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Abstract

The proposed work tries to quantify how relevant it is to use a deterministic channel model like

ray tracing at a network deployment level in a Manhattan-like environment. More precisely, the goal is

to compare it with simplier and more computationally efficient models to see if similar results can be

obtained at a lower cost. In the framework of the analysis, ray tracing is thus compared to a stochastic

geometry-based model in terms of coverage probability and exposure at a centric user for which we were

able to derive semi-closed form expressions. In addition, a good lower bound for the joint coverage-

exposure distibution was found. In order to easily mimic the propagation mechanisms implemented

in the UCLouvain RT software and enable fair comparison, the Berg recursive model was considered

as channel model. Finally, the analytical expressions were further enhanced to take into account the

antenna height as well as the line-of-sight probability in the typical street and to distinguish a typical

user located at a crossroad from a typical user located inside a street.

Index Terms

EMF exposure, stochastic geometry, ray tracing.
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I. INTRODUCTION

From Bell Labs perspective, the global data traffic is expected to skyrocket in future wireless

networks [1]. This is due to the ever-growing number of mobile devices and the growing usage

of applications which happen to be more and more data hungry [2]. For those reasons, 1000

times the 4G capacity has been set as objective for future 5G networks [3].

In order to withstand this significant increase in capacity demand, heterogeneous networks

(Hetnets) will become the norm. In fact, small cells will be used to complement already existing

macrocells where most needed in order to offload macrocells to achieve better spectral efficiency

and to extend their coverage region. It is expected to find up to 40-50 BSs/km² [4].

With the arrival of 5G communications systems, a wide variety of links will then have to

coexist in the same area [3]. In addition, new 5G features are currently under research to boost

the total capacity which broadens even more the link types panel. Among them, we have:

• Massive Machine-Type Communication (mMTC): communications between sensors for

surveillance, communications between devices in a smart home, etc...

• Ultra-dense networks (UDN) with targeted user data rates around 10Gbps. UDNs are said

to require large bandwidth hence the investigation of milimeter-wave (mmW) bands that

raises further challenges.

• Moving BSs (on public transport, on drones, etc...).

• Device-to-device (D2D) communications.

• Very large antenna arrays.

For this reason, new channel models are expected to handle all those new aspects. On the

one hand, network densification and multi-service operations will push towards site- and service-

specific simulations which could make determinisctic models like ray tracing (RT) more suitable.
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On the other hand, given the large randomness in future networks as well as the variable user

density and network topology, it is not clear if stochastic models cannot fulfil the same goal

at a cheapest simulation cost while deploying the network at a larger scale. In this case, we

generally abstract some of the link-level details due to limited time and computational resources

as we want to easily get insight about the network performances. In fact, in order to deploy new

technologies, their impact on the network perfomances has to be quantified and validated [2].

To do so, a link analysis is not sufficient due to the always present randomness and a larger

scale analysis is essential which makes stochastic geometry (SG) a suitable mathematical tool.

Moreover, many 5G technologies have already been investigated using SG as shown in [5].

A. Brief overview of related works

Regarding urban environment stochastic models, [6] first introduced the use of the Manhattan

Poisson Line Process (MPLP) to model roads inside SG models. The coverage probability for

a typical UE using a simple distance-based LOS path loss model and a blockage (shadowing)-

based NLOS path loss model. [7] derives closed-form expression for the same metric for vehicular

networks operating at mmWave frequencies.

Other works also considered the use of a generalization of the MPLP, namely the Cox process,

in the analysis of wireless networks [8, 9].

[10] provides a complete tutorial on how to compute several metrics of interest for BS

distributed following a beta-Ginibre point process, a Matèrn hard core point process as well

as a Poisson point process. Some of the metrics studied in the framework of this document

are directly taken from this tutorial and adapted to a case where BSs are located in the streets

distributed by means of a MPLP.
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While many works focussed on the analysis of emerging networks using SG theory, almost

nothing can be found about the models validation using other techniques.

In [11], experimental validation of stochastic models has been done for the coverage probability

of the O2 and Vodafone deployments in the cities of London and Manchester.

More recently, [12] validated stochastic models for what they call the radar detection coverage

probability using finite difference time domain technique.

To the best of the author knowledge, no validation of SG models using RT can be found

in the litterature. This is certainly due to the fact that it is a time-consuming procedure which

however do not affect its relevance.

