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Coexistence of dark vector soliton Kerr combs in normal dispersion resonators
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We investigate the formation of dark vector dissipative solitons in the presence of nonlinear polarization
mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This
simple device is described by coupled Lugiato-Lefever equations. The stabilization of dark dissipative solitons
is attributed to a front locking mechanism in the bistable regime as shown in a recent communication [B. Kostet
et al., OSA Continuum 4, 1564 (2021)]. Here, we focus on a tristable homogeneous steady state regime. We
show that two branches of dark dissipative solitons can coexist for a fixed value of the system parameters.
These coexisting solutions possess different polarization states and different peak powers in the microresonator.
We characterize their formation by drawing their bifurcation diagrams in regimes far from any modulational
instability. It is shown that both branches of localized structures exhibit a heteroclinic collapsed snaking type of
behavior. The coexistence of two vectorial branches of dark localized states is not possible without taking into
account polarization degrees of freedom.
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I. INTRODUCTION

The formation of localized structures often called dissipa-
tive solitons (DSs) is a patterning phenomenon that has been
widely encountered in many far from equilibrium systems
including fluid mechanics, optics, biology, and medicine [1].
These coherent and robust structures are often characterized
by an intrinsic wavelength that is solely determined by the
dynamical parameters and not by system size or boundary
conditions. A classic example of nonequilibrium systems that
undergo instabilities leading to the formation of DSs that are
experimentally accessible is the field of nonlinear optics and
laser physics [2,3].

In broad area optical resonators where light suffers diffrac-
tion, DSs consist of one or more spots of light in a
two-dimensional transverse plane embedded in a homoge-
neous background [4]. However, in small area devices, by
using a waveguide in both transverse directions, the intracav-
ity field can be spatially stabilized. In this case, diffraction
can be neglected in the modeling, and replaced by a natu-
ral chromatic dispersion of the Kerr medium which affects
both the amplitude and the phase of light circulating within
the cavity. The advantage of taking dispersion into account
instead of diffraction is that chromatic dispersion varies with
the optical wavelength and can be tuned. DSs in the temporal
domain can thus be formed, and their optical spectra consist of
equidistant lines forming frequency combs. The link between
DSs and frequency comb generation has been established, re-
inforcing interest in the field of DS formation (see an excellent
review by Lugiato et al. [5] in the theme issues [6,7]). Opti-
cal frequency combs generated by resonators possess a wide
spectrum of applications in science and technology, ranging

from high-precision spectroscopy to metrology and photonics
[8]. Increasing interest has been paid to dissipative soliton
frequency combs which correspond, in the time domain, to
stable temporal localized structures or pulses that propagate
within the resonator with the group velocity of light. They
were reported experimentally in microresonators [9,10].

When polarization degree of freedom is taken into account
within Kerr resonators, new modulational instabilities can ap-
pear due to polarization degree of freedom [11–13], leading
to domain wall vector solitons [14,15], symmetry breaking
[16–21], and soliton bound states [22]. Recently, polariza-
tion properties of bright DS frequency combs have been the
subject of investigation both theoretically [23–27] and ex-
perimentally [15]. Vector DSs are classified into two types:
polarization-locked vector solitons and group-velocity-locked
vector solitons. The former was first predicted [28] then exper-
imentally verified [29,30], and both have been investigated in
mode-locked fiber lasers [31,32]. Vector DSs, however, do not
consist solely of these two most common cases, but can also
take the form of, e.g., polarization-precessing vector-locked
solitons, as demonstrated in the spatial domain [33,34].

The paper is organized as follows. After an introduc-
tion, the well-known coupled Lugiato-Lefever equations (LLE
[35]), describing a driven microcavity by taking into account
polarization degrees of freedom, are introduced in Sec. II. We
provide a detailed linear stability analysis of the homogeneous
steady states by drawing a map as a function of the injection
strength and the detuning parameter. In Sec. III, we discuss
the mechanism of front locking leading to the formation of
DSs in the normal dispersion regime, and we study the bi-
furcation structure in a tristable homogeneous steady state
regime. The analysis of the bistable case has been reported
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FIG. 1. Schematics of two typical optical resonators: (left)
macroscopic fiber resonator and (right) microscopic toroidal res-
onator. Both devices are injected with linearly polarized light.

in [27]. In Sec. IV we analyze the situation where the two
branches of dark localized structures exhibit an overlapping
domain of stability. In this case, we identify a wide range of
parameters in which we observe the coexistence of dark DSs
with different polarization states and different peak powers.
We conclude in Sec. V.

