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G E O P H Y S I C S

Unexplored Antarctic meteorite collection sites 
revealed through machine learning
Veronica Tollenaar1*, Harry Zekollari2,1, Stef Lhermitte2, David M.J. Tax3, Vinciane Debaille4, 
Steven Goderis5, Philippe Claeys5, Frank Pattyn1

Meteorites provide a unique view into the origin and evolution of the Solar System. Antarctica is the most produc-
tive region for recovering meteorites, where these extraterrestrial rocks concentrate at meteorite stranding zones. 
To date, meteorite-bearing blue ice areas are mostly identified by serendipity and through costly 
reconnaissance missions. Here, we identify meteorite-rich areas by combining state-of-the-art datasets in a 
machine learning algorithm and provide continent-wide estimates of the probability to find meteorites at any 
given location. The resulting set of ca. 600 meteorite stranding zones, with an estimated accuracy of over 80%, 
reveals the existence of unexplored zones, some of which are located close to research stations. Our analyses sug-
gest that less than 15% of all meteorites at the surface of the Antarctic ice sheet have been recovered to date. The 
data-driven approach will greatly facilitate the quest to collect the remaining meteorites in a coordinated and 
cost-effective manner.

INTRODUCTION
Meteorites are parts of planetary bodies that formed and evolved 
throughout the evolution of the Solar System. These extraterrestrial 
rocks fell on Earth after surviving the passage through the atmo-
sphere. Being directly accessible at the Earth’s surface, meteorites 
provide important insight into nebular and planetary processes. 
Antarctic meteorites are especially important in this context because 
of their pristine states and the existing legal framework that ensures 
their availability for scientific research (1).

When meteorites fall on the surface of the Antarctic ice sheet, 
they typically become entrapped in the ice sheet’s snow-covered 
accumulation area, which spans 98% of the continent (2, 3). During 
the process in which snow accumulates, compacts, and transforms 
to ice, meteorites become embedded in the ice sheet (Fig. 1). These 
meteorites are then transported along with the ice that flows under 
gravitational forces toward the margins of the continent. Although 
most of the englacially transported meteorites end up in the ocean, 
a small fraction is brought back to the surface of the ice sheet in 
some of the continent’s blue ice areas (BIAs) (4). In BIAs, the annual 
ablation exceeds the accumulation (2, 5). If the ice within a BIA 
contains meteorites, these meteorites eventually become exposed 
through the removal of the ice by ablative processes (sublimation). 
Moreover, the absence of snow accumulation in a BIA implies that 
meteorites falling directly on a BIA can remain exposed at the 
surface. Thus, if the flow of the ice and specific geographical and 
climatological settings combine favorably, a BIA can act as a meteorite 
stranding zone (MSZ) (Fig. 1). In MSZs, meteorites are concentrated 
at the surface, where they can be easily recovered during field 
missions, as, thanks to their color, they contrast with the underlying 
blue ice. These MSZs make Antarctica the most productive region 

for collecting meteorites on Earth; to date, about 62% of all meteorites 
recovered on Earth originate from Antarctica (6).

A conceptual model for the mechanism behind MSZs was first 
proposed in the early 1970s, after a Japanese expedition found nine 
meteorites at a BIA in 1969 (7, 8). Subsequently, many searches for 
meteorites were conducted, and the mechanism behind MSZs was 
studied at multiple individual ice fields (9–11). The concentrating 
mechanism has been generalized qualitatively, describing the 
various influencing factors, as well as the different settings in which 
meteorites are concentrated (4, 12). For example, when the ice flow 
meets a submerged barrier (open MSZ) (Fig. 1) or an emerged 
barrier (closed MSZ) (Fig. 1), the flow is slowed down and redirected 
toward the surface due to a buttressing effect (4, 5, 12, 13). The 
contribution of driving factors behind meteorite concentrations 
(e.g., direct infall, ablation, or ice flow) differs for individual MSZs. 
In MSZs, meteorites stay at the surface for up to thousands of years 
(9, 14), during which they can be transported by the almost stagnant 
ice flow (and potentially wind), until they eventually reach the edge 
of the MSZ and (re-)enter the ice sheet.

Many of today’s known MSZs were discovered coincidentally, 
and to date, the identification of new MSZs remains a very labor-
intensive process that strongly relies on chance and past experience. 
Potential MSZs are typically identified through visual examination 
of remote sensing data of BIAs and their vicinity, after which candi-
date MSZs are visited by snowmobile or helicopter, to investigate 
whether a meteorite concentration is present (15). The discovery of 
meteorite concentrations thus partly depends on the expertise and 
experience of the persons examining maps and imagery, and largely 
on costly field reconnaissance visits. Because of this big human 
factor in the reconnaissance approach, it is most likely that major 
MSZs are still to be discovered.

