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Abstract

Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among
actuaries. To speed up calculations, boosting is often applied to gradients of the loss func-
tion, not to responses (hence the name gradient boosting). When the model is trained by
minimizing Poisson deviance, this amounts to apply the least-squares principle to raw resid-
uals. This exposes gradient boosting to the same problems that lead to replace least-squares
with Poisson Generalized Linear Models (GLM) to analyze low counts (typically, the number
of reported claims at policy level in personal lines). This paper shows that boosting can be
conducted directly on the response under Tweedie loss function and log-link, by adapting
the weights at each step. Numerical illustrations demonstrate similar or better performances
compared to gradient boosting when trees are used as weak learners, with a higher level of
transparency since responses are used instead of gradients.

Keywords: Risk classification, Boosting, Gradient Boosting, Regression Trees, GLM, Neu-
ral Networks.



1 Introduction and motivation

Boosting emerged from the field of machine learning and became rapidly popular among
insurance analysts. Broadly speaking, boosting is an iterative fitting procedure using weak,
or base learners. In a regression context, weak learners have rigid parametric forms and
cannot accurately adapt to the data under consideration. In each iteration, boosting fits a
weak learner that improves the fit of the overall model such that the ensemble arrives at
an accurate prediction. Thus, the score is not specified by the actuary and estimated at
once, as in generalized linear models (GLMs) or generalized additive models (GAMs) but
it is built sequentially, adding terms that weakly improve on the estimations obtained from
the preceding step.

Boosting requires that the analyst first decides which metric should be optimized for
estimating the score. In the boosting terminology, this metric is usually referred to as the
“loss function”. In insurance applications, loss functions generally correspond to negative
log-likelihood, or deviance functions. L1, L2 or Huber loss functions are popular choices in
other disciplines. Boosting works by adding in each iteration, the newly fitted base learner
to the previously estimated score, as shown in Algorithm 1. The analyst thus has to decide
which base learner to use. Boosting is particularly effective when base learners are trees of
limited depth. But the base learner can also be linear, or a penalized spline with a relatively
small number of degrees of freedom. Each feature can even possess its own base learners.
For instance, one could model the effect of the first feature on the score using a tree, and
the one of the second feature using a linear model. In every boosting iteration, only the
best-performing base learner and hence the best-performing feature is included in the final
model. We refer the readers to Denuit et al. (2019b, 2020) for an extensive treatment of
boosting in the context of insurance, with applications to tree-based methods and neural
networks, and to the review papers by Mayr et al. (2014a,b) for a general introduction to
the topic.

To ease numerical aspects, boosting is often applied on gradients of the loss function, that
is, on the gradients of the deviance function in insurance applications. Instead of maximiz-
ing the log-likelihood associated with the response, gradient boosting applies a least-squares
principle on its gradients, as described in Algorithm 2. In this form, boosting has become
very popular among data analysts and several packages available in open-source software
implement highly effective boosting algorithms such as the Extreme Gradient boosting (XG-
Boost) algorithm, for instance.

There have been numerous applications of gradient boosting to insurance pricing in the
last decade. We refer the interested reader to Lee and Lin (2018) for an extensive review of
the different boosting algorithms that have been proposed so far. Let us just mention a few
of them, to demonstrate the wide applicability of this approach in this context. Guelman
(2012) applied gradient boosted trees to predict motor insurance losses. Liu et al. (2014)
considered claim frequencies, using multi-class AdaBoost trees. Yang et al. (2018) adapted
gradient boosted tree algorithm to Tweedie models. Pesantez-Narvaez et al. (2019) employed
XGBoost to predict the occurrence of claims using telematics data. Henckaerts et al. (2021)
worked with random forests and boosted trees to develop full tariff plans built from both
the frequency and severity of claims.

However, boosting is not limited to gradients and can also be regarded as an iteratively re-

1



weighted, or re-offseted procedure applied to the original data, as shown in Proposition 3.1.
This alternative view to boosting makes the approach very intuitive and better adapted to the
shape of data commonly encountered in insurance applications (low counts for claim numbers
in personal lines and highly skewed severity data). In a sense, this revives the early examples
of boosting procedures which were not based on gradients such as the popular Adaboost
algorithm. The central idea behind AdaBoost, an early form of boosting for classification is
to iteratively re-weight the observations so that observations that were misclassified in the
preceding step get higher weights in the next step. This forces the algorithm to concentrate
on the cases which are hard to classify, boosting its accuracy. As shown in Friedman et al.
(2000), Adaboost turns out to be equivalent to forward stagewise additive modeling based
on an exponential loss function that yields the same solution at population level as Binomial
likelihood.

Interpreting boosting as a functional gradient descent algorithm opened the door to
responses obeying distributions in the Exponential Dispersion family (Poisson, Gamma or
Tweedie, for instance), commonly used in insurance applications since the adoption of GLMs
for insurance pricing and reserving in the 1990s. Building on the wide acceptance of GLMs
in the actuarial community, gradient boosting rapidly reached a dominant position among
the machine learning algorithms applied in insurance applications since its introduction in
Friedman (2001). In this approach, estimation is performed by a forward stagewise proce-
dure, fitting the base learner not to re-weighted observations, as in AdaBoost, but to the
negative gradient vector of the loss function evaluated at the previous iteration.

For Normal responses, gradient boosting consists in including the prediction from the last
iteration in the offset. This is because gradients reduce to the raw residuals with the squared
error function (that is, the negative Normal log-likelihood). In the Normal case (see Section
2.4), the boosting algorithm thus re-fits the residuals from the preceding step, adding the
effect of the feature that best improves model performances. Equivalently, the prediction
obtained in the previous iteration is put in offset when including a new term in the score.
Gradient boosting thus reduces to an iteratively re-offseting procedure in the Normal case,
still working with the responses under consideration by modifying offsets at each step.