II. COUPLED LUGIATO-LEFEVER MODEL AND ITS
LINEAR STABILITY ANALYSIS

We consider nonlinear optical resonators filled with a Kerr
medium. Macro- and micro-resonators are schematically de-
picted in Fig. 1. A continuous wave with components along
the transverse x and y axes, Eix and Eiy , is launched into the
cavity through a beam splitter, propagates inside the Kerr
medium, and experiences dispersion and the Kerr effect. At
each round trip, the light inside the fiber is coherently su-
perimposed with the input beam. This can be described by
the propagation equations that consist of two coupled non-
linear Schrödinger equations and their boundary conditions.
The formulation of this problem leads to infinite-dimensional
maps that can be simplified to coupled LLE by applying
the mean-field approximation for macroresonators such as
all-fiber cavities [16] and for microresonators [12]. The di-
mensionless coupled LLE model reads

∂t Ex,y = Eix,iy + i
(|Ex,y|2 + b|Ey,x|2

)
Ex,y

− (1 + iθx,y ∓ �β1∂τ − iβ2∂ττ )Ex,y. (1)

Ex,y are the slowly varying envelopes for each polarization
component of the intracavity field. We will focus on the case
where the linearly polarized injected field has the same inten-
sity for each polarization component, Eix = Eiy = Ei. b is the
cross-phase modulation (XPM) coefficient between the two
components. θx and θy are the frequency detunings for each
polarization direction. �β1 corresponds to the group velocity
mismatch, associated with the first-order dispersion, while the
second-order dispersion coefficient β2 is assumed to be the
same in each direction. In the present study, we will focus
on a macroscopic fiber resonator cavity. This allows us to set
the cross-phase modulation coefficient as b = 2/3 [36] and to
reasonably approximate the group velocity mismatch �β1 as
zero [37,38]. As we set b < 1, the cavity operates in a regime
where polarization domain walls do not occur [14,15]. We
also consider the normal dispersion regime, β2 = −1. As we
work here with dimensionless quantities, the axes of all figures
are devoid of units.
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FIG. 2. Stability regions in the parameter space Ei-θx . Parameters
are θy = 5 and β2 = −1. Region I corresponds to monostability,
with the presence of only one stable state. Region II corresponds to
bistability between two stable states. Region III corresponds to bista-
bility between one stable state and one modulationally unstable state.
Region IV corresponds to tristability between three stable states.
Region V corresponds to tristability between two stable states and
one modulationally unstable state. Finally, region VI corresponds to
tristability between one stable state and two modulationally unstable
states. Examples of two consecutive bistable curves and of a tristable
curve along the dashed lines (a) and (b) are shown in Figs. 3(a) and
3(b) respectively.

The steady state continuous wave solutions of the coupled
LLE (1) satisfy

Iix,iy = [
1 + (θx,y − Ix,y − bIy,x )2

]
Ix,y, (2)

where Iix,iy = E2
ix,iy and Ix,y = |Ex,y|2 are the intensities of

injected fields and intensities of the intracavity fields, respec-
tively. Equations (2) possess up to nine solutions for fixed
values of the system parameters, five of which are physical.
In a previous communication [27], we limited the analysis
to parameter values for which the continuous wave (CW)
curve resembles the scalar case where the system develops
the classical bistable S curve. The linear stability analysis of
the CW solutions with respect to a finite frequency of the form
exp (iωτ + λt ) is performed in the normal dispersion regime,
i.e., β2 > 0.

The results are summarized in the Ei-θx parameter space
shown in Fig. 2. For small values of θx, only simple bistability
exists, as in the scalar case as mentioned above (region II).
As the detuning θx is increased, two well-separated hysteresis
loops, i.e., two separate regions of bistability, appear (light
blue regions in Fig. 2). Increasing further θx causes the two
distinct bistabilities to get closer until they overlap. In this
case, a tristability region is generated, in light red on the
map (region IV). Proceeding along with the map, this region
collapses into the central bistability (II) zone. For even higher
values of θx, the tristability region (IV) reappears. Every re-
gion is bordered from below by a domain of coexistence with
one or two modulationally unstable states (III, V, and VI).
These domains with modulational instability (MI) sometimes
get so thin that the spatial resolution of the plot does not allow
us to see them.
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FIG. 3. Homogeneous steady states. Bistable curve (a) and
tristable (b) obtained for θy = 5. These curves are taken along the
dashed lines (a) and (b) in Fig. 2 corresponding to θx = 2.7 and
θx = 6.5, respectively. Full lines correspond to stable states, dashed
lines correspond to unstable states, and dotted lines correspond to
modulationally unstable states. Highlighted regions in (a) correspond
to zones where DSs can be stabilized.