Here, we combine the wealth of recent remote sensing observa-
tions and derived products over the Antarctic ice sheet with 
machine learning techniques to perform a continent-wide system-
atic analysis toward the detection of MSZs. A first attempt toward 
predicting areas containing concentrations of meteorites was re-
cently performed by Evatt et al. (14). With a physics-based approach, 
they calculated the spatial flux of meteorite falls using data of 
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13 systematically searched Antarctic MSZs. Through inversion, 
they estimated physical parameters and used these to derive the 
density of meteorites for a given area (14). However, when using 
this approach at the continental scale, considerable uncertainties 
are introduced due to the lack of information on small-scale pro-
cesses. For instance, wind speed, which is essential when estimating 
ablation, is not well constrained for most BIAs as regional climate 
models fail to resolve the complex surface settings and topography 
at MSZs (16). Moreover, complex interactions that can make 
meteorites (in)accessible are poorly represented in such an approach. 
Higher temperatures, for instance, not only lead to increased abla-
tion (enhancing surficial meteorite concentration) but also result 
in increased weathering and potential sinking of meteorites into 
the ice (reducing surficial meteorite concentration). To overcome 
these limitations, we introduce a data-driven method, where multi-
ple datasets with quantifiable uncertainties are used to predict the 
probability to find meteorites given an observation anywhere in 
Antarctica. This probability cannot be obtained from a simple overlay 
analysis, as individual MSZs exhibit different glaciological and 
geographical characteristics (12), implying that correlations between 
the datasets need to be considered. Therefore, we use a machine 
learning algorithm in which a classifier is trained through positive 
and unlabeled learning (17). This approach does not include nega-
tive observations (areas that are reported to be absent of meteorite 
concentrations) as a part of the training process, as many of these 

observations have a limited reliability and are not representative for 
all locations absent of meteorites. Instead, negative observations are 
used for the calibration (feature selection) and the evaluation of the 
classification. Through this approach, we generate and extensively 
evaluate the continent-wide prediction of where to find mete-
orites in Antarctica. With these predictions, we define a “where-to-go” 
index as a new and valuable tool for expensive meteorite recovery 
programs that allows prioritizing reconnaissance of BIAs with a 
high potential.

RESULTS
Observations
As meteorites are always recovered from BIAs (except in some very 
rare cases) (18), we only consider these areas and their immediate 
surroundings, based on a recent BIA dataset (3, 19, 20). The BIAs 
(including a 1-km expansion, see Materials and Methods) are over-
laid with a regular spaced grid of 450-m resolution, aligned with the 
grid of Antarctic-wide surface velocity data (21). The resolution is 
chosen according to the availability of the data, and although it is 
not fine enough to fully capture the inter-BIA (re)distribution of 
meteorites, it allows a continent-wide intercomparison of the 
potential of BIAs to contain meteorites. Moreover, the machine 
learning model is tested for robustness by purposeful elimination of 
data to understand the sensitivity to the scale of the variables with 
respect to the arbitrary resolution (see Discussion). Grid cells 
containing one or multiple meteorite finds are labeled as positive 
observations, while all other cells are considered unlabeled observa-
tions, except for 8726 observations that are reported to be without 
meteorites and that are used for the calibration of the classifier 
(i.e., negative observations; fig. S1). The resulting training dataset 
consists of 2554 positive observations and 2.1 million unlabeled 
observations.

Feature definition
MSZs are generally known to (i) expose blue ice with (ii) cold 
surface conditions resulting in surface mass loss through sublima-
tion (rather than surface melt) and to be characterized by (iii) very 
low ice flow velocities due to the presence of (sub)surface barriers 
(4, 12). These three main characteristics are described through six 
features with a continent-wide coverage (Fig. 2).

The presence of blue ice is assessed through radar backscatter 
data (22), as backscatter can be used to exclude snow-covered and 
rock-exposed areas in the vicinity of BIA outlines [that are included 
due to the 1-km expansion and/or are erroneously marked as blue 
ice in the original dataset (3), see Materials and Methods]. As radar signals 
penetrate into thin snow layers (23), occasional snow covering of blue ice 
(24) has a limited influence on the intensity of the radar backscatter.

Direct estimates of the components of the surface mass balance 
(e.g., accumulation, melt, and sublimation) are not available over 
the entire continent on a spatial resolution that is sufficient to 
capture local processes at MSZs. MSZs have typical sizes of tens of 
square kilometers and are characterized by topographic complex 
terrain, while modeled surface mass balance products (e.g., from 
climate models) and measurements are only available on relatively 
coarse resolutions (16, 25). Therefore, we rely on two indirect quan-
tities related to the surface mass balance with a continent-wide 
availability of sufficient resolution: the surface temperature and the 
surface slope.

Fig. 1. Schematic representation of two possible settings of the meteorite 
concentration mechanism, related to a submerged barrier (open MSZ) and to 
an emerged barrier (closed MSZ); not to scale. Bedrock (both subglacial and exposed) 
is shown in brown. Blue colors represent the ice (the darker, the older), and white 
represents snow. Accumulating snow is displayed, as well as the direction of kata-
batic winds, which enhance the ablation. The red arrows indicate the occurrence of 
ablation (sublimation). Gray arrows display the flow of the ice in which meteorites 
are embedded. Black dots represent meteorites. The picture of a meteorite and a 
folding rule for scale was taken during the JARE-54 (Japanese Antarctic Research 
Expedition)/BELARE (Belgian Antarctic Research Expedition) 2012–2013 expedi-
tion to the Nansen blue ice field (60).
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Higher surface temperatures at MSZs lead to an increased prob-
ability of surface melt, resulting in enhanced weathering of meteorites 
(12, 26). Moreover, when temperatures are high, the additional 
radiation absorbed by meteorites, compared to the surrounding ice 
(27), makes meteorites prone to melt the underlying ice, causing 
them to sink (12, 28). The two unfavorable processes (surface melt 
and sinking of meteorites) peak during extreme heat events. 
However, the extremity of the heat events is unknown, and there-
fore, various percentiles of the 2001–2020 distribution of eight-daily 
mean surface temperatures [derived from Moderate Resolution 
Imaging Spectroradiometer (MODIS) satellite data] (29) are con-
sidered (70th, 90th, 95th, and 99th).

