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Modeling the Spatial Distributions of Macro

Base Stations with Homogeneous Density:

Theory and Application to Real Networks

Abstract—Stochastic geometry is a highly studied field
in telecommunications as in many other scientific fields.
In the last ten years in particular, theoretical knowledge
has evolved a lot, whether for the calculation of metrics
to characterize interference, coverage, energy or spectral
efficiency, or exposure to electromagnetic fields. Many
spatial point process models have been developed but are
often left aside because of their unfamiliarity, their lack
of tractability in favor of the Poisson point process or
the regular lattice, easier to use. This article is intended
to be a short guide presenting a complete and simple
methodology to follow to infer a real stationary macro
antenna network using tractable spatial models. The focus
is mainly on repulsive point processes and in particular on
determinantal point processes which are among the most
tractable repulsive point processes. This methodology is
applied on Belgian and French cell towers. The results
show that for all stationary distributions in France and
Belgium, the best inference model is the β-Ginibre point
process.

Index Terms—stochastic geometry, cellular networks,
stationary point processes, β-Ginibre point process, deter-
minantal point process

I. INTRODUCTION

In recent years, cellular networks have been mod-

eled stochastically to take advantage of the benefits

of stochastic geometry (SG). Indeed, there is a great

lack of accuracy when a network is modeled as a

regular network. The other option would be to know

the exact location of every antenna in the network,

but then calculating the metrics mathematically without

involving simulations becomes impossible. SG enables

the representation of large networks and the calculation

of statistics and metrics on exposure [1], SINR [2],

energy correlation [3]...

SG and its inherent spatial point processes (PPs) are

widely used in a lot of fields (biology [4]–[6], ecology

[7], geology [8], seismology [9], astronomy [10], etc.).

Although a whole theory has been developed, there

is a kind of reluctance to use advance PPs to model

experimental patterns, especially for cellular networks.

Authors usually settle for the regular hexagonal lattice
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[11], the perfect square lattice [12] or the Poisson point

process (PPP) [1], [13] which leads to very tractable

analytical expressions but does not faithfully model the

geometry of real networks. We will show in this paper

that it is possible to better model cellular network while

maintaining the tractability of the expressions. However,

several works succeeded in fitting real antenna patterns

using different methods and models. According to [14],

Paris’ network could be modeled as a β-Ginibre PP

(β-GPP) in 2014. Other European cities were modeled

using a log-Gaussian Cox process (LGCP) [15], a Strauss

process (SP) [16], a Geyer saturation process [17] a

Cauchy PP (CPP) or hybrid models [18]... In the United

States, Li et al. [19], [20] used determinantal PPs (DPPs)

as an alternative to Gibbs PPs (GPPs) to capture the

repulsive geometry of the Houston and Los Angeles base

stations.

These works, although remarkable for some, often

model a certain type of environment (usually urban). In

addition, the number of test-models used is generally

quite small. Several models are used because user-

friendly libraries exist in the R libraries. These test-

models are not always tractable. When the PP is not

tractable, some works approximate mathematical expres-

sions, or use upper or lower bounds, or approximate a

realization of the PP by a PPP or other more tractable

PPs [21], [22].

This article aims to be a quick guide for PP inference

in macro cellular networks. We propose to summarize

the main tractable models and their characteristics. Here,

tractable means that mathematical expressions can be

found for at least the summary statistics and the moment-

generating function. Definitions and empirical examples

of summary statistics, which are mainly distance spacing

and correlation functions, are also given in this paper.

We give some hints on how to better account for edge

effects.

We propose an approach to infer real datasets with

spatial homogeneity in urban, suburban or rural areas.

We remind the notions of stationarity, isotropy, complete

spatial randomness and interaction between points.



II. SPATIAL POINT PROCESSES

Characterization of a PP, as in classical statistics,

consists in determining information from a finite subset

of the PP, called sample, whose boundaries form a

window. This can be done by means of sample statistics.

Sample statistics correspond to any scalar value com-

puted from the sample data. For example, the average

or median distance from a random point to the nearest

antenna or the nearest distance between two antennas is

a measure of interest. In addition, summary functions

and statistical tests are often sought to better analyze

the distribution of points. Depending on the relationship

between the points, a PP model can be fitted to the data,

which is called spatial statistical inference. These models

are characterized by different parameters to adjust the

strength of the relationships between the points, the

scale of variability, the density of parent and offspring

(children) points in the case of clusters...

The complete analysis of a PP requires computing the

expectation of counts of points, pairs of points, triplets of

points, etc., corresponding to different orders of moment

quantities. For example, intensity is a first order moment

quantity since it requires counting the number of points

in a given region of space and is intrinsically related

to an average. An example of a second-order moment

property is the interaction between points, the stochastic

dependence between two points, characterized by the K-

function defined below.

