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Abstract

Performance analytics are commonly used in managerial decision making, but
are vulnerable to an omitted variable bias issue when there is incomplete information
on the used production factors. In this paper, we relax the standard assumption in
productive efficiency analysis that all input quantities are observed, and we propose
a nonparametric methodology for cost inefficiency measurement that accounts for
the presence of unobserved inputs. Our main contribution is that we bridge the
OR/MS and the economic literature by addressing the general critique of Stigler
(1976) on the concept of inefficiency (Leibenstein, 1966), which states that found
inefficiencies reflect unobserved inputs rather than waste. Our methodology explic-
itly differentiates between cost inefficiency (i.e. waste; deviations from optimizing
behavior) and unobserved input usage (i.e. optimally chosen input factors that are
unobserved to the empirical analyst). We apply our novel method to a purpose-built
dataset on Belgian railway traffic management control rooms. Our findings show the
existence of meaningful inefficiencies that cannot be attributed to use of unobserved
inputs or environmental factors. In addition, we document how the omitted variable
bias impacts cost efficiencies of individual observations in a dissimilar way in case
the use of unobserved inputs is not controlled for.
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∗We thank Peter Bogetoft and Tom Van Puyenbroeck for insightful discussion and feedback. We are
also grateful to the seminar audience in Leuven and to participants of the NAPW conference 2020 and
2021 in Miami, the Informs Annual Meeting 2021 and the 31st European Conference on Operational
Research (EURO 2021).

†Department of Economics, University of Leuven. E-mail: laurens.cherchye@kuleuven.be.
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bias, cost minimization, railways.
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Disclaimer: The views expressed in this article are those of the authors and should
not be interpreted as reflecting the views of Infrabel.

1 Introduction

Performance measures and their corresponding prescriptive analytics are of increasing
importance for managerial decision making.1 Therefore, the measurement of productive
performance has been the focus of a well-established branch of the operations research
and management science (OR/MS) literature and the economic literature. Performance
measurement at any level is however intricate as the empirical analyst is confronted with
many empirical challenges and usually has incomplete information about the production
process. The latter resulted in a significant divide between the economic literature and
the OR/MS literature. Within the OR/MS field, a growing efficiency measurement lit-
erature builds on the seminal works of a.o. Leibenstein (1966) that clarify the concept
of inefficiency as a representation of suboptimal conduct of the decision making unit
(i.e. waste). After the general critique of Stigler (1976), which states that found in-
efficiencies reflect unobserved (to the analyst) inputs, economists largely rejected the
idea that performance heterogeneity could be driven by suboptimal behavior and waste.
The economic literature on production analysis attributes performance heterogeneity
to unobserved inputs or exogenous shocks, that is, unobserved heterogeneity within a
framework of optimizing economic agents.

Empirical setting. The increasing prevalence of intangible inputs, automation and
digitization that characterize many contemporaneous business environments warrants
a unifying framework that allows for both inefficiency and unobserved inputs. Indeed,
the intangible nature of (technological) inputs challenges the standard assumption of
perfect knowledge of input costs that is often maintained within the OR/MS literature.2

As such, existing methods for performance benchmarking may be subject to an omitted
variable bias when studying digitizing settings characterized by intangible input usage
(i.e. technology, management quality, automated decision support, etc.). Railway traffic
management in Belgium is a prime example of a setting with a need for performance
benchmarking while controlling for increasing uses of automation and digitization. Rail-
way traffic management decisions concerning work design and automation are made

1See e.g. Abernethy et al. (2021) and references therein for empirical evidence of the influence
of performance measurement on strategical decision making and firm performance. Brynjolfsson and
McElheran (2016); Wu et al. (2020) show evidence of the increasing use of data analytics for decision
making and how the use of data-driven decision making relates to firm productivity and innovation.

2See e.g. Bloom and Van Reenen (2007); Saunders and Brynjolfsson (2016); Nagle (2019); Brynjolfsson
et al. (2021) for discussions of the measurement of intangible assets and its implications for performance
measurement.
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within the context of digitized traffic management control rooms. These traffic man-
agement control rooms are an ideal testing ground to analyze performance and optimal
work organization via our advocated framework.

At Infrabel, the Belgian railway infrastructure company, an automated route-setting
(ARS, (Pachl, 2009)) device has been implemented which allows staff to autonomously
choose when and to what extent to automate movement decisions. The endogenous
nature of this traffic automation input, in combination with its intangible features, will
render existing performance benchmarking methods (such as Data Envelopment Anal-
ysis (DEA)) vulnerable to an omitted variable bias when these unobserved inputs are
not controlled for. This mechanism is made explicit in Figure 1 where the left panel
shows hourly variation in workload levels for a specific control room, while the right
panel exhibits hourly levels of automation and use of the ARS.3 There exists a clear
link between workload and the level of traffic automation with staff making increasing
use of automation during peak hours while reducing automation levels amid off-peak
hours. Existing methods will overlook the fact that part of the variation in workload is
unrelated to staffing levels but instead is explained by the level of automation, leading
to a biased efficiency measurement. More precisely, since they neglect unobserved input
usage existing benchmarking methods will underestimate the aggregate/total quantity
of used input, thereby creating artificially large inefficiency differentials across observa-
tions.

Figure 1: Control room 1 – Boxplots of workload and automation

Note: Workload represents the time-weighted sum of all operational traffic management actions (such as

train movements, merging or splitting of trains, changing track lines) carried out by the team of traffic

control at work during the hour of evaluation.

Methodological contribution. The present paper proposes a method for efficiency
measurement that controls for omitted variable bias originating from endogenous in-
puts which are unobserved by the empirical analyst. This allows us to account for
the endogeneity issue in efficiency analysis that is caused by correlation between un-
observed heterogeneity and observed input usage (see Marschak and Andrews (1944);

3Section 2 explains in detail how we computed the different variables in our analysis.
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Olley and Pakes (1996)). Our proposed framework is embedded within the nonparamet-
ric production literature. Nonparametric approaches impose no a priori functional form
relationships. This is especially convenient for our empirical application, as it would
be particularly difficult to convincingly justify a specific parametric specification for the
complex setting at hand.4

More specifically, we extend the nonparametric framework for production analysis of
Cherchye et al. (2021) by explicitly allowing for wasteful/inefficient behavior. Cher-
chye et al. (2021) proposed a nonparametric methodology to estimate productivity (as
exogeneous shock or unobserved input) and output elasticities under endogeneity. As
such, they provide a nonparametric alternative for the standard production function
approaches to deal with the simultaneity bias that appeared in the economic literature
(see, for example, Olley and Pakes (1996); Ackerberg et al. (2015)). We structure un-
observed input costs to be observed and/or predictable by the firm, but unobserved by
the empirical analyst. Unobserved input costs can relate to all aspects of productivity
(Syverson, 2011) that do not reflect waste (as we capture the latter by the efficiency
term). This includes intangibles, managerial quality, anticipated exogenous shocks, au-
tomated decision support, etc..

In the OR/MS literature, efficiency measurement involves estimation of suboptimal be-
havior (i.e. inefficiency), which is ruled out by assumption in the economic literature
on productivity. Since the pioneering works on the Data Envelopment Analysis (DEA;
Charnes et al. (1978)) and Free Disposal Hull (FDH; De Prins et al. (1984)) efficiency
estimators, numerous applications within the operations research literature have main-
tained the implicit assumption that the analyst has full knowledge of all factor quantities
underlying production. By extending Cherchye et al. (2021), we can relax this assump-
tion and identify both efficiency and unobserved inputs under endogeneity. We show
that our approach has empirical bite and adequately controls for unobserved inputs and
potential correlation between unobservables and observed input usage by means of a
Monte Carlo simulation.

Several approaches are available in the DEA literature to account for factors differ-
ent from the observed inputs and outputs that affect productive efficiency performance.
Yet, none of the existing methods is sufficient for analysing the current setting. First, the
endogenous nature of automation use will violate the assumption of separability, thus

4In the context of nonparametric efficiency analysis, Cordero et al. (2015) show via a Monte Carlo
exercise that dependency of input choice on efficiency can imply severely biased estimates of efficiency.
Simar et al. (2016) deal with unobserved heterogeneity in environmental variables that influence the
production function by structuring the potential influence of unobserved environmental factors. Sant́ın
and Sicilia (2017) and Cazals et al. (2016) propose an instrumental variable approach to allow for de-
pendency of input choice on efficiency. In the current paper, we allow for dependency of input choices on
anticipated unobserved heterogeneity. We exclude dependency of the frontier on unanticipated efficiency
(e.g. caused by reversed causality), in line with the idea that inefficiency reflects waste that is unobserved
by the firm when making input choice decisions.
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rendering invalid the outcomes of a classical two stage approach (Simar and Wilson,
2007, 2011)). Second, the intangible nature of automation makes it nearly impossible
to obtain a perfect proxy of unobserved inputs required to implement the (conditional)
order-m approach of Daraio and Simar (2005, 2007) (which relies on the assumption of
perfect knowledge of input(s) (costs)). This again illustrates a need to develop efficiency
measures explicitly recognizing that some inputs may be hard to measure, which forms
exactly the core aim of the current paper. We will however show that our proposed
method is complementary to the (conditional) order-m method. Lastly, also the method
of Simar et al. (2016) for dealing with unobserved heterogeneity and endogeneity is not
directly useful in our application setting, as unobserved production heterogeneity takes
the form of an endogenous input rather than an exogenous environmental factor that
falls beyond the control of the firms.