Increasing surface slopes are known to accelerate katabatic winds 
(30, 31). The strength of these katabatic winds is related to the mass 
removal at the surface of BIAs through sublimation and snow drift 
(5, 31, 32). Since the scale over which the surface slope influences 
local wind speeds is uncertain and location dependent, the surface 
slope of the ice sheet has been calculated over various distances 
(0.4, 2.2, and 5 km) by masking and filtering surface elevation data 
(see Materials and Methods) (33, 34). Moreover, as the ice flow is 
directly related to the surface slope, this feature is also a proxy for 
the local ice flow.

The very limited ice flow, characteristic for MSZs, is represented 
by the magnitude of the surface velocity. The surface velocity is taken 
from the MEaSUREs (Making Earth System Data Records for Use 
in Research Environments) Phase-Based Antarctica Ice Velocity Map 
(21), which relies on InSAR (Interferometric Synthetic Aperture 

Radar) techniques for slow-flowing areas and feature and speckle 
tracking for fast-flowing areas (35). Other features derived from the 
surface velocity (e.g., divergence, curl, and change of ice thickness 
along the flow line) were investigated but discarded, as even small 
errors in the direction of the low surface velocities strongly influ-
ence their derivatives. The low velocities are linked to the presence 
of (sub)surface barriers, which play an important role in diverting 
meteorites to the surface (Fig. 1). For describing the subglacial bar-
riers, multiple ice thickness datasets are available (36–38). All these 
datasets are subject to uncertainties with a spatial component that 
is strongly related to the spatial coverage of ice thickness measure-
ments. Here, we use the recent subglacial bed topography data from 
BedMachine Antarctica (39). Last, to represent surface barriers, a fea-
ture that represents the distance to the nearest outcrop is calculated 
using a dataset of outlines of exposed bedrock (34, 40).

Feature selection
The influence of the six features on the classifier is evaluated using 
two average receiver operating characteristic (ROC) curves (Fig. 3C) 
obtained in a cross-validation procedure (see Materials and Methods). 
The ROC curve shows the relation between the true-positive and 
the false-positive rate, estimated with calibration data consisting of 
positive and negative observations. In this case, two different sets of 
negative calibration data are used to construct two ROC curves. (i) 
The first set consists of the actual negative observations deduced 
from fieldwork reports (negative data; fig. S1). The resulting ROC 
curve reflects the capability of the classifier to distinguish positive 

A B C D
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Fig. 2. Overview of the features in the area of Elephant Moraine (76°17′S, 157°20′E). The reprojected meteorite finding locations are shown in all panels (black dots), 
while the expanded BIA outlines are shown in the lower right panel. The four features framed with a black line are used for the final classification. (A) For the radar backscatter 
(200-m resolution), the dataset RAMP AMM-1 SAR Image Mosaic of Antarctica v2 (22) is used. No unit is indicated, as the values of the dataset represent the radar backscatter 
intensity in eight-bit digital numbers (22). (B) For the 99th percentile of the surface temperature (1000-m resolution), preprocessed observations of MODIS, from 1 January 2001 
to 1 January 2020, are used (MOD11A2 MODIS/Terra Land Surface Temperature Daytime, 8-Day Global, V006) (29). (C) The surface slope over 2.2 km is calculated using 
the Reference Elevation Model of Antarctica (33) at 200-m resolution, and a dataset of rock outcrops (Rock Outcrop medium resolution v7.1) (34, 40). (D) For the surface 
velocity (450-m resolution), MEaSUREs Phase-Based Antarctica Ice Velocity Map v1 (21) is used. (E) For the ice thickness (500-m resolution), MEaSUREs BedMachine 
Antarctica v2 (36) is used. (F) For the distance to outcrops, the dataset of rock outcrops (34, 40) is used. (G) The background image in the lower right overview is taken from 
the Center-Filled Landsat Image Mosaic of Antarctica (LIMA) Project (61).
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observations (i.e., areas where meteorites have been found) from 
areas that have been selected and visited by experts but turned out 
to be absent of meteorites. (ii) The other set of calibration data 
consists of 9000 randomly selected unlabeled observations (random 
data). This second set of calibration data is needed, as the actual neg
ative observations in the first set of calibration data form a biased 
sample of all negative observations. Areas within the expanded 
BIAs that have never been searched, as they obviously do not con-
tain meteorite concentrations (e.g., exposed bedrock or snow-covered 
areas adjacent to blue ice), are not represented in the negative ob-
servations. Therefore, the first ROC curve (negative data; Fig. 3) 
does not reflect potential biases of the classifier toward obviously 
meteorite-free areas. To avoid this, we randomly sampled unlabeled 
observations to construct this complementary ROC curve that re-
flects the capability of the classifier to distinguish positive observa-
tions from arbitrary areas within the expanded BIAs.