Let us introduce some notations before going deeper

into the theory. Let xi be the point of a spatial point

process Ψ and u a random point which does not be-

long to Ψ in general. d(xi, xj) = dij = ||xi − xj ||
is the pairwise distance between the ordered pair of

distinct points xi and xj . The nearest-neighbor distance

di = d(xi,Ψ\xi) = min
j ̸=i

dij is the distance from the data

point xi to its nearest neighbor. d(xi, u) is the distance

between xi and the random point u. Then, the empty-

space distance d(u,Ψ) = minj ||u− xj || |xj ∈ Ψ is the

distance between a random point u in the window to its

nearest data point belonging to Ψ.

A. Invariance and Intensity Measure

The intensity is the number of points per unit of

dimensional measure. Since the considered PPs are bi-

dimensional, the intensity corresponds to a 2D density of

points. Starting with the analysis of the intensity already

gives clues about spatial interactions. For example, a

localized increase in intensity could be a hint to the

presence of clusters.

A major point of interest is to know if the PP Ψ = {x}
is stationary, i.e. that the translated PP Ψh = {x+ h}
has the same distribution as Ψ for every x ∈ R

2,

because stationarity implies homogeneity of the density

(the converse is in general not true). In the case of

homogeneous intensity, the expected number of points

falling in a given region is proportional to its area. Note

that in this case, the empirical density of points λ̂ is an

unbiased estimate of the true intensity λ. In the case of a

homogeneous PPP (H-PPP), an estimate of the standard

error of λ̂ is

√
λ̂/ν2(B), where ν2(B) is the area of the

window B.

In the case of a varying intensity λ(u), one can try

to fit it by a function. Various common models of the

spatially-varying intensity exist and that can be used as

a basis of inhomogeneous PPPs (I-PPPs), one of the

only tractable inhomogeneous PPs [23]. Some specific

models can be applied to an isotropic PP, a property of

PPs Ψ = {x} for which the rotated PP rΨ = {rx} has

the same distribution as Ψ for every rotation r about the

origin. Note that a stationary and isotropic PP is motion-

invariant [24]. The estimation of the inhomogeneous

intensity can be performed non-parametrically using

quadrat counting and kernel estimation [23].

Note, however, that some PPs with significant aggre-

gation behavior may unfairly lead one to believe that

the node density is spatially inhomogeneous. To be sure,

several stationarity tests can be run [25], [26].

B. The Poisson Point Process

The PPP is one of the most widely used PPs, essen-

tially due its convenient mathematical properties and its

ability to realistically model PPs in many domains. As

rigorously defined in [27], a (spatial) H-PPP Φ ⊂ R
d

of uniform intensity λ > 0
[
m−d

]
is a PP such that

for every bounded close set B of dimensional measure

νd(B), the number of points falling in B, n(Φ ∩ B),
has a Poisson distribution with mean λ · νd(B) and if

Bi|i=1,...,m are disjoint regions of R
d, then the counts

n(Φ∩Bi)|i=1,...,m are independent. The Poisson distribu-

tion of n(Φ∩B) is the consequence of the independence

and uniform distribution of points of Φ (cf. [28] for a

rigorous demonstration).

The points of a PPP do not demonstrate any attraction

or repulsion relationship with each other. The central role

of the PPP in SG studies comes from the fact that many

models are built from it, and that many statistical tools

are defined with respect to it.

C. Correlation

Correlation quantifies the stochastic dependence be-

tween points in a spatial pattern of points. A clustered

point pattern (right panels of Figure 1) has positive

covariance, a completely random pattern has zero covari-

ance (middle panel of Figure 1) and a regular pattern has

negative covariance (left panels of Figure 1). Covariance

is a second moment quantity. It is intrinsically linked to

the count of pairs of points. The absence of correlation



Fig. 1. Illustration of PP trichotomy. Extreme left: Perfectly regular network. Center: H-PPP. Extreme right: Highly clustered pattern.

Repulsion, more regularity 

 

Attraction, clustering 

PPP, BPP Perfect lattices Perfect clusters 

Total randomness 

Fig. 2. K-functions of the patterns of Figure 1. Extreme left: Perfectly regular network. Center: H-PPP. Extreme right: Highly clustered pattern.

Fig. 3. F -functions of the patterns of Figure 1. Extreme left: Perfectly regular network. Center: H-PPP. Extreme right: Highly clustered pattern.