B. Contributions

On the basis of the aforementioned works, the main findings of this study can be summarized

as follows:

• We fully revisit the Manhattan model orginally presented in [6]. A number of features are

added to this model to capture more propagation aspects, and make the results closer to the

reality. These new characteristics include: :

– The use of a diffraction model to take into account power contributions coming from

bases stations located in avenues perpendicular to the user street. To this purpose, Berg

recursive model is thus selected for its simplicity and its fair accuracy regarding the

path loss level [13]. As explained in [14], the contributions from diffraction can be

significant compared to building penetration hence the need to address their modelling.

– Unlike [6], where the small scale fading was only Rayleigh, our framework enable

to incorporate any fading distribution in the model. We decided to incorporate Rician

fading but the model could be easily generalized to other fading models.
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– We include the presence of street obstacles (cars, trucks,. . . ) by means of a blockage

model represented by means of distance dependent line-of-sight and non-line of sight

probabilities.

– In practical deployments, a non-negligible proportion of users can be located at street

intersections. Due the simultaneous presence of LoS BSs located in the two perpendic-

ular streets, the power levels measured at the user can significantly differ from the users

that are not located at a crossroad. In the original work of [6], the users are almost

surely never located at a street intersection. Our work include a non-zero probability

for the typical user to be located at a street intersection, and takes into account the

presence of power signals coming from two streets.

– The height difference between the UE and the BSs is here taken into account as it might

considerably affect the different metrics of interest. In fact, neglecting this difference

leads to an overestimation of the contributions coming from BSs located in the close

vicinity.

• To the best of the authors knowledge, this treatise is the first work studying EMF exposure

in a Poisson line process. In order to fully characterize the statistics of this exposure, and

its correlation to the spectral efficiency, the following performance metrics are calculated:

– Marginal disitributions of the exposure and rate

– Joint rate and exposure distribution

• The proposed work gives a first comparison between stochastic geometry and RT on several

metrics of interest for a Manhattan-like environment. While many works have studied the

impact of key network parameters on the network performances by means of SG, almost

nothing can be found about the validation of the observations made with this approach using

deterministic models. For this reason, the proposed study tries to fill this gap by running RT

simulations as if they were Monte Carlo Simulations in order highlight the similarities and

differences for the different metrics for which semi-closed form expressions were derived
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using the Gil-Pelaez theorem [15].

C. Organization of the paper

The system model used in this work as well as the studied metrics are introduced and defined

in Section II. Analytical expressions for those metrics are derived using SG in Section III.

Numerical results are grouped in Section IV. Section V finally summarizes the key takeaways

and provides some future research directions.

Notations: hij will always refer to the normalized power fading coefficient on the link between

transceiver i and transceiver j. In this work, all coefficients are supposed to be independently

distributed even if some correlation might exist on the power fading coefficients of similar links.

dij will always refer to the euclidian distance between transciever i and transciever j.

II. SYSTEM MODEL

A. Network topology

We consider the downlink part of a cellular network deployed in R2 on a square region L×L

and operated at a frequency f . Avenues (vertical) and streets (horizontal) are drawn using two

independent Manhattan Poisson line processes (MPLP) Φav and Φst with the same intensity λS .

Base stations (BSs) are deployed in each street or avenue using a independant one-dimensional

Poisson point process(PPP) of intensity λB. All BSs are assumed to be equipped with a single

isotropic antenna with unit antenna gain emmitting with the same power PB . Finally, all BS

are supposed to be placed at a height hB.

We perform a network analysis for a single typical UE i∗, located at (0, 0, hU). This UE is

assumed to be located in the so-called typical street. This typical street is by definition a street

of ordinate y = 0 or an avenue of ordinate x = 0. The typical UE is said to receive power with
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Fig. 1: Left: Street UE. Right: Crossroad UE. The street UE receives LOS/NLOS contributions

from its typical street and NLOS diffracted contributions from the perpendicular avenues but

receives nothing from parallel streets. On the contrary, the crossroad UE receives LOS/NLOS

contributions from its typical street and avenue and NLOS diffracted contributions from the

perpendicular avenues and streets.

a single isotropic antenna with unit antenna gain.

