D-glucosamine (GlcN) chains and units of N-acetyl-β-D-glucosamine
(GlcNAc) together by β-(1→4) glycosidic linkages [323]. Chitosan is insoluble in neu-
tral and basic conditions, but solutions of chitosan can be obtained in an aqueous acidic
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medium that charges amino groups positively, thereby overcoming associative forces be-
tween chains. An aqueous solution of chitosan subjected to alkalization to a pH above
6.2 causes precipitation of hydrogel due to the presence of ionic forces. A mixture of
chitosan and glycerol-phosphate was already studied to synthesize a hydrogel behaving
like a liquid at physiological pH and room temperature and was able to form a gel at a
physiological temperature [324,325].

Chitosan-based hydrogels have already been studied in many biomedical applications,
mainly as wound dressings and transdermal patches [326], drug delivery systems [327],
skin and bone regeneration [328–330], cartilage tissue engineering [331] and blood vessel
embolization [332,333], as well as for cell encapsulation or the 3D bioprinting of cellularized
structures [24,46,58–62,334].

Having established that chitosan constitutes a promising biomaterial candidate for
biological applications, its weak mechanical performance has so far inhibited its application
in hard tissue engineering [335]. To resolve this challenge, researchers have investigated
several chitosan modification techniques, to enhance the properties of chitosan-based bio-
inks [24]. He et al. achieved chitosan modification using ethylenediaminetetraacetic acid
(EDTA) for the provision of carboxyl groups prior to physical crosslinking using calcium
for enhanced strength of the resulting construct. The study was able to demonstrate that
improved chitosan-based bio-ink promoted cell attachment and chondrogenic gene ex-
pression in chondrocytes. Notably, Roehm et al. also stated that chitosan-based bio-inks
had the potential to resolve issues associated with the bioprinting of cell-laden structures
characterized by controlled spatial relations [24]. This assertion was shown by Roehm
et al. via a demonstration of the functionality of utilizing a chitosan-based bio-ink com-
posed of chitosan–gelatin to fabricate constructs while maintaining cell viability. Another
study investigated a chitosan-based bio-ink prepared from chitosan, glycerophosphate and
hydroxyethyl cellulose and embedded with cellulose nanocrystals (CNCs), to produce a
nanocellulose/chitosan-based bio-ink [336]. The study demonstrated that the addition of
CNCs to the bio-ink improved the viscosity of bio-inks containing cells (5 million cells/mL)
and enhanced scaffolds’ mechanical properties. The CNCs were also shown to increase
the osteogenesis of MC3T3-E1 cells enveloped in chitosan scaffolds. Moreover, extracel-
lular matrix formation was observed when bio-ink contained chitosan. Another study by
Ramesh et al. focused on the preparation of scaffolds using a thermo- and pH-responsive
chitosan-based bio-ink composed of chitosan and glycerol phosphate [86]. This thermo-
and pH-responsive chitosan-based bio-ink was shown to present antibacterial activity
when formulated with zinc oxide nanoparticles, while also retaining the osteoconductivity
of the chitosan-based bio-ink hydrogel. Chitosan-based bio-inks can be used to resolve
limitations in cartilage reconstruction that characterize tracheal tissue engineering, such as
the poor delivery of chondrocyte-laden components [337]. According to the study by Kim
et al., a chitosan-based nanofiber membrane (Figure 10) composed of chitosan and poly-
caprolactone facilitates an improvement of the mechanical properties of chitosan but also
demonstrates enhanced chondrogenic performance when used in the fabrication of a tissue-
engineered trachea. Indeed, the implantation of the chitosan design to a tissue-engineered
trachea in male rats showed an elevated number of chondrocytes within the implanted
model when compared to the control group without the proposed membrane [337].
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Copyright © 2022 Springer Nature under the terms of the Creative Commons Attribution 4.0 Interna-
tional License).

Cellulose

Cellulose is the most widely used and most abundant biopolymer in nature and
is produced by some algae, fungi and bacteria. It is a linear homopolymer that pos-
sesses a 3D matrix that is responsible for its favorable tensile properties and crystalline
form [338–340]. Cellulose is built from repeating cellobiose units, specifically two β-D-
anhydroglucopyranose units linked by β-(1→4) glycosidic linkages. This arrangement
leads to a ribbon structure, stabilized by intramolecular hydrogen bonds. Numerous inter-
molecular hydrogen bonds combine molecules into an elementary microfibrillary structure,
which in turn combine to form fibers that exhibit a crystalline structure [339]. It is this
crystallinity that gives the plant walls their rigidity and insolubility in water [339].