However, gradient boosting beyond the Normal case typically faces the same problem
that lead to the adoption of GLMs for insurance applications. Instead of maximizing the
log-likelihood, gradient boosting applies a least-squares principle on its gradients. In Poisson
regression for instance, gradient boosting consists in fitting raw residuals by least squares.
However, we know that least-squares is outperformed by Poisson regression for low counts,
as those encountered in pricing personal lines. Indeed, for low expected claim frequencies,
residuals (computed as the numbers of claims minus the expected claim frequencies) are
concentrated around integer values. For severities modeled by the Gamma distribution,
gradients obey a translated Gamma distribution, which can be markedly skewed and rules
out the least-squares principle. For general Tweedie response corresponding to compound
Poisson sums with Gamma-distributed summands, the abundance of zeroes and the mixture
of Gamma distributions for positive outcomes also result in highly dissymmetric gradients
and poor performances of least-squares estimation. These comments are based on the general
expressions (3.7) for gradients obtained from Tweedie responses. This clearly shows that
applying the least-squares principle on gradients is not effective and exposes actuaries to the
same deficiency that led to the massive adoption of GLMs in the 1990s, in lieu of Gaussian
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linear models.
In likelihood-based boosting, the loss function is minus the log-likelihood, or equivalently

the deviance, so that any distribution within the Exponential Dispersion family can be used.
Likelihood-based boosting was designed to solve problems appearing in GAMs by adopting
stagewise training of the base learners. This is the case with the GAMBoost procedure
proposed by Tutz and Binder (2006). The idea of likelihood-based boosting is to include base-
learners that directly maximize an overall likelihood in each boosting step. Given a starting
value or estimate from a previous boosting step, likelihood-based boosting approaches use
base learners for estimating a new effect correcting the previous estimation in a log-likelihood
that contains the previous score as a fixed offset. To speed up the calculations, base learners
are generally estimated using one step of the iterative re-weighted least squares algorithm,
using the current score as offset. Compared to gradient boosting, likelihood-based boosting
thus works with the responses, not with gradients.

The present contribution is closely related to generalized additive modeling by likelihood-
based boosting proposed by Tutz and Binder (2006). These authors suggested to resort to
penalized regression splines and penalized stumps (i.e. trees with only two terminal nodes)
as weak learners and to perform a single Fisher scoring step to estimate the corresponding
parameters. In the present paper, we show that Fisher scoring is even not needed when
trees are used as weak learners under Tweedie loss with log-link, provided the responses
are re-weighted and re-scaled at each boosting step. We also allow for more types of weak
learners, including neural networks and larger trees (compared to stumps), but no penalty
is included. The aim of this paper is to show that responses can be used directly and that
there is no need to replace them with gradients as long as Tweedie loss is adopted, with
log-link.

For Normally-distributed responses, including an offset is the same as fitting a model
to the residuals from the previous boosting step, and likelihood maximization by a base
learner becomes standard least-squares estimation with respect to these residuals. In this
special case, likelihood-based boosting thus coincides with gradient boosting. For the kind of
responses encountered in actuarial applications, such as claim frequencies and severities on
individual policies, likelihood-based boosting improves on gradient boosting by recognizing
the particular shape of the responses (whereas gradient boosting applies a least-squares
principle, whatever the range of the gradients).

This paper aims to show that there is often no need to boost gradients in insurance
applications, since boosting can easily be performed directly with responses under Tweedie
loss function and log-link. Given that this setting is now widely adopted by actuaries to
conduct their analyzes, the results of this paper are widely applicable to insurance. From a
methodological point of view, we extend in Proposition 3.1 the results obtained by Wüthrich
and Buser (2019) in the Poisson case to the whole Tweedie family under log-link. In the
Poisson case, this link is the canonical one and Wüthrich and Buser (2019) demonstrated
that there was no need to resort to gradient boosting when using regression trees as weak
learners. Indeed, at each iteration, the structure of the new tree is obtained by least-squares
under gradient boosting, facing the well-known problems with low counts, while the Poisson
deviance loss can be used without difficulty provided exposure-to-risks are adapted at each
step. Gradient boosting trees thus introduce an extra step which leads to an unnecessary
approximation in the Poisson case. In this paper, we show that this property extends to
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the whole Tweedie family by an appropriate modification of weights at each boosting step,
provided the analysis is conducted under log-link. As an illustration, we use trees, GLMs
and neural networks as weak learners.

Lee and Lin (2018) introduced Delta Boosting Machine as a new member of the boosting
family, with application to general insurance. See also Lee (2020). The present contribution
is intimately connected with the work by Lee and Lin (2018) who considered various loss
functions (whereas we concentrate on the Tweedie one in this paper) but restricted their
study to trees as weak learners (whereas we also allow here for GLMs and Neural Networks).
In their Theorem 3, Lee and Lin (2018) established that it is optimal to partition data on the
basis of quantities called individual deltas (precisely defined in formula (4) of their paper)
under Tweedie loss and log-link. It turns out that individual deltas are precisely the log of
modified responses used at each step of the likelihood-based boosting procedure developed
in this paper. The analysis conducted here indeed confirms the previous finding by Lee
and Lin (2018), that gradients should be replaced with individual deltas when trees are
used as weak learners, and strengthens it in two ways under Tweedie loss and log-link: first
by considering also other types of weak learners and second by showing that gradients are
in fact not needed because likelihood-based boosting is feasible by iteratively re-weighting
and re-scaling the response. The contribution of this paper is thus methodological, showing
that responses can be used instead of gradients so that the procedure is more transparent.
Numerical illustrations demonstrate the feasibility of the approach, with similar or better
performances on the Wasa data set used by Ohlsson and Johansson (2010). Even if no
general conclusion can be drawn from an analysis conducted on a particular data set, this
shows that the proposed method can be implemented in practice.

The remainder of this paper is organized as follows. Section 2 recalls the boosting prin-
ciple and its forward stagewise additive modeling. The particular Normal and Poisson cases
are considered there, showing that gradients are not needed to conduct boosting under the
corresponding deviance. Section 3 extends the results in the Poisson case to the whole
Tweedie family, under log-link function. Section 4 is devoted to a case study using trees,
GLMs and neural networks as weak learners. The final Section 5 summarizes the results and
concludes.

2 Boosting

2.1 Insurance pricing

In actuarial pricing, the aim is to evaluate the pure premium as accurately as possible. The
target is the conditional expectation µ(X) = E[Y |X] of the response Y (claim number or
claim amount for instance) given the available information summarized in a vector X of
features X1, X2, . . . , Xp. The function x 7→ µ(x) = E[Y |X = x] is unknown to the actuary
and is approximated by a working predictor x 7→ µ̂(x) entering premium calculation.

Lack of accuracy for µ̂(x) is defined by the generalization error

Err(µ̂) = E [L(Y, µ̂(X))] ,

where L(., .) is the loss function measuring the discrepancy between its two arguments and the
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expected value is over the joint distribution of (Y,X). We aim to find a function x 7→ µ̂(x)
of the features minimizing the generalization error.