Fig. 4. G-functions of the patterns of Figure 1. Extreme left: Perfectly regular network. Center: H-PPP. Extreme right: Highly clustered pattern.

Fig. 5. J-functions of the patterns of Figure 1. Extreme left: Perfectly regular network. Center: H-PPP. Extreme right: Highly clustered pattern.



does not necessarily indicate independence between the

points.

Correlation can be assessed using sample statistics

such as the Morisita index [29] or the index of dispersion

[30], under the assumption of homogeneity [23]. Corre-

lation is often studied in telecommunication networks

through pairwise distance distributions. These metrics

focus on the number of r-neighbors of a data point

x ∈ Ψ, n (d (x,Ψ\x)), i.e. the number points distant

at most r units away from x. The most used pairwise

distance distribution is the Ripley K-function K(r) [31].

It gives the expected number of r-neighbors of a data

point randomly taken divided by the density λ. If the PP

is stationary, its mathematical formulation is

K(r) =
1

λ
E [n (d (u,Ψ\u) ≤ r |u ∈ Ψ)] . (1)

λK is called non-regularized K-function. For a PPP, the

points being independent,

Kpois(r) =
1

λ
E


∑

j

1{||u− xj || ≤ r}


 = πr2. (2)

The estimator K̂(r) is

K̂(r) =
ν2(B)
N − 1

1

N

N∑

i=1

N∑

j=1
j ̸=i

1{dij ≤ r} eij(r). (3)

It corresponds to the average number of r-neighbors of a

data point, normalized by the density of its N−1 neigh-

bors included in the window B and modified by an edge

correction weight. In general, we have K̂regular(r) <
K̂independent(r) < K̂clustered(r) for the vast majority

of r, as can be seen in Figure 2. This can be understood

by the fact that a clustered point pattern has more close

neighbors than in an independent pattern, which in turn

has more close neighbors than in a regular pattern. The

normalization thus allows comparison between datasets.

D. Spacing

Measuring the spacing between points in a point

pattern provides additional information about the depen-

dence between points. Spacing can be evaluated through

sample statistics like the Clark-Evans aggregation index

[32] or via the Hopkins-Skellam test [33]. More insight

is given by the popular empty-space distance distribu-

tion F (r) (also called contact distance distribution) and

nearest-neighbor distance distribution G(r) defined for

r ≥ 0 for the stationary PP Φ respectively as

F (r) = P {d(u,Ψ) ≤ r} = E [1 {d(u,Ψ) ≤ r}] , (4)

G(r) = P {d(u,Ψ\u) ≤ r |Ψ has a point at u} (5)

where u is an arbitrary location. Being cumulative dis-

tributions functions, F (r) and G(r) are zero a r = 0,

monotonically non-decreasing functions with a maximal

value of 1. For a H-PPP,

Fpois(r) = Gpois(r) = 1− exp(−λπr2). (6)

If N is the number of points of a stationary PP Ψ falling

in B, estimators of F (r) and G(r) for a stationary PP

are

F̂ (r) =
1

M

M∑

j=1

1 {d(uj ,Ψ) ≤ r} ej (7)

which is unbiased and

Ĝ(r) =
1

N

∑

xi∈B

1 {d(xi,Ψ\xi) ≤ r} ei (8)

which is approximately unbiased. The number of random

points M can be chosen as high as wanted. M > 10N is

generally a good choice. ej and ei are the edge correction

weights. As with the K-function, information about the

data points can be obtained from the plot of the empirical

F and G-function (respectively in Figures 3 and 4 for the

patterns in Figure 1), by comparing it to Fpois(r) and

Gpois(r). Notice that because of its definition, which

involves only data points, the empirical G-function is

less smooth than the empirical F -function. For most

values of r, we get: F̂ regular(r) > F̂ independent(r) >
F̂ clustered(r) and Ĝregular(r) < Ĝindependent(r) <
Ĝclustered(r). Let us take a clustered pattern and an

arbitrary point u. We expect that the probability of

having a data point located at a given distance from u
is lower than for a random process. Similarly, since the

probability of a data point belonging to a cluster is high,

its nearest neighbor is located with high probability at a

smaller distance than we would see for a random process.

As the interpretation of their empirical graphs already

suggests, except for a completely random model, the

nearest-neighbor and empty-space distances tend to have

opposite behaviors. Another way to analyze these dis-

tances is to combine them through the van Lieshout-

Baddeley J-function [34]

J(r) =
1−G(r)

1− F (r)
, (9)

which is of course unitary in the case of a H-PPP.