Features are selected by comparing the performance of the 
classifier with a given feature to the performance without that 
feature (Fig. 3B), by relying on an exhaustive feature selection in 
which all possible combinations of features are considered (Fig. 3A). 
The performance of the classifier is expressed as the (average) area 
under the ROC curve (AUC) (Fig. 3C). For four of the six features, 

the AUC increases when these are included (compared to the case 
where they are omitted): surface temperature, surface velocity, radar 
backscatter, and surface slope (Fig. 3B).

The surface temperature and the surface velocity are the two 
most important features; when they are not included, the AUC 
reduces sharply (Fig. 3B). These two features allow distinguishing 
positive observations from places that were judged as potential 
MSZs by experts but turned out to be absent of meteorites (i.e., 
negative observations); as with these features, the AUC with negative 
data is the largest (Fig. 3A). For the surface temperatures, the largest 
AUCs are obtained when considering the higher percentiles (90th, 
95th, and 99th) of the 19 years of eight-daily surface temperatures 
(29), while the AUC is strongly reduced when considering the 70th 
percentile (fig. S2). The enhanced performance for the high percentiles 
is particularly pronounced for the Grove Mountains and Frontier 
Mountain, where using the 70th percentile for the temperature 
reduces the area under these individual ROC curves to 74 and 77%, 
respectively (of the AUC of the 99th percentile, fig. S2). Over MSZs, 
only 1% of all temperature observations during the 19-year period 
exceeds −9.01°C (99th percentile; Fig. 4), which is very close to the 
threshold of −10°C suggested for the loss of meteorites due to sinking 
(12). The ice flow velocities confirm that meteorites are always 

A

B C

Fig. 3. Exhaustive feature selection. (A) The (average) AUC is calculated for all 63 combinations of the six features. Two sets of calibration data are used, one with actual 
negative data (based on which the results are arranged; dark blue) and the other with a random selection of the unlabeled data (light blue). One SD of the AUCs (obtained 
in the cross-validation) is shown as error bar. (B) Improvement of the classifier when including a given feature. The mean AUC of the 32 combinations with a certain 
feature is divided by the mean AUC of the 31 combinations without a certain feature. (C) Three ROC curves (obtained with negative data) illustrating the relation between 
the false-positive rate and the true-positive rate. These rates are estimated by applying the classifier to calibration data and comparing the predicted class (positive or 
negative) to the actual class. By varying parameters of the classifier (see Materials and Methods), different true-positive and false-positive rates are obtained. To compare 
ROC curves, the area under the curve (AUC) is used. In this example, the AUC when using the four selected features (radar backscatter, surface temperature, surface slope, 
and surface velocity; solid line) is larger than the AUC with a different combination of features (radar backscatter, surface velocity, ice thickness, distance to outcrops; 
blue dashed line). When solely relying on the surface slope (red dashed line), the classification approximates a random classification, as the classifier is not able to 
distinguish positive from negative observations.
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found in areas with limited flow, with values up to 6.07 m/year 
(99th percentile; Fig. 4).

When including the radar backscatter and the surface slope, the 
performance of the classifier also improves (Fig. 3B). These two 
features allow discriminating between positive observations and 
random places within the expanded BIAs, such as snow-covered 
areas and rock-exposed areas, as adding these two features leads to 
the largest AUC with random data (Fig. 3A). The radar backscatter 
distinguishes exposed blue ice from snow-covered areas and areas 
where melt and refreezing take place (see Materials and Methods 
for an interpretation of the values) (41). Surface slopes at MSZs do 
not differ greatly from surface slopes of unlabeled observations 
(Fig. 4; see also the nearly random classification based solely on the 
surface slope in Fig. 3C). Nevertheless, the surface slope appears in 
the feature selection (Fig. 3B), confirming that there is a relevant inter
play between other features and the surface slope. This interplay 
pleads for our machine learning approach instead of a simple over-
lay analysis. The distance over which the surface slope is calculated 
(0.4, 2.2, or 5 km) has a very limited influence on the average per-
formance of the classifier (fig. S3). Surface slopes (averaged over 
2.2 km) at MSZs have values up to 104.2 m/km (99th percentile; Fig. 4).

The ice thickness and the distance to outcrops (moderately 
correlated, R = 0.63) do not improve the performance of the classi-
fier, either because the features are not important for predicting the 
presence of a meteorite concentration or because biases in these 
datasets are too large for our application. For the final classification, 
the surface temperature (99th percentile), surface velocity, radar 
backscatter, and surface slope (averaged over 2.2 km) are used. 

The close connection between the four selected features (Fig. 2) 
and the current understanding of the concentration mechanism al-
lows for a meaningful interpretation of the obtained classification, 
which is important given the limited quality and restricted avail-
ability of labeled observations.

Classification
In total, 106,687 observations are classified as positive (Fig. 5). This 
classification is evaluated with independent test data (i.e., not used 
for training the classifier), both (i) locally (at 450-m grid-cell level) 
and (ii) at the MSZ level.