We denote by
D = {(y1,x1), (y2,x2), . . . , (yn,xn)} , (2.1)

the set of observations used to fit the model µ̂, called training set. An estimate µ̂(x) to
µ(x) is obtained by applying a training procedure to the training set D. Common training
procedures restrict µ(x) to parametrized classes of functions. More specifically, a supervised
training procedure assumes that µ belongs to a family of candidate models of restricted
structure. Model selection is then defined as finding the best model within this family on
the basis of the training set. Of course, the true model is usually not a member of the
family under consideration, depending on the restricted structure imposed to the candidate
models. However, when these restrictions are flexible enough, some candidate models could
be sufficiently close to the true model to provide an accurate pricing structure.

2.2 Ensemble learning methods

Ensemble techniques assume structural models of the form

µ(x) = g−1 (score(x)) = g−1

(
M∑
m=1

T (x; am)

)
, (2.2)

where g is the link function and T (x; am), m = 1, 2, . . . ,M , are usually simple functions of
the features x, characterized by parameters am. In (2.2), the score is the function of features
x mapped to µ(x) by the inverse of the link function g. Estimating a score of the form

score(x) =
M∑
m=1

T (x; am) ,

by minimizing the corresponding training sample estimate of the generalized error

min
{am}M1

n∑
i=1

L

(
yi, g

−1

(
M∑
m=1

T (xi; am)

))
, (2.3)

is in general infeasible. It requires computationally intensive numerical optimization tech-
niques. One way to overcome this problem is to approximate the solution to (2.3) by using
a greedy forward stagewise approach, also called boosting.

2.3 Forward stagewise additive modeling

Forward stagewise additive modeling consists in sequentially fitting a single function and
adding it to the expansion of prior fitted terms. Each fitted term is not readjusted as new
terms are added into the expansion, contrarily to a stepwise approach where previous terms
are each time readjusted when a new one is added. Specifically, we start by computing

â1 = argmin
a1

n∑
i=1

L
(
yi, g

−1 (ŝcore0(xi) + T (xi; a1)
))
, (2.4)
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where ŝcore0(x) is an initial guess (for instance, just an intercept). Then, at each iteration
m ≥ 2, we solve the subproblem

âm = argmin
am

n∑
i=1

L
(
yi, g

−1 (ŝcorem−1(xi) + T (xi; am)
))
, (2.5)

with
ŝcorem−1(x) = ŝcorem−2(x) + T (x; âm−1).

This leads to the following algorithm:

Algorithm 1 Forward Stagewise Additive Modeling.

1. Initialization :
Initialize ŝcore0(x) to be a constant. For instance:

ŝcore0(x) = argmin
β

n∑
i=1

L(yi, g
−1(β)).

2. Main procedure :
For m = 1 to M do

a) Compute âm as defined in Equation (2.4).
b) Update ŝcorem(x) = ŝcorem−1(x) + T (x; âm).

End for

3. Output:

µ̂boost
D (x) = g−1

(
ŝcoreM(x)

)
.

The forward stagewise additive modeling described in Algorithm (1) is also called boost-
ing. Boosting is thus an iterative method based on the idea that combining many sim-
ple functions should result in a powerful one. In a boosting context, the simple functions
T (x; am) are called weak learners or base learners.

There is a large variety of weak learners available for boosting models. For instance, com-
monly used weak learners are wavelets, multivariate adaptive regression splines, smoothing
splines, classification trees and regression trees or neural networks. For instance, the “param-
eters” am represent the splitting variables and their split values as well as the corresponding
predictions in the terminal nodes for regression trees. The two next subsections detail the
step 2.1 of the forward stagewise additive approach for squared error loss and Poisson de-
viance loss functions.

2.4 Squared error loss

The most common criterion to estimate the model is the squared-error loss

L(y, µ̂(x)) = (y − µ̂(x))2 ,
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together with the identity link function. Then, step 2.1 in Algorithm (1) simplifies to

âm = argmin
am

n∑
i=1

(
yi − ŝcorem−1(xi) + T (xi; am)

)2
= argmin

am

n∑
i=1

(ri,m + T (xi; am))2 ,

where ri,m is the residual of the model after m−1 iterations on the ith observation. One sees
that the term T (x; am) actually fits the residuals obtained after m − 1 iterations. Finding
the solution to (2.5) is thus no harder than for a single weak learner. It amounts to fit a
weak learner on the working training set

D(m) = {(ri,m,xi), i = 1, . . . , n} .

Notice that minimizing the squared-error loss function is equivalent to maximizing the log-
likelihood of responses, y, that are assumed Normal. For non-Gaussian responses, such as
low count Poisson data, the squared-error loss is then less appropriate than deviance loss
function, as detailed in the next section.

2.5 Poisson deviance loss

The squared loss function of the previous paragraph is also the deviance of normally dis-
tributed observations. In actuarial applications, such as claim frequency modeling, another
distribution of interest is the Poisson one. In this case, we have to consider (2.5) with the
Poisson deviance loss

L(y, µ̂(x)) = 2

(
y ln

y

µ̂(x)
− (y − µ̂(x))

)
,

and the log-link function (which is the canonical link function for the Poisson distribution).
In actuarial studies, this choice is often made to model the number of claims, so that we
also account for the length of the observation period e referred to as the exposure-to-risk.
In such a case, one observation of the training set can be described by the claims count yi,
the features xi and the exposure-to-risk ei, so that we have

D = {(yi,xi, ei), i = 1, . . . , n} .

In this context, (2.5) becomes

âm = argmin
am

n∑
i=1

L
(
yi, ei exp

(
ŝcorem−1(xi) + T (xi; am)

))
= argmin

am

n∑
i=1

L
(
yi, ei exp

(
ŝcorem−1(xi)

)
exp (T (xi; am))

)
,

which can be expressed as

âm = argmin
am

n∑
i=1

L (yi, ei,m exp (T (xi; am))) ,
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with
ei,m = ei exp

(
ŝcorem−1(xi)

)
,

for i = 1, . . . , n. At iteration m, ei,m is a constant and can be regarded as a working
exposure-to-risk applied to observation i.

Again, solving (2.5) is thus no harder than for a single weak learner. This is equivalent
to building a single weak learner with the Poisson deviance loss and the log-link function on
the working training set

D(m) = {(yi,xi, ei,m) , i = 1, . . . , n} .