As can be expected from the previous considerations,

Ĵregular(r) > Jpois(r) = 1 > Ĵclustered(r) (see

Figure 5). A value J(100) = 3 means that the distance

threshold of 100 units is exceeded 3 times more often by

the nearest-neighbor distances than by the empty-space

distances. Since the F and G-functions experience the

same edge effects, we can consider that the J-function is



insensitive to these edge effects. Neglecting all moments

greater than second order, we have

J(r) ≈ 1− λ(K(r)− πr2), (10)

showing the importance of the relationship between

spacing and correlation.

E. Repulsive Processes

A very complete taxonomy of PPs capable of model-

ing antennas in a wireless communication network has

already been presented in [35]. Detailed descriptions of

classes of PPs, applications and mathematical expres-

sions of most of the PPs introduced below can be found

in [4], [23], [36], [37]. The objective here is to remind

the existing classes of PPs and to focus on those PPs

for which mathematical expressions for the F , G and K
functions have been demonstrated.

At the scale of a big city, repulsive processes can

model networks of macro cells. Network providers typ-

ically attempt to optimize the deployment of macro

antennas, often associated with high power, to provide

coverage by limiting the number of base stations to be

used. This logically leads to repulsive behavior.

We can already differentiate two types of repulsive

processes: hard-core and soft-core repulsive processes.

For hard-core processes, two points can never be closer

than a deterministic distance δ. Soft-core processes can

be seen as obtained by progressively increasing the

repulsion between points. There is always a non-zero

probability of finding a pair of points closer than any

small distance. For hard-core processes, the removal

of two points that are too close can follow different

schemes, giving birth to Matérn hard-core PPs (MHPP)

of types I and II [38], simple sequential inhibition

process (SSI) [39] or Poisson hard-core process (PHCP).

These processes are however intractable and approxi-

mations must often be used to compute mathematical

expressions [40], [41].

It is not possible to talk about repulsive processes

without mentioning the large family of Gibbs processes.

Gibbs processes are usually defined through a multivari-

ate probability density function. Realizations of these

processes can be simulated using Markov Chain Monte

Carlo methods. Gibbs processes are constructed from the

explicit interaction between points. Finite PPs can be

represented as Gibbs PPs under certain conditions, but

we generally restrict Gibbs PPs to processes with inhi-

bition between points. An example of Gibbs hard-core

PP is the Poisson hard-core process (PHCP). Amongst

Gibbs soft-core PPs are the Strauss PP (SPP) which

is defined similarly to the PHCP but with a non-zero

probability of having two points with a distance smaller

than δ or the Geyer-saturation PP (GSPP) which is a

generalization of the SPP to also capture aggregation

behaviors [42], [43].

Gibbs PPs as such suffer from some problems al-

though they are widely used for PP inference. Closed-

form prove difficult to obtain, complex Markov Chain

Monte Carlo methods must be used to have a realization

of the process [44]... This observation has gradually led

to the emergence, over the past decade, of the idea of

building determinantal PPs (DPP), described in [19],

[44]. What follows is a summary of information needed

to infer DPPs. DPPs are convenient models for repulsive

macro cell networks inference because of their many

advantages: they are very tractable, they have proven

their validity for real networks, edge effects can be

handled simply, they can be easily simulated... Each

DPP Ψ defined on a Borel set B ∈ C
d is defined

through its covariance matrix C2 : B → C. The

name ”determinantal” comes from the definition of the

nth order product density function ρ(n) : Bn → R
+

involving the determinant of the kernel:

ρ(n) (x1, . . . , xn) = det (C (xi, xj))1≤i,j≤n , (11)

ρ(n)(x1, . . . , xn) = 0 if xi = xj for i ̸= j. (12)

where (x1, . . . , xn) ∈ Bn. Any Borel function h : Bn →
R

+ can then be estimated through

E




∑

X1,...,Xn∈Ψ
Xi ̸=Xj

h (X1, . . . , Xn)


 = (13)

∫

B

· · ·
∫

B

ρ(n)(x1, . . . , xn)h(x1, . . . , xn) dx1 · · · dxn

(14)

The DPP is stationary if its n-th order product density

is invariant under translation. This is guaranteed if the

kernel has the form C(x, y) = C(0)(x− y), ∀x, y ∈ R
2.

C0 is referred to as the covariance function of the DPP.

As a consequence, the intensity measure is constant over

R
2. For the case of a stationary DPP, the kernel only

depends on the distance between the node pair.

The empty-space and nearest-neighbor distribution

functions are given in [19]. Let us introduce some

commonly-used DPPs:

a) Cauchy determinantal point process (CDPP):

The Cauchy process is a stationary DPP with covariance

function [19], [44], [45]

C(0)(x) =
λ

(1 + ||x||2/α2)
ν+d/2

, x ∈ R
d (15)

where d = 2, α is the scale parameter and ν the

shape parameter. The existence of the Cauchy DPP is

guaranteed if λ ≤ ν

π α2
.