As previously mentioned, if the typical UE is placed at a crossroad, he will certainly experience

different performances. For this reason, the general user can be defined to be present:

• at a crossroad, with probability1 η

• in a street, with probability 1− η.

For sake of simplicity, we will respectively refer to a typical UE located in a street and at a

crossroad as a street UE and a crossroad UE. In this document, expressions with the subscript

’1’ will refer to the street UE and expressions with the subscript ’2’ will refer to the crossroad

UE. The difference between both types of UEs is highlighted in Figure 1.

In the framework of the RT simulations, almost everything stays unchanged but

1This probability η can for instance be defined as the ratio between the streets and building widths
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• Streets and avenues are given a non-zero width wS .

• Buildings all have the same height hBU .

• The side of the road for each BS is randomly chosen. Those are placed at a distance dB,BU

from the buildings walls.

B. Power computation

1) Ray Tracing: In recent years, ray tracing has been extensively used to model the channel

between a given base station (BS) and a given user (UE) in a deterministic way given the

surrounding environment. For this reason, we decided to develop our own tool here at UCLouvain

and validated it. While many propagation mechanisms exist, only two types are taken into account

by this tool: reflection and diffraction (i.e. scattering and other more complex mechanisms are

here disregarded). In addition, only outdoor to outdoor scenarios are considered which means

both the UE and the BS are exclusively located outside the buildings and so are the paths we

identify between those two transmitters. The conventions used for reflection and diffraction are

depicted on Figure 2 and 3.

To keep the computational time in a reasonable range, at most two interactions are considered

between a transmitting BS and a receiving UE. In addition, diffraction is only aknowledged on

the last interaction. Those hypotheses seems not to be too restrictive as an electromagnetic wave

which undergone more than two interactions or more than one diffraction is strongly attenuated.

Down below, you will find how the electrical fields ∈ R3 are computed when undergoing the

different propagation mechanisms.

Line of sight

Supposing E0 is the transmitted electric field, the LOS field at an observation point P is given
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Fig. 2: Conventions: reflection (reproduced from [16])

Fig. 3: Conventions: diffraction (reproduced from[16])

by:

ELOS (P ) = E0
e−jkdBSP

dBSP

(1)

where k is the wave number and dBSP is the distance between the transmitting BS and the

observation point.
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Reflection

Supposing Einc (Qref ) is the incoming field at the reflection point Qref , the reflected field

Eref (P ) at observation point P is given by :

Eref (P ) = R · Einc (Qref )
dIQ

dIQ + dQR

e−jkdQR (2)

where dIQ is the distance between the field source and the reflection point, dQR is the distance

between the reflection point and the observation point and R is the Fresnel dyadic coefficient.

R can be computed as follows:

R = R∥einc,∥eref,∥ +R⊥einc,⊥eref,⊥ (3)

R∥ =
ϵr,eff cos (θinc)−

√
ϵr,eff − sin2 (θinc)

ϵr,eff cos (θinc) +
√

ϵr,eff − sin2 (θinc)
(4) R⊥ =

cos (θinc)−
√

ϵr,eff − sin2 (θinc)

cos (θinc) +
√

ϵr,eff − sin2 (θinc)
(5)

where θinc is the incidence angle with respect to the plane normal and ϵr,eff is the relative

electrical permittivity.

Diffraction

Using uniform theory (UTD) of diffraction and supposing Einc (Qref ) is the incoming field at

the reflection point Qdiff , the reflected field Ediff (P ) at observation point P is given by :

Ediff (P ) = D · Einc (Qdiff )

√
dIQ

dQR (dIQ + dQR)
e−jkdQR (6)

where dIQ is the distance between the field source and the reflection point, dQR is the distance

between the reflection point and the observation point and D is the UTD dyadic coefficient. D

can be computed as follows:

D = −Dsβ0,incβ0,diff −Dhϕincϕdiff (7)
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ϕinc =
sinc × t∣∣sinc × t

∣∣ (8)

β0,inc = ϕinc × sinc (9)

ϕinc =
t× sdiff∣∣t× sdiff

∣∣ (10)

β0,diff = ϕdiff × sdiff (11)

where t is a unitary vector tangential to the edge, sinc is the unitary incident direction

vector, sdiff is the unitary diffracted direction vector. Initially, the coefficients Ds and Dh

should be computed as in [16]. However, to ensure reciprocity by changing the face assignment