This observation has been first made by Wüthrich and Buser (2019). In comparison, gradient
boosting, introduces an extra step which leads to an unnecessary approximation. For the
sake of completeness, gradient boosting algorithm is recalled in appendix A. We can see there
that at each iteration, the structure of the new estimator is obtained by approximating the
gradient of the generalized error in the least-squares (step 2.b, see Appendix A) senses instead
of minimizing directly the Poisson deviance loss. For low counts, such as those encountered
in personal insurance lines, this exposes gradient boosting to the same problems that lead
actuaries to adopt GLM for pricing.

In the next section, we establish that the result valid in the Poisson case also holds more
generally, for the whole Tweedie family under log-link.

3 Boosting with Tweedie loss function under log-link

3.1 Tweedie family of distributions

In practice, actuaries often use distributions that belong to the Tweedie class together with
the log-link function for modeling responses. The log-link function is chosen mainly because
of the multiplicative structure it produces for the resulting estimates. The Tweedie class
regroups the members of the Exponential Dispersion family having power variance functions
V (µ) = µξ for some ξ.

Specifically, the Tweedie class contains continuous distributions such as the Normal,
Gamma and Inverse Gaussian distributions. It also includes the Poisson and compound
Poisson-Gamma distributions. Compound Poisson-Gamma distributions can be used for
modeling annual claim amounts, having positive probability at zero and a continuous distri-
bution on the positive real numbers. In practice, annual claim amounts are often decomposed
into claim numbers and claim severities and separate analyses of these quantities are con-
ducted. Typically, the Poisson distribution is used for modeling claim counts and the Gamma
or Inverse Gaussian distributions for claim severities. We refer the reader to Delong et al.
(2021) for a through presentation of Tweedie models and their application to insurance.

Table 3.1 gives a list of all Tweedie distributions. Negative values of ξ gives continuous
distributions on the whole real axis. For 0 < ξ < 1, no member of the Exponential Dispersion
family exists. Only the cases ξ ≥ 1 are thus interesting for applications to insurance.
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Type Name
ξ < 0 Continuous -
ξ = 0 Continuous Normal
0 < ξ < 1 Non existing -
ξ = 1 Discrete Poisson
1 < ξ < 2 Mixed, non-negative Compound Poisson-Gamma
ξ = 2 Continuous, positive Gamma
2 < ξ < 3 Continuous, positive -
ξ = 3 Continuous, positive Inverse Gaussian
ξ > 3 Continuous, positive -

Table 3.1: Tweedie distributions.

3.2 Tweedie deviance-based boosting under log-link

From e.g. Denuit et al. (2019a, Table 4.7 pp 153), Tweedie deviance loss function is given
by

L(y, µ̂(x)) =



(y − µ̂(x))2 if ξ = 0 ,

2
(
y ln y

µ̂(x)
− (y − µ̂(x))

)
if ξ = 1,

2
(
− ln y

µ̂(x)
+ y

µ̂(x)
− 1
)

if ξ = 2,

2
(

max{y,0}2−ξ
(1−ξ)(2−ξ) −

yµ̂(x)1−ξ

1−ξ + µ̂(x)2−ξ

2−ξ

)
otherwise (ξ > 0) .

(3.1)

For ξ = 0, we recover the L2 loss function whereas ξ = 1 and 2 correspond to the Poisson
and Gamma deviance functions, respectively.

Let us revisit the Poisson case (ξ = 1) to understand the extension to the whole Tweedie
family. In the Poisson case, we have noticed that

L
(
yi, ei exp

(
ŝcorem−1(xi) + T (xi; am)

))
= L (yi, ei,m exp (T (xi; am))) , (3.2)

with ei,m = ei exp
(
ŝcorem−1(xi)

)
. For a Poisson response Y , we know that the actuary is

allowed to work either with the observed claim count Y or with the observed claim rate, or
claim frequency Ỹ = Y/e provided the weight ν = e enters the analysis. The distribution of

the claim rate Ỹ still belongs to the Tweedie class and is called the Poisson rate distribution.
See Property 2.5.1 in Denuit et al. (2019a) for more details. This is reflected by the fact
that the Poisson deviance loss satisfies

L
(
yi, ei exp

(
ŝcorem−1(xi) + T (xi; am)

))
= νiL

(
ỹi, exp

(
ŝcorem−1(xi) + T (xi; am)

))
,

(3.3)
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with νi = ei and ỹi = yi
ei

. Working with the claim rates ỹi then yields

νiL(ỹi, exp(ŝcorem−1(xi) + T (xi; am)))

= νi2

(
ỹi ln

(
ỹi

exp(ŝcorem−1(xi) + T (xi; am))

)
−
(
ỹi − exp(ŝcorem−1(xi) + T (xi; am))

))
= νi exp(ŝcorem−1(xi)) 2

(
ỹi

exp(ŝcorem−1(xi))
ln

(
ỹi

exp(ŝcorem−1(xi)) exp(T (xi; am))

)
−
(

ỹi
exp(ŝcorem−1(xi))

− exp(T (xi; am))

))

= νi exp(ŝcorem−1(xi))L

(
ỹi

exp(ŝcorem−1(xi))
, exp(T (xi; am))

)
= νi,mL (r̃i,m, exp(T (xi; am))) , (3.4)

with

νi,m = νi exp(ŝcorem−1(xi)) ,

r̃i,m =
ỹi

exp(ŝcorem−1(xi))
. (3.5)

The mth iteration of the boosting procedure reduces to build a single weak learner on the
working training set

D(m) = {(νi,m, r̃i,m,xi), i = 1, . . . , n},

using the Poisson deviance loss and the log-link function. The weights are each time updated
together with the responses that are assumed to follow Poisson rate distributions.

Actually, this approach extends to the whole class of Tweedie distributions. Let us denote

νi,m =νi exp(ŝcorem−1(xi))
2−ξ ,

r̃i,m =
yi

exp(ŝcorem−1(xi))
.

Notice that ln r̃i,m corresponds to individual deltas defined in equation (4) in Lee and Lin
(2018) under Tweedie loss and log-link. In accordance with Theorem 3 by these authors,
we also conclude from the next result that gradients should be abandoned and replaced
with iteratively re-scaled responses r̃i,m. Precisely, the next result shows that when we work
with the log-link function and a response that belongs to the Tweedie class (and so with a
loss function of the form (3.1)), solving (2.5) amounts to build a single weak learner on the
working training set

D(m) = {(νi,m, r̃i,m,xi), i = 1, . . . , n} .