The K-function is given by [44]

K(r) = πr2 − πα2

2ν + 1

(
1−

(
1

1 + r2/α2

)2ν+1
)
.

(16)

It tends to a PPP when α → ∞.

b) Gauss determinantal point process (GDPP): A

stationary PP Ψ is a Gaussian DPP if it has as covariance

function [19], [44], [45]

C(0)(x) = λ exp
(
−||x||2/α2

)
, x ∈ R

2 (17)

where α measures the repulsiveness. The existence of

the Gauss DPP model is guaranteed if λ ≤ 1

π α2
.

The K-function is given by [44]

K(r) = πr2 − πα2

2

(
1− exp

(−2r2

α2

))
. (18)

This is a PPP for α → ∞.

c) Generalized Gamma DPP: This DPP shows a

good fit with BS deployments but is less tractable. It

is defined based on its spectral density rather than on a

kernel [20].

d) β-Ginibre point process (β-GPP): A zero value

of β corresponds to a PPP and a value of 1 corresponds

to a GPP. A β-GPP is obtained from a GPP using

a thinning approach. Each point of the GPP is kept

independently with a probability β. Then, a rescaling

ratio
√
β is applied in order to maintain the original

intensity.

Ψ is a β-Ginibre PP if the kernel is [46], [47]

Cβ(x, y) = λ exp

(
−λπ

2β

(
|x|2 + |y|2

))
exp

(
λπ

β
xy

)

(19)

∀x, y ∈ C. Contrarily to previous DPPs’ kernels, the

β-GPP kernel is complex. However, summary statistics

have a tractable form. The K-function is given by [47]

K(r) = πr2 − β

λ

(
1− exp

(
−λπr2

β

))
. (20)

The F -function is given by [47]

F (r) = 1−
∞∏

k=1

(
1− β γ̃

(
k,

λ π

β
r2
))

(21)

and the G-function is given by [47]

G(r) = 1−
∞∏

k=2

(
1− β γ̃

(
k,

λ π

β
r2
))

(22)

where γ̃(a, x) =
∫

x

0
e−u ua−1

Γ(a) is the normalized lower

incomplete gamma function.

The J-function is

J(r) =
1−G(r)

1− F (r)
=

1

1− β + β exp

(
−λπ

β
r2
) . (23)

Mathematical expressions and approximations of met-

rics applicable to telecommunications can be found in

[48].

F. Cluster Processes

Cluster processes are widely used to model small cells

deployments, often clustered around hot spots in urban

environments for capacity enhancement [49], [50] or

in indoor environments for coverage, to model drone

networks [51] or to model user distributions with hot

spots [52]. Since this paper focuses primarily on macro

cell deployments, this section merely provides a brief

description of the existing cluster processes.

Realizations of cluster usually follow the same

scheme: First, a PP Ψ1 of parent points is generated.

Then, each point of Ψ1 has a certain number of offspring

points Ψ2. Then, the cluster PP Ψ is usually formed by

some or all of the points of Ψ2, only. Depending on the

type of spatial distributions of Ψ1 and Ψ2, the resulting

cluster PP Ψ has specific properties and is called by a

specific name.

If the parent spatial distribution is a Poisson distri-

bution, the PP belongs to the general class of Poisson

cluster processes (PCP). They are often used due to

their tractability. If each parent point produces a random

number of offspring points that are independently and

identically distributed with some spatial density function

around the parent point, the PCP belongs to the subclass

of Neyman-Scott cluster PPs [5]. The parent PP is then

a H-PPP. Neyman-Scott cluster PPs have the advantage

of having a good tractability: mathematical expressions

have been derived, for example for the K-function [53]

as well as for the nearest-neighbor distribution [4], [54].

For the Matérn cluster process (MCP), the offspring

points are generated in an exclusion ball of given radius

δ centered on each parent point. If the probability density

of offspring is an isotropic Gaussian density centered on

the parent points, the PP is called Thomas cluster process

(TCP). The TCP has the advantage to be one of the most

tractable Neyman-Scott PP: mathematical expressions

have been derived for its summary statistics [55]. The

Cauchy cluster process is another type of Neyman-Scott

cluster PP. The probability density of the offspring is

a bivariate Cauchy distribution [23]. Another class of

PCPs is the Gauss-Poisson PP for which the number of

offspring is between zero and two and follows a Poisson

binomial distribution [37], [56].