(i) At the grid-cell level, positive and negative observations on 
the 450-m grid (fig. S1) are used as test data. The ratio of positive to 
negative observations in the test data (approximately 1:4) is closely 
reproduced in the classification (see confusion matrix, table S2). 
With an accuracy of 78% (Table 1), the classifier can determine 
whether an observation is positive or not. For the classifier, it is 
relatively easy to eliminate grid cells where no meteorites are found: 
With a specificity of 86%, only a small fraction of the negative 
observations is misclassified. However, the estimated precision of 
47% suggests that there is a considerable chance of not finding any 
meteorite in a positively classified 450-m grid cell (Fig. 5). When 
considering data representative for the entire spectrum of areas 
absent of meteorites (i.e., a random selection of the unlabeled data, 
versus the negative data consisting of nonproductive areas visited 
during reconnaissance missions), there are fewer false positives, 
resulting in an improved precision of 66%. Not all positive grid cells 
are identified by the classifier, as indicated by the sensitivity of 48%. 
The estimated probabilities (Fig.  5) reveal spatial patterns within 
groups of neighboring positive classified grid cells. These patterns 
need to be interpreted with care, as these variations can be simply 
caused by uncertainties and/or resampling of the data used for the 
classification, which is confirmed by the relatively low precision 
and sensitivity. Hence, the predictions on the presence of meteorites 
per grid cell are not ideal for the detailed planning of meteorite 
recovery missions (i.e., where to go exactly within an MSZ).

(ii) For an alternative evaluation, at the MSZ level, the positive 
classified observations are clustered to obtain outlines of MSZs. 
Here, isolated positive and negative pixels are eliminated by apply-
ing a majority filter (see Materials and Methods), and MSZs smaller 
than 4 km2 are ignored, resulting in a dataset of 613 MSZs. In the 
evaluation, the identified MSZs are compared to known MSZs and 
non-MSZs that have not been used in the training process (except 
for eight positive grid cells; see table S3 for details). Some of the 
MSZs are only partially classified, and these MSZs are conservatively 
counted as 0.5 instead of 1. For the non-MSZs, the percentage of 
positive classified pixels within the area is calculated, after which a 
threshold of 20% is set (i.e., if more than 20% of the non-MSZ is 
misclassified as MSZ, it is considered a false positive). Generally, the 
evaluation at the MSZ level reveals that the classifier is very success-
ful at classifying both MSZs and non-MSZs (Table 1). The precision 
at the MSZ level, which is crucial to avoid costly reconnaissance 
missions to misclassified non-MSZs (false positives), is 88.6%. 
Normally, a high precision comes at the cost of a low sensitivity, but 
the estimated sensitivity is also relatively high with 81.6%, indicating 
that the classifier correctly identifies most of the existing MSZs. The 
specificity reveals that 84.6% of the non-MSZs are correctly classi-
fied as non-MSZs. In the hypothetical situation that previous 
meteorite-search expeditions would have had our classification at 

A

C

B

D

Fig. 4. Histograms of the four selected features. (A) Surface temperature 
(99th percentile), (B) surface velocity, (C) radar backscatter, and (D) surface slope 
(averaged over 2.2 km). Values for the ca. 2.1 million unlabeled observations at the 
expanded BIAs are in gray (“blue ice”) and the 2554 positive observations are in 
yellow (“meteorites”). Histograms of other features are provided in the Supple-
mentary Materials (fig. S4). For references and details about the datasets used, refer 
to the caption of Fig. 2. D

ow
nloaded from

 https://w
w

w
.science.org on January 26, 2022



Tollenaar et al., Sci. Adv. 8, eabj8138 (2022)     26 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 14

hand, this high specificity indicates that most of the areas absent of 
meteorites would not have been visited. Moreover, the two non-
MSZs partially classified as MSZ (table S3) could be considered for 
a revisit, as the misclassification might be attributed to possible 
temporal circumstances that prevented a proper assessment in the 
field (e.g., considerable snow cover). Nearly 83% of the known 
MSZs and non-MSZs used in the evaluation are accurately classified. 
Hence, the presented classification is very valuable for reconnais-
sance missions, i.e., to determine the presence of meteorites at 
potential MSZs.

DISCUSSION
The independent evaluation suggests that our encompassing and 
automated data-driven approach in identifying MSZs is an improve-
ment compared to the current manual approaches that are largely 
based on expert knowledge (see Introduction). Moreover, the 
classifier captures relevant interacting phenomena by accounting for 
the interplay between the four selected features (surface temperature, 

Fig. 5. Antarctic meteorite hotspot map with positive classified observations. In the central overview map, the size of the positive classified observations is exaggerated 
for visual contrast, while in the submaps (A to G), the positive classified observations are shown to scale. The expanded BIAs over which the classification is performed are 
delineated in black. The “probability to find meteorites” at a given location corresponds to the a posteriori probability (see Eq. 4.1 in Materials and Methods).

Table 1. Performance metrics of the classification. In the column 
“Equation,” TP denotes the number of true positives, FP indicates the 
number of false positives, FN denotes the number of false negatives, and 
TN indicates the number of true negatives. The column “Grid-cell level” 
gives the results of the evaluation using an independent test dataset (i.e., 
not used for training) consisting of positive and negative observations on 
the 450-m grid. The column “MSZ level” provides the results of the 
evaluation of the postprocessed results (i.e., MSZ outlines) using a test 
dataset consisting of known MSZs and non-MSZs. 