Proposition 3.1. Consider the deviance loss function (3.1). Then, (2.5) with the log-link
function, that is

âm = argmin
am

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi) + T (xi; am)

))
,
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can be rewritten as

âm = argmin
am

n∑
i=1

νi,mL (r̃i,m, exp (T (xi; am))) . (3.6)

Proof. The case ξ = 1 has already been discussed. Turning to the Normal case ξ = 0, we
have

νiL(yi, exp(ŝcorem−1(xi) + T (xi; am)))

= νi

(
yi − exp

(
ŝcorem−1(xi) + T (xi; am)

))2
= νi exp(2ŝcorem−1(xi))

(
yi

exp(ŝcorem−1(xi))
− exp(T (xi; am))

)2

= νi exp(2ŝcorem−1(xi))L

(
yi

exp(ŝcorem−1(xi))
, exp(T (xi; am))

)
= νi,mL (r̃i,m, exp(T (xi; am))) ,

where r̃i,m is defined by Equation (3.5). Now, for the Gamma case ξ = 2, it comes

νiL
(
yi, exp

(
ŝcorem−1(xi) + T (xi; am)

))
= νi

(
− 2 ln

(
yi

exp
(
ŝcorem−1(xi) + T (xi; am)

))

+2

(
yi

exp
(
ŝcorem−1(xi) + T (xi; am)

) − 1

))

= νi

(
− 2 ln

(
r̃i,m

exp (T (xi; am))

)
+ 2

(
r̃i,m

exp (T (xi; am))
− 1

))
= νiL (r̃i,m, exp (T (xi; am))) .

Finally, when ξ /∈ {0, 1, 2}, we get

νiL(yi, exp(ŝcorem−1(xi) + T (xi;am)))

= νi 2

(
max(yi, 0)2−ξ

(1− ξ)(2− ξ)
− yi exp(ŝcorem−1(xi) + T (xi;am))1−ξ

1− ξ

+
exp(ŝcorem−1(xi) + T (xi;am))2−ξ

2− ξ

)
= νi exp(ŝcorem−1(xi))

2−ξ2

(
max(r̃i,m, 0)2−ξ

(1− ξ)(2− ξ)
− r̃i,m exp(T (xi;am))1−ξ

1− ξ
+

exp(T (xi;am))2−ξ

2− ξ

)
= νi,mL (r̃i,m, exp(T (xi;am))) ,

which completes the proof.

Therefore, when we work with the log-link function and a response that obeys a distri-
bution belonging to the Tweedie class, which are the most relevant cases for application in
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insurance, likelihood boosting should be preferred to gradient boosting. The latter procedure
introduces an extra step which is unnecessary and leads to an approximation that can be
easily avoided with boosting. This extends the point made by Wüthrich and Buser (2019)
for the Poisson distribution to the whole Tweedie class.

On the other hand, the gradient boosting applies a least-squares principle on the gradi-
ents of the deviance. As the sum of least squares corresponds to the log-likelihood of a
Gaussian model, choosing this optimization criterion is equivalent to assume that gradients
are realizations of a Normal random variable. But under Tweedie deviance loss function and
log-link, the negative gradient in Step 2.1 of the Algorithm (2) in Appendix A is given by

− ∂L (y, µ(x))

∂µ(x)

∂µ(x)

∂score(x)
=

2

µ(x)ξ−2

(
y

µ(x)
− 1

)
, (3.7)

ξ ≥ 0. This equation emphasizes that the gradient inherits from the distribution y that is
scaled and translated. Except in the normal case (ξ = 1), applying the least squares principle
is then ineffective and slows down the convergence compared to the Tweedie boosting as
illustrated in the following section.

4 Numerical illustrations

4.1 Data set

To illustrate our results, we compare the ability of boosting and gradient boosting models to
estimate the expected claim frequency and expected claim severity for motorcycle drivers.
The data set comes from the Swedish insurance company Wasa and has been collected
in 1999. The database is available on the companion website of the book of Ohlsson and
Johansson (2010) and contains information about motorcycle insurance policies over the
period 1994-1998. A contract is described by quantitative and categorical variables. The
quantitative variables are the insured’s age and the ancienty of the vehicle. The categorical
variables are the policyholder’s gender, the geographic zone and the category of the vehicle.
The category of the vehicle is based on the ratio, noted EV, power in KW ×100 / vehicle
weight in kg + 75, rounded to the nearest integer. The data set reports the number of claims,
the total claim costs and the duration of the contract for each policy. Table 4.1 summarizes
the information provided by categorical features. The database comprises n = 62, 436 policies
(after removing contracts with a null duration). The total exposure is equal to 65,217 years
and 693 claims are reported.
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Rating factors Class Class description

Gender M Male
K Female

Geographic area 1 Central and semi-central parts of
Sweden’s three largest cities

2 Suburbs plus middle-sized cities
3 Lesser towns, except those in 5 or 7
4 Small towns and countryside
5 Northern towns
6 Northen countryside
7 Gotland (Sweden’s largest island)

Vehicle class 1 EV ratio -5
2 EV ratio 6-8
3 EV ratio 9-12
4 EV ratio 13-15
5 EV ratio 16-19
6 EV ratio 20-24
7 EV ratio 25-

Table 4.1: Rating factors of motorcycle insurances. Source: Ohlsson and Johansson (2010).

Tables 4.2 and 4.3 report the averages and standard deviations of claim frequency and
severity. Claims are more frequent and more expensive in urban and sub-urban environment
than in other areas. In this data set, female drivers have a higher claim frequency and
severity than men. This conclusion must nevertheless be nuanced as the portfolio counts
only 9,482 female insureds and different trends are observed if we refine this analysis by e.g.
geographic areas. We also observe that the most powerful vehicles (classes 6 and 7) cause
on average more accidents than others. Without surprise, the vehicle and owner’s ages are
important discriminating factors. Young drivers and recent vehicles cause accidents more
frequently and claim costs are higher for recent motorcycles.
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Average st. dev. Average st. dev.
Rating factors Class Frequency Frequency Severity Severity

Gender M 0.013 0.213 17 217 22793
K 0.031 1.023 24 434 34713

Geographic area 1 0.0681 1.2527 29 648 38 282
2 0.0287 0.3872 28 799 37 121
3 0.0209 0.4118 18 310 27 689
4 0.0227 1.2668 18 910 30 281
5 0.0105 0.2312 11 638 15 067
6 0.0124 0.2450 16 622 21 778
7 0.0027 0.0522 650 -

Vehicle class 1 0.0210 0.4402 21 907 38 779
2 0.0264 0.3449 15 201 21 895
3 0.0275 1.5218 30 013 46 787
4 0.0227 0.6304 22 108 28 882
5 0.0248 0.3152 21 600 28 072
6 0.0496 0.7988 23 999 27 510
7 0.0347 0.4376 27 826 26 670

Table 4.2: Averages and standard deviations (st. dev.) of claim frequency and severity by
modalities of rating factors.