Cox cluster PPs, doubly stochastic Poisson processes

or modulated Poisson processes, are Poisson processes

with a random intensity function. This function is

random because it generally depends on unobservable

external factors as well as observable covariates. The

offspring points are generated according to a I-PPP

whose density is a realization of the random intensity



function. Parent points are unobservable. Unlike I-PPPs,

Cox cluster processes are stationary. The log-Gaussian

Cox process (LGCP) is a subclass of Cox PPs for

which the logarithm of the intensity function is a real-

valued Gaussian process [57]. The α-stable Cox PP is

another Cox PP for which the random field follows an

α-stable distribution [58]. For the shot-noise Cox PP,

the random field is obtained from a general PP and the

offspring points are then generated by an I-PPP whose

density depends on the points already generated [59].

Special cases of shot-noise Cox PP gave rise to Poisson-

Gamma processes and shot-noise G-Cox processes [60].

Neyman-Scott PPs can also be considered as a special

case of shot-noise Cox PP.

At last, Poisson hole processes (PHPs) [37] also

belong to both Cox cluster PPs and PCPs. If Ψ1 and

Ψ2 are two independent PPPs, the PHP is formed by

taking points of Ψ2 that are not included in holes of

radius δ centered on parent points in Ψ1. PHP can also

be considered as repulsive PPs because the formation of

holes forces the clustering of points.

III. OTHER POINT PROCESSES

Other families or subfamilies of PPs exist but are less

interesting for inferring real networks. Perfect lattices

such as the hexagonal [11] or the square lattice [12]

were formerly used in telecommunications but have been

replaced by the PPP or repulsive networks mentioned in

this paper. However, it can be shown that when comput-

ing physical quantities, such as the SINR distribution,

the perfect lattice gives an upper bound while the PPP

gives a lower bound. Other models, such as the perturbed

lattice or the combination of a lattice and a PPP, have

been modeled, but are merely tractable. Permanental

PPs, for example, are the reciprocal of determinantal PP,

hence attractive, but are more interesting for quantum

mechanical models [61], [62].

Another modeling approach has been developed in

[22] and consists in approximating a motion invariant PP

by a superposition of two conditionally independent I-

PPPs exhibiting spatial repulsion or clustering. Measures

such as SINR have been computed, but the consideration

of two PPPs makes the mathematical expressions much

more complex.

IV. EDGE CORRECTIONS

Empirical data are always of finite dimensions and

spread within a zone called window. Although the

tractability of some spatial PPs is sufficient to work with

a finite network, the edges of the window must be taken

into account to compute sample or summary statistics, in

order to reduce the bias caused by quantities related to

points near the edges. For example, in a homogeneous

PP, a point near the edge of a rectangular window has

two to four times less neighbors than a point lying at the

center of the window. Using edge corrections enables to

somehow retrieve the lost information near the edges and

to consider the empirical network as if it was infinite.

The best correction choice depends on the number of

data points and on the area of the window.

The border correction [23] consists in restricting

points to sampling frames smaller than the window size.

For example, in Figure 6, the window considered B
is the disk bounded by a red solid line ∂B. We draw

a sampling frame delimited by a purple dashed line.

The distances dij appearing in the estimator K̂(r) (3)

are then considered only from data points xi located at

least r units away from the window boundary. The edge

correction weight is thus

eij =
1 {d(xi, ∂B ≥ r} n∑n
k=1 1 {d(xk, ∂B ≥ r} (24)

Similarly for F̂ (r) (7) and Ĝ(r) (8), the edge correc-

tion weights are respectively

ej =
1 {d(uj , ∂B ≥ r} m∑m
k=1 1 {d(uk, ∂B ≥ r} (25)

and

ei =
1 {d(xi, ∂B ≥ r} n∑n
k=1 1 {d(xk, ∂B ≥ r} . (26)

The dashed purple circle of Figure 6 becomes smaller

and smaller as r increases. The border correction is an

easy method to implement, applicable to any window

shape. It becomes more and more accurate as the size

of the dataset increases. The only drawback is that part

of the information is lost. We recommend to apply

this correction when there are at least 80 data points

in the window. Using the border correction does not

further restrict the study because statistical inference

for a network with less than 80 nodes becomes very

imprecise. Other edge corrections can be applied, as the

isotropic or Ripley’s circumference method [23], [63],

the toroidal method [63], the translation method [23],

area-based methods...

V. INFERENCE METHOD

Based on the theory described in the previous section,

we propose here a methodology to follow to infer actual

network deployments and evaluate the goodness of fit.