In what follows, we consider two examples of bistable
and tristable curves, Figs. 3(a) and 3(b), respectively. These
figures are obtained from cuts along the dashed lines (a)
and (b) in Fig. 2. The upper bistability collapses during the
transition from region IV into region II in Fig. 2. This upper
bistability reappears for higher values of the detuning param-
eter θx. The small portions of MI can be seen as dotted curves
in Figs. 3(a) and 3(b).

We first investigate the polarization properties of the ho-
mogeneous steady states shown in Fig. 3. The results are
shown in Fig. 4 through the normalized Stokes parameters
defined as S0 = |Ex|2 + |Ey|2, S1 = (|Ex|2 − |Ey|2)/S0, S2 =
2 Re(ExE∗

y )/S0, S3 = −2i(ExE∗
y )/S0, where ∗ stands for the

complex conjugate. S0 represents the total intensity of light in
the resonators as seen above. S1 corresponds to light polarized
linearly along the axes x and y. S2 also corresponds to light
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FIG. 4. Normalized Stokes parameters. (a) CW solutions plotted
in Fig. 3(a). (b) CW solutions plotted in Fig. 3(b). The meaning
of the dashed, dotted, and solid lines is the same as in Fig. 3. The
parameters are the same as in Fig. 3. The injected light is linearly
polarized, with S1 = S3 = 0 and S2 = 1.

polarized linearly, but this time diagonally at 45◦ with respect
to the x and y axes. S3 is indicative of the circularly polarized
component of the light.

In Fig. 4(a), we start at low values of the injection with
S1 and S2 significantly nonzero, while S3 is close to zero,
meaning that the light is mostly linearly polarized, with
weak ellipticity. As the injection is increased, all three Stokes
parameters undergo a hysteresis loop, leading to the first bista-
bility between CW1 and CW2 as in Fig. 3. In particular, S1

increases to almost one in a very narrow hysteresis loop, S2

decreases to almost zero, and S3 increases strongly in absolute
value, so that CW2 gradually gets a strong ellipticity as the
injection increases. Finally, a second hysteresis loop leads
to CW3. For S1 and S2, the loops are large, ending on high
values for both, with stronger S2 than S1. For S3, this second
bistability starts from a high value and appears with the curve
folding on itself, before getting closer to zero, reaching almost
the same values as in the beginning, so that CW3 will also
be mostly linearly polarized, with ellipticity that decreases as
the injection increases, but that stays higher than for CW1.
In summary, both of the bistabilities from Fig. 4(a) occur
between states that have significantly different polarization
properties, especially regarding their ellipticity.

Following a similar process along the different curves in
Fig. 4(b), we can see that in this case CW1 has an almost
completely diagonal linear polarization with S1 being low, S2

being almost one and S3 being almost zero. The polarization
properties of CW1 barely change with the change in injection
power. CW2 has a very strong ellipticity due to S1 keeping
high absolute values, S2 being close to zero and S3 being in
the same range of values as S1. Finally, CW3 has a constant
S1 at an intermediate value, while its S2 increases to high
values and S3 gradually decreases to values close to zero as
the injection power increases, leading to mostly diagonally
linearly polarized light. In addition to the same conclusion as
for the previous case, we can notice by comparing Figs. 4(a)
and 4(b) that, without changing the injection intensity or the
polarization of the injected light, merely changing the value
of the detuning along one of the axis led to very significant
changes in the polarization properties of the solutions, as well
as in the size and shape of the hysteresis loops corresponding
to the Stokes parameters.

III. BIFURCATION STRUCTURE FOR THE DARK
LOCALIZED STATES FOR DOUBLE BISTABILITY:

COLLAPSED SNAKING

In dispersive scalar Kerr micro- and macroresonators, tem-
poral DSs can be generated in both anomalous and normal
dispersion regimes. In the former case, DSs appear thanks to
the subcritical nature of the modulation instability and their
formation does not require a commutation process between
the CW solutions. They can be generated in the monostable
regime [4,39]. In the temporal regime, these DSs exhibit
homoclinic snaking bifurcation diagrams that were first estab-
lished close to zero dispersion wavelength [40]. In this case,
dark DSs exhibit multistability behavior in a finite range of
parameters referred to as the pinning region, where their bifur-
cation diagram consists of two snaking curves: one describes
DSs with 2n dips, while the other corresponds to 2n + 1 dips
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FIG. 5. Profiles of the Stokes parameters S0, S1, S2, and S3 as a function of the fast time τ for the stable DS solutions created in the
highlighted regions of Fig. 3(a). The size of the system was taken as L = 100, which corresponds to 83.6 μm in physical units. Profiles
(a)–(c) correspond to the region highlighted on the left, while (a′)–(c′) correspond to the region highlighted on the right. Injection amplitude
values are Ei = (a) 2.2917, (b) 2.2922, (c) 2.2926, ( a′) 2.9394, ( b′) 2.9406, ( c′) 2.9406.

with n a positive integer. As one moves further along the
snaking curve, the DS becomes better localized and acquires
stability at the turning point where the slope becomes infinite.
Afterward, the DS begins to grow along the fast temporal τ

axis by adding extra dips symmetrically at either side. This
growth is associated with back and forth oscillations across
the pinning interval. This behavior is referred to as homo-
clinic snaking, and was established first in the spatial domain
[41,42].

However, to generate dark DSs in the normal dispersion
regime, the optical resonators must operate in the bistable
regime. In this case the formation of dark DS results from a
switching wave connecting the two stable CW solutions of the
input-output characteristics curve [43–45]. These solutions
are then of heteroclinic nature and their bifurcation diagram
exhibits collapsed snaking [46,47]. More recently, this type
of behavior has been reported in a vectorial driven all-fiber
resonator [27] in a simple bistable regime. They appear when
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FIG. 6. Vector Kerr combs corresponding to Fourier transform
of the stable DS solutions shown in Fig. 5. The free spectral range is
equal to 2.45 THz.

two fronts connecting stable CW states interact and lock into
a stationary and robust temporal dark dissipative structure.

In what follows, we focus on heteroclinic solutions in a
double bistability condition and in a regime far from the
modulational instability, as shown in Fig. 3(a). We find stable
heteroclinic DS solutions and we plot the profiles of their
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FIG. 7. Double heteroclinic snaking. (a) Bifurcation diagram
showing the L2-norm N as a function of the injected field intensity
Ei. Stable (unstable) states are denoted by solid (dashed) lines. MI
states are denoted by dotted lines. Parameters are θx = 2.7 and θy =
5. (b) Close-up on the snaking curves collapsing onto the Maxwell
point of the left bistability. (c) Close-up on the snaking curves col-
lapsing onto the Maxwell point of the right bistability.
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FIG. 8. Close-up showing the MI branch emerging from the end
of the upper snaking curve from Fig. 7(a).

normalized Stokes parameters in Fig. 5. All these profiles
correspond to heteroclinic connections between the homoge-
neous steady states shown in Figs. 3(a) and 4(a). For these
DS solutions, the background corresponds to CW2 for the
profiles of Fig. 5(a)–5(c) and to CW3 for the profiles of
Fig. 5(a′)–5(c′). The connection for (a)–(c) is to CW1, and to
CW2 for (a′)–(c′). Note that the profiles of the S3 component
shown in Fig. 5 being nonzero is indicative of the presence of
a circular component to the polarization in the resonator, so
that the light is elliptically polarized. Furthermore, we can see
that the different coexisting DS solutions connecting the same
two CW states exhibit different polarization properties.

The spectral content of the total intensity profiles S0

are optical frequency combs. The combs corresponding
to the profiles from Fig. 5 are shown in Fig. 6. The comb lines
are all equally spaced since the free spectral range, given by
the inverse of the cavity round-trip time of their associated
DSs is always the same. However, their envelopes depend
on the exact profile of the considered solution. As the DS
becomes wider when moving down the snaking curve, the

comb becomes narrower. For the fundamental solution, the
envelope of the spectrum follows an expected sech2 curve,
but for each new solution appearing at each saddle-node (SN)
bifurcation, the new bump emerging in the S0 profile also
brings a new bump in the envelope of the spectrum.

To construct the bifurcation diagram associated with vec-
torial DS, we fix the detuning parameters and chromatic
dispersion coefficient, and let the injected field amplitude
be the control parameter. We numerically simulate Eq. (1)
to initiate a predictor-corrector continuation method in the
parameter space [48]. Periodic boundary conditions are con-
sidered in all numerical simulations. The result is shown in the
top panel of Fig. 7, where N = ∫

S0/L dτ is the normalized
L2-norm of the electrical field with L the size of the system.
When increasing Ei, a branch of vectorial DS indicated in
dark blue emerges from the upper limit point or turning point
associated with the bistability curve that involves the CW1

and CW2 solutions. To visualize better this first family of
vectorial DS, a close-up around the dark blue curve is shown
in Fig. 7(b). This branch corresponds to the profiles (a)–(c)
shown in Fig. 5. As we increase the injection intensity Ei, a
region of monostability for CW2 arises, followed by another
turning point leading to the second bistability between the
CW2 and CW3 solutions, shown in light orange. A second
distinct branch of vectorial DS emerges from the upper turn-
ing point of this new bistability, as shown in the zoom shown
in Fig. 7(c). This branch corresponds to the profiles (a′)–(c′)
shown in Fig. 5. These two branches undergo a collapsed
snaking: they emerge from the upper saddle-node bifurcation
of their respective bistabilities, then oscillate with exponen-
tially damped amplitude before collapsing on the Maxwell
point where the fronts are stationary [49]. Finally, they end
up connecting to the MI bifurcation point on the lower part
of their respective bistabilities. This MI branch emerges from
this point and connects to the unstable branch as shown in
Fig 8. This figure indicates that the range of parameters for

FIG. 9. Tristable heteroclinic snaking. Left panel: Bifurcation diagram showing the L2-norm N as a function of the injected field intensity
Ei. Stable (unstable) states are denoted by solid (dashed) lines. MI states are denoted with dotted lines. Parameters are θx = 6.5, θy = 4.5.
The size of the system was taken as L = 200, which corresponds to 334.4 μ m in physical units. Right panel: Close-up on the snaking curves
collapsing onto the Maxwell point of each respective bistability showing the coexistence region C.
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FIG. 10. Profiles of the Stokes parameters S0, S1, S2, and S3 as a function of the fast time τ for the stable solutions indicated in Fig. 9.
Parameters are the same as in Fig. 9. Injection amplitude values are Ei = (a) 3.2195, (b) 3.217, (c) 3.2209, ( a′) 3.3094, ( b′) 3.3087, ( c′)
3.3085.

which our DSs exist is indeed far from the MI branch, so that
they will not be affected by it.

This shows that, for this regime of parameters, two dif-
ferent branches, or families, of DS solutions coexist, but for
different values of the injection field intensity so that the two
families cannot coexist in the same physical system. These DS
branches, during their oscillations, undergo several saddle-
node (SN) bifurcations creating multiple different stable DSs.
At each of these bifurcations, the new stable DS solution is
characterized by the arising of a new bump at its bottom and
becomes wider.

IV. COEXISTENCE BETWEEN TWO VECTORIAL
BRANCHES OF DARK LOCALIZED STATES

In the scalar case, i.e., without taking into account the
polarization degree of freedom, the third-order dispersion
allows for coexistence between bright and dark DSs [50].
This behavior occurs far from any MI, and the resulting DS
connects the CWs of high and low intensities. However, both
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FIG. 11. Vector Kerr combs corresponding to the stable solutions
shown in Fig. 10. The free spectral range is equal to 610 GHz.

of these solutions move since the third-order dispersion breaks
the reflection symmetry. Recently, it was shown that the LLE
without high order dispersions support moving DSs [51,52].
The motion of DSs is attributed to the Raman delayed nonlo-
cal response of the fiber. This effect can induce a coexistence
between bright and dark DSs [53].

When considering the polarization degree of freedom, a
coexistence between two types of bright localized structures
has been reported in weakly birefringent all-fiber resonators
subject to a linearly polarized optical injection, in the anoma-
lous dispersion regime [23]. The resulting vector DSs do
not only differ by their polarization states but also by their
peak intensities. They are generated in a regime where two
modulational instabilities with different frequencies appear in
the system.

Recently, it was shown that, in the normal dispersion
regime, the collapsed snaking structure of the DSs formed
through switching waves interaction in the absence of MI
allows for the coexistence between multiple types of dark
localized structures, which also differ by their polarization
states and by their shapes [27]. In that work, all coexisting
DSs solutions connect the same upper and lower CW states.

In what follows, we consider the regime where the homo-
geneous steady states exhibit tristability. We constructed the
bifurcation diagram associated with DSs in the same way as
described above. The results are shown in Fig. 9. Once again,
two branches of vectorial DSs emerge from the upper turning
point of the two different bistability curves linking each pair of
CW states, before going through damped oscillations and col-
lapsing onto the MI point of the lower turning point. Figure 9
illustrates the remarkable property of domain C, namely that
it is a region where the system exhibits a high degree of multi-
stability. Besides the tristability associated with CW solutions,
which are stable, two families of dark DSs can be obtained
for fixed values of the system parameters. This behavior is
caused by the two branches of heteroclinic collapsed snakings
exhibiting an overlapping domain of stability, as indicated by
region C. In this case, the two families are composed of the
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FIG. 12. Moving vector DS under the effect of group velocity
mismatch. (a) Profile of an asymmetric DS due to nonzero group
velocity mismatch. (b) Space-time map of the same DS showing
the drifting motion. (c) Drift velocity v as a function of the group
velocity mismatch coefficient �β1.

solutions (a)–(c) from the bistability connecting CW1 and
CW2 and the solutions (a′)–(e′) from the bistability connect-
ing CW2 and CW3, shown in the right part of Fig. 9. The
profiles of the Stokes parameters corresponding to the coex-
isting DSs from the domain C are shown in Fig. 10. As in
the previous case, these heteroclinic connections are between
states with very different polarization properties, mostly re-
garding their ellipticity. The spectra of these solutions shown
in Fig. 11 are optical frequency combs again, exhibiting the
same properties as in the previous case.

In this study, we worked in the limit of zero group ve-
locity mismatch between the field components. Depending
on the birefringent characteristics of the medium, this effect
can, however, become non-negligible. Introducing a nonzero
group velocity mismatch in the coupled LLE (1) results in the
symmetry τ → −τ being broken and leads to a drift motion
of the DS along the cavity. This has been numerically studied
from a reference frame moving at a speed that is the mean
group velocity of the two components [see Eq. (1)]: �β1 =
(β1,x − β1,y)/2. Figures 12(a) and 12(b) show the asymmetric
profile and the drift over 1600 round trips, respectively. They
have been generated for �β1 = 0.02, which corresponds to
a physical value �β ′

1 ≈ 244 ps/km (or 3.3 × 10−4 ps per
round trip). Figure 12(c) presents the evolution of the drift
velocity as the parameter �β1 is tuned. As expected, a linear
dependency is observed and the direction of the drift (the sign
of v) depends on the sign of the group velocity mismatch
parameter. We can show that in our conditions and assuming
a coupler transmission coefficient θ = 10%, internal losses of

15%, second-order dispersion coefficient β2 = −20 ps2/km,
and a refractive index n = 1.467, if the dimensionless velocity
mismatch amounts to 0.01, the DS should perform 800 000
cavity round trips before undergoing a drift corresponding to
the cavity length. A study of this effect is ongoing and will be
addressed in a future publication.

V. CONCLUSIONS

We have presented a bifurcation analysis of temporal dis-
sipative solitons and their corresponding frequency combs,
taking into account the polarization degree of freedom in res-
onators subjected to the continuous wave of linearly polarized
injected fields. We have used the coupled Lugiato-Lefever
equations to model this device that can either consist of a
micro- or macroresonator. We have assumed that the optical
resonator operates in a normal dispersion regime and is far
from any modulational instability. We have presented a lin-
ear stability analysis of the model equations and their trivial
homogenous steady state solutions.

Thanks to the front locking mechanism, we previously
generated a single branch of DSs in a simple bistable regime
that undergoes a collapsed snaking [27]. In this paper, we
have focused the analysis on a double bistability curve with
well-separated hysteresis loops and a tristable regime. In
these regimes, two different branches of temporal dissipative
solitons have been generated in the system. We have char-
acterized vector DS solutions of Eq. (1) by drawing their
bifurcation diagrams and by computing their Stokes param-
eters. Both branches of temporal dissipative solitons exhibit
a collapsed snaking type of bifurcation. We have consid-
ered first the double bistability with well-separated hysteresis
loops. However, when the system develops a tristability, the
two collapsed snaking overlap. We have shown that in this
case, the system develops a high degree of multistability of
temporal dissipative solitons possessing different polarization
states, different widths, and different peak powers in vectorial
microresonators.
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