To improve cellulose water solubility, various cellulose derivatives were synthe-
sized, mostly by etherification of the hydroxyl groups on anhydroglucose units of cel-
lulose [341]. Hence, the most widely used are hydroxypropylmethylcellulose (HPMC) and
carboxymethylcellulose (CMC), which belong to the large family of cellulose ethers that
includes, among others, methylcellulose (MC) and hydroxyethylcellulose (HEC) [341]. Cel-
lulose and its derivatives have been widely used in the pharmaceutical industry due to their
ability to swell and their high compatibility, which makes them suitable for drug delivery
in oral tablet and capsule formulations [342–344]. Additionally, cellulose derivatives may
be able to form hydrogels that exhibit favorable biological and rheological properties for
biomedical applications [345,346], mainly wound dressing, transdermal patches [326,347],
ophthalmic preparations [348] and cartilage tissue engineering [349,350], as well as the 3D
bioprinting of cellularized structures [21,43,49,63–66].

Recognizing the potential of cellulose as a biomaterial for bioprinting due to its bio-
compatibility properties, several researchers have sought to explore approaches to improve
the inherent limitations of cellulose due to its poor mechanical properties [351]. For in-
stance, in the study undertaken by Habib et al., a cellulose-based bio-ink composed of
sodium alginate with carboxymethyl cellulose was developed [351]. Chemical modification
of cellulose to produce carboxymethyl cellulose involved using carboxymethyl groups
(-CH2COOH) to replace the hydroxyl group present in the glucopyranose chains of cel-
lulose [352]. This bio-ink was shown to demonstrate good printability and shape fidelity.
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Notably, when a cellulose-based bio-ink embedded with cells was used in the fabrication of
scaffold structures, a high cell viability of 86% was recorded after 23 days. Another study
also investigated a cellulose-based bio-ink composed of carboxymethyl cellulose, hydrox-
yapatite (HA), gelatin and chitosan to develop a bio-ink useful for fabricating scaffolds of
favorable mechanical properties. The presence of gelatin served to promote cell growth
and proliferation, with the interaction between the chitosan and the carboxymethyl cellu-
lose shown to promote good hydrogel bone tissue infiltration. A cellulose-based bio-ink
that incorporated sodium alginate was also developed and investigated by Gospodinova
et al. [353]. In the study, a cellulose-based bio-ink of hydroxyethylcellulose blended with
various concentrations of sodium alginate was embedded with HeLa cell lines sourced from
cervical cancer cells. The study was able to establish an inverse correlation between sodium
alginate and cell viability. When the bio-ink was employed in the printing of a cervical
tumor model, it was observed that bio-inks containing 1% and 2.5% of sodium alginate did
not present negative effects on cell viability, even after residence times of up to 90 min were
imposed prior to bio-ink extrusion. The potential of utilizing cellulose-based bio-ink in stem
cell therapy for the regeneration of articular cartilage while retaining high cell viability was
also investigated by Zhang et al. [21]. In the study, a cellulose-based hydrogel composed of
surface-modified cellulose nanocrystals (CNCs) and collagen hydrogel (a-CNC/collagen),
crosslinked rapidly with dynamic Schiff base bonds, was obtained. This novel material
exhibited shear-thinning and self-healing behaviors. Moreover, it showed higher elastic
modulus compared to the cellulose-based hydrogel in the absence of dynamic Schiff base
bonds, as shown in Figure 11. Additionally, a-CNC/collagen hydrogel was investigated as
a platform for mesenchymal stem cell (MSC) delivery, and the results proved a high cell
viability even after extrusion in vitro.
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Agarose