The methodology is applicable for any empirical sta-

tionary spatial distribution. It has been applied on macro

cellular networks exhibiting repulsive behavior between

nodes.
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Fig. 6. Illustration of the border correction. The solid red circle ∂B
delimits the window B where all data points of interest are lying. The
dashed purple circle corresponds to the sampling frame.

a) Obtain antenna locations: The first step is to

obtain the antenna locations. In some countries, this is

made publicly available online. For example, the website

Cartoradio gives data about the French network via

a direct download link. Sometimes the data is made

available online, but no list of the entire network can be

downloaded. This is for example the case in Belgium

via the IBPT website. In other countries like in the

Netherlands or in Luxembourg, data is available online

but no distinction is made depending on the technology,

frequency or network provider, which is less suitable. A

solution is then to download data from crowd-sourced

services like Cell Mapper or OpenCellid, at the risk of

missing data or incorrect locations. We strongly advise

to use an adequate map projection if the coordinates

are expressed with angular measurements, e.g. the ge-

ographic coordinate system (longitude and latitude). A

widely used map projection for Western Europe is the

Lambert 93 coordinate system.

b) Window selection and spatial stationarity: The

choice of window is obviously important. Some edge

corrections can only be applied for a rectangular or cir-

cular window (e.g., the Ripley circumference method or

the toroidal method). Some irregular shapes or elongated

windows may result in a large bias. If possible, it is

advisable to take a compact surface and maximize the

area-to-perimeter ratio. Regarding the window size, it

is recommended to include a minimum of 80 antennas

to have a good accuracy on the deduced model and to

reduce the residual bias on the edge correction.

The present methodology being only applicable on

stationary spatial distributions, a statistical test of sta-

tionarity has to be done.

c) Non-linear optimization of a given model:

With models inferred based on summary statistics, the

empirical functions F , G, and K can first be calculated

using the equations (7), (8), and (3), respectively. If there

is clear repulsive or attractive behavior, some models

can be discarded. This can be done by comparing the

empirical summary functions to the H-PPP summary

functions. By clear behavior, we mean an empirical

summary function that is much higher or lower than

the H-PPP summary function. The error distance ∆(θ)
between the summary statistics Sθ of the model with

given model parameters θ and the empirical summary

statistics Ŝ can be calculated by the minimum contrast

method

∆S(θ) =

∫ b

a

∣∣∣Ŝp(r)− Sp
θ
(r)
∣∣∣
q

dr, (27)

where a ≤ r ≤ b and p, q > 0 are exponents to

choose. A squared Euclidean distance (p = 1 and q = 2)

is generally selected. Optimizing the model parameters

then consists in minimizing the error ∆(θ). In other

words, to compute

θ
∗ = argmin

θ
∆S(θ). (28)

∆S(θ) rarely has a closed-form expression. It is thus

evaluated numerically via

∆S(θ) =
1

rb − ra

b∑

i=a

∣∣∣Ŝp(ri)− Sp
θ
(ri)
∣∣∣
q

, (29)

a and b being here indices. The minimum contrast

method is also called modified Cramér-von Mises

method [5] when the integral in (29) is computed over

the whole positive real axis, that is, r ≤ 0. In this paper,

we propose to apply the non-linear optimization problem

to the F -function for each candidate model.

d) Goodness-of-fit: To evaluate the goodness-of-fit,

i.e. the discrepancy between the fitted model and the

empirical data, we propose to run a hypothesis test, often

called 3SET for Summary Statistics Simulated Envelope

Test. This test first consists in generating M realizations

of the model with model parameters θ∗ and to compute

the summary statistics Si for each realization i. Then,

the upper envelope is E+(r) = max
i=1,...,M

Si(r) and the

lower envelope is E−(r) = min
i=1,...,M

Si(r). These two

pointwise envelopes form a gray region in which we

will find Ŝ if the PP correctly describes the empirical

pattern. This test is statistically significant with a p-

value of 2/(M + 1). Another way to proceed is to

take global envelopes, that is, to compute the maximum

vertical deviation Dmax between the M empirical S-

function Si|i=1...M and the theoretical S-function in

order to obtain E+(r) = Sθ∗(r) +Dmax and E−(r) =
Sθ∗(r) − Dmax. In this case, the test is statistically

significant with a p-value of 1/(M + 1). We propose

here to evaluate the goodness-of-fit for the F , G and K



functions. The remaining candidate models will be those

passing the 3SET test for these three summary statistics.