Metric Equation Grid-cell level MSZ level

Precision ​​  TP _ TP + FP​​ 47.3% 88.6%

Sensitivity ​​  TP _ TP + FN​​ 48.2% 81.6%

Specificity ​​  TN _ TN + FP​​ 86.2% 84.6%

Accuracy ​​  TP + TN  ____________  TP + TN + FP + FN​​ 78.4% 82.8%
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Fig. 6. MSZs with a high potential. MSZs larger than 10 km2 with a high expected feasibility and success of a field visit. The panel titles give the name of each MSZ and 
its ranking based on the where-to-go index (“1” being the highest). The panel colors and remarks indicate whether the MSZ has been successfully visited (meteorites 
predicted and found in the field, blue), unexplored (containing meteorites but not visited yet, yellow), or unsuccessfully visited (meteorites predicted but not found in the 
field, red). Background images are false-color, pan-sharpened images of the LIMA project (61). The maximum temperature (99th percentile) and the ice flow velocity 
represent the median value of the observations within the MSZ (see Materials and Methods). “Snow-free days” represents the number of days per field season (szn) 
(November to February) that at least 50% of the MSZ (or for MSZs larger than 20 km2, at least 10 km2) is snow-free (see Materials and Methods).
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surface velocity, radar backscatter, and surface slope), which cannot 
be achieved by a simple (manual or automatic) overlay analysis. For 
example, at the blue ice fields at Martin Hills, visited in 1998 and in 
2007 (42, 43), maximum temperatures are low (−14°C), ice flow is 
slow (4.4 m/year), blue ice is present, and surface slopes are relatively 
gentle (31 m/km). Yet, no meteorites are found, as correctly pre-
dicted by the classifier. In some other areas, the absence or presence 
of meteorites can be explained by considering the values of the indi-
vidual features. For example, at the blue ice fields near Morris Cliff, 
visited in the 1997–1998 field season (44), no meteorites are found, be-
cause, on occasional days, the temperature is too high (up to −7.7°C). 
Another example is the bare ice field south of Mount Bamse, visited 
in 1987 (45), where no meteorites are found because the ice flow is 
too fast (16 m/year). The capacity of the classifier to distinguish 
these non–meteorite-bearing places from potential MSZs over the 
entire Antarctic continent constitutes a major improvement in the 
planning of costly reconnaissance missions.

The performance of the classifier is not largely influenced by 
changes in the positive training data, which confirms that the clas-
sifier is applicable to the real-world, noisy data. Four scenarios with 
alternative sets of positive observations have been investigated 
(fig. S5). (i) Leaving out all observations of any of the nine most 
productive field sites. This data reduction does not affect the classi-
fication, indicating that none of the field sites is essential for the 
training data. (ii) Using the original 12,906 observations, which 
contrasts with our standard approach in which meteorites are re-
projected on a regular grid to 2554 locations. Using the original 
meteorite finding locations slightly reduces the performance of the 
classifier, as many observations are then correlated. (iii) Ignoring 
isolated finds by discarding grid cells with only a single meteorite 
find, which also (unintentionally) eliminates more widely spaced 
meteorite finds. This selection reduces the number of positive 
observations available for training from 2554 to 1359 and does not 
affect the performance of the classification. (iv) Discarding meteorites 

B

C

D

E

F
G

A

Fig. 7. Positive observations for the nine most productive field sites and results of the cross-validation based on the four selected features (surface tempera-
ture, surface velocity, radar backscatter, and surface slope). The Antarctic map shows the location of the field sites. The submaps [(A to G), all on the same scale] 
display the positive observations as black dots, with the number of meteorite finds indicated with “mets,” and the resulting number of reprojected positive observations 
indicated with “obs.” The corresponding ROC curves (FP = false positive; TP = true positive), obtained with the actual negative observations (Fig. 3), indicate the perfor-
mance of each individual field site (colored) compared to the weighted average ROC curve (black). The weighted average ROC curve is obtained by averaging the individ-
ual field sites, where the number of meteorite finds (mets) is used as a weight.
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lighter than a certain threshold, to reduce the effects (noise in 
positive training data) related to the wind-driven transport of (light) 
meteorites on the surface. As the threshold for wind displacement is 
strongly influenced by local circumstances (12, 46, 47), three thresh-
olds are investigated: 100, 150, and 200 g, resulting in 1179, 975, and 
825 observations, respectively. In all three cases, the performance of 
the classifier does not change, indicating that wind displaced meteor-
ites do not influence the classifier and/or that there are few observations 
of meteorites displaced over larger distances (with respect to the applied 
resolution of 450 m). In summary, with a maximum reduction of  
the AUC by 5% (in case the nonreprojected finding locations are 
used), the performance of the classifier is not very sensitive to per-
turbations of the training data.