Average st. dev. Average st. dev.
Frequency Frequency Severity Severity

Owner’s age ≤ 30 0.082 1.8813 25622 31208
31 ≤Owner’s age ≤ 50 0.0119 0.2589 22876 35708
51 ≤ Owner’s age 0.0104 0.2396 19823 37716
Vehicule age ≤ 5 0.0588 1.655 35109 43009
Vehicle age ≥ 6 0.0177 0.5068 14888 20430

Table 4.3: Averages and standard deviations (st. dev.) of claim frequency and severity by
ranges of owner and vehicle ages.

In this paper, we analyze the motorcycle insurance data set from Ohlsson and Johansson
(2010) with boosting and gradient boosting. We consider three weak learners: trees, ran-
domized GLMs and neural networks. We use a training set made of 80% of the observation
to build the models and we use the remaining 20% of the observations to compute out-
of-sample estimates of the deviance. Each time, we assess model performances (in-sample
and out-of-sample estimates of the deviance) compared to gradient boosting based on the
same weak learners. At each iteration of boosting, we estimate a weak learner to data with
adjusted exposure using a tweedie likelihood. In the gradient boosting, we fit a weak learner
to gradients with a Gaussian likelihood. As the β̂m’s (step 2.c of the algorithm in Appendix
A, Equation (5.2)) admit closed form expressions, both algorithms displays then comparable
computation times.
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4.2 Regression trees as weak learners

In this section, we use binary regression trees as weak learners. That is, we consider weak
learners T (x; am) of the form

T (x; am) =
∑
t∈Tm

ct,mI
[
x ∈ χ(m)

t

]
, (4.1)

where
{
χ
(m)
t

}
t∈Tm

is the partition of the feature space χ induced by the regression tree

T (x; am) and {ct,m}t∈Tm the corresponding predictions for the score. For regression trees,
the “parameters” am represent the splitting variables and their split values as well as the
corresponding predictions in the terminal nodes, that is,

am =
{
ct,m, χ

(m)
t

}
t∈Tm

.

With regression trees, a shrinkage parameter 0 ≤ γ < 1 is often used to slow the learning
rate of the training procedure, so that instead of adding tree T (x; am) to the score in Step
2.2 of Algorithm (1), we rather add γT (x; am). Small values for γ work best but result
in larger computation time since more regression trees are necessary. Empirically, values
for the shrinkage parameter γ smaller than 10% yield dramatic improvements for regression
estimation. We run the models of Section 4.2 with shrinkage parameter γ = 1%. We refer
the reader to the seminal book of Breiman et al. (1984) for details about the recursive
partitioning algorithm used to build binary regression trees.

4.2.1 Claims frequency

Let Y1, . . . , Yn be the numbers of claims observed in the data set. Precisely, Yi corresponds
to the number of claims caused by the ith policyholder during a time interval with length ei.
The numbers of claims Y1, . . . , Yn are assumed to be independent and Poisson distributed, so
that we adopt the Poisson deviance as loss function. We also work with the log-link function,
which is the canonical link in the Poisson case.

We use the R function rpart from the R package rpart of Therneau and Atkinson (2018)
to produce each of the M constituent trees for boosting models and gradient boosting models.
For the gradient boosting models, the command rpart is of course only used at each iteration
to determine the structure of the tree with the squared error loss, the predictions in the
terminal nodes being well estimated using the Poisson deviance as loss function. The size
of the trees is controlled with the variable maxdepth=D. A regression tree with maxdepth=D

has 2D terminal nodes, each terminal node having D− 1 ancestors. Note that specifying the
number of terminal nodes or the interaction depth of a tree is not possible with rpart.

We run boosting trees and gradient boosting trees on the training set for D = 1, 2, 3. The
whole training set is used at each iteration to produce the new tree and we use shrinkage
parameter γ = 1%. Figures 4.1 and 4.2 display the Poisson deviance (in-sample estimates
in Figure 4.1 and out-of-sample estimates in Figure 4.2) with respect to the number of
iterations. For each value of D, one sees from Figure 4.2 that the maximum number of
iterations M is taken large enough. The comparison of deviances in Figures 4.1 and 4.2
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shows that the boosting algorithm slightly outperforms the gradient boosting approach for
D = 1 and provides better results for D = 2, 3.

The main reason explaining this gap of performance is that gradient boosting applies a
least-squares principle on its gradients. As mentioned in Section 2.4, this is implicitly equiva-
lent to maximize the log-likelihood of gradient residuals assumed to be normally distributed.
This assumption in general does not hold for low count data and prevents gradient boosting
to significantly outperform boosting.
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Figure 4.1: Claims frequency: comparison of in-sample deviances obtained with boosting
trees (B) and gradient boosting trees (GB).
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Figure 4.2: Claims frequency: comparison of out-of-sample deviances obtained with boosting
trees (B) and gradient boosting trees (GB).

4.2.2 Average claims severity

Let us now study the claims severities. Here, we only consider policyholders i who made at
least one claim during the observation period ei, which represents only 666 drivers in the
data set. Among these 666 drivers, 639 made one claim and 27 two claims. For these 666
drivers, we denote by Yi the corresponding average claims severity and we use as weight νi
the number of claims. The average claims severities are assumed to be independent and
Gamma distributed, so that we work with the Gamma deviance as loss function and we
adopt the log-link function.

Again, we use the command rpart to produce each of theM constituent trees for boosting
models and gradient boosting models. Note that we rely on the R package distRforest of
Henckaerts (2020) to use the Gamma deviance as loss function. We control the size of the
trees with maxdepth=D, the whole training set is used at each iteration to produce the new
tree and we use a shrinkage parameter γ = 1%.