(“o-” or “n-faces”) depending on the region from which the incident ray is coming, we use

Guevara’s coefficients instead. The angles used to compute Fresnel reflection coefficients are

then also slightly adapted as explained in [17]. Their mathematical expressions are omitted in

this document

Received power

Finally, assuming E0 is normalized at the emission, the received power at a typical user location

i* from a given BS j is given by

Etot =

Npaths∑
n=1

En,j (12)

P i∗j
[W ] = PBκ

−1||Etot · E
H

tot|| (13)

where Npaths is the number of paths coming from this BS and arriving at the typical user

under the considered hypotheses. En,j are the corresponding electric fields at the typical user

computed by means of Equations (1), (2) and (6). κ = (4πf/c)2 is the frequency-dependant

attenuation (c being the speed of light).

2) Stochastic Geometry: Throughout this analysis, three different types of received signals

will be taken into account in order to mimic what is computed with the ray tracing tool. For

BSs located in the typical street, the BS has a distance-dependant probability pL(r) to be in

LOS with the typical UE and a distance-dependant probability pN(r) = 1 − pL(r) to have no
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LOS with the typical UE. Supposing a typical UE i* in the studied network:

Line of sight BS in the typical street

The line-of-sight (LOS) signals are supposed to account for direct and reflected waves originating

from the considered BS. The power received from a certain BS j is given by:

P i∗j
[W ] = PBκ

−1
∣∣∣ht,L

i∗j

∣∣∣2 d−αt
L

i∗j (14)

where αt
L is the path loss coefficient on LOS signals originating from BSs in the typical street.

Non line of sight BS in the typical street

The non line-of-sight (NLOS) signals are supposed to account for reflected waves originating

from the considered BS. The power received from a certain BS j is given by:

P i∗j
[W ] = PBκ

−1
∣∣∣ht,N

i∗j

∣∣∣2 d−αt
N

i∗j (15)

where αt
N is the path loss coefficient on NLOS signals originating from BSs in the typical

street.

BS located in perpendicular streets or avenues

Those signals are supposed to account for diffraction by buildings edges coming from BSs located

in streets or avenues that are perpendicular to the typical street (and avenue for a crossroad UE).

Following Berg recursive method [13], the power received from a certain BS j is given by:

P i∗j
RT,[W ] = PBκ

−1
∣∣∣hp,N

i∗j

∣∣∣2 d−αp
N

n (16)

where αp
N is the path loss coefficient on NLOS signals and dn (n represents the number of

diffractions) is the Berg distance which is actually higher than the real distance between UE i*
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and BS j. This distance can be computed by means of the following recursion:
dn = knsn−1 + dn−1

d0 = 0, k0 = 1

(17)

with kn = kn−1 + dn−1qn−1 and qn = q90
(
θn
90

)ν . The consecutive distances sn and angles θn are

computed using the conventions of Figure 4 where each dot represents a new diffraction on a

new edge.

Fig. 4: Berg recursive model

The Berg recursive method is semi-empirical and its two parameters q90 and ν are fixed by

fitting the model to measurements data as it was done in the METIS project [18]. q90 accounts for

the diffraction loss caused by each node and a larger value means a larger loss. This parameter

is given by:

q90 =

√
qλ
λ

(18)

where qλ is a frequency dependent model parameter and λ is the wavelength. If the system is

operated at a frequency between 2 and 6 GHz, qλ can be fixed at 0.031 for urban micro-cells

[18]. ν accounts for how fast the loss changes in the transition zone between LOS and NLOS.
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This second parameter is not useful in this model as all angles θn are 90◦.

In the framework of this study, distance-dependant Rician fading with K-factor K(r) will be

assumed for contributions originating from the typical street and avenue while Rayleigh fading

will be considered for diffracted contributions.

C. Association policy

The typical UE associates to the closest base station of its typical street/avenue. Also, the path

loss model in r−α has the advantage of being simple in a SG framework but it has a singularity

at r = 0 and provides unrealistic values for r < r0 = 1. To solve this issue, it is assumed that

no street intersection and no BS are generated in the segment [−r0; r0] around the typical user.

If the antenna height difference (defined as hB-hU ) is higher than 1, this last condition can be

disregarded for BSs.

Assuming closest BS association policy, the distribution function of the distance to the serving

station for a street UE is given by [19]. This distribution is then slightly modified to take the

prohibited zone [−r0; r0] into account as follows:

fr,1(r) =
2λBe

−2λBr

e−2λBr0 − e−2λBL
, for r0 < r < L. (19)

As the crossroad typical UE can connect to either the closest BS in its typical street or to the

closest BS in its typical avenue, this distribution can be modified as:

fr,2(r) =
4λBe

−4λBr

e−4λBr0 − e−4λBL
, for r0 < r < L (20)

and its associated BS is on average two times closer.

D. Global metrics

In the following definitions, NB will refer to the number of BSs present in a given simulation.
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1) Coverage probability: The coverage probability is defined as

Pc(θ) = P
[

SIRi∗ > θ

]
(21)

where

SIR∗
i =

P i∗j∗

[W ]∑
j∈[1,...,NB ]

j ̸=j∗

P i∗j
[W ]

. (22)

and j∗ is the index of the associated BS.

2) CDF of the exposure: This CDF of the exposure is defined as

Pe(θ
′) = P

[
Expi∗ < θ′

]
. (23)

where

Expi∗ =
∑

j∈[1,...,NB ]

P i∗j
[W ] (24)

3) Lower bound on the joint SIR-exposure distribution: It might be interesting for an operator

to jointly analyze the network coverage, as well as the exposure affecting the mobile user. For

this reason, we define the double-threshold function

F (θ, θ′) = P
[

SINRi∗ > θ,Expi∗ < θ′
]
. (25)

In the following section, we provide the expression of a function F̄ (θ, θ′), which is a lower

bound on F (θ, θ′).

4) CCDF of the capacity: The CCDF of the capacity is defined as

Pcap(θ”) = P
[
B log2 (1 + SIRi∗) > θ”

]
(26)

where B is the bandwidth.

III. ANALYTICAL RESULTS

A. Preliminaries

We start by introducing a few characteristic functions, which will be useful to compute the

different metrics for the different types of UEs. In the following expressions, we will assume

dH = hB − hU to be the height difference between BSs and the typical UE.
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1) User located in a street: Conditioned on r, the distance between the typical UE and its

serving BS, the characteristic function of the useful received power is given by

ϕS,1(t, α|r) =
K(r) + 1

K(r) + 1− jtPBκ−1
√
r2 + dH2

−α exp

[
K(r)jtPBκ

−1
√
r2 + dH2

−α

K(r) + 1− jtPBκ−1
√
r2 + dH2

−α

]
(27)

where α = αt
L if the serving BS is in LOS and α = αt

N if the serving BS is not in LOS.

Conditioned on r, the characteristic function of the LoS interference coming from the typical

street is given by

ϕL,1(t|r) = exp

[
2λB

∫ L

r

pL(r
′)

[
K(r′) + 1

K(r′) + 1− jtPBκ−1
√
r′2 + dH2

−αt
L

exp
( K(r′)jtPBκ

−1
√
r′2 + dH2

−αt
L

K(r′) + 1− jtPBκ−1
√
r′2 + dH2

−αt
L

)
− 1

]
dr′

]
. (28)

Conditioned on r, the characteristic function of the NLoS interference coming from the typical

street is given by

ϕN,1(t|r) = exp

[
2λB

∫ L

r

pN(r
′)

[
K(r′) + 1

K(r′) + 1− jtPBκ−1
√
r′2 + dH2

−αt
N

exp
( K(r′)jtPBκ

−1
√
r′2 + dH2

−αt
N

K(r′) + 1− jtPBκ−1
√
r′2 + dH2

−αt
N

)
− 1

]
dr′

]
. (29)

The characteristic function of the interference associated to first order diffraction is given by

ϕD,1(t) = exp

[
−2λS

∫ L

0

1−exp

[
−2λB

∫ L

r0

1−
[
1−jtPBκ

−1(x+y+qxy)−αp
N

]−1

dx

]
dy

]
. (30)

2) User located at a crossroad: Conditioned on r, the distance between the typical UE and

its serving BS, the characteristic function of the useful received power is given by

ϕS,2(t, α|r) = ϕS,1(t, α|r). (31)
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Conditioned on r, the characteristic function of the LOS interference coming from the typical

street and avenue is given by

ϕL,2(t|r) = ϕ2
L,1(t|r). (32)

Conditioned on r, the characteristic function of the NLOS interference coming from the typical

street and avenue is given by

ϕN,2(t|r) = ϕ2
N,1(t|r). (33)

The characteristic function of the interference associated to first order diffraction is given by

ϕD,2(t) = ϕ2
D,1(t|r). (34)

B. Coverage probability

The coverage probability for a typical street UE and crossroad UE can be computed as follows:

Pc,i(θ) =
1

2
+
1

π

∫ ∞

0

Im

[
ϕD,i(−θt)

∫ ∞

r0

pL(r)ϕS,i(t, α
t
L|r)ϕL,i(−θt|r)ϕN,i(−θt|r)fr,i(r)dr

]
t−1dt

+
1

π

∫ ∞

0

Im

[
ϕD,i(−θt)

∫ ∞

r0

pN(r)ϕS,i(t, α
t
N |r)ϕL,i(−θt|r)ϕN,i(−θt|r)fr,i(r)dr

]
t−1dt (35)

where i = 1 for a street UE and i = 2 for a crossroad UE.

Since the general typical user is located at a crossroad with probability η and in a street with

probability 1− η, using the law of total probability, the general coverage probability is obtained

as follows

Pc(θ) = (1− η)Pc,1(θ) + ηPc,2(θ). (36)

C. Exposure CDF

The exposure CDF for a typical street UE and crossroad UE can be computed as follows:

Pe,i(θ) =
1

2
+

1

π

∫ ∞

0

Im

[
e−jtθ′ϕD,i(t)

∫ ∞

r0

pL(r)ϕS,i(t, α
t
L|r)ϕL,i(t|r)ϕN,i(t|r)fr,i(r)dr

]
t−1dt

+
1

π

∫ ∞

0

Im

[
e−jtθ′ϕD,i(t)

∫ ∞

r0

pN(r)ϕS,i(t, α
t
N |r)ϕL,i(t|r)ϕN,i(t|r)fr,i(r)dr

]
t−1dt (37)
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where i = 1 for a street UE and i = 2 for a crossroad UE.

As for the coverage probability, the general exposure CDF is obtained using the law of total

probability as follows

Pe(θ
′) = (1− η)Pe,1(θ

′) + ηPe,2(θ
′). (38)

D. Lower bound on the joint SIR-exposure distribution

The joint SIR-exposure distribution lower bound for a typical street UE and crossroad UE can

be computed as follows:

F̄i(θ, θ
′) = max

(
0, Pc,i(θ)− (1− Pe,i(θ

′))

)
(39)

where i = 1 for a street UE and i = 2 for a crossroad UE.

As for the coverage probability, the general joint SIR-exposure distribution lower bound is

obtained using the law of total probability as follows

F̄ (θ, θ′) = (1− η)F̄1(θ, θ
′) + ηF̄2(θ, θ

′). (40)

E. Capacity CCDF

The capacity CCDF for a typical street UE and crossroad UE can be computed as follows:

Pcap,i(θ”) = Pc,i

(
2

θ”
B − 1

)
(41)

where i = 1 for a street UE and i = 2 for a crossroad UE.

As for the coverage probability, the general capacity CCDF is obtained using the law of total

probability as follows

Pcap(θ”) = (1− η)Pcap,1(θ”) + ηPcap,2(θ”). (42)
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TABLE I: Network parameters

Variable Symbol Value Explanation

Area’s edge L 4km For accurate statistics

UE/BS/buildings heights hU /hB /hBU 1.5m/6m/20m Realistic values

Streets and avenues densities λS 5/km Realistic values in Manhattan

BS densities λB 5/km /

BS power PB 1W /

Frequency f 3.6GHz For small cells deployment

Typical street/avenue fading ht,L
ij and ht,N

ij Rice K(r) = 6 /

Perpendicular streets/avenues fading hp,N
ij Rayleigh /

LOS pathloss coefficient αt
L 1.7 /

NLOS pathloss coefficients αt
N /αp

L 2.5/3.5 /

Crossroad probability η 0.1 /

LOS probability in the typical street PL(r) e−0.004r /

IV. NUMERICAL RESULTS

Numerical parameters used in the following results are summarized and explained in Table I.

Unless stated otherwise in the different sections, those parameters remain unchanged.

A. Impact of the LOS probability PL(r)

In this section, the impact of the LOS probability PL(r) in the typical street is quantified.

[20] gives us a completely general LOS probability (1− P∞) exp
(
(−

(
r
α

)N
+ P∞

)
where r is

the distance and P∞ is the probability to be in LOS at an infinite distance. As expected, this

expression ensures automatic LOS when the distance is 0. In this work, we assume the LOS

probability is 0 at an infinite distance and we simplify the expression as exp(−βr). Moreover, we

make the parameter β vary in order to model how abrupt the LOS probability is. The higher β is,

the quicker we lose LOS with the distance. Figure 5 and 6 respectively show the impact of PL(r)

on the coverage probability and the exposure CDF. In addition, analytical results are validated
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using Monte Carlo simulations and compared to the case where LOS is assumed regardless of

the distance.

Regarding the impact on the coverage probability, it strongly depends on how progressively

the LOS is lost. If the LOS is more progressively lost as it is the case for β = 0.004, two

opposite scenarios happen:

1) In some cases, the serving BS (the closest one) is not in LOS but some interferers might

still be in LOS. This deteriorates the coverage probability and questions the relevance of

the closest BS association policy with respect to the strongest BS association policy.

2) The serving BS stays in LOS and interferers have lower probability to be in LOS. This

enhances the coverage probability.

Both scenarios explain why the coverage probability is lower for small values of the SIR threshold

(due to scenario 1) and higher for high values of the SIR threshold (due to scenario 2).

If LOS is rapidly lost as it is the case for β = 0.04, interferers are almost automatically not

in LOS and scenario 1 vanishes. This means that for any value of the SIR threshold, for an

environment where the LOS quickly disappears with distance and regarding the fixed pathloss

coefficients, we end up making a big underestimation of the coverage probability if this LOS

probability is not implemented in the model. In addition, regardless of the LOS probability, this

underestimation error is done for the interesting values of the SIR (above 5dB).

As the NLOS BSs have lower contributions to the total observed power, the impact on the

exposure CDF is quite straightforward and easily explained. In fact, implementing the LOS

probability limits the contributions of further BS hence a left-shifted CDF in case of abrupt LOS-

NLOS transition. As a consequence, we end up making a big overestimation of the exposure if

this LOS probability is not implemented in the model which might be misleading regarding the
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Fig. 5: Coverage probability for a general UE: varying β

potential densification limit if legal exposure thresholds have to be respected

B. Impact of the crossroad probability β

In this section, the impact of the crossroad probability η is quantified. This impact is here

evaluated on the coverage probability as it is shown on Figure 7. It can be seen that, by increasing

the crossroad probability η, we progressively switch from the street UE (η = 0) to the crossroad

UE (η = 1). In the litterature, only the street UE is generally considered and its respective

coverage probability is thus assumed to be representative of the general performances. In reality,

if the crossroad probability is not negligible, the street UE performances is here proved not to

be representative as a different η modifies the coverage probability .
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Fig. 6: Exposure CDF for a general UE: varying η

As a crossroad UE experiences LOS contributions from both its typical street and avenue

and receives diffracted contributions from both perpendicular streets and avenues, its respective

exposure is on average doubled with respect to the street UE. If the crossroad probability is not

negligible, the street UE performances is proved to underestimate the real exposure.

C. Impact of the antenna height difference dH

In this section, the impact of the antennas heights difference dH is quantified. Figure 8 shows

the coverage probability for dH=4,5m and dH=1m which corresponds to the usual SG models

(that handle the singularity of the single slope model in r=0). It is shown that for high values

of the SIR which happen to be the values of interest, we slightly overestimate the coverage

probability by neglecting this height difference. This comes from the fact that it mainly impacts
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Fig. 7: Coverage probability for a general UE: varying η

the contributions originating from close BSs as the antenna height difference is negligibe for

long distance links. As a consequence, the serving BS received power is generally overestimated

while other contributions present lower errors. This results in a misleadingly high SIR therefore

boosting the coverage probability.