Future improvements of the MSZ prediction depend on the 
quality and availability of observations. The classifier tends toward 
underfitting (AUC of the test data is 97 to 98% of the AUC of the 
calibration data, fig. S6), indicating that additional features are likely 
to improve the performance of the classifier even further. More-
over, regarding the set of positive observations, only a third of more 
than 45,000 Antarctic meteorite finds (6) has been used for the 
classification, as no detailed location data are available for the other 
meteorites. Given the uncertainties of the negative observations and 
(to a lesser degree) the positive observations, a relatively simple, 
statistics-based machine learning algorithm is used here. With 
increasingly reliable observations, advanced techniques, such as deep 
neural networks, could improve the classification. However, this 
improved classification will then likely come at the cost of a more 
difficult physical interpretation of the results (i.e., “more of a black 
box”) (48). In future work, an insight into the distribution of meteorites 
within a MSZ will be of large value to reduce the high costs related 
to extensive grid searches over entire MSZs. To obtain reliable 
intra-MSZ predictions, a more local approach is needed, given the 
wide range of local settings of MSZs. For this, recent developments 
in the field of remote sensing are highly promising, such as the 
emergence of high-resolution datasets with low uncertainties.

The classified 613 MSZs distributed over the entire Antarctic 
continent correspond to both known and unexplored MSZs. The 
fact that the classification successfully identifies over 80% of the 
known MSZs gives us a high confidence in the classifier’s prediction 
of unexplored MSZs. To directly use the classification as a tool for 
planning future missions, we established a “where-to-go index” that 
ranks each MSZ according to quantities that roughly reflect the 
expected feasibility and success of a field visit. To obtain the where-
to-go index, the MSZs are first ordered three times according to 
three different parameters: (i) the distance to the nearest Antarctic 
research station, (ii) the median of the a posteriori probability of the 
grid cells within the (potential) MSZ, and (iii) the presence of 
temporary snow layers (see Materials and Methods). The summa-
tion of the three rankings forms the where-to-go index. A table of all 
ranked MSZs, providing the location, the maximum temperature, 
the ice flow velocity, an indication of the number of snow-free days 
per season, the area, and the (distance to the) nearest research station, 
is provided in the Supplementary Materials (table S6; “Data and 
materials availability”). An analysis of the highest ranked MSZs 
larger than 10 km2 indicates that several of these MSZs were already 
visited (Fig. 6). Other highly ranked sites were visited, yet no mete-
orites were found, partly illustrating the limitations of either the clas
sifier or the negative data (i.e., meteorites may have been present, 
but not detected, for instance, due to temporary snow patches). Last, 

some of the MSZs with a high rank have (to our knowledge) not 
been visited to date, illustrating that the unparalleled potential of 
Antarctica to yield meteorites has not been fully explored yet.

By combining estimates on (i) the total of true-positive and 
false-negative observations (based on the number of positive classi-
fied observations, 106,687), (ii) the precision (47 to 81%) (Table 1 
and table S1), (iii) the sensitivity (48 to 74%) (Table 1 and table S1), 
and (iv) the average number of meteorites per positive observation 
(12,906/2554  ≈  5 meteorite finds per pixel, where pairing of 
meteorites is not considered, see Materials and Methods), we predict 
that 340,000 to 900,000 meteorites are present at the surface of the 
ice sheet. This implies that only a small fraction (5 to 13%) of all 
meteorites has been recovered from the Antarctic ice sheet to date. 
Therefore, future data-driven meteorite recovery missions will allow 
collecting a large number of meteorites remaining on the ice sheet 
(among which we expect several rare types, such as angrites, brachi-
nitres, or Martian meteorites, see fig. S7). Collecting this unique and 
well-preserved material will further enhance the understanding of 
our Solar System.

MATERIALS AND METHODS
Data for observations
For the unlabeled observations, a recent BIA dataset is used (3, 19, 20). 
Meteorites are (almost always) (18) found on blue ice; however, a 
substantial part (17%) of the meteorite finding locations appear to 
be outside the outlines of the BIA dataset. To include these observa-
tions and to account for uncertainties in the data, the BIA outlines are 
expanded with a 1-km buffer. In addition, in the Queen Fabiola 
Mountains, the BIA outlines have been manually adjusted to in-
clude all the blue ice from one of Antarctica’s prime meteorite collec-
tion locations: the Yamato BIA. BIAs with an average altitude below 
200 m (calculated using the surface elevation data) (33) are not 
considered because meteorite concentrations there are highly unlikely 
(they are typically found above 1500 m, due to the adverse climatic 
conditions at lower elevation) (49).

For the positive observations, we use the data provided in the 
Meteoritical Bulletin Database (6), as consulted on 7 May 2019 
(entries after this date are used for independent testing, details 
below). Of the 28,937 coordinates provided in this database, 14,128 
are unique, and 12,906 are locations with a single meteorite. Thus, 
1222 locations exist where multiple meteorites have the exact same 
coordinates (on average ca. 13 meteorites per location). Presumably, 
the actual coordinates of these meteorite finding locations are 
unknown, and therefore, these are approximated for all meteorites 
in a region with a single coordinate pair. Given the hereby induced 
uncertainties, these 1222 locations are not used. Of the remaining 
12,906 locations with a single meteorite, 38 have no other meteorite 
locations within a radius of 4 km. These 38 locations may represent 
isolated meteorite finds (i.e., meteorite finds unrelated to a meteorite 
concentration) or observations at MSZs that have not yet been 
searched thoroughly.