Agarose is a natural-based polysaccharide obtained from agar-agar, which is extracted
from red seaweed (specifically, algae class Rhodophyceae). It is a non-ionic and linear copoly-
mer composed of repeating units of β-D-galactose and 3,6-anhydro-α-L-galactopyranose
residues, linked together by alternating glycosidic linkages (1→4) and (1→3) [354]. Agarose
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is widely used to study the thermo-reversible gelation of polysaccharides. There are two
key factors impacting agarose hydrogel formation: temperature and concentration. At
high-temperature, agarose chains in solution exhibit a random coil structure, but when the
temperature is lowered, they form single or double helical structures, which then aggregate
to form a bundle and later a gel [354–357]. Agarose proneness to form hydrogels without
the presence of toxic crosslinking agents and catalysts is high and even further enhances
its biocompatibility [358,359]. These agarose-based hydrogels have been investigated and
applied in biomedical applications as self-healing materials [359], for cell culture [360],
cartilage tissue engineering [361], drug release [362] and 3D bioprinting of cellularized
structures [32,46,67–70].

In recognition of the potential of using agarose in a biomaterial 3D bioprinting, Gu
et al. [69] developed a novel agarose-based bio-ink. This bio-ink was composed of carboxy-
lated agarose (CA) and native agarose (NA) (composed of 7.8% w/v CA and 0.2% w/v NA
solids). The study demonstrated that sol-gel transition was exhibited by the agarose-based
bio-ink at a physiological temperature of 37 ◦C, with the structures produced using the
bio-ink shown to be stable in the temperature range of 4–37 ◦C. This agarose-based bio-ink
was also shown to support a high density of cells (i.e., 30 million/mL) without loss of
printability. In another study, an agarose-based bio-ink containing agarose and alginate,
prepared as 5% w/v (mass ratio 3:2 agarose to alginate) [68], was developed and assessed.
The study was able to show that the printability and rheology of the agarose-based bio-ink
were comparable to Pluronic, a synthetic poloxamer that is widely used in tissue engineer-
ing [363]. The agarose-based bio-ink was also shown to demonstrate excellent cell viability
after 28 days, with 70% cell survival reported on day 28. Furthermore, an agarose-based
bio-ink was also shown to be excellent in the fabrication of 3D tissues that retained induced
pluripotent stem cells (iPSCs) [46]. In the study by Gu et al., agarose-containing bio-ink
composed of agarose, alginate and carboxymethyl-chitosan of 1.5, 5 and 5% w/v, respec-
tively, and crosslinked with calcium chloride was proliferated with iPSCs. The resulting
bio-ink was able to overcome established difficulties associated with iPSC differentiation
and maintenance in printed scaffolds, with the agarose component in the composite bio-ink
providing the essential rheological properties required for printing. The capacity of utiliz-
ing agarose-based bio-inks to facilitate cell-induced vascularization was also demonstrated
in the study by Kreimendahl et al. [364]. Their study showed that the formation of capillary
networks by human umbilical vein endothelial cells and human dermal fibroblasts in a
blend of agarose and type I collagen was promoted. Moreover, they reported that printing
resolution was not limited by the addition of collagen, with the bio-ink capable of pro-
moting cell-induced vascularization capability. It is also possible to chemically modify the
chemistry of agarose via the introduction of carboxylic acid groups on the polysaccharide
backbone to produce carboxylated agarose, for improved mechanical properties [253]. The
use of such agarose-based bio-ink of carboxylated agarose was demonstrated in the study
by Forget et al., where carboxylated agarose was employed in the bioprinting of human
mesenchymal stem cells, with a 95% cell survival rate reported [365]. Similarly, the use of
such agarose-based bio-ink of carboxylated agarose was shown to facilitate stiff 5–10 mm
constructs in the absence of additional support materials [69].

Carrageenan

Carrageenan is a high-molecular-weight sulfated polysaccharide, produced by red sea-
weed of the algae class Rhodophyceae. It is a linear anionic polymer composed of repeating
units of β-D-galactopyranose and 3,6-anhydro-α-D-galactopyranose and linked by α-(1→3)
and β-(1→4) glycosidic linkages [366]. The prominent feature of carrageenan is its diversity,
depending on the algae source and extraction methods. Three main types of carrageenan
can be obtained with similar chemical structure characteristics, namely kappa (κ), iota (ι)
and lambda (λ) [367]. However, the level of the sulfate ester of each type strongly influences
the gelation and the solubility temperature, as well as the gel strength [368]. With large
and highly flexible molecules, forming a spiral structure, κ-carrageenan shows thermore-
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versible hydrogel-forming ability. It forms the strongest hydrogel with potassium ions
but also shows gelation under salt-free conditions [367]. Carrageenan has shown several
potential biological and pharmaceutical applications, such as controlled drug release due to
favorable biocompatibility [369–371]. Other biomedical applications of carrageenan-based
hydrogels include tissue engineering [372], skin regeneration [373], wound healing [374],
cartilage scaffold [375] and the 3D bioprinting of cellularized structures [71–73]. Crucially,
carrageenan-based bio-inks have been identified as being able to circumvent the existing
limitations of bio-ink-based bioprinting [71], such as the shear stress imposed on the cells
and the poor ability of bio-inks to maintain complex tissue structures [71]. In this regard,
Lim et al. synthesized a methacrylated kappa-carrageenan (MA-κ-CA) bio-ink through
dual crosslinking via ionic and ultraviolet crosslinking [71]. The MA-κ-CA bio-ink also
contained mouse-sourced fibroblast (i.e., NIH-3T3) cells. This bio-ink was shown to present
favorable biocompatibility, biodegradability and shear-thinning properties, with the cell-
laden MA-κ-CA shown to be able to fabricate constructs characterized by an enhanced
shape retention capability. The carrageenan-based bio-inks may also be used in the fabrica-
tion of materials that have swelling resistance, as illustrated in the study by Jiang et al. [376].
They obtained an ink composed of polyvinyl alcohol (PVA) and κ-carrageenan via freezing
and thawing processes to induce a physically crosslinked network formation. The study
showed that in the carrageenan-based bio-inks, cells demonstrated the capacity for surface
attachment and were capable of also stretching into the spaces in the grid architectures,
for the provision of ideal microenvironments for cell culture. Another study designed a
bio-ink composed of alginate and carrageenan [377]. The study was based on CaSO4 as the
crosslinking agent, to produce the bio-ink designated as Alg-Carr-CaSO4. The results show
that the rheological and mechanical properties of hydrogel improved as the concentration
of carrageenan in the composite hydrogels increased, with a carrageenan bio-ink of con-
centration of 1.5% w/w shown to present the best properties (Figure 12). Additionally, cell
viability seeded on the composite scaffolds was evaluated using rabbit adipose-derived
mesenchymal stem cells [377].
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Figure 12. Rheological properties of a carrageenan-based bio-ink: (a) viscosity of the Alg-Carr-CaSO4

as a function of shear rate (0.01–1000 s−1); (b) shear modulus of the Alg-Carr-CaSO4 composite as
a function of angular frequency; (c) increasing storage modulus as the carrageenan concentration
increases; (d) the variation of viscosity at various hydrogel compositions (reprinted from Kim
et al., 2019 [377], with the permission of Elsevier Ltd., published under license. Copyright © 2022
Elsevier Ltd.).

Table 4 provides some examples of polysaccharide-based bio-inks carrageenan-based
hydrogels used for 3D bioprinting of cellularized structures and organs.
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3.3.2.7. dECM-Based Bio-Inks

In some cases, hydrogel-based bio-inks are combined with dECM to produce dECM-
based bio-inks for enhanced biocompatibility as a basis for mimicking 3D bioprinted
constructs [30]. This is because dECM-based bio-inks have the capacity to promote cell–
matrix interactions and organ (or tissue)-specific differentiation processes for the recreation
of original cellular functions [378]. Such bio-inks are equipped with cell surface receptors in
their adhesion sites and have the capacity for the preservation of normal tissue function due
to their capacity to mimic tissue-specific mechanical and biochemical properties [379,380].
Due to these benefits, dECM-based bio-ink formulations now constitute an emerging field
in tissue engineering [197].

Hydrogels containing dECM retain the ECM function, with crucial structural char-
acteristics and stimulatory properties [381]. Indeed, these dECM-based bio-inks have
generated significant interest due to promoting re-cellularization for the production of
functional tissues or organs while also encouraging cell differentiation and cell prolifer-
ation, as highlighted in the literature [29,30]. In the study by Ali et al. [29], dECM was
derived from porcine whole kidneys, and the photo-crosslinkable ECM hydrogel was pro-
duced via the main steps of decellularization, pepsin-mediated solubilization, and chemical
modification via methacrylation of the kidney ECM-derived hydrogel. The dECM based
hydrogel (3% w/v) presented a high mechanical and structural stability, with a modulus
of 4405 ± 277 Pa. Notably, it also facilitated the proliferation of human kidney cells, thus
highlighting the unique benefit of this bio-ink type. In other studies, Kim et al. [382]
employed dECM bio-ink derived from the pancreas and stem cell-derived dECM in the
development of a 3D islet construct and corneal construct, respectively. In both cases, the
appropriate mechanical properties of the dECM bio-inks for 3D bioprinting technology and
their ability to enhance tissue-specific differentiation compared with conventional bio-inks
were demonstrated.

Table 4 provides some examples of dECM-based hydrogels used for 3D bioprinting of
cellularized structures and organs.

3.3.3. Multi-Component Bio-Inks

Section 3.3 includes a discussion related to so-called multi-component bio-inks. These
multi-component bio-inks, as the name implies, are bio-inks composed of multiple bioma-
terials, cells, additive materials or biomolecules [383]. These multi-component bio-inks
seek to circumvent the limitations of conventional ‘mono’ bio-inks, such as the inability
to satisfy all the mechanical and functional requirements necessary to obtain biomimetic
tissue-like models [383]. Thus the biomaterials in multi-component bio-inks complement
one another by serving as supplementing elements that enhance the formation of more
complex tissue constructs [253]. Multi-component bio-inks are particularly relevant when
employed as hydrogels, since simple hydrogels are typically characterized by poor mechan-
ical properties. The development of such multi-component bio-inks was highlighted in the
study of Pitton et al. [384], in which multi-component bio-inks, based on the combination
of natural biomaterials of pectin and TEMPO-oxidized cellulose nanofibers (TOCNFs),
were prepared as an approach to optimize the printability and stability of cell-laden inks.
The study was able to determine that the multi-component bio-ink containing optimal
TOCNFs and pectin concentrations of 1% w/v and 2.5% w/v improved viscosity while
maintaining shear thinning behavior and cell viability. It was also determined that the
resulting printed scaffolds had an elastic modulus of E = 1.8 ± 0.2 kPa, while cell viability
was >80%. In another study by Markstedt et al., [63], a multi-component bio-ink containing
of nanofibrillated cellulose and alginate was developed as an approach to benefit from
the unique shear thinning and fast crosslinking properties of the biomaterials. The study
was able to show that the resulting bio-ink showed a cell viability up to 86% after 7 days,
when laden with human chondrocytes. Similarly, Chung et al. investigated the bioprinted,
multi-component scaffold containing alginate and gelatin to achieve the combined benefits
of improved mechanical properties and enhanced cell proliferation [385]. Alginate has
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also been previously combined with materials, e.g., with fibrin, to enhance the interaction
of the bio-ink with cells [386]. Limitations and advantages of natural-based bio-inks are
summarized in Table 5.

A review of the existing literature also highlights the commercial status of some
of these natural-based bio-inks. For instance, BIOGELX currently sells bio-inks such as
Bio-gelxTM-INK-Arg-Gly-Asp (RGD) and Bio-gelxTM-INK-GFOGER, which are protein-
based bio-inks functionalized with fibronectin and collagen, respectively [387]. Another
company, Gelomics, is also reported to be involved in the sale of GelMA-Bovine and
GelMA-Porcine bio-inks, which are based on bovine and porcine gelatin [387]. Other
companies, such as Advanced Biomatrix, Corning and Brinterbio-inks, are also involved
in the commercial production of collagen I, Lifeink® 240 and Corning® PuraMa-trix™ bio-
inks, which are based on collagen protein [387]. Polysaccharide-based bio-inks are also
commercially available for sale as CELLINK Bio-ink by Cellink, composed of alginate and
highly hydrated cellulose nanofibrils [388]. Similarly, another company, UPM Biomedicals,
also produces a natural-based bio-ink from nanofibrillar cellulose [389]. Recognizing the
importance of these natural-based bio-inks to tissue engineering, it is anticipated that
more work will be undertaken in the development of new hydrogels based on naturally
derived polymers.

Table 5. Advantages and disadvantages of natural bio-inks.

Natural-Based Bio-Inks Advantages Disadvantages References

Collagen

This hydrogel may enhance cell
function/attachment. This is because
collagen can interact with elastin fibers
for the provision of a recoil to the
extracellular matrix and fibronectin.

The hydrogel product is characterized
by poor mechanical properties. The
rapid biodegradation rate may also
limit its utility. The hydrogel may also
have challenges such as
thrombogenicity, contamination, and
source and batch variability.

[178,390,391]

Gelatin
The hydrogel possesses excellent
biocompatibilities and
nonimmunogenicities.

The bio-ink is characterized by its poor
mechanical properties and short
degradation times, thus limiting its
applicability in the production of
hydrogels and stable scaffolds.

[392,393]

Fibrin
This hydrogel has excellent
biocompatibility and biodegradation
properties.

The hydrogel is characterized by weak
mechanical properties. [285]

Silk

Silk-based hydrogels have excellent
printability and high resolution.
Additionally, cell viability can be
maintained.

The bio-ink has poor mechanical
properties and unfavorable swelling
behavior.

[178,394]

Alginate

This bio-ink can undergo gelation
under mild conditions using non-toxic
reactants such as via substitution of the
sodium ions from the guluronic acids
with the divalent cations. The bio-ink
also has favorable properties of
non-toxicity, biocompatibility,
biodegradability and hydrophilicity.

This bio-ink may have poor stability
and poor mechanical and barrier
properties. The bio-ink has heat
treatment instability.

[395,396]

Hyaluronic acid

The bio-ink has favorable properties of
biocompatibility, inherent
bifunctionality, non-immunogenicity,
versatility and biodegradability.

The bio-ink is characterized by poor
mechanical properties and rapid
degradation. Degradation occurs via
oxidative species and enzymatic
degradation.

[397,398]
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Table 5. Cont.

Natural-Based Bio-Inks Advantages Disadvantages References

Chitosan The bio-ink has favorable flexibility
properties and is non-toxic.

The bio-ink has limitations associated
with its poor stability, poor mechanical
properties, and difficulty in pore size
control.

[399]

Cellulose

The resulting construct may have
favorable water retention and high cell
viability after printing. The bio-ink also
has favorable biocompatibility, reduced
toxicity and high crystallinity. It also
may easily form high tensile
strength gels.

The bio-ink has poor dissolution and
therefore has some applicational
limitations.

[400,401]

Agarose

The bio-ink requires comparatively low
gelation temperatures (i.e., 40 ◦C). The
bio-ink also produces constructs with
good shape fidelity.

Due to viscosity plugging limitations,
agarose is not a frequent material
choice for bioprinting procedures.
Significant temperature control in
microvalve printing is also required.
Although constructs prepared using
this bio-ink have good shape retention,
the construct may be limited by
brittleness issues.

[402–404]

Carrageenan

This bio-ink is characterized by an
abundance of functional groups that
presents opportunities for chemical
modification and thus the enhancement
of the physicochemical properties of the
produced hydrogel. The bio-ink also
possesses the favorable properties of
biocompatibility, hemostatic ability, and
antioxidant and immunomodulatory
properties. The bio-ink also has good
gelation properties.

This bio-ink is limited by the
uncontrollable exchange of ions as well
as the potential to form a brittle
hydrogel.

[405–407]

dECM-based bio-inks
The resulting construct from dECM is
characterized by high cell viability and
functionality.

This bio-ink may be limited by its
higher cost compared to other
natural-based bio-inks. This is because
of the associated cost of the isolation/or
quantification of ECM constituents.

[408]

Multi-component bio-inks

The limitations associated with single
component hydrogel bio-inks, such as
poor print fidelity and shape retention,
poor biofunctionality and poor
cell-instructive capacity, can be
circumvented.

These bio-inks require precise control
of the rheological properties of
multicomponent bio-inks.

[409]

4. Recent Trends in Bioprinting and Bio-Inks

At the time of writing this manuscript, there was no “all-inclusive” source in the
literature that contained all the information and discussions on naturally derived hydrogels
synthesized from various natural sources, such as polysaccharides, proteins, etc., and their
unique utility in biomedical applications.

Bioprinting has advanced rapidly over recent years due to engineering breakthroughs
in 3D printing devices and technologies. More advanced bioprinting techniques are emerg-
ing, and new materials are being rapidly developed. Notable technology examples include
multimaterial 3D biofabrication [410], volumetric bioprinting [411], and voxel-based [412]
and co-axial 3D printing [413,414]. The revolution in bioprinting technologies came with
new hydrogel bio-inks, made of natural materials, reminiscent of biological ECM [83],
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that constitute a scaffold on which the cells can attach, diffuse, interact, differentiate and
proliferate. Future bio-inks will be easily printable and adjustable to the tissue they mimic.
Living inks will be designed to guide tissue-scale self-organization of cells and their differ-
entiation into specific tissues [415]. Recent design strategies are based on the combination
of natural (e.g., collagen, gelatin, silk) and slightly modified hydrogels (e.g., Gel-MA) with
decellularized body fluids and extracellular matrices, including plasma-rich [40,416] and
dECM [417] bio-inks. Undoubtedly, more and more frequently, multi-component bio-inks
are being introduced in research studies. The inclusion of additional materials makes it
possible to obtain functional multicomponent-based bio-inks capable of improving the
overall properties and rendering good functionality.

Recently, the concept of time has been introduced to 3D bioprinting as the fourth
dimension, leading to 4D bioprinting. In 4D bioprinting, printed bioactive objects are
programmed to undergo shape or functional changes according to the desired stimulation
with time [418]. The best-known biomedical examples of 4D bioprinting include drug
delivery systems and vessel formation. In the former, 4D bioprinting allows for the precise
control of components’ spatial distribution, that can be programmed to shrink and swell
to, e.g., release drugs in a specific place in the body. In the latter, 3D-printed networks
are induced by the environmental factor to fold into tubes, mimicking vascular-like tissue
constructs. Such 4D biofabrication processes should not have any negative effect on
cell viability and should react to stimulation in a programmed manner, and the tubes
should support cell survival and growth [419]. Shape-morphing behavior usually arises
through assembling multiple materials of different swelling responses. As 3D bioprinting
moves into the future, it is highly desirable to use several different materials in a single
printing process. Certainly, with the upcoming printers, one will be able to produce an
object containing multiple materials, including hydrogels, elastomers, metal, and even
ceramics [420]. Multi-material bioprinting will be invaluable in comparison to conventional
bioprinters for the fabrication of constructs that are inherently complex, heterocellular, and
hierarchically arranged within an extra-cellular matrix, just like native tissues [421].

Most of the current technologies employing 3D bioprinting are based on extrusion
printing, stereolithography, and laser-based methods. They make it possible to accurately
control the spatial arrangement of cells and biomaterials through automated processes.
However, these methods may have some disadvantages. For example, they sometimes
fail to produce complex geometries, mimicking native tissues. To overcome these issues, a
new strategy for 3D bioprinting—volumetric bioprinting (VBP)—has only recently been
proposed. VBP is inspired by the principle of computed tomography. It assumes deflection
of cell-friendly visible laser light onto a photosensitive hydrogel loaded with cells. Vol-
umetric bioprinting allows the production of geometrically convoluted, centimeter-scale
architecture in a relatively rapid manufacturing process. The object can be manufactured at
once, rather than through successive deposition of material layers [411]. VBP enables easy
scalability in rapid prototyping, paving the way to new applications in tissue engineering
and regenerative medicine approaches.

Nowadays, it is well acknowledged that 3D printed hydrogel functionality depends
significantly on its crosslinked structure. Gelation density has a direct influence on basic
hydrogel properties, such as swelling, elasticity, mechanical strength, diffusion, perme-
ability, and even cell viability and degradability [227]. In addition to using hydrogels to
regenerate or reproduce organs or tissue, attention should be also focused on bio-ink design
for hydrogel-based 3D bioprinting. Therefore, a hydrogel-based bio-ink should include
several critical attributes and functionalities of hydrogels (e.g., printability, shape stability,
functionality, degradability and biocompatibility with native tissue environment) [197].

Over the years, the research on bioprinting has been mainly focused on developing
new printable materials and adapting the existing printing technologies to new approaches.
Research labs have been outdistancing each other in creating a wide variety of living
human tissue constructs. However, the biological phenomena involved have been barely
touched. Careful consideration of the technologies employed in 3D bioprinting discussed



Gels 2022, 8, 179 38 of 55

within this paper shows that these technologies are influenced by several printing and
bio-ink parameters. However, bioprinting has yet to find a set of these parameters that
simultaneously enables a successful printing process and provides the highest cell viability.

5. Future Trends and Conclusions

By thoroughly exploring current trends, it is possible to speculate that future bio-
printing will shift towards rationally designed cellular structures (organoids) that have
a particular biological function, capable of treating a specific disease or studying the
mechanism beyond it rather than mimicking the functionality of the whole organ. 3D bio-
fabrication has enabled a transition from a 2D organ-on-a-chip to a multicellular in vitro 3D
tissue construct that recreates native in vivo organs in the culture dish [422,423]. For now,
bioprinting has been used, e.g., to fabricate kidney [89], brain, liver [424] and tumor [300].
Given the dependence of constructs’ cell differentiation, proliferation and mechanical
characteristics on the bio-ink properties, it is anticipated that research into the utilization
of biopolymers as natural polymers (protein-based polymers, e.g., collagen, fibrin, silk,
etc.) and polysaccharide-based polymers (e.g., cellulose, agarose, alginate, etc.) in the
development of bio-ink formulations will increase. This is because natural polymers are
not only biocompatible but also have the advantage of promoting enhanced cell–material
interaction when incorporated in polymeric solutions. In spite of this unique advantage of
natural polymers in bio-ink formulations, there is a need to further enhance the dynamic
interactions between natural tissues, cells and the environment [425]. Additionally, the
development of bio-ink formulations using natural polymers may be limited by long cell
cycle times (weeks to months), implying that long times may be required for the develop-
ment of bio-inks for the fabrication of complex constructs or organs [426]. More work is
also required to provide better tuning of the bio-ink signaling cues for the stimulation of
cell differentiation and proliferation [426]. Further investigations in this research area are
anticipated to promote strategies to optimize the mechanical, rheological and biological
properties of the bio-ink to support the fabrication of larger and more complex constructs
and vasculature. It is expected that more work will be undertaken in the field of integrating
computational modeling in bioprinting approaches. This is because such computational
modeling could be invaluable in tentatively predicting bio-ink printability, thus allowing
hydrogels to encourage the transport of useful growth factors that provide the required
cell differentiation and proliferation. These expectations were also echoed by Feinberg
et al. [427], who stated that sustained research in this area will lead to the discovery of
opportunities for improved 3D bioprinting, thus empowering favorable outcomes in the
precision design of engineered tissues, organoids, and even complete organs. Indeed, the
viability of complete organ fabrication was recently demonstrated by researchers at Lund
University [428]. These researchers undertook the 3D bioprinting of human airways using
a novel tissue-specific hybrid bio-ink composed of alginate enriched with decellularized
extracellular matrix (dECM). The proof of concept showed that it was possible to fabricate
human airways using bio-ink embedded with primary human airway epithelial progenitor
and smooth muscle cells. The scaffold maintained their viability and differentiation in vitro
for one month. This recent breakthrough in complete organ fabrication further supports
the assertion that future approaches may involve the complete phase-out of the use of
autologous grafts and organ transplants in lieu of the use of bioartificial constructs.

It is also anticipated that more research into so-called smart natural hydrogel-based
bio-inks incorporating responsive moieties that facilitate responses to different environ-
mental conditions such as pH, electric field, magnetic field, etc., will be undertaken [429].
The development of such smart bio-inks may provide a pathway for inducing transitional
changes within the cell-laden matrix, thus enhancing utility in tissue engineering and sus-
tained drug release [429,430]. This is because external factors such as injury and disease can
lead to changes in the fabricated constructs from natural hydrogel-based bio-inks and there-
fore enable a targeted and time-dependent response [387]. It is acknowledged that although
the natural hydrogel-based bio-inks are characterized by favorable biocompatibilities, there
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still exists a risk that the use of such natural hydrogels may induce an immune response.
It is anticipated that future works will investigate approaches to mitigate this risk [387].
Additionally, we predict that future research will seek to enhance post-printing cellular
proliferation via the development of so-called natural, bioactive hydrogel-based bio-inks.
Mostly, endowing the bio-inks with bioactive properties will facilitate improvements in the
constructs’ ability to bind with the host tissue at the implantation site [431].
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