D. Comparison to ray tracing

In this section, the similarities and differences between the SG model and the RT algorithm

will be highlighted for different metrics of interest. In the framework of this analysis, we thus

launch 3500 RT simulations with the same environments characteristics (λS and λB) as if they

were MC simulations and compute the received power P i∗j
RT,[W ] at the typical UE.
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Fig. 8: Coverage probability for a general UE: varying dH

In order to create a LOS probability in the RT algorithm, we generate obstacles (cars and

trucks) with a certain density in the typical street and avenue. We then compute the parameters β

and N for pL(r) = exp(−βrN) to fit the observed RT LOS probability by minimizing the mean

square error (MSE). This expression is then used in our SG model. In addition, we compute the

observed RT crossroad probability η.

In order to fix the pathloss coefficients in the typical street and avenue, we compare P i∗j
RT,[W ]

κ
PB

to the single slope model 1
rα

. We fix their values in order to minimize the MSE. Once those

coefficients found, we fix the corresponding fadings by comparing P i∗j
RT,[W ]

κ
PB

rα to different

fading distributions. A summary of the different parameters can be found in Table II
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TABLE II: Network parameters

Variable Symbol Value Explanation

Area’s edge L 4km For accurate statistics

UE/BS/buildings heights hU /hB /hBU 1.5m/6m/20m Realistic values

Streets and avenues densities λS 5/km Realistic values in Manhattan

BS densities λB 5/km /

BS power PB 1W /

Frequency f 3.6GHz For small cells deployment

Typical street/avenue fading ht,L
ij and ht,N

ij Rayleigh Fitting (observation)

Perpendicular streets/avenues fading hp,N
ij Rayleigh /

LOS pathloss coefficient αt
L 1.74 Fitting (MMSE)

NLOS pathloss coefficients αt
N /αp

L 1.77/3.5 Fitting (MMSE)

Crossroad probability η 0.02 /

LOS probability in the typical street PL(r) e−0.004r0.85 Fitting (MMSE)

Ground and wall

permitivitty

ϵground

ϵwall

15-1.4986i

5.3-0.4166i

Values fixed based on

[16] for given frequency

Streets and avenues width wS 35m Realistic value in Manhattan

Wall-BS Distance dB,BU 5m Fixed Value

Figure 9 shows that, by properly tuning the parameters of our SG model, it is possible to

obtain fairly accurate statistics for both the coverage probability and the exposure CDF. As

shown on Figure 10, the observed differences comes from the fact that the CDF of the serving

BS contribution is right-shifted while we correctly evaluate the interference. This makes us

overestimate the coverage probability and the exposure.

V. CONCLUSION

In this document, we considered a Manhattan-like environment and analyzed different metrics

of interest for a typical central UE. This UE can either be at a crossroad, be in a street or

be a completely general UE. Closed-form expressions or semi-closed form expressions of the
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Fig. 9: Comparison of SG and RT approaches on the coverage probability and the exposure CDF
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coverage probability, the CDF of the exposure, the CDF of the UE capacity and a lower bound

on the joint SIR-Exposition probability have been derived.

It has been shown that:

• Not implementing the LOS probability in a model makes us underestimate the coverage

probability and overestimate the exposure.

• Not taking into account the possibility that a UE can be at a crossroad implies a mistake on

the coverage probability and an underestimation of the exposure if the crossroad probability

is non negligible.

• Not taking the antenna heights into account wrongly boosts the coverage probability for

interesting values of the SIR threshold.

• Our SG model gives fair statistics in terms of coverage probability and exposure if param-

eters are tuned adequately.

Further research directions could include the implementation of beamforming schemes inside

our SG model, implementing other propagations mechanisms in the RT tool and comparison of

those results with Winner type channel models.
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Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de

Belgique (F.R.S.-FNRS) under convention 2.5020.11 and by the Walloon Region.

REFERENCES

[1] M. K. Weldon, The future X network: a Bell Labs perspective. CRC press, 2016.

January 28, 2022 DRAFT



28

[2] K. Ali, “Modeling, analysis, and design of 5g networks using stochastic geometry,” Ph.D.

dissertation, 2018.

[3] A. Osseiran, J. F. Monserrat, and P. Marsch, 5G mobile and wireless communications

technology. Cambridge University Press, 2016.

[4] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5g ultra-dense cellular networks,” IEEE

Wireless Communications, vol. 23, no. 1, pp. 72–79, 2016.

[5] Y. Hmamouche, “Applications of stochastic geometry in the modeling and analysis of wire-

less networks,” Ph.D. dissertation, Ecole nationale supérieure Mines-Télécom Atlantique,
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