Empirical contribution. Our application to railway traffic management demonstrates
that the inclusion of unobserved inputs does not imply inexistence of inefficiency. We
find empirical support for the existence of inefficiency, even when controlling for op-
timally chosen inputs that are unobserved (or only partly observed) to the empirical
analyst. In particular, while we report lower rates of inefficiency when accounting for
unobserved input usage, we still find persistent inefficiencies of over 20% that cannot
be ascribed to inattention to an unobserved input. Differently stated, we show that
performance heterogeneity can reflect both waste and unobserved inputs. We thus find
no supportive evidence for the general critique of Stigler (1976) that the concept of in-
efficiency (Leibenstein, 1966) merely reflects unobserved inputs.

Next, we illustrate the value of disaggregated data to unravel the micro-dynamics of
the omitted variable bias and cost efficiency heterogeneity. We report that the effect
of accounting for unobserved inputs on the efficiency estimates is inversely related to
the level of traffic automation. Our cost efficiency estimates of individual observations
are thus distorted in a dissimilar way in case unobserved inputs are not controlled for.
Moreover, our results show a clear link between cost inefficiencies and hour-of-the-day,
highlighting that the scheduling system with three non-overlapping eight hour shifts re-
quires customisation to better fit the hourly variation and peaks in traffic controllers’
workload.5

More generally, we show the value of automation to complement employees in digi-
tized environments. Our empirical application indicates that traffic automation serves
as a way to mitigate the impact of unforeseen events on the workload of control room
operators. We thus present empirical evidence suggesting human-automation comple-
mentarity. Prevention of over-workload as measured as super-efficiency is important in
the context of digitized environments from an employee well-being, quality of service

5We refer to Aksin et al. (2007) for an overview of operations management and staff scheduling
in the related context of call centers and to Campbell (1999) as an early reference on the benefits of
cross-trained staff in the context of the staff scheduling problem.
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and safety perspective.6 In the context of our application, managers continuously make
decisions on the allocation of subzones to the different operators in order to prevent over-
workload. By including both efficiency and automation in a single analytical framework,
as we advocate, managers can better customise their decision making to the needs of the
situation.

Outline. This paper is organized as follows. Section 2 presents a detailed discussion
of the production environment of railway management control rooms in Belgium. This
will motivate the use of our novel methodology for this application setting. Section 3
presents our theoretical framework for efficiency measurement in the presence of unob-
served inputs. We also introduce our cost efficiency measure that we use to quantify
the degree of waste in production, and we discuss a number extensions that will be
useful when bringing our methodology to data in our empirical application. Section 4
presents our main empirical findings, and Section 5 highlights the associated managerial
implications. Section 6 concludes.

2 Railway traffic control in Belgium

Control rooms in Belgian railways are a prime example of a production setting within
a digitized environment. As firms use more frequently digital components, the unob-
served production factors are increasing in importance. Therefore, we expect an omitted
variable bias when not adequately controlling for both observed and unobserved input
costs in production settings with intangible production factors. To study traffic con-
trollers’ performance, we built a data structure that includes next to input-output data
on the control room-hour level, information on exogenous environmental variables such
as lagged delays, density of the railway network and the interrelation with safety con-
trollers. As such, we are the first to disentangle influences from (i) unobserved inputs
(i.e. ARS, intangibles, management quality, etc.), (ii) cost inefficiency (i.e. waste due to
inflexible scheduling, etc.), and (iii) environmental factors (i.e. unanticipated workload
due to delays, safety considerations, etc.). We estimate hourly cost efficiency and unob-
served input shares over 12 months in 2018-2019 within 9 control rooms.

The main task of these control rooms is the real-time coordination of all railway traffic
happening in Belgium. Following Roets, Verschelde, and Christiaens (2018, p.228), we
define railway traffic management as the combination of signalling activities (i.e. the
authorization of train movements), real-time traffic management (i.e. decision making
to ensure a fluent and safe traffic flow) and safety actions (e.g. protection of maintenance
sites). In our application we will focus on the operational aspects of traffic management
(i.e. signalling activities and traffic management) as it are these aspects that are partly

6In the context of restaurants, Tan and Netessine (2014) show causal evidence that high workload
can lower service quality. See Roets et al. (2018) for a discussion on the relation between over-workload
and super-efficiency in our application context.
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automated in an endogenous fashion by ARS. We will, however, consider safety inter-
ventions (that are exogenous to traffic operators by work design) as an environmental
variable in our analysis.

We focus on cost efficiency as representing waste. This concerns predominantly over-
presence of traffic operators due to, among other things, suboptimal or inflexible work
design. Output quantity and input prices (i.e. wages) are exogenous to the control
rooms, while the local management of the control rooms holds a certain degree of flex-
ibility in organizing the optimal alignment of resources with these outputs.7 In this
setting questions regarding the optimal organization of work arise naturally. Ideally,
one would like to tailor working conditions in function of specific hourly needs. This
would however impose unrealistic demands on both management and personnel. Fur-
ther, several important requirements complicate the adjustment of working conditions
in these control rooms. Traffic management control rooms monitor the railway traffic
in a 24/7 fashion with a work schedule consisting of three non-overlapping eight hour
shifts (Topcu et al., 2019). Staffing levels generally remain constant within the shift,
although the volume of railway traffic may (strongly) vary across adjacent hours. This
requires that throughout the shift a sufficient amount of staff is being deployed to man-
age fluctuations in railway traffic at all times, including peak hours. As a consequence
of the constraints of the scheduling system we expect to recover manifest differences in
efficiency between hours. Taking these different considerations into account we believe
that railway traffic management provides an excellent case to consider cost efficiency
when some input costs are unobserved.

We include in our model both observed and unobserved input costs. Concerning the
observed input costs, each traffic management control room is organised according to
multiple controller and supervisor roles.8 Out of these, Traffic Controllers (TCs), who
are responsible for operational traffic management (e.g. opening/closing signals, merg-
ing or splitting trains, changing train tracks, etc.), form the object of our interest. More
precisely, the empirical application differentiates between three types of TCs based on
an internal grade system, with TCs of a higher grade receiving higher compensation. We
consider hourly wages for the TCs, which differ across grades but are otherwise constant.
For confidentiality reasons, we do not report these wages.

Unobserved inputs relate to inputs that are observed or predictable to the control room
management, but are unobservable for the empirical analyst. Its main components in
the empirical setting of focus are the use of ARS, management quality and the value
of intangibles such as customized software. We collected data to put structure on the
value of the unobserved input costs within subgroups of our dataset. In particular, we

7Output is exogenous to the control room as the Belgian railway transportation company NMBS,
which is independent from Infrabel, is responsible for the drafting of the train schedule.

8See Topcu et al. (2019) for an in-depth discussion of the inner working of the traffic management
control rooms.
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use the prevalence of hourly automated signal openings, which we define as the number
of automatically opened signals. This measure serves as a reasonable proxy for the use
of the ARS system available in all traffic management control rooms. Specifically, ARS
provides TCs with a sort of autopilot mode that performs automated movement deci-
sions when a train approaches a signal. Note that TCs can choose on the spot whether
to manually open a signal or to use the ARS for an automatic signal opening.9 As such,
a higher amount of automated signal openings implies a higher usage of the ARS and
thus a higher level of traffic automation. We assume, within each control room, that
all unobserved inputs other than ARS usage are constant within a week. Although this
may seem rather strict at first, it links up naturally with the planning of staffing sched-
ules. At Infrabel, staffing decisions are agreed upon on a monthly basis (which assumes
constant levels of, for example, management quality within a given month). However,
deviations from these standard monthly staffing levels might be necessary to process for
example urgent track repair works (which sometimes requires extra personnel to moni-
tor railway traffic) or to accommodate sickness (i.e. replacement by a TC of a different
grade). To account for this, we only impose these other factors to remain constant on a
weekly basis. We then use the strict monotonic relation between the hourly number of
automated signal openings and the unobserved input costs. More precisely, within ev-
ery week of data we impose the ordering of this variable onto the unobserved input costs.

Further, we include three environmental variables that interfere with the work of TCs.
First, previous train delays potentially disturb a fluent and safe traffic flow and demand
additional consideration from the TCs. We consider the average delay in seconds (aggre-
gated over all TCs) measured during the last 15 minutes of the previous hour.10 Second,
we account for fluctuations in traffic density, which peaks during the morning and late
afternoon rush hours.11 Third, safety personnel in charge of monitoring traffic safety can
intervene with TCs operations for safety reasons. To account for this we include as an
extra environmental variable the time-weighted sum of operational traffic management

9Remark that it is not an option for TCs to simply rely on ARS all the time. Even contemporary
ARS systems are to some extent rudimentary (Balfe et al., 2015). For example, the ARS may wrongly
give priority when multiple trains attempt to simultaneously pass through bottlenecks, especially as
the network becomes more and more congested. Moreover, automation systems may lack the necessary
flexibility needed to appropriately respond to unforeseen events (which may occur frequently in open
loop systems such as railway traffic control). As such, TCs need to constantly trade-off monitoring
(and possibly adjusting) ARS behaviour (which may increase mental workload and TC fatigue) against
conducting tasks manually themselves.

10Arguably, delays can be both endogenous (e.g. human error/miscommunication within the traffic
management control rooms) and exogenous (e.g. technical issues, infrastructure or component break-
downs, accidents, snowfall, human error outside the traffic management control room) in nature. Con-
sultation with Infrabel experts made clear that the endogenous part of delays is negligible in the current
setting. We thus consider the underlying causes for delays to be exogenous in nature. This way we
obtain a benefit-of-the-doubt analysis that estimates cost efficiencies filtered for the possible influence
of delays. Following expert advise, average delays are calculated by averaging the difference in seconds
between planned and realized signal passing, thus comprising both trains ahead and behind of schedule.

11The density variable measures the ratio of the number of train passings at certain key signals over
the number of key signals.
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tasks carried out by the safety personnel of the control room in the hour of evaluation.

Table 1 provides an overview of the inputs, output and environmental variables that
we consider in the empirical model. Our inputs measure the number of TCs of a specific
grade working at the control room during the hour of evaluation. Next, the output vari-
able outputTC represents the time-weighted sum of all operational traffic management
actions (such as train movements, merging or splitting of trains, changing track lines)
carried out by the team of TCs at work during the hour of evaluation. As in Roets et al.
(2018), the weight of each action is determined by the action’s standard execution time
in seconds, as judged by an expert panel. Finally, we obtain a sample of 28.778 hourly
observations across 9 traffic management control rooms over the period June 2018 to
May 2019.12 Table 2 and Table 3 present, respectively, descriptive statistics and correla-
tions for the variables used in our empirical model. Both output and the number of TCs
correlate strongly with the number of automated signal openings, hinting at a potential
omitted variable bias.

Table 1: Overview of input, output and environmental variables.

Type Name Definition

Input TC N3 Number of TCs (lowest grade)
Input TC N2 Number of TCs (medium grade)
Input TC N1 Number of TCs (highest grade)

Output outputTC
Weighted number of operational traffic
management actions of TCs (by standard times)

Env. var. Delay
Mean delay time (in seconds) during the last 15 minutes
of the previous hour (average over all TCs)

Env. var. Density Mean traffic density (average over all TCs)

Env. var. Workload SC
Weighted number of operational traffic management
actions of safety personnel (by standard times)

12For three control rooms we consider a shorter time window, due to data irregularities.
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Table 2: Descriptive statistics

Mean Median St. Dev. Min Max

TC N3 5.49 5 1.84 0 10
TC N2 1.75 2 1.27 0 7
TC N1 0.15 0 0.39 0 3
outputTC 6308 6376 1925 1266 17312
Delay 143 115 126 -645 1769
Density 667 623 245 57 2035
WorkloadSC 940 711 816 0 6124
# Aut. signal openings 322 290 116 23 904

Table 3: Correlation table

TC OutputTC Delay Density WorkloadSC
# Aut. signal
openings

TC 1
OutputTC .497 1
Delay .004 .166 1
Density -.176 .374 .044 1
WorkloadSC .254 .252 .109 -.134 1
# Aut. signal
openings

.514 .776 .006 .461 .123 1

Note: TC sums traffic controllers of all grades.

3 Efficiency measurement methodology

Our novel framework is embedded within the structural, nonparametric production lit-
erature and extends recent insights of Cherchye et al. (2021) by introducing measures
of cost efficiency to recover unobserved heterogeneity of cost-minimizing firms. After
introducing some necessary notation we provide a brief overview of the model used in
Cherchye et al. (2021). This will pave the way for introducing our cost efficiency crite-
rion. Finally, we discuss some extensions to the basic model.

We refer to Appendix A.2 for a Monte Carlo simulation highlighting the finite sample
performance of our estimator. Our Monte Carlo simulation shows the proper working of
our estimators for noisy production data and settings with biased technological change
under endogeneity. In addition, our empirical results in Section 4 show that our approach
adequately deals with the important omitted variable issue related to endogenous au-
tomation in our application.
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3.1 Preliminaries

We start our methodology from a set T of hourly observations of control rooms, which
we consider as Decision Making Units (DMUs) that operate under a common production
technology. These DMUs use several inputs to produce a single output (i.e. weighted
number of operational traffic management actions OutputTC), denoted by Q. For our
DMUs, we observe the active operators of different grades (i.e. TC N1, TC N2 and
TC N3). We denote the observed inputs by the 3-dimensional vector X ∈ R3

+ and the
observed input prices by W ∈ R3

++. We follow standard practice in the literature (see
Olley and Pakes (1996); Ackerberg et al. (2015)) by including unobserved inputs as a
one-dimensional aggregate. In particular, we treat unobserved inputs as a Hicksian ag-
gregate under the assumption of a common unobserved input price within the control
rooms.13 We denote this with Ω ∈ R+

0 . Our method does not require information re-
garding output prices.

Building upon the work of Varian (1984), the contribution of Cherchye et al. (2021)
develops a nonparametric model to test consistency of firm demand and supply data
with cost minimization in the presence of unobserved heterogeneity. Specifically, the
model assumes a common production function F (strictly monotonic, continuous and
quasi-concave in (X,Ω)) that defines

Q = F (X,Ω).

We assume that F exhibits constant returns to scale (CRS) w.r.t. observed inputs X,
for a given amount of the unobserved input Ω:

Axiom 1 (CRS on observed inputs).

F (kX,Ω) = k ∗ F (X,Ω) where k = R+
0 .

Whether or not to impose CRS on both the observed inputs X and/or unobserved in-
puts Ω is somewhat application-specific and will depend on the nature of the unobserved
input. For example, in the current application the unobserved input measures, among
other things, the value of the ARS, which can be used in a non-rival way. Thus, a
rescaling of the unobserved input is not warranted for the empirical application of focus
(e.g. we do not require that doubling computers doubles output levels). While alterna-
tive returns to scale assumptions can be easily incorporated, consultation with Infrabel
experts confirmed that the above CRS assumption is realistic for our application setting.

Next, unobserved Ω can represent either an external factor beyond the DMUs control or
an optimally chosen latent input factor, implying two different optimization problems.
Both interpretations are shown to be empirically equivalent by Cherchye et al. (2021),

13See Hicks (1946). In principle, it is possible to extend our framework to include multiple unobserved
inputs, but this requires additional structure and goes beyond the scope of the current paper. In the
setting of focus, we believe that our one-dimensional aggregate realistically covers the total variation of
unobserved input use, especially when additional structure is included, as discussed in Section 3.3.
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giving rise to exactly the same nonparametric testable implications. As in our empirical
setting the unobserved input costs can be considered to be endogenous, we here only
consider the optimization problem of the second case. More specifically, we consider
each DMU to solve the following optimization problem:

min
X,Ω

WX + Ω s.t. F (X,Ω) ≥ Q, (OP)

meaning that each DMU chooses observed input values X and unobserved input value
Ω to produce the output level Q at minimum cost.

Basically, our proposed method checks cost efficiency for all DMUs simultaneously
by verifying whether their observed behavior can be rationalized as cost minimizing
(in the tradition of Varian (1984) and Banker and Maindiratta (1988)). In partic-
ular, our analysis starts from a set of observed data within a control room setting
S = {Qt,Xt,Wt | t ∈ T}, containing information on a set T of hourly input-output
observations (treated as DMUs). The unknowns for the analyst are the functional form
of F which is specific for each control room, and the level of unobserved inputs Ω which
is observation-specific. We verify whether the observed behavior in S is consistent with
cost minimizing production by checking whether there exists at least one specification
for F and unobserved input values Ωt (t ∈ T ) that represent the observed behavior
as solving problem OP. If there exist such F and Ωt, the dataset S is said to be OP-
rationalizable, implying that the observed behavior in S can be labelled as cost efficient.
This is summarized the following definition.

Definition 1. The dataset S = {Qt,Wt,Xt}t∈T is OP-rationalizable if there exist
numbers Ωt ∈ R+

0 and a production function F : RN+1
+ → R+ such that for each DMU

t ∈ T ,
(Xt,Ωt) ∈ arg min

X,Ω
WtX + Ω s.t. F (X,Ω) ≥ Qt.

Cherchye et al. (2021) derived the following characterization of OP-rationalizability,
defining a nonparametric testable condition for data consistency with cost minimization:

Proposition 1. Let S = {Qt,Wt,Xt}t∈T be a given dataset. The following statements
are equivalent:

1) The dataset S is OP-rationalizable.

2) There exist Ωt ∈ R+
0 that satisfy, for all t, s ∈ T, the inequalities

WtXt + Ωt ≤Wt

[(
Qt
Qs

)
Xs

]
+ Ωs.

The testable requirement in statement (2) of this result naturally extends Varian
(1984)’s Weak Axiom of Cost Minimization (=WACM) towards settings characterized
by unobserved inputs. In words, it verifies whether there exist unobserved input levels
Ωt such that for every observation t, the output level Qt is effectively produced at the
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lowest possible cost w.r.t. the rescaled input bundles of the other observations s. This
condition has an intuitive interpretation. Specifically, the CRS assumption in Axiom 1

ensures, for given Ωs, that the rescaled input bundles (
(
Qt
Qs

)
Xs) can produce the output

level Qt.
14 The right-hand-side of the inequality in statement (2) then shows the cost

of using this rescaled input bundle at the input prices Wt that apply to observation t.
Cost minimization requires that, for the given prices, the actual cost at observation t
(using the input bundle (Xt,Ωt) to produce Qt) cannot exceed this cost of any rescaled
input bundle.

Appendix A.1 provides numerical examples highlighting the empirical content of the
cost minimization condition in Proposition 1. Specifically, we establish that our empiri-
cal restrictions for cost minimizing production (under the presence of unobserved inputs)
can be rejected in a minimalistic setting considering only two DMUs and two observed
inputs. In general, the empirical bite of the testable requirement will increase with the
number of observations and observed inputs.

3.2 Cost efficiency

Checking the “sharp” cost minimization requirement in statement (2) of Proposition 1
yields a binary outcome: the observed behavior in a given control room (represented by
the dataset S) either satisfies the condition or not. OP-rationalizability will be violated
as soon as there exists a single DMU that behaves inefficient. This limits the empirical
usefulness of the testable requirement in its strict form. For example, our empirical ap-
plication in Section 4 will show that there are many cost inefficient observations for all
control rooms that we evaluate. This falls in line with the claim of Banker and Maindi-
ratta (1988), who argue that in many empirical environments it is very likely that at
least some DMUs will be characterized by inefficient production processes. Moreover,
when violated, our testable requirement does not help to determine which specific DMUs
do not behave in a cost minimizing manner.