We run Boosting trees and gradient boosting trees for D = 1, 2, 3. In Figures 4.3 and
4.4, we show the Gamma deviance computed on the training set and on the validation set,
respectively, with respect to the number of iterations. We note from Figure 4.4 that the
maximum number of iterations M is taken large enough. Both approaches provide almost
identical results for the in-sample estimates of the deviance. The similar performance of both
methods is explained by the fact that the distribution of gradients in the Gamma regression
is closer to a Normal than in the Poisson case. However, when looking at the out-of-sample
estimates of the deviance, one sees that the boosting algorithm outperforms the gradient
boosting approach for D = 2, 3 and that both approaches perform similarly for D = 1.
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Figure 4.3: Claims severity: comparison of in-sample deviances obtained with boosting trees
(B) and gradient boosting trees (GB).
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Figure 4.4: Claims severity: comparison of out-of-sample deviances obtained with boosting
trees (B) and gradient boosting trees (GB).
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4.3 GLMs as weak learners

Tutz and Binder (2006, 2007) introduced GAMBoost as a procedure for fitting GAMs using
likelihood-based boosting. GAMBoost can cope with large numbers of possibly uninforma-
tive features, whilst avoiding over-fitting. This procedure has been implemented in the R

package GAMBoost, using P-splines as weak learners. To speed the calculations, parameters
involved in weak learners are estimated using only one iteration of the IRLS algorithm ap-
plied in the GLM and GAM settings (which is intuitively acceptable, since base learners
must be weak).

In this section, we consider a randomized GLM as base learner. In the mth iteration of
the boosting algorithm, we randomly select a subset Im of nglm < p features among the p
available ones and regress the response Y on them. As explained in Chapter 6 of Denuit et al.
(2019b), the randomization of the training procedure is a powerful technique for reducing
the variance of the estimator. The functions T (x; am), m = 1, 2, . . . ,M are then linear
combinations of the M subsets of covariates:

T (x; am) = am,0 +
∑
k∈Im

am,k xk ,

where am is a vector of dimension nglm that is estimated by a standard GLM procedure.
We also weaken the estimator by limiting the number of maximum iterations performed by
the GLM routine, as in GAMBoost except that we allow here for more than just one IRLS
step. We compare boosting and gradient boosting on the data set from the company Wasa.
In order to capture non-linearity between the response and continuous features, we convert
them into categories. This approach is also standard in the industry. We class policyholders
by age into 20 subsets of comparable size and vehicle ages are split in 10 categories. In this
setting, an insurance policy described by a set of 33 binary features.

4.3.1 Claims frequency

We assume that the numbers of claims Y1, . . . , Yn are independent and Poisson distributed.
The loss function is the Poisson deviance and we adopt the log-link function, which is the
canonical link in the Poisson case. We run 200 iterations for both boosting and gradient
boosting and choose a shrinkage parameter γ = 5%.

At each epoch, a GLM is estimated with 5, 8, 10 and 13 randomly selected covariates.
This allows us to weaken the estimator, in the same spirit than random forests. We also limit
to 30, the maximum number of iteratively reweighted least squares (IWLS) for estimating a
single GLM to keep under control the computation time.

Figures 4.5 and 4.6 respectively reports the evolution of the in- and out-of- sample de-
viance with respect to the number of gradient boosting iterations. For less than 150 itera-
tions, the boosting outperforms gradient boosting on the training set but achieves a higher
deviance on the validation set. After 150 iterations, both methods have similar in- and
out-of- sample performances.
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Figure 4.5: Claims frequency: comparison of in-sample deviances obtained with boosting
(B) and gradient boosting (GB).
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Figure 4.6: Claims frequency: comparison of out-of-sample deviances obtained with boosting
(B) and gradient boosting (GB).
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4.3.2 Average claims severity

We study here the average claim severities Yi using the corresponding number of reported
claims as weight νi. The responses are independent and Gamma distributed and we consider
a log-link function. Since the size of the training dataset is limited to 528 contracts, we
run 400 iterations for both boosting and gradient boosting with a shrinkage parameter γ =
1%. Figures 4.7 and 4.8 show the evolution of the in- and out-of- sample deviance with
respect to the number of iterations. On the training dataset, the boosting and gradient
boosting behave in a similar manner for base learners with 8 and 10 covariates. For 5 and
13 covariates, the boosting outperforms its gradient counterpart. The evolution of out-of-
sample deviances reveals that both methods overfit data after around 100 iterations for 8,
10 and 13 covariates in the GLM. The predictive power of the gradient boosting appears in
this case slightly better than the one of the boosting algorithm for 5 and 8 covariates. For
10 and 13 covariates, B and GB have respectively similar predictive performances up to 75
and 100 iterations. In this setting, the boosting method quicker overfits the validation set
than gradient boosting. Nevertheless, we should avoid to generalize this conclusion given
the limited size (138 contracts) of the validation dataset.
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Figure 4.7: Claims severity: comparison of in-sample deviances obtained with boosting (B)
and gradient boosting (GB).
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Figure 4.8: Claims severity: comparison of out-of-sample deviances obtained with boosting
(B) and gradient boosting (GB).

4.4 Neural networks as weak learners

In this section, we use a shallow neural network as base learner. This network involves three
layers, as illustrated in Figure 4.9. The first input layer dispatches the input signals, a vector
x of dimension p, between neurons of the intermediate layer. In this second layer, signals
are linearly mixed and pass through an activation function. The outputs of intermediate
neurons next activate the output neuron that sends back T (x; a).

The number of neurons in the jth layer is denoted as nnetj where j ∈ {1, 2} refers to the
intermediate and output layers, respectively. The activation functions of neurons, denoted
here as φi,j(.) are identified by two indices: i for the position in a layer and j for the layer.
The output of the ith neuron in the first layer, denoted by ŷi,1, is computed as follows:

ŷi,1 = φi,1

(
a1i0 +

p∑
k=1

a1i,kxk

)
i = 1, ..., nnet1 ,

where a1i,k are the weights for the kth explanatory variables, received by the ith neuron. The
output of the network is:

T (x; a) = φ1,2

a210 +

nnet1∑
k=1

a21,kŷk,1

 ,

where a is here the vector of neural weights.
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Figure 4.9: Illustration of a shallow neural network used as base learner in the Boosting
algorithm.

We compare boosting and gradient boosting on the data set from the company Wasa,
described in Section 4.1. In order to avoid numerical issues, we rescale the owner’s age
and ancienty of the vehicle and convert their domain on the pavement [0, 1] × [0, 1]. The
categorical features are converted into binary dummy variables. An insurance contract is
therefore described by 2 quantitative variables and 13 binary features.

4.4.1 Claims frequency

Again, we assume that the numbers of claims Y1, . . . , Yn are independent and Poisson dis-
tributed. The loss function is the Poisson deviance and we adopt the log-link function, which
is the canonical link in the Poisson case. At each epoch, a shallow network is estimated with
KERAS for R1. The intermediate layer counts from 1 to 4 neurons with hyperbolic tangent
activation functions2. In order to weaken the predictive power of base learners, we only run
50 iterations of the RMSPROP algorithm to estimate neural weights. This is a gradient de-
scent algorithm which has by default in Keras, a very low learning rate of 0.001 and requires
a large number of iterations before converging. Furthermore, we fuzzify the procedure by
working with small batches of 2000 contracts randomly chosen among the 49 949 policies of
the training set. As we perform 50 iterations, we pass on average only twice times the dataset
through the neural network. As the estimation of neural networks is time consuming, we
choose a higher shrinkage rate (γ = 60%) and run only 50 boosting and gradient boosting
iterations.

The comparison of deviances in Figure 4.10 confirms that the boosting algorithm out-
performs the gradient boosting approach on the training dataset for most of basic learners.
Out-sample deviances, plotted in Figure 4.11, shows that the predictive power of boosted

1Chollet, F., & others. (2015). https://github.com/rstudio/keras/
2Notice that the 1 Neuron NN differs from the GLM by the fact that covariates pass through a first layer

with hyperbolic tangent activation function.
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neural networks is also better than its gradient boosted counterpart for most of configura-
tions.
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Figure 4.10: Claims frequency: comparison of in-sample deviances obtained with boosting
(B) and gradient boosting (GB).
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Figure 4.11: Claims frequency: comparison of out-sample deviances obtained with boosting
(B) and gradient boosting (GB).

4.4.2 Average claims severity

We study here the average claim severities Yi using the number of reported claims as weight
νi. We assume that Y1, . . . , Yn are independent and Gamma distributed. Thus, we work
with the Gamma deviance as loss function and adopt the log-link. We run 50 iterations for
both boosting and gradient boosting algorithms with γ = 60%. The base learner is still a
shallow neural net with a hidden layer with 1 to 4 neurons and hyperbolic tangent activation
functions. As the data set is small, we run 1000 steps of the RMSprop algorithm on the
whole data set. The evolution of deviances with respect to iterations are shown in Figures
4.12 and 4.13. We cannot conclude that gradient boosting outperforms boosting. As for
GLM base learner, both methods overfit the dataset after a few iterations.
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Figure 4.12: Claims severity: comparison of in-sample deviances obtained with boosting (B)
and gradient boosting (GB).
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Figure 4.13: Claims severity: comparison of out-sample deviances obtained with boosting
(B) and gradient boosting (GB).
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5 Conclusions

The gradient boosting algorithm has outstanding performances in a wide variety of regression
problems. Instead of maximizing the log-likelihood, gradient boosting applies a least-squares
principle on its gradients. To some extent, this amounts to the assumption that gradients
are normally distributed as least squares are inversely proportional to the Gaussian log-
likelihood. In some circumstances, such as for low count datasets, it is then preferable to
consider log-likelihood based boosting as argued in this article for insurance applications.

When trees are used as weak learners, response boosting achieves similar or better per-
formances than gradient boosting on the particular Wasa data set. The conclusions of the
numerical study are more contrasted with GLM and NN weak learners where gradient boost-
ing sometimes performs better than response boosting, or is of similar quality. Even if it is
impossible to draw general conclusions from a single data set, the numerical analysis con-
ducted in Section 4 demonstrates that boosting responses instead of gradients is feasible from
a practical point of view and suggests that the proposed approach is particularly effective for
claim frequencies (low count responses). Further numerical analyzes should be performed
for claim severities (because of the limited number of observed severities comprised in the
Wasa data set) as well as for GLM and NN weak learners.

This work contributes to the literature in two directions. From a methodological point
of view, it extends the results of Wüthrich and Buser (2019) to the whole class of Tweedie
distributions. We show indeed that gradient boosting introduces an extra step which leads
to an unnecessary approximation of gradients. Instead, the boosting algorithm is performed
by a simple modification of weights at each iteration. From an empirical point of view, the
analysis of the claim frequencies and severities of motorcycle insurances comprised in the
Wasa data set shows that boosting achieves similar or better performances than its gradient
boosting counterpart when trees are used as weak learners while the conclusions are more
contrasted with GLM and neural weak learners. Since trees are widely used in insurance
studies, the approach proposed in this paper turns out to be useful in practice since it ensures
a higher level of transparency to end-users with comparable computation time.

Appendix A: Gradient boosting

Gradient boosting is a forward stagewise additive approach in which the estimator has the
following form:

µM(x) = g−1

(
M∑
k=0

βk T (x; ak)

)
,

where (βk)k=0,...,M ∈ R. In this framework, the functions (T (x; ak))k=0,...,M approximates
the negative gradient of the generalized error, in the least-squares sense. This leads to the
following algorithm:
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Algorithm 2 Gradient Boosting algorithm.

1. Initialization :
Initialize the constant estimator µ̂0 = g−1(â0) :

â0 = arg min
a0

n∑
i=1

L
(
yi, g

−1(a0)
)
. (5.1)

Set β̂0 = 1 and T (xi; â0) = â0.

2. Main procedure :
For m = 0 to maximum epoch, M − 1 do

a) Calculate the negative gradient g = (gi)i=1,...,n of the generalized error:

gi = −∂L (yi, µm(xi))

∂µm(xi)

∂µm(xi)

∂scorem(xi)
,

where µm(xi) = g−1 (scorem(xi)) and scorem(xi) =
∑m

k=0 T (xi; ak).
b) Estimate the weights am+1 of T (xi; am+1) regressing (gi)i=1,...,n:

âm+1 = arg min
am+1

n∑
i=1

(gi − T (xi; am+1))
2 .

c) Compute β̂m+1 such that

β̂m+1 = arg min
β

n∑
i=1

(
L
(
yi, g

−1 (ŝcorem(xi) + β T (xi; âm+1)
)))

. (5.2)

d) Update the estimator µ̂m+1(x) as follows:

µ̂m+1(x) = g−1
(

ŝcorem(x) + β̂m+1 T (x; âm+1)
)
.

End for
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