The best-fitting PP is then the one with the lowest

value of ∆F (θ
∗) among the remaining candidates. We

then propose to evaluate the goodness-of-fit by also com-

puting the distance between G∗
θ(r) and Ĝ(r), between

J∗
θ (r) and Ĵ(r) and between K∗

θ (r) and K̂(r). Other

models use the J-function [14], the K-function [18],

[19] or the pair-correlation function [15]. The problem

with using the J-function is that it can behave erratically

when the number of data points is too small. The K-

function or the pcf are often used because they are

simpler to compute than the spacing functions but it

does not fully capture the dependence between points.

The good fit with one summary statistics does not imply

that all summary statistics will fit well. The idea here is

to extend the goodness-of-fit to correlation and spacing

functions.

VI. EXPERIMENTAL RESULTS

We have applied the described methodology to cellular

networks in Belgium and in France. Several environ-

ments were considered:

• Dense urban environment: the center of Paris,

France, the center of Liège, Belgium

• Suburban environment: eastern suburban area of

Paris, contained in the 93 and 94 departments.

• Rural environment: the Plateau de Millevaches,

between Limoges and Clermont-Ferrand, in France

and the north of Hainaut in Belgium

We have focused on one major operator in France

and one major operator in Belgium for the GSM 900,

UMTS 900 and LTE 1800 technologies. We have chosen

a square window whose area enables to enclose at least

80 antennas. Data was downloaded in September 2021.

We illustrate here the methodology for GSM 900

antennas in Liège, Belgium. The locations of the 119

enclosed antennas are shown in Figure 7. The estimated

density is 0.70 antennas/km2.

When computing the empirical summary statistics, a

clear repulsive behavior has been observed. We have

therefore restricted the panel of candidate models to

three repulsive and tractable PP: CDPP, GDPP and β-

GPP. The minimum contrast method (29) has been ap-

plied for the F -function, using ra = 0m, rb = 1060m,

p = 1 and q = 2. F and G functions for the three

models with the fitted model parameters are shown

in Figures 8, 9 and 9, respectively. To evaluate the

goodness-of-fit of the models, the pointwise envelopes

where computed using M = 39 realizations. Only the

β-GPP model passed the test for the F , G, J and K
functions with a p-value equal to 95%. Its envelopes are

also shown in Figures 8, 9 and 9. The fitted value of β
was found to be 0.91 with ∆F (β = 0.91) = 9.36 ·10−3 ,

Fig. 7. Locations of GSM 900 antennas of a major Belgian operator
in the city of Liège. The axes are expressed in Lambert93 coordinates.
The red square corresponds to the boundaries of the chosen window.

∆G(β = 0.91) = 2.94 · 10−2 , ∆J(β = 0.91) = 1.03
and ∆K(β = 0.91) = 6.85 · 10−2 .
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Fig. 8. Empirical F -function and fitted F -functions for the β-GPP,
GDPP and CDPP models.
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Fig. 9. Empirical G-function and fitted G-functions for the β-GPP,
GDPP and CDPP models.
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Fig. 10. Empirical J-function and fitted J-functions for the β-GPP,
GDPP and CDPP models.

For all the datasets considered in France and in

Belgium, it appeared that the β-GPP model was the

best adapted model each time. The β-values obtained

for each dataset is summarized in Table I. No clear

correlation between the values of β and the density,

operator, technologies or place could be found with these

datasets. However, the study of other technologies and

operators suggests that there is a relationship between

the beta value and the technology used, for a given type

of environment.

TABLE I
FITTED β VALUES OF THE β-GPP MODEL FOR THE CONSIDERED

DATASETS. ”/” MEANS THAT THERE IS NO OR TOO FEW ANTENNAS

OF THIS TYPE.

Place GSM 900 UMTS 900 LTE 1800

Liège 0.91 / 0.86
Hainaut 0.15 0.18 0.13
Paris 0.95 0.54 0.31
Eastern suburb of Paris 0.50 0.67 0.66
Millevaches 0.17 0.83 /

VII. CONCLUSION

Very often, SG studies are conducted with simple and

well documented but sometimes too simplistic models,

resulting in a description that is not very faithful to

reality. However, spatial inference is a difficult exercise

due to the lack of examples applied to real distributions,

the need to resort to complex notions of SG, a lack

of tractability of the models and a near absence of a

”bestiary” detailing the main tractable PPs.

This paper tries to answer the expectations of a re-

searcher wishing to model a real network by a PP. Under

well-described starting assumptions about the network,

we propose a methodology to follow. We review a range

of tractable models that can be used as candidates, as

well as the evaluation of goodness-of-fit.

This methodology is applied here to French and

Belgian cellular networks. It is shown that among the

models studied, the β-GPP model seems to describe the

networks most accurately. No clear correlation between

antenna density and beta value could be found.
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