A main novelty of the current paper is that we integrate aspects of efficiency mea-
surement in the nonparametric characterization of cost minimizing production behavior
set out above. We include a cost efficiency measure that allows for better discriminating
between the performance of different DMUs. We introduce an observation-specific mea-
sure of cost efficiency, which we denote by θt for every DMU t. The measure captures
the deviation between the actually observed input cost at t and the minimal cost for
producing the same output, for the given level of unobserved input. Measuring cost
efficiency only in terms of observed input costs obtains restrictions that are linear in
unknowns, allowing us to make use of standard linear programming techniques to calcu-
late DMU-specific cost efficiencies. Moreover, for our empirical setting, measuring cost

14The input bundle (Xs,Ωs) allows production of the output level Qs. Consider CRS and choose

k=
(
Qt
Qs

)
in Axiom 1 to obtain that F (Xs

(
Qt
Qs

)
,Ωs) =

(
Qt
Qs

)
F (Xs,Ωs) = Qt. See also Theorem 5 in

Varian (1984) for a nonparametric characterization of cost minimizing production behavior under CRS.

13



efficiency exclusively in terms of observed inputs X allows for an easier interpretation
by Infrabel, as it are these inputs that can be most easily adjusted by the management.

Specifically, we use the following modification of our testable requirement in Proposition
1 (using θt ∈ R+ for every t):

θtWtXt + Ωt ≤Wt

[(
Qt
Qs

)
Xs

]
+ Ωs.

Obviously, the control room dataset S will be consistent with cost minimization (as char-
acterized in Proposition 1) only if it satisfies this inequality when using θt = 1 for each
DMU t. Choosing a value for θt strictly below 1 reduces the observed cost level on the
left-hand side of the inequality, so weakening the efficiency condition. More generally,
lower values of θt allow for greater cost inefficiency.

To evaluate the cost efficiency of a given dataset S, we determine the minimally re-
quired cost inefficiency (i.e. waste) to rationalize the observed behavior as cost mini-
mizing. We operationalize this idea through a linear program (LP) with as objective
function a weighted sum of the DMU-specific efficiencies θt, with weights equal to the
DMUs observed costs.15 Particularly, we solve the following LP problem (LP-OP):

max
θt|t∈T , Ωt|t∈T

T∑
t=1

θtWtXt

subject to

∀t, s ∈ T : θtWtXt + Ωt 6 Wt

[(
Qt
Qs

)
Xs

]
+ Ωs.

The focus on aggregate cost efficiency, constructed as a weighted sum of the DMU-
specific cost efficiencies, seems a natural choice in our empirical application, in which
every dataset S corresponds to a separate control room and each DMU t represents
an hourly production observation. Thus, LP-OP essentially computes the “overall”
cost efficiency of the control room that is under evaluation.16 Appendix A.1 provides
numerical examples illustrating the working of the linear program OP-LP to compute
DMU-specific cost efficiencies θt.

15See, for example, Färe and Zelenyuk (2003); Simar and Zelenyuk (2007); Kuosmanen, Cherchye,
and Sipiläinen (2006) on measuring the aggregate cost efficiency of a group of DMUs. These authors
make a case for using cost shares as DMU-weights in the aggregate cost efficiency measure when the
same input prices apply to all DMUs under evaluation, which is effectively the case in our application
setting (focusing on a separate dataset S for each different control room). As a sensitivity check, we also
considered using equal weighting of DMUs in our empirical application. This showed robustness of our
main findings (results available upon request).

16Note that our method computes cost efficiency simultaneously for all DMUs instead of iteratively
computing an efficiency score for each DMU individually (as is typically done in DEA). This is because
the inclusion of unobserved inputs in a standard DEA framework would hinder the construction of a
reference technology against which the performance of the different observations is evaluated.
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As a final comment, note that LP-OP not only provides estimates of the DMU-
specific efficiencies θt but also of the DMU-specific unobserved inputs Ωt. Our following
empirical application will use these estimates Ωt to analyse the importance of unobserved
inputs in the production processes of control rooms on different hours of the day. Clearly
the values of Ωt supporting some given efficiency values θt need not be uniquely defined
since there may be a set of possible specifications of Ωt that yield the same DMU-specific
efficiency values. We refer to Saelens (2021) for a detailed discussion on characterizing
this set by computing observation-specific lower and upper bounds on the unobserved
input levels Ωt. For compactness, we will not consider such set identification in our
following empirical application.

3.3 Extensions

We conclude this section by presenting two extensions of our basic methodology that
will be instrumental in our following empirical application. We begin by showing how
to put additional structure on Ωt in order to improve the identification of θt. Second,
we explain how we can account for exogenous environmental variables in the empirical
analysis.

Adding structure to Ω. Adding structure to Ω constitutes a productive strategy to
strengthen the identification of the DMU-specific efficiencies θt. As motivated in Section
2, we can reasonably assume a strong correlation between Ω and the use of ARS for sub-
groups of our dataset. This allows us to impose ordinal structure on the one-dimensional
continuous variable Ω for given subsets of the sample, by using ordinal mappings related
to ARS usage. By doing so, we can introduce extra structure on the unobserved inputs
in the form of additional constraints that define feasible ranges for the unknown Ωt.

More specifically, we impose the restriction that, within a given subset T̂ ⊆ T (rep-
resenting a week of data for the evaluated control room), Ω is a strictly monotonically
increasing function of a bounding variable, denoted by B (representing the use of ARS):
for all observations t, s ∈ T̂ , if Bt exceeds Bs then it follows that Ωt must exceed Ωs.
This restriction can be readily included in the analysis by adding the following constraint
to LP-OP:

∀t, s ∈ T̂ : If Bt > Bs ⇒ Ωt > Ωs.

Remark that the analyst does not observe the unobserved input Ω. The dataset merely
reports information on ARS usage, of which we believe that it relates to the unobserved
input value, as explained above. We then aim to use this information to strengthen
identification of Ω.

The proposed mapping strategy parallels similar strategies used by Olley and Pakes
(1996) and Ackerberg et al. (2015) to identify heterogeneity in unobserved productivity.
These authors assumed a one-to-one mapping between productivity and, respectively,
investment and materials. Of course, imposing strict monotonicity is just one specific
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alternative to implement additional structure on Ω. For example, following the idea of
Banker and Morey (1986) one could maintain that only DMUs using a higher level of
automation (as measured by the bounding variable) can serve as potential comparison
partners. Further, future research could study whether approaches relating to the in-
troduction of ordinal variables in DEA (see Cook et al. (1993, 1996); Cook (2011); Kim
et al. (1999); Cooper et al. (1999)) may be compatible with our suggested approach.
This could be of particular interest when working with an ordinal bounding variable (as
opposed to a continuous one in the current setting). More generally, from a conceptual
viewpoint imposing additional structure on the unknown Ω is also closely similar to the
use of shadow price/weight restrictions in DEA (see, for example, Allen et al. (1997);
Podinovski (2004)).

Environmental variables and robust efficiency estimation. In the application
setting that we study, TCs work can be complicated or facilitated by exogenous hetero-
geneity in the working environment. Therefore, we will include traffic density, lagged
delays, and workload of the safety personnel as exogenous environmental variables. In-
cluding exogenous environmental variables (captured by an r-dimensional vector Z ∈ Rr)
in our framework is possible by supplementing it with the (conditional) robust order-m
approach that was introduced by Cazals, Florens, and Simar (2002), Daraio and Simar
(2005, 2007) and Bădin, Daraio, and Simar (2010) in a DEA context. Conveniently, in-
corporating this order-m approach also robustifies our efficiency estimates to the presence
of outlier observations. In essence, the approach benchmarks the observed production
behavior of a DMU against a sample of m ≥ 1 comparison partners, drawn from the ob-
served set of data. This method is readily implemented through subsampling. In every
iteration, first a sample ofm potential comparison partners is drawn for every DMU t (i.e.
every observation has a potentially different set of comparison partners). Next, for each
iteration, we estimate cost efficiencies and unobserved input usages by solving LP-OP.
The robust measures of θt and Ωt are then computed by taking means over all iterations.

As explained in detail by Daraio and Simar (2005, 2007), the conditional order-m ap-
proach uses kernel weighting methods for drawing reference partners, whereby DMU’s
within a similar environment as the DMU under study will be more likely to be drawn
as one of the m comparison partners. Furthermore, the computation of conditional ef-
ficiency scores allows the exploration of the impact of exogenous factors Z on DMU
performance, even when no prior knowledge is available on the direction of influence.

The practical implementation of this approach relies on kernel weighting methods to
compute probability weights for the data resampling. We follow Bădin, Daraio, and
Simar (2010) and select optimal bandwidths for the kernel estimation through non-
parametric estimation of a conditional distribution function F (Q,X | Z), using a Least
Squares Cross Validation criterion (see Li and Racine (2007)).17 We consider a general-
ized product kernel that allows for both continuous and discrete data. For the continuous

17To compute the bandwidths we used the ‘np’ package of Hayfield and Racine (2008).
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data (i.e. output Q and environmental variables Z) we employ Epanechnikov weighting.
Due to limited variation we treat the input variables X as discrete ordered variables
with Li and Racine (2007) weighting.

4 Empirical findings

The great level of detail present in our real-world and purpose-built dataset enables an
informative analysis of the internal functioning of traffic management control rooms at
an unusually disaggregate level. In our estimates, every hourly observation serves as a
DMU and we will measure hourly observed cost efficiency for the team of TCs active
during the hour. Moreover, we consider each control room separately, which allows us to
remain agnostic about potential technological differences between control rooms. This
obtains sample sizes of a little over 3500 DMUs per control room.18 We remark that
an intrinsic feature of the order-m method that we use for robust efficiency estimation
(implemented through subsampling) is that it allows for so-called super-efficient DMUs,
which are characterized by a robustified efficiency value θt that exceeds 1.

Throughout our empirical analysis we maintain the following assumptions. First, our
empirical analysis limits attention to the morning (6h-14h) and day (14h-22h) shifts and
does not consider the night shift (22h-6h).19 Moreover, we exclude observations per-
taining to weekends and public holidays because of diverging staffing and traffic levels
as compared to weekdays (Roets and Christiaens (2015) discuss in detail the differences
between working week and weekend observations). Second, we restrict the unobserved
inputs (by appending linear restrictions to LP-OP) such that for all DMUs the unob-
served cost share (UCS) is situated between 10% and 50% of the total cost. These
bounds are simply starting values (the Matlab functions used to compute our estimates
require that lower and upper bounds are specified for each of the unknown variables).
Looking at Figure 5 learns that these bounds are hardly ever binding.

In the following Section 4.1 we first compare several model specifications to empha-
size the importance of accounting for unobserved inputs. We also present descriptive
statistics of our nonparametric estimates of cost efficiency. Next, Section 4.2 documents
the hourly-varying effect of omitted variable bias on cost efficiency.

18We cleaned the data according to the following sampling criteria. We deleted occurrences of staff
working some minutes beyond the end of the shift. Furthermore, we trimmed the lower and upper
percentile of the output variable, the environmental variables and output per TC. Lastly, remark that
we consider a smaller sample size for control rooms 5, 7 and 9 due to data irregularities.

19Specifically, night hour observations are characterized by a low volume of passenger traffic as well
as low levels of automation use. Because of this, one might at least suggest that night shift observations
are active on a different part of the same technology space. Moreover, we argue that TCs active during
night hours pursue objectives that are fundamentally different from those pursued by their colleagues
active during the morning or day shift. As such, these observations are not directly comparable.
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4.1 Comparison between model specifications

We estimated four different specifications of our model. A first version (Specification 1)
is similar to existing methods and makes abstraction of both unobserved inputs Ω and
environmental variables Z (no Ω, no Z). Here the availability of ARS is neglected and as
such the reported results will be subject to an omitted variable bias. Next, in the second
version (Specification 2; Ω, no Z) we overcome this problem by including unobserved in-
puts but not environmental variables. This allows us to filter away the influence of ARS
usage on the estimated cost efficiencies. Third, we additionally account for environmen-
tal variables (Specification 3; both Ω and Z), isolating the impact of factors exogenous
to the production process. The final version documents the impact of accounting for
environmental variables Z while making abstraction of unobserved inputs Ω (Specifica-
tion 4; no Ω, Z). More precisely, for Specifications 1 and 2 (Specifications 3 and 4) we
present (conditional) robust estimates computed over 200 iterations. After applying the
procedure described in Simar (2003), we chose m=50 to compute our order-m efficiency
estimates.

Figure 2 shows the empirical cumulative distribution function of the cost efficiency esti-
mates under our four model specifications, aggregated over the nine control rooms. We
observe a substantial difference between the red, dash-dotted line (no Ω, no Z) and the
purple, dotted line (Ω, no Z) as well as between the blue, dashed line (no Ω, Z) and
the green, solid line (Ω, Z). This evidence suggests that the addition of Ω positively
impacts the efficiency scores.20 Moreover, Kolmogorov-Smirnov tests strongly reject the
null hypothesis of identical distributions when Ω is either neglected or accounted for (ir-
respective of the inclusion of environmental variables Z). Second, the distance between
the red, dash-dotted line (no Ω, no Z) and the blue, dashed line (no Ω, Z) as well as
between the purple, dotted line (Ω, no Z) and the green, solid line (Ω, Z) shows the im-
pact of controlling for environmental variables Z on efficiency. Clearly, the effect is less
pronounced compared to including information on unobserved inputs Ω. Kolmogorov-
Smirnov tests indicate that controlling for environmentals leads to significantly larger
efficiencies (irrespective of whether unobserved inputs Ω are accounted for). Together,
these findings suggest that, for our setting of focus, controlling for unobserved input
usage is more informative in explaining variation of efficiency scores than taking into
account environmental conditions.

20While it is obvious that industry cost efficiency will increase when accounting for Ω, this does not
necessarily imply rising cost efficiency for each individual DMU. For example, the empirical applica-
tion learns that including unobserved input Ω causes a drop in cost efficiency for nearly 1 in 5 DMUs
(compared to the setting where Ω is not accounted for).
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Figure 2: Empirical cdf of cost efficiency in alternative model specifications - all control
rooms
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Next, Table 4 bundles descriptive statistics of the computed robust cost efficiencies for
the different control rooms, under the different model specifications. The first columns
in the table show respectively the mean, standard deviation, median and maximum val-
ues of the robust cost efficiencies θmt . In every cell, the row number links up with the
model version (e.g. row 1 presents results for Specification 1 (no Ω, no Z), etc.). In
general, efficiency is lowest under Specification 1 (no Ω, no Z) with control rooms 2, 5
and 7 reporting mean robust cost efficiencies that slightly exceed 0.60. These low scores
reflect the model misspecification and omitted variable bias that is at play because ARS
use is not controlled for. As such, we obtain artificially large differences in efficiency
across observations. Next, controlling for unobserved input usage in Specification 2 (Ω,
no Z) drastically increases cost efficiency of all 9 control rooms. The effect of unobserved
inputs is most pronounced for control rooms 5 and 7, of which the mean cost efficiencies
increase by no less than 13% points. The remaining control rooms witness an increase in
mean cost efficiency of around 8-11% points. In Section 4.2 we will discuss in more detail
the resulting changes in hourly cost efficiencies and establish that the omitted variable
bias is non-constant across hours-of-the-day.

The presented findings are in line with Stigler (1976)’s argument and should not come
as a surprise. The presence of automation and the ARS absorbs part of the hourly
variability in workload and helps to better manage unforeseen events, thereby reducing

19



volatility in efficiency levels. This is also reflected in column 4 of Table 4, showing a
decrease in the maximum degree of super-efficiency after controlling for unobservables.
Given the safety-critical nature of railway traffic control these super-efficient observa-
tions (which are characterized by an unusually high workload) may be of special interest
to local management. Nonetheless, sizeable inefficiencies persist even when controlling
for unobserved inputs. Furthermore, we see from the results of Specification 3 (with
both Ω and Z) that these cannot be attributed to merely environmental conditions in
the production process. In fact, accounting for environmental factors increases efficiency
by only a few % points after accounting for unobserved input. Taken together, these
findings suggest that incorporating unobservables into the analysis is far more important
for explaining variation in efficiency levels than are environmental factors (at least in the
current setting). It seems strongly advisable to account for both environmental factors
and unobserved input. As such, in what follows only results of this specification (Ω, Z)
will be discussed further. Finally, the results obtained under Specification 4 (no Ω, Z)
are found to lie between those of Specification 1 (no Ω, no Z) and Specification 2 (Ω,
no Z), again highlighting that accounting for unobserved inputs captures variation in
efficiency that cannot be explained by environmental conditions.

In general, in our preferred specification (accounting for both Z and Ω) we observe
that efficiency is highest in control rooms 1 and 6. Control rooms 3, 4, 5, 8 and 9 show
intermediate performance and control rooms 2 and 7 are characterized by lower average
cost efficiencies. These numbers reveal a significant degree of inefficiency within the con-
trol rooms, even when controlling for unobserved input usage and environmental factors.
Indeed, column 5 of Table 4 shows that only a small fraction of observations has less
than 5% potential for observed cost reduction. This need not be a surprise given our
discussion in Section 2 mentioning the required margin for unforeseen events and the
constraints of the scheduling system as possible sources of inefficiency. In Section 4.2 we
will further investigate the possible link between the degree of cost efficiency and hour-
of-the-day, which may indicate limited work shift flexibility and suggest to shorten the
duration of a shift. Further, the documented variation in efficiency across control rooms
may reflect possible idiosyncracies of the work environment. Finally, the last column of
Table 4 reports the median value of the standard deviation of the hourly cost efficiencies
over the 200 iterations. This shows the extent to which the cost efficiencies vary from
one iteration to another, due to variation in the drawing of comparison partners. Ac-
counting for unobserved inputs and, additionally, environmental factors provides a more
accurate representation of the production process and as such reduces variability in the
estimated efficiency levels.
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Table 4: Descriptive statistics of cost efficiencies, by control room