Meteorites are named after the finding location of the meteorite, 
here referred to as the field site, and sometimes, the database also 
provides the name of the ice field. Given the long history and 
unexpected successes of meteorite searching campaigns, in some 
cases, the field sites refer to glaciologically and geographically 
unconnected areas, and they would likely be designated as distinct 
field sites nowadays, because of the large number of specimens 
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collected in these areas (50). Despite these inconsistencies, we use 
the field sites as provided in the database for dividing the positive 
observations into 10 different sets in the cross-validation (see the 
“Classifier” section). Moreover, most entries in the database repre-
sent individual specimens, as only the most obviously fragmented 
proximal stones are usually paired as one single meteorite in the 
field (50). Despite the importance of considering pairing of meteor-
ite specimens (12, 51), to our knowledge, no systematic pairing 
campaigns on Antarctic meteorites have been performed (50, 52, 53), 
and pairing data are often not updated in the database. Therefore, 
the (reprojected) observations are used as provided in the database, 
notwithstanding the limitation this imposes on the results. Posi-
tive observations used for testing are gathered from fieldwork reports 
and the literature, consisting of maps showing the spatial distribu-
tion of meteorite finds (table S4). These maps are georeferenced 
using the software QGIS. Subsequently, the finds are reprojected 
according to the same procedure as the positive training data (see 
Results). The positive testing data are complemented with entries 
that have been added to the Meteoritical Bulletin Database (6) after 
7 May 2019 (table S4).

The negative observations are deduced from fieldwork reports, 
which provided essential information on unsuccessful meteorite 
searches. From the descriptions in the literature, polygons have been 
drawn using Google Earth Pro (v. 7.3.2.5776), and these have been 
rasterized (see the “Observations” section). A table indicating the 
sites of the negative observations, including references, descriptions 
of the location, and information on the search, is provided in the 
Supplementary Materials (table S5). The negative observations are 
arbitrarily split up into a set of field sites used for calibration and a 
set of field sites for testing (42 and 13 field sites, respectively; table 
S5). Given the limited details on the circumstances and intensity of 
the searches, the validity of the absence of meteorites is in some cases 
questionable. Therefore, we always use the entire set of negative ob-
servations during calibration (in contrast to the positive observa-
tions that have been split up according to their field sites in the 
cross-validation procedure, see the “Classifier” section).

Data for features
The radar backscatter at observation locations is obtained by linearly 
interpolating the 200-m-resolution data of RAMP (Radarsat Antarctic 
Mapping Project) AMM-1 (first Antarctic Mapping Mission) SAR 
(Synthetic aperture radar) Image Mosaic of Antarctica v2 (22). This 
continent-wide product contains integer grayscale values between 0 
and 255, representing the radar backscatter intensity. Given the 
regular spacing of the observations, the linear interpolation results 
in duplicates (there are ca. 30,000 unique values, while ca. 2.1 million 
observations exist). Duplicates form a problem in the cross-valida-
tion of the bandwidth of the kernel density estimation (see the 
“Classifier” section), as they cause the smallest bandwidth to have 
the maximum log-likelihood. To resolve this, random Gaussian 
noise with an SD of 0.25 is added to the observations.

The surface temperature at observation locations is obtained by 
taking the 99th percentile (as well as the 70th, 90th, and 95th 
percentiles, see the “Feature definition” section) of all eight-daily 
surface temperature estimates obtained from 1 January 2001 to 
1 January 2020 (MOD11A2 MODIS/Terra Land Surface Tem-
perature Daytime, 8-Day Global, V006) (29) for the nearest neigh-
bor of the observation. As the 1000-m-resolution data have been 
interpolated using the nearest neighbor method, duplicates exist. 

Therefore, random Gaussian noise with an SD of 0.04°C is added to 
the observations.

The surface slope at observation locations is obtained by linearly 
interpolating continent-wide surface slopes, which are calculated 
with the central difference on masked and filtered 200-m-resolution 
surface elevation data of the Reference Elevation Model of Antarctica 
(33). As the interest lies in the surface slope of the ice, outcropping 
bedrock is masked using a classification of outcrops provided by the 
Antarctic Digital Database (Rock Outcrop Medium Resolution 
v7.1) (34, 40). Filtering is performed by applying an averaging filter 
with a circular-shaped footprint, to avoid sensitivity to the orienta-
tion of the axes. The diameter of the footprint is 2.2 km (equal to ca. 
five times the mean ice thickness at positive observations); in addition, 
a footprint of 5 km is investigated, as well as no filtering to obtain 
the averaged surface slope over 0.4 km. Because of errors in the outcrop 
outlines, the number of observations is reduced with 13 to 2541 
when the diameter of the footprint equals 2.2 km. The observations 
are log-transformed to reduce the skewness of the distribution.

The surface velocity at observation locations is obtained by cal-
culating the magnitude of the surface velocity from the directional 
components of the 450-m-resolution MEaSUREs Phase-Based 
Antarctica Ice Velocity Map v1 (21). The observations are log-
transformed to reduce the skewness of the distribution.

The ice thickness at observation locations is obtained by linearly 
interpolating the original 500-m-resolution data of MEaSUREs 
BedMachine Antarctica v2 (36). The distance to outcrops at observa-
tion locations is obtained by linearly interpolating a 500-m-resolution 
rasterized approximation of the distance to outcrops. This approxi-
mation is made by considering buffers of increasing length (expo-
nentially increasing from 400 to 1800  m in 750 steps) around a 
dataset of outcrop outlines (Rock Outcrop Medium Resolution v7.1) 
(34, 40). This method results in duplicate observations, which are 
adