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ABSTRACT
◥

Purpose:The companion diagnostic test for trastuzumab has not
changed much in the last 25 years. We used high-plex digital spatial
profiling to identify biomarkers besides HER2 that can help predict
response to trastuzumab in HER2-positive breast cancer.

Experimental Design: Fifty-eight protein targets were mea-
sured in three different molecularly defined compartments by
the NanoString GeoMx Digital Spatial Profiler (DSP) in a tissue
microarray containing 151 patients with breast cancer that
received adjuvant trastuzumab as part of the Hellenic Cooper-
ative Oncology Group 10/05 clinical trial. Promising candidate
biomarkers were orthogonally validated with quantitative immu-
nofluorescence (QIF). RNA-sequencing data from the Neoadju-
vant Lapatinib and/or Trastuzumab Treatment Optimisation
Study (NeoALTTO) were accessed to provide independent
cohort validation. Disease-free survival (DFS) was the main
outcome assessed. Statistical analyses were performed using a

two-sided test (a ¼ 0.05) and multiple testing correction (Ben-
jamini–Hochberg method, FDR < 0.1).

Results: By DSP, high expression of alpha-smooth muscle actin
(a-SMA), both in the leukocyte and stromal compartments, was
associated with shorter DFS in univariate analysis (P ¼ 0.002 and
P¼ 0.023, respectively). High a-SMA expression in the stroma was
validated by QIF after controlling for estrogen receptor and pro-
gesterone receptor status [HR, 3.12; 95% confidence interval (CI),
1.12–8.68; P ¼ 0.029] showing recurrence on trastuzumab in the
same cohort. In the NeoALTTO cohort, elevated levels of ACTA2
were predictive for shorter DFS in the multivariate analysis
(HR, 3.21; 95% CI, 1.14–9.05; P ¼ 0.027).

Conclusions: This work identifies a-SMA as a novel, easy-
to-implement biomarker of resistance to trastuzumab that may be
valuable in settings where trastuzumab is combined with other
therapies.

Introduction
Approximately 15% to 20% of women diagnosed with breast

cancer have HER2-positive disease, defined as evidence of HER2

overexpression measured by IHC (3þ) or by FISH (HER2 copy
number ≥6 or HER2/CEP17 ratio ≥2.0); HER2 positivity has been
associated with aggressive biological behavior and worse clinical
outcomes (1–6). Trastuzumab (herceptin) is a humanized IgG1
kappa mAb that binds to the extracellular domain of the HER2
receptor. It interferes with HER2 signaling via several mechanisms,
including inhibition of receptor dimerization, prevention of extra-
cellular domain shedding, endocytotic destruction of the receptor
and antibody-dependent cell-mediated cytotoxicity (ADCC; ref. 7).
Since its first FDA approval in 1998, trastuzumab, in conjunction
with chemotherapy, has been the standard of care in HER2-
positive breast cancer (8–13).

Prescription of trastuzumab has required a companion diagnostic
test to select patients that would benefit. The current assay combina-
tion of IHC, then FISH has high sensitivity (as high as 95%) but
relatively low specificity and is used in effort to leave no patient behind,
althoughmany patients may not benefit from the drug (1, 2). Still, 26%
to 31% of patients with early-stage HER2-positive tumors relapse
within 10 years from surgery, underscoring the need to identify novel
biomarkers to stratify the risk of disease recurrence (14, 15). In
addition, in the presence of many other drugs that address this target,
it would be valuable to augment the testing regimen to find patients
likely to be resistant to trastuzumab.

Here, we used the GeoMxDigital Spatial Profiler (DSP; NanoString
Technologies) as a discovery tool to find biomarkers associated with
resistance to trastuzumab, or recurrence, in patients with early-stage
HER2-positive breast cancer. Then, we used mRNA data from the
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Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimisation
Study (NeoALTTO) to validate our findings.

Materials and Methods
Patient cohorts and samples

Protein expression was analyzed in prospectively collected, pre-
treatment fresh-frozen paraffin-embedded tumor specimens, repre-
sented in a tissue microarray (TMA; YTMA247), from 180 patients
with early-stageHER2-positive breast cancer treatedwith trastuzumab
in the adjuvant setting between 2005 and 2008, as part of the Hellenic
Cooperative Oncology Group (HeCOG) 10/05 phase III clinical
trial (16). For TMA construction, hematoxylin and eosin–stained
slides were reviewed by a board-certified pathologist to select repre-
sentative tumor areas. Then, 0.6-mm-diameter tumor cores were
extracted from each block and arrayed in four recipient master
blocks (17). Core selection was not based on specific tumor segments
or location. For all experiments two slides derived from different
blocks of YTMA247, each containing one nonadjacent tumor core per
patient, were assessed. A total of 151 patients had adequate histospots
for protein quantification (Table 1). HeCOG 10/05 study protocol was
approved by the Institutional Review Boards of all participating
centers. Written informed consent or waiver of consent was provided
by all the patients.

A validation mRNA-sequencing dataset of 254 patients was
obtained from the NeoALTTO clinical trial (18). This trial enrolled
455 patients with early-stage HER2-positive breast cancer. All patients
were randomized between 2008 and 2010 to neoadjuvant lapatinib,
trastuzumab, or their combination; after surgery, patients received
adjuvant chemotherapy followed by the same targeted therapy as in the
neoadjuvant phase to 52 weeks. RNA-sequencing (RNA-seq) data
from baseline biopsies and matching clinical data were available for
254 patients (Table 1). Additional details on sample processing and
sequencing can be found elsewhere (19).

The study was approved by the Yale Human Investigation Com-
mittee protocolNo. 9505008219 and conducted in accordancewith the
Declaration of Helsinki.

Digital spatial profiling
YTMA247 slides were deparaffinized, subjected to antigen retrieval

and incubated overnight with three fluorescent-labeled visualization
antibodies to detect epithelial tumor cells (pan-cytokeratin; PanCK),
tumor-infiltrating leukocytes (CD45) and tumor-infiltrating macro-
phages (CD68), along with a cocktail of 58 unique, previously vali-
dated, oligonucleotide-labeled antibodies (Supplementary Table S1).
Nuclear staining was performed, and tissue was fixed. Next, slides were
loaded in the GeoMx DSP instrument and scanned to produce digital
fluorescent images of the tissue. Each TMA spot was represented by
a unique region of interest (ROI). Each ROI was segmented in
three molecularly defined compartments based on fluorescent colo-
calization, including a tumor compartment (PanCKþ), a leukocyte
compartment (CD45þ/CD68�) and a macrophage compartment
(CD68þ). These molecular compartments are called areas of interest
(AOI; Fig. 1). Oligos from each AOI were released upon exposure to
UV light, by sequential assignment of the tumor, leukocyte, and
macrophage compartments. Photocleaved oligos were collected via
microcapillary tube inspiration and transferred into a 96-well plate.
Oligos were then hybridized to four-color, six-spot optical barcodes
and finally counted in the nCounter System (NanoString Technolo-
gies). Digital counts were calibrated for optical barcode binding
efficiency, quality controlled and normalized to internal spike-in
controls. To account for stromal protein expression, leukocyte and
macrophage compartments were analyzed in aggregate. To evaluate
assay performance, we studied the signal to background ratio for each
target per AOI, by dividing the spike-in normalized target count by its
respective background level. Background levels were established by
calculating the geometric mean of nonspecific counts from three

Table 1. Clinicopathologic characteristics of the discovery
(YTMA247) and validation cohorts (NeoALTTO).

Characteristic

Discovery cohort
(HeCOG 10/05),
N (%)

Validation cohort
(NeoALTTO),
N (%)

Age
Median (range) 54 (25–79) 49 (23–79)

Stage
I 18 (11.9) 0 (0)
II 71 (47.0) 151 (59.4)
III 60 (39.7) 103 (40.6)

Grade
1 0 (0) 6 (2.4)
2 64 (42.4) 97 (38.2)
3 87 (57.6) 122 (48.0)

Estrogen receptor
Positive 88 (58.3) 126 (49.6)
Negative 63 (41.7) 128 (50.4)

Progesterone receptor
Positive 77 (51.0) 97 (38.2)
Negative 74 (49.0) 157 (61.8)

HER2
Positive 151 (100) 254 (100)
Negative 0 (0) 0 (0)

Arm
Trastuzumab 151 (100) 79 (31.1)
Lapatinib 0 (0) 89 (35.0)
Combination 0 (0) 86 (33.9)

Disease recurrence
Yes 19 (12.6) 53 (20.9)
No 132 (87.2) 201 (79.1)

Translational Relevance

Since 1998, trastuzumab has been the standard of care for
patients with HER2-positive breast cancer. We used high-plex
digital spatial profiling to identify biomarkers besides HER2
independently associated with response to trastuzumab in
patients with early-stage HER2-positive breast cancer. High
expression of alpha-smooth muscle actin (a-SMA) within the
stromal compartment was significantly associated with shorter
disease-free survival. This finding was validated by quantitative
immunofluorescence in the same cohort. Furthermore, RNA-
sequencing data from the Neoadjuvant Lapatinib and/or Tras-
tuzumab Treatment Optimisation Study clinical trial indicated
that increased expression of ACTA2 mRNA was predictive for
shorter disease-free survival. This work highlights the role of
cancer-associated fibroblasts that reside within the tumor micro-
environment (TME) inmodeling response to trastuzumab. It also
identifies a-SMA as a novel biomarker of resistance to trastu-
zumab, with the potential to evolve into an easy-to-implement,
TME-based companion diagnostic test.
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negative isotype controls (Mouse IgG1,Mouse IgG2a, and Rabbit IgG)
in each AOI. All antibodies exhibited acceptable dynamic range with
most of them showing high signal relative to background across
different AOIs (Supplementary Fig. S1). To ensure assay reproduc-
ibility we compared normalized counts obtained from nonadjacent
tumor cores stained in different blocks of YTMA247, on different days.
As shown in Supplementary Fig. S2, individual targets (e.g., HER2,
Ki67) were highly concordant between runs (R > 0.80).

Multiplexed quantitative immunofluorescence
A multiplexed immunofluorescence staining protocol for simulta-

neous detection of PanCK, CD45, and a-SMAwas performed in serial
sections of YTMA247. Fluorescence images were acquired using a PM-
2000 system (Navigate Biopharma) and signal quantification for
a-SMA was determined by the automated quantitative analysis
(AQUA) method of QIF, as described previously (20, 21). Target was
measuredwithin twodifferent compartments: the tumormask, created
by binarizing and dilating the cytokeratin signal and the stromal mask,

created by excluding the tumor mask from DAPI mask, which was
created by binarizing and dilating theDAPI signal, that represented the
total tissue. QIF scores were generated by dividing the summed pixel
intensities for the marker of interest by the area of the compartment in
which it was measured and then normalized to the exposure time and
bit depth at which the images were captured. Cases with staining
artifacts or less than 2% compartment area were systematically
excluded after visual inspection.

RNA-seq data analysis
The paired-end fastq files of NeoALTTO RNA-seq data were

available at Gene Expression Omnibus repository (accession number
GSE116335; ref. 22). Sequencing adapters and low-quality reads were
trimmed with Trimmomatic (v0.36; ref. 23). The remained reads of
254 baseline samples were mapped to human reference genome
(vGRCh38) using STAR (v2.7.1; ref. 24). Raw sequencing counts were
obtained using RSEM (v1.3.0), normalized to reads per million and
further transformed to log2 scale (25).

Figure 1.

Tissue segmentation in the GeoMx DSP instrument. Each TMA spot represented a unique ROI. In each ROI, proteins were quantified in three different enriched
compartments or areas of interest [AOI; tumor (PanCKþ) in green, leukocyte (CD45þ/CD68�) in red andmacrophage (CD68þ) in yellow]. To assess stromal protein
expression, leukocyte and macrophage AOIs were analyzed in aggregate. Representative ROIs of YTMA247: fluorescent images A and C and derived
compartmentalized images B and D.
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Statistical analysis
Normalized digital counts obtained by different blocks of

YTMA247 were averaged. Pearson correlation coefficient was used
to analyze the linear association between two continuous variables.
Each case was stratified into high or low expression group using two
exploratory cut-off points,median and top tertile. Disease-free survival
(DFS) analysis was performed using a univariate Cox regression
model. Multiplicity adjustments for DFS associations were applied
using the Benjamini–Hochberg method (FDR < 0.1), considering the
number of tests performed per compartment (tumor, CD45, CD68,
and stroma), and separately for median and top tertile cut-off points.

QIF scores of different blocks of YTMA247 were also averaged.
Patients were separated into two groups according to whether the
expression of a-SMA protein within the stromal compartment was
higher (a-SMA high) or not higher (a-SMA low) than its median
expression. DFS between the two groups was compared using both a
univariate and a multivariate Cox regressionmodel, after adjusting for
estrogen receptor (ER) and progesterone receptor (PR) status.

In the NeoALTTO cohort, patients were separated into two groups
according to whether the expression of ACTA2 gene was higher
(ACTA2 high) or not higher (ACTA2 low) than its median expression
within each treatment arm. DFS between the two groups was com-
pared by a Cox regression model, after adjusting for ER and PR status.
To assess the predictive value of ACTA2 an interaction test was
performed using the lapatinib arm as the placebo. All hypothesis
testing was performed at a two-sided significance level of a ¼ 0.05.
Statistical analysis was performed using R 3.6.3.

Results
After removing positive, negative controls and cytokeratin, we

assessed 51 individual protein targets in four compartments, resulting
in 204 candidate biomarkers per patient. Unsupervised hierarchical
clustering revealed four predominant marker clusters; a-SMA clus-
tered together with CD44 and CD45 in nontumor compartments,
representing the most highly overexpressed targets in this dataset
(Supplementary Fig. S3). Using two exploratory cut-off points, we
found 20markers associated withDFS in spatial context by unadjusted
univariate analysis (Table 2). After adjustment for multiple testing,
two markers remained significantly negatively associated with DFS,
a-SMA, and CTL-associated protein 4 (CTLA-4), both measured in
the leukocyte compartment (P¼ 0.045 and P¼ 0.084, respectively). As
a-SMA is a marker for cancer-associated fibroblasts (CAF), measure-
ments in the leukocyte compartment captured part of stromal protein
expression, rather than reflecting true colocalization with immune
cells. Indeed, digital counts of a-SMA in the leukocyte compartment
were correlated with digital counts in the macrophage (R ¼ 0.70,
P ¼ 2.1e-15) and stromal compartments (R ¼ 0.88, P < 2.2e-16;
Supplementary Fig. S4A and S4B). Accordingly, increased a-SMA
expression within the stromal compartment was associated with
significantly shorter DFS in unadjusted univariate analysis (median
cut-off point; P ¼ 0.023). Digital counts of a-SMA in the stroma
showed positive correlation with those of CTLA-4 in the leukocyte
compartment (R ¼ 0.73, P < 2.2e-16) but no correlation with leu-
kocytic infiltration, as reflected by digital counts of CD45 in the
leukocyte compartment (R ¼ 0.03, P ¼ 0.739; Supplementary
Fig. S4C and S4D).

To validate the association of a-SMA in the stroma with DFS, we
assessed its expression using an orthogonal, fluorescent-basedmethod
in the same cohort (Fig. 2A–C). We detected a range of expression of
this marker across the cohort, with most cases showing stromal

localization for a-SMA (Fig. 2D). We observed a strong agreement
between digital counts and QIF scores of a-SMA within the stromal
compartment (R¼ 0.68, P¼ 3.3e-14), featuring the high concordance
between the two assays (Fig. 2E). Then, using themedian cut-off point,
we confirmed that patients with high stromal a-SMA expression
performed significantly worse in terms of DFS as compared with
patients with low stromal expression of a-SMA [HR, 3.12; 95%
confidence intervals (CIs), 1.12–8.68; P¼ 0.029] by univariate analysis
(Fig. 2F). In the multivariate analysis, including two clinical prog-
nostic factors (ER and PR status), high expression of a-SMA in the
stroma was the only factor that showed significant association with
shorter DFS (HR, 2.91; 95% CI, 1.04–8.17; P ¼ 0.042).

Finally, to validate the predictive relevance of a-SMA overexpres-
sion in patients with HER2-positive breast cancer treated with tras-
tuzumab, we analyzed RNA-seq data from the NeoALTTO clinical
trial. Once again, using the median cut-off point, we found that
elevated levels of ACTA2 mRNA were associated with shorter DFS
(HR, 3.21; 95% CI, 1.14–9.05; P ¼ 0.027) in patients that received
neoadjuvant trastuzumab bymultivariate analysis, after controlling for
ER and PR status (Fig. 3A). Notably, this was not the case for patients
either in the lapatinib (HR, 0.77; 95%CI, 0.33–1.79; P¼ 0.543,Fig. 3B)
or in the combination arm (HR, 0.65; 95% CI, 0.21–2.04; P ¼ 0.469;
Fig. 3C). After performing an interaction test, we found that increased
ACTA2 expression was predictive for disease recurrence in patients
with early-stageHER2-positive breast cancer treatedwith trastuzumab
(P ¼ 0.049).

Discussion
In this study, we used the DSP technology to discover novel

biomarkers of response, or resistance to trastuzumab in a clinical trial
cohort of 151 patients with HER2-positive breast cancer. By combin-
ing high-plex capacity with spatial resolution, we found 20 candidate
biomarkers that were associated with DFS in univariate analysis.

Table 2. Markers significantly associated with DFS under
treatment with trastuzumab in univariate analysis.

Compartment Marker Cutoff
Log-rank
P

Univariate HR
(95% CI)

Tumor IDO1 Top tertilea 0.011 0.12 (0.02–0.87)
FAP-alpha Median 0.026 0.30 (0.10–0.93)

Leukocyte CTLA4 Top tertilea 0.002 6.41 (1.70–24.22)
SMA Top tertile 0.002 6.37 (1.68–24.07)
ER-alpha Top tertile 0.021 3.83 (1.12–13.09)
ICOS Median 0.024 0.20 (0.04–0.95)
IDO1 Median 0.029 0.21 (0.05–0.99)

Macrophage GZMB Mediana 0.005 0.15 (0.03–0.69)
PD-L2 Top tertile 0.008 3.91 (1.31–11.67)
ER-alpha Median 0.021 4.02 (1.12–14.43)
ICOS Median 0.022 0.25 (0.07–0.90)
PD-L1 Top tertile 0.027 0.14 (0.02–1.07)
B2M Median 0.028 0.26 (0.07–0.65)
IDO1 Top tertile 0.033 0.15 (0.02–1.13)
FOXP3 Top tertile 0.033 2.99 (1.04–8.63)

Stroma SMA Median 0.023 4.94 (1.07–22.86)
ICOS Median 0.024 0.20 (0.04–0.94)
PD-L1 Median 0.026 0.21 (0.04–0.96)
IDO1 Median 0.029 0.21 (0.05–0.98)
VISTA Median 0.031 0.22 (0.05–1.00)

aThe marker was significant using both cutoff points, median and top tertile.
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Perhaps, the most compelling finding was the identification of high
levels of a-SMA within the stromal compartment as a predictor of
unfavorable clinical outcome, in terms of shorter DFS, under treat-
ment with adjuvant trastuzumab. We confirmed its association with
DFS with an orthogonal method and after controlling for clinical
prognostic factors. Furthermore, using RNA-seq data from the
NeoALTTO clinical trial, we validated the predictive value of this
biomarker in an independent clinical trial cohort and expanded its

applicability to accommodate patients with breast cancer receiving
trastuzumab in the neoadjuvant setting. Taken together, these results
amplify previous findings showing that CAFs within the tumor
microenvironment (TME) are important mediators of resistance to
trastuzumab (26–28).

We believe this is particularly interesting because a-SMA, as a
surrogate marker for CAFs, is easily assessed by routine IHC testing.
CAFs represent the most abundant cell type of the breast TME and

Figure 2.

Orthogonal validation of a-SMA in stroma by the AQUA method of QIF. Representative images showing the stromal compartment (A) and a-SMA staining pattern
(B and C). D, QIF scores of a-SMA within the tumor and stromal compartment. E, Scatter plot demonstrating the correlation between digital counts of a-SMA in
stroma by DSP and QIF. F, Kaplan–Meier plot for DFS with respect to a-SMA expression in the stroma.
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their composition appears to change during the course of the disease,
with implications to outcome (29). A recent study in breast cancer
revealed at least three spatially and functionally distinct subsets of
CAFs by single-cell RNA-seq, however expression patterns of ACTA2
were broad and not characteristic of a single CAF subpopulation (30).
On the basis of the levels of expression of six surface markers, Costa
and colleagues identified four CAF subsets that accumulated differ-
entially in breast cancer subtypes and normal juxta-tumors; HER2-
positive breast cancer was enriched in CAF-S4 subset, which stained
positive for a-SMA (31). The assessment of a-SMA is already done in
nearly all Clinical Laboratory Improvement Amendments IHC labs
because this marker is used as an aid for diagnosis of some tumor
types. After future development and validation of this biomarker, it
is easy to envision broad adoption for selection of patients that are
HER2 positive but need more than just trastuzumab. These patients
may benefit from more intensive therapeutic approaches, including
dual HER2 inhibition or treatment with an alternative anti-HER2
agent. Building on the immunosuppressive role of CAFs, such
patients may be candidates for future clinical trials involving
immune checkpoint inhibition, or novel approaches that will target
CAFs in particular.

CAFs have been shown to promote resistance to trastuzumab in
several preclinical breast cancer models (32, 33). Epitope masking
could potentially explain CAF-mediated resistance to trastuzu-
mab (34, 35). Adverse remodeling of the extracellular matrix by CAFs
may limit drug penetration and hinder binding of trastuzumab to the
HER2 receptor. This concept is further supported by the fact that the
negative effects of increased levels of ACTA2 in patients treated with
trastuzumab were alleviated by lapatinib, which is a small-molecule
inhibitor targeting the intracellular domain of the receptor (36, 37).
There is a growing body of evidence that failure to trigger ADCCmay
also contribute to trastuzumab resistance in patients with increased
a-SMA in the stroma. CAF secretory functions as well as surface
expression of inhibitory immune checkpoints mediate immune repro-
gramming and induce immunosuppressive changes in the TME (26).
Although the expression ofa-SMA in the stromadid not correlate with
leukocytic infiltration, we noted a positive correlation with CTLA-4 in
the leukocyte compartment. Upregulation of CTLA-4 has been shown
to attenuate the immune response and promote peripheral
tolerance (38–40). Recently, Fern�andez-Nogueira and colleagues iden-

tified a new, CAF-related escape mechanism for HER2-targeted
therapies in breast cancer and suggested that it can be reversed by
FGFR inhibition (41).

There are several limitations to this study. First, assessment of
a-SMA protein in the stroma, by both DSP and AQUA, was done
on TMAs. Although we analyzed two nonadjacent tumor cores per
patient, we realize that this covers a small percentage of a standard
whole tissue section. This is a common initial approach for bio-
marker studies with the rationale being that if an effect can be seen
on TMA, it is likely to be also seen in biopsy specimens in future
studies. Furthermore, we have increased confidence in our TMA
results because the mRNA-sequencing information was obtained
from conventional biopsy whole tissue slides. Second, although we
provide indirect evidence for the lack of prognostic value of a-SMA
by showing no association with outcome in patients treated with
either lapatinb or trastuzumab and lapatinib, we have not formally
assessed a-SMA expression in a cohort of patients with early-stage
HER2-positive breast cancer that did not receive adjuvant therapy.
We note that to rigorously prove “predictive” value, a “no-
treatment” arm is required, and it would be challenging or impos-
sible from an ethical perspective to prospectively obtain such
information. Another set of limitations is inherent in the current
DSP technology. Resolution of the platform is limited to 10 mm,
meaning that some immune cells or other cells within the defined
molecular compartments may be misassigned. This limitation is
addressed by validation with QIF which has sub-micron resolution,
as used in this study. Finally, in this pilot, discovery study, a-SMA
protein was evaluated only in a single clinical trial cohort of patients
with breast cancer. In the future, studies are planned to address the
predictive value of this biomarker by IHC in multi-institutional
studies and in patients with HER2-positive breast cancer receiving
trastuzumab in the metastatic setting, as well as patients receiving
trastuzumab for HER2-positive esophageal or gastric cancer.

In conclusion, we identified, characterized, and validateda-SMA as
a new biomarker, predictive for relapse following treatment with
trastuzumab in patients with early-stage HER2-positive breast cancer
and laid the groundwork for the generation of a novel TME-based
companion diagnostic test. Furthermore, we identified several other
promising candidate biomarkers in spatial context that are currently
being investigated in parallel to this work. Here, we used the DSP

Figure 3.

Kaplan–Meier curves for DFS between patients with high and low ACTA2 expression in NeoALTTO cohort. Trastuzumab arm (A); lapatinib arm (B); trastuzumabþ
lapatinib arm (C).
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platform to discover novel stromal cancer biomarkers. Future studies
will focus on the TME, with the aim to unravel the biology behind
CAFs and to bring this TME-based companion diagnostic test to
the clinic.
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