Version Mean θmt Std θmt Median θmt Max θmt # θmt >0.95 Median sd of θt

Control room 1
(3775 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.7633

.8338

.8545

.7924

.1024

.0941

.0831

.0915

.7630

.8349

.8573

.7934

1.1397
1.1267
1.0556
1.1617

145
505
558
181

.0381

.0275

.0184

.0334

Control room 2
(3548 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6248

.7375

.7442

.6656

.1479

.1482

.1467

.1378

.6147

.7356

.7459

.6553

1.2761
1.1817
1.1807
1.2442

91
261
286
115

.0588

.0270

.0257

.0521

Control room 3
(3796 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6883

.7829

.8045

.7624

.1192

.1207

.1074

.1061

.6831

.7838

.8113

.7651

1.4781
1.2209
1.1136
1.2019

74
344
292
134

.0769

.0305

.0242

.0436

Control room 4
(3829 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6645

.7744

.7990

.7338

.1425

.1301

.1157

.1126

.6726

.7778

.8040

.7304

1.3722
1.1820
1.0935
1.1340

81
343
81
139

.0698

.0248

.0227

.0462

Control room 5
(2587 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6398

.7734

.7953

.7462

.1250

.1266

.1077

.1040

.6281

.7714

.7932

.7382

1.4117
1.1758
1.0566
1.2071

40
245
206
93

.0927

.0200

.0264

.0428

Control room 6
(3779 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.7385

.8178

.8308

.7726

.1054

.1050

.0955

.0954

.7312

.8174

.8318

.7677

1.4157
1.2014
1.1156
1.1618

105
507
482
160

.0526

.0142

.0197

.0405

Control room 7
(1497 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6251

.7550

.7868

.7064

.1527

.1338

.1252

.1317

.6240

.7531

.7836

.7014

1.3660
1.1598
1.1456
1.1768

39
110
169
62

.0573

.0396

.0198

.0359

Control room 8
(3786 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6874

.7864

.7984

.7283

.1339

.1279

.1199

.1151

.6856

.7905

.8037

.7258

1.5320
1.2673
1.2840
1.2535

80
385
91
111

.0710

.0261

.0225

.0463

Control room 9
(2206 obs)

(no Ω, no Z)
(Ω, no Z)

(Ω, Z)
(no Ω, Z)

.6930

.7980

.8146

.7341

.1207

.1122

.1018

.1115

.6849

.7982

.8181

.7260

1.2125
1.1841
1.2009
1.1291

55
216
187
84

.0554

.0286

.0241

.0425
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4.2 Highlighting the effects of omitted variable bias

The findings presented in Table 4 indicate a steep increase in average cost efficiency
when controlling for unobserved inputs. We now further examine the extent to which
the inclusion or exclusion of unobserved input costs causes variation in the estimated
cost efficiencies θ and whether this effect may be hour-dependent. To single out the
effect of unobserved inputs we compare efficiency across models that both account for
environmental differences. Thus, we contrast efficiency scores obtained under the pre-
ferred Specification 3 (with both Ω and Z) with those obtained under Specification 4
(no Ω, Z). To keep our discussion focused, the remainder of the paper limits attention
to control room 1. Results for the other control rooms can be found in the Appendix A.3.

Because Specification 4 (no Ω, Z) is a very specific case of our preferred Specifica-
tion 3 (Ω, Z) we expect increases in efficiency when allowing for unobserved inputs. The
results in Table 4 confirm this intuition: for control room 1 average robust cost effi-
ciency levels increase by about 6%points when accounting for unobserved input usage.
Moreover, Specification 3 (Ω, Z) produces more precise estimates, as can be seen in the
last column. Furthermore, this 6% point difference in average robust cost efficiencies
conceals significant variation across hours. This is shown in Figure 3 where we subtract
the mean hourly robust cost efficiencies θmt obtained under Specification 3 from those
obtained in Specification 4, allowing a closer look at the omitted variable bias. As can
be seen from Figure 3 the omitted variable bias varies significantly with the hour-of-the-
day. More specifically, controlling for unobservables sharply increases efficiency at 6h,
11h and 19h-21h. Interestingly, Figure 1 presented in the introduction learns us that
these are hours that are generally characterized by lower output and automation levels.
This intuition is further confirmed through the negative correlation of -0.56 between
signal automation and the difference in cost efficiency (i.e. the omitted variable bias).

Taken together, our findings suggest that accounting for unobserved inputs leads to
a larger increase in efficiency for hours with lower levels of output and automation. This
is a clear consequence of the omitted variable bias present in Specification 4 (no Ω, Z).
The intuition goes as follows. If we do not account for unobserved input (as in Speci-
fication 4), hours with lower output levels will be deemed very inefficient. Afterwards,
adding unobservables takes into account that those lower levels of output are mainly
produced manually by the TC, while the higher output levels of the other hours are
driven to a certain extent by higher levels of automation. As such, in Specification 3 (Ω,
Z) we observe a sharp increase in efficiency for those hours with lower output levels.
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Figure 3: Control room 1 – Difference between mean hourly θmt obtained under Specifi-
cation 3 (Ω, Z) and Specification 4 (no Ω, Z)

5 Managerial implications

We conclude our application by illustrating some of the managerial implications of our
newly developed methodology. Specifically, we consider two different exercises. First,
we study the benefits of educating cross-trained operators (i.e. TCs that are trained
to operate in multiple control rooms) to prevent over-performance and super-efficiency.
Subsequently, we study our empirical results in more detail and relate variation in cost
efficiencies to hourly effects. This will demonstrate a clear need for alternative shift
flexibility. While our main focus lies on the interpretation of cost efficiencies, we will
also discuss variation in unobserved cost shares.

5.1 Policy implications: cross-trained operators to reduce over-perfor-
mance

Previously, we mentioned that super-efficient observations may be of particular interest
to local management. Given the safety-critical nature of railway traffic control, Infrabel
internally cultivates a culture of preventing overly high workload in order to proactively
mitigate the possible risks of over-performance. Requiring TCs to work at full mental
capacity for multiple consecutive hours presents both health and safety risks (with po-
tential disastrous consequences). For example, previous research established a clear link
between TC fatigue and the occurrence of human errors (Roets and Christiaens, 2019;
Roets and Folkard, 2022).
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The data in column 5 of Table 4 indicate a non-negligible amount of observations ob-
taining efficiency scores that exceed the 95% level. As such, a significant number of
observations may be forced to over-perform. Observe further from Table 4 that the
number of nearly efficient units varies considerably depending on whether unobserved
inputs are accounted for. Because the omitted variable bias produces larger inefficiency,
standard performance measures will tend to systematically underestimate the risk of
over-performance. Thus, including unobserved inputs Ω in the analysis is preferable
from both a methodological and a safety perspective.

To illustrate the benefits of TCs that are trained to operate in multiple control rooms (i.e.
cross-trained operators) we now aim to rebalance the current workforce in a way that
alleviates as much as possible the occurrence of super-efficiency and over-performance.
Specifically, we propose to reallocate staff from highly inefficient DMUs in the sending
control rooms to DMUs in the receiving control room that can be considered prone
to over-performing. This while ensuring that the transfer does not make any of the
DMUs in the sending control rooms prone to over-performance.21 Moreover, we impose
this rule at the date-hour level so that only DMUs pertaining to the same moment in
time can supply staff. This greatly improves realism of the exercise. Conceptually (and
technically), this assumes that workers can operate remotely within any control room
regardless of their location. In fact, at Infrabel continuous efforts are made to implement
such a flexible IT system and to provide staff with the necessary cross-training.

As before, we only discuss results for control room 1. In our preferred Specification
3 (Ω, Z) 260 observations of control room 1 obtain an efficiency level exceeding 0.975,
which we consider the threshold for over-performance. Searching for observations with
efficiency scores below 0.8 and allowing that merely a single staff member is transferred
from any of the sending control rooms to control room 1 remedies over 92% of the over-
performance of control room 1 (after controlling that the DMUs in the sending control
rooms do not become prone to over-performance). If we additionally allow that only
control rooms from the same region (i.e. Flanders or Wallonia) as control room 1 can
supply workers (for example because of language differences between regions) then over
81% of over-performance of control room 1 can be avoided. Together, these findings sug-
gest that cross-training and cross-utilization of workers may substantially benefit control
rooms.

Finally, we conduct an additional exercise reducing over-performance simultaneously
in all nine control rooms. The results indicate that a reorganization of staff (for exam-
ple because control rooms are made remotely accessible) eliminates 76% of total over-
performance across all control rooms. Allowing that only control rooms from within the

21Following the transfer we compute counterfactual efficiency scores for the impacted DMUs by com-
paring the efficient level of observed input costs against the observed input costs reflecting the staff
adjustment.
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same region can exchange staff, still removes total over-performance by around 62%.

5.2 Assessment of cost efficiency and unobserved costs

Before discussing the results in more detail we present in Table 5 Pearson correlations of
the different variables used in the analysis. We computed the input variable by summing
staff members, regardless of their grade. The results in Table 5 are rather intuitive. For
example, we find that the robust cost efficiencies θmt are correlated negatively with input
but positively with output levels, which makes sense. Moreover, we report a considerable
correlation between unobserved input costs Ω and both the signal automation variable
and output, reflecting the use of signal automation as a bounding variable to restrict
variation in unobserved input costs. The strong correlation between unobserved input
costs and output further confirms our intuition of the ARS explaining part of the hourly
variation in output levels. Lastly, the observed input levels show almost no correlation
with output, which is probably due to input levels being constant within 8-hour shifts.

Table 5: Correlation table, control room 1

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2319 1
Aggregate Input -.2282 -.2048 1
OutputTC .5029 .5627 .0391 1
Signal automation -.0809 .7245 .0794 .5439 1

We are now ready to document hourly variation in the reported results, which may
provide insights to managers about the sources of inefficiency. Remember that the
morning shift runs from 06h in the morning to 14h in the afternoon. The day shift then
begins at 14h and runs until 22h. Within shifts staffing levels remain constant, which
means we can interpret sudden drops in cost efficiency across hours as signs of limited
work shift flexibility (i.e. there being too much staff available for the amount of work
that needs to be done).

Hourly variation in cost efficiency. The boxplots presented in Figure 4 indicate
how the estimated robust cost efficiencies for control room 1 vary throughout the day.
Results for the remaining control rooms are available in Appendix A.3. We use the results
for control room 1 to explain the general pattern across control rooms. In general, we es-
tablish increasing efficiency levels during the morning rush hours, followed by a common
and rather significant drop in efficiency around noon. The reported pattern presents
a clear consequence of the existing, inflexible shift structure: although the volume of
railway traffic declines during lunch hours, staffing levels still reflect working conditions
of the morning rush hours. Afterwards, control rooms exhibit a more ambiguous pattern
in the afternoon and late afternoon, showing either a continuous increase or continuous
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decrease in cost efficiency, with common dips around 16h or 17h. We do not find evi-
dence in favour of increasing efficiency during the late afternoon rush hours, as is the
case in the morning shift. Lastly, control room 1 exhibits a rise in efficiency during the
final hours of the day. This is likely attributable to trains being directed to centralized
parking spots to spend the night, which creates extra workload for the traffic controllers.

Summarizing, the observed pattern of variation in hourly efficiency indicates that re-
vising the starting times (and possibly, the length) of shifts or introducing overlapping
shifts may enhance efficiency. For example, to avoid over-presence in control room 1 at
06h and during lunch hours, one possibility may be to have only a proportion of TCs
to begin work at 06h, while others end before lunch hours. As such, fewer staff can be
present at 06h and during lunch hours. More generally, our method facilitates exper-
imenting with various counterfactual analyses (e.g. overlapping shifts), the outcomes
of which may help managers in devising suitable improvement actions. Such exercises,
however, fall beyond the scope of the current paper.

Figure 4: Control room 1 – Boxplots of robust cost efficiencies θmt , by hour

Assessing unobserved costs Ω. Finally, we discuss estimates of the unobserved in-
put costs Ω. In order to obtain a more informative assessment we express the unobserved
input costs as a fraction of total costs, which we define as the sum of the observed in-
put costs and Ω. The resulting fractions can be interpreted as unobserved input cost
shares (=UCS), naturally bounded between 0 and 1 for every DMU in every iteration.
We compute DMU-specific robust UCS by taking an average over the different iterations.
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Figure 5 presents boxplots of the robust unobserved cost shares for control room 1,
by hour.22 In general, unobserved input costs represent between 35% and 45% of total
costs, showing limited variation across hours, with only a few exceptions. We notice for
example a steep increase in (median) UCS moving from 06h to 07h (i.e. the beginning of
morning peak hours) and observe a clear spike during afternoon peak hours followed by
a drop from 18h onwards. As such, the pattern of hourly variation in the reported UCS
in Figure 5 closely follows that of output and automation levels depicted in Figure 1.
This result reflects our bounding variable approach which reveals more frequent use of
automation during periods of high workload. In this regard, future work could study
whether the suggestions proposed above to increase cost efficiency might cause the UCS
to converge across hours (especially at 6h an 21h).

Figure 5: Control room 1 – Boxplot of robust unobserved cost shares, by hour

6 Conclusion

Applications of efficiency analysis typically assume that the analyst has full knowledge
of all input factors relevant for production. However, one can easily identify production
environments where these conditions are hard to meet. As an example, many business
operations are characterized by a heavy reliance on intangible input usage, digitization
and automation whose intangible nature stands in contradiction to these prior beliefs.

22For visual convenience, we only show unobserved cost shares of 30% and above.
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As such, existing methods for efficiency analysis and benchmarking may suffer from an
omitted variable bias, due to correlation between observed input usage and unobserved
(endogenous) inputs.

In the current paper we relax this standard assumption and develop a nonparamet-
ric efficiency measurement methodology that is robust to endogeneity issues. We build
on the nonparametric cost minimization framework of Cherchye et al. (2021) that uses
minimal assumptions to address identification of unobserved inputs. We extend this
framework by integrating efficiency measurement tools to evaluate suboptimal conduct.
As such, we are the first to differentiate between cost inefficiency (i.e. waste, suboptimal
conduct) and unobserved input usage (i.e. optimally chosen input factors that remain
unobserved to the analyst). Our approach relates the OR/MS literature on efficiency
analysis with the economic literature on heterogeneity in productivity, two literatures
which have been regarded as mutually exclusive ever since the influential article of Stigler
(1976).

We show the applicability and usefulness of our new approach through an empirical
application to customised Belgian railway traffic control data. First, our findings in-
dicate that performance heterogeneity may reflect both inefficient behavior as well as
unobserved inputs. Specifically, we report that controlling for unobserved input usage
does not preclude the existence of substantial levels of inefficiency. We further show that
these resulting inefficiencies cannot be explained by differences in environmental condi-
tions influencing the production process. Second, our results help reveal the channel
through which the omitted variable bias affects efficiency and indicate that observations
using a lower degree of automation are affected disproportionately if unobserved input
usage is neglected. Third, we demonstrate that overlooking the use of unobserved inputs
underestimates the risks of over-performance, which may lead to serious concerns from
an employee well-being, quality of service and safety perspective. Lastly, we established
a clear link between cost efficiency and hour-of-the-day, indicating the potential of cross-
training and more customised working arrangements.

The ideas developed in the previous sections serve as a basis for analyzing performance
in contemporaneous settings characterized by unobserved input factors. In our opin-
ion, a most interesting extension pertains to our focus on a single-output setting in the
present study. The multi-output generalization of our methodology could help to fur-
ther pinpoint output-specific sources of inefficiency. In this respect, a productive starting
point is the nonparametric framework for analyzing multi-output efficiency (with only
observed inputs) that is developed in Cherchye, De Rock, Dierynck, Roodhooft, and
Sabbe (2013). These authors adopt a similar cost minimization orientation as we do in
the current paper.
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A Appendix

A.1 Numerical examples

The following examples illustrate the working of our linear program OP-LP to compute
the DMU-specific cost efficiencies θt. We show that cost minimizing behavior can be
rejected even in minimalistic setting with information on only two DMUs, making use
of only 2 observed inputs.

Our first example uses a dataset S with input prices W1 = (1, 2) and W2 = (2, 1)
and input quantities X1 = (1, 2) and X2 = (2, 1). For given cost efficiency values θ1 and
θ2, the restrictions of OP-LP state that

5θ1 + Ω1 ≤
(
Q1

Q2

)
∗ 4 + Ω2,

5θ2 + Ω2 ≤
(
Q2

Q1

)
∗ 4 + Ω1.

We can reformulate this as

Ω1 − Ω2 ≤
(
Q1

Q2

)
∗ 4− 5θ1 and

Ω1 − Ω2 ≥ −
(
Q2

Q1

)
∗ 4 + 5θ2,

which implies that θ1 + θ2 ≤ 4
5

(
Q1

Q2
+ Q2

Q1

)
. If we then assume that the output levels Q1

and Q2 are such that
1

2
<
Q1

Q2
< 2,

we obtain that there do not exist positive values for Ω1 and Ω2 that make both DMUs
cost efficient (i.e. θ1 = θ2 = 1). To take a specific instance, assume that Q1 = 30 and
Q2 = 40. Then, solving OP-LP will yield the efficiency values θ1 = 1 and θ2 = 0.67
(corresponding to Ω1 = 0 and Ω2 = 2).

Our second example assumes the same input prices for all DMUs under evaluation,
which also applies to our own empirical application. In this case, we obtain testable
implications when information is available on only three DMUs, making use of only 2
observed inputs. To see this, consider a dataset S with input prices W = (1, 2) and input
quantities X1 = (1, 2), X2 = (2, 1) and X3 = (2, 2). For given cost efficiency values of
θ1, θ2 and θ3, the restrictions of OP-LP imply

5θ1 + Ω1 ≤
(
Q1

Q2

)
∗ 4 + Ω2,

5θ1 + Ω1 ≤
(
Q1

Q3

)
∗ 6 + Ω3,
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4θ2 + Ω2 ≤
(
Q2

Q1

)
∗ 5 + Ω1,

4θ2 + Ω2 ≤
(
Q2

Q3

)
∗ 6 + Ω3,

6θ3 + Ω3 ≤
(
Q3

Q1

)
∗ 5 + Ω1,

6θ3 + Ω3 ≤
(
Q3

Q2

)
∗ 4 + Ω2.

Adding up these inequalities obtains

4θ2 + 5θ1 ≤
(
Q1

Q2

)
∗ 4 +

(
Q2

Q1

)
∗ 5,

6θ3 + 5θ1 ≤
(
Q1

Q3

)
∗ 6 +

(
Q3

Q1

)
∗ 5,

6θ3 + 4θ2 ≤
(
Q2

Q3

)
∗ 6 +

(
Q3

Q2

)
∗ 4.

For
(
Q2

Q3

)
= 3

4 we obtain inconsistency with the lastly mentioned constraint for θ1 =

θ2 = θ3 = 1. As such, there do not exist positive values for Ω1, Ω2 and Ω3 that render
this dataset S cost efficient. As a specific instance, let Q1 = 50, Q2 = 30 and Q3 = 40.
Then, solving OP-LP gives the efficiency values θ1 = 1 and θ2 = 1 and θ3 = 0.9722
(corresponding to Ω1 = 1.8333, Ω2 = 0.5 and Ω3 = 0).

A.2 Monte Carlo simulation

We simulate a production setting that is characterized by unobserved input to analyze
the empirical performance of our efficiency evaluation model by benchmarking it against
the standard DEA model with constant returns to scale (i.e. the so-called CCR model,
after Charnes et al. (1978)).

Set-up. We assume the same data generating process as Cherchye et al. (2021) in their
original study. These authors consider a standard set-up with two inputs (capital and
labor) characterized by a Constant Elasticity of Substitution production function and
characterized by a labor bias (see also Doraszelski and Jaumandreu (2018)):

Q = (Ω
[
αKρ + (1− α)(ΩδL)ρ

] v
ρ
)eε. (1)

The addition of a technological bias in labor assures that our method is not limited
to Hicks-neutral technological change. In this function Q represents output, Ω is an
unobserved productivity input. K and L represent observed capital and labor usage,
respectively. Previous studies have demonstrated that nonparametric efficiency measures
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are sensitive to measurement error (see e.g. Gong and Sickles (1992); Ruggiero (2007)).
To analyze the robustness of our method to different levels of measurement error we
generate an error term ε representing mean-zero normally distributed noise with variance
σ2
ε . We consider 3 different level of noise with σ2

ε = {0, 0.025, 0.05}. In addition, we set
δ = −0.5, ρ = 0.75, α = 0.5 and v = 1 (=CRS) to calibrate the model. Ω and K follow a
jointly normal distribution. We consider 2 different scenario’s for the variance-covariance
matrix:

Scenario a):

(
Ω
K

)
∼ N2

[(
5
5

)
,

(
0.1 −0.01
−0.01 1

)]
,

Scenario b):

(
Ω
K

)
∼ N2

[(
5
5

)
,

(
0 0
0 1

)]
.

In scenario a) there is heterogeneity in unobserved input Ω and we allow for some de-
gree of correlation between capital inputs and the unobserved input (note that there
will also be correlation between Ω and the labor input L). As such, there is potential
for an omitted variable bias. By contrast, in scenario b), there is no heterogeneity in
unobserved input usage and thus no omitted variable bias. Ω is simply a constant that
does not impact the optimization problem. We compare our estimates against the CCR
model which we predict will only provide accurate estimates in scenario b) (when the
unobserved inputs are essentially non-existent).

We set wK = 2 and wΩ = 4 for all observations. Using these generated values (Ω, wΩ,K,wK , δ, α, ρ, v)
we solve for optimal labor usages L, labor prices wL and output levels Q that corre-
spond with cost-minimizing behavior. Further, these output levels Q are then mul-
tiplied by eε to introduce noise. Finally, we simulate 25% of observations to be effi-
cient θ = 1 with the remaining inefficiencies following an i.i.d. half-normal distribution
θ ∼ exp(− | N (0, 0.02) |) and generate inefficient input levels through the division of K
and L by θ. A bounding variable is additionally calculated to reflect the ordering of the
unobserved costs within a group i.

Simulation results. We ran computational experiments with varying sample sizes of
500 and 2000 observations considering three different levels of noise. For each of these
6 cases, we generated 200 Monte Carlo samples for which we provide results below. For
simplicity, we abstain from using robust methods. We ran LP-OP with an additional
bounding variable that restricts the Ω values within every group i. In all samples, each
group i contains 50 non-overlapping observations. This ensures group sizes that are
always smaller than the ones considered in the empirical application, where groups com-
prise around 80 observations. Next, in each sample we impose a common lower (upper)
bound on the Ω values lying 10% below (above) the lowest (highest) unobserved cost in
the sample. Further, we did not allow for super-efficient observations in the simulations
and simply set all Ω = 5 when computing scenario b).

Let us then consider our estimates of the cost efficiencies θ and unobserved inputs Ω.
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Table 6 documents the average Spearman rank correlations between the true and esti-
mated values, with the upper (lower) panel reporting simulation results under scenario a
(b). Consider first scenario a), denoted in the upper panel of Table 6. Column 1 presents

Table 6: Mean Spearman correlations between true and estimated values

θ θCCR Ω

Scenario a)

σ2
ε=0 .9477 .8515 .9830

N=500 σ2
ε = 0.025 .8650 .8171 .9215
σ2
ε = 0.05 .7448 .7353 .8478

σ2
ε=0 .9498 .8553 .9821

N=2000 σ2
ε=0.025 .8643 .8206 .9143
σ2
ε=0.05 .7432 .7361 .8346

Scenario b)

σ2
ε=0 .9999 .9874 -

N=500 σ2
ε=0.025 .9249 .9139 -
σ2
ε=0.05 .8175 .7988 -

σ2
ε=0 1 .9909 -

N=2000 σ2
ε=0.025 .9272 .9224 -
σ2
ε=0.05 .8195 .8091 -

mean Spearman rank correlations between the true θ and their estimates obtained by
our method, for different degrees of noise. We observe that our produced model esti-
mates correlate strongly with the true cost inefficiencies. Although, not surprisingly, the
correlations deteriorate slightly with the addition of increasing levels of noise, our model
outperforms the CCR model, for which correlations with the true values are reported in
the second column. Next, column 3 shows Spearman rank correlations between true and
estimated unobserved input costs. We observe high correlations between the estimated
and true unobserved input cost levels, exceeding the correlations reported for θ. Again,
the reported correlation drops with increasing levels of noise.

Now consider the results under scenario b), denoted in the lower panel of Table 6. As
expected, both CCR and our model obtain accurate estimates.23 These results underline
the usefulness of our model even when the existence of unobserved inputs is questionable.

The previous results illustrate the usefulness of our approach in relation to existing
methods. Next, to assess the quality of our simulation results we computed the Mean
Absolute Deviation (=MAD) between the true values and model estimates. The MAD

23The outperformance of our model in comparison to the CCR model is due to the inclusion of price
information for the observed inputs in our model. We restrict our comparison to the CCR model
without inclusion of input price information, as this is the most popularly used DEA methodology in
the literature.
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shows how well the estimates of the different models approximate the true values (i.e.
how close do the estimates lie to their true values). Together with the general impres-
sions obtained from the correlation analysis the MAD allows for a more comprehensive
assessment of simulation performance. Table 7 documents the Mean Absolute Deviations
between the true and estimated values, with the upper (lower) panel reporting simula-
tion results under scenario a (b). Examining first the upper panel, we find the MAD

Table 7: Average Mean Absolute Deviation between true and estimated values

θ θCCR Ω
(%point) (%point) (%)

Scenario a)

σ2
ε=0 .0100 .0689 .1244

N=500 σ2
ε = 0.025 .0228 .0833 .1215
σ2
ε = 0.05 .0472 .1165 .1065

σ2
ε=0 .0098 .0854 .1277

N=2000 σ2
ε=0.025 .0231 .1049 .1154
σ2
ε=0.05 .0481 .1470 .0916

Scenario b)

σ2
ε=0 4e-5 .0004 -

N=500 σ2
ε=0.025 .0517 .0461 -
σ2
ε=0.05 .1056 .0938 -

σ2
ε=0 8e-6 .0001 -

N=2000 σ2
ε=0.025 .0614 .0568 -
σ2
ε=0.05 .1232 .1135 -

for θ obtained by our method (column 1 in Table 7) to be generally small, although in-
creasing with higher levels of noise. Moreover, these MADs are much smaller than those
obtained by the CCR model (presented in column 2). This finding further confirms the
previously established outperformance against the CCR model. Next, a comparison of
the true unobserved input costs with the estimated values in step 1 (column 3) obtains
MADs representing roughly a 10-12% deviation. Finally, under scenario b (lower panel
of Table 7), we observe a similar performance for both models in approximating the true
θ.
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A.3 Additional empirical results

A.3.1 Boxplots of workload and signal automation (all control rooms)

(a) All control rooms: workload, by hour

(b) All control rooms: # of automatically opened signals, by hour

Figure 6: Boxplots of workload and signal automation (all control rooms)
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A.3.2 Correlation tables for all control rooms

Table 8: Correlation table, control room 1

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2319 1
Aggregate Input -.2282 -.2048 1
OutputTC .5029 .5627 .0391 1
Signal automation -.0809 .7245 .0794 .5439 1

Table 9: Correlation table, control room 2

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2263 1
Aggregate Input -.1190 .0279 1
OutputTC .6487 .5544 .0490 1
Signal automation -0.0260 .6803 .0439 .4764 1

Table 10: Correlation table, control room 3

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2148 1
Aggregate Input -.4697 -.0500 1
OutputTC .6243 .4117 -.0549 1
Signal automation -.1813 .4898 -.0290 .1574 1
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Table 11: Correlation table, control room 4

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2601 1
Aggregate Input -.1369 -.0367 1
OutputTC .5098 .6048 .0708 1
Signal automation -.0291 .6486 .0554 .5624 1

Table 12: Correlation table, control room 5

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.1670 1
Aggregate Input .0687 -.0776 1
OutputTC .5791 .4232 .5476 1
Signal automation .0829 .5027 .5592 .6993 1

Table 13: Correlation table, control room 6

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2992 1
Aggregate Input -.1665 -.0149 1
OutputTC .6174 .4965 .0175 1
Signal automation -.0912 .6825 -.0317 .4342 1

Table 14: Correlation table, control room 7

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.0972 1
Aggregate Input -.1605 .1649 1
OutputTC .5298 .6995 .2543 1
Signal automation .0822 .7309 .3461 .6872 1
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Table 15: Correlation table, control room 8

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2037 1
Aggregate Input -.0163 -.2606 1
OutputTC .5626 .3840 .4290 1
Signal automation .0260 .4785 .4404 .6211 1

Table 16: Correlation table, control room 9

θmt Ω Aggregate input OutputTC Signal automation

θmt 1
Ω -.2560 1
Aggregate Input .1139 -.4331 1
OutputTC .5275 .1548 .6077 1
Signal automation .1027 .2137 .5930 .7030 1
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A.3.3 Highlighting the omitted variable bias (all control rooms)

Figure 7: Difference between mean hourly θmt obtained under version 3 and version 4
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A.3.4 Assessment of robust cost efficiency and unobserved input costs (all
control rooms)

(a) All control rooms: Boxplots of the robust cost efficiencies θmt , by hour

(b) All control rooms: Boxplots of robust unobserved cost shares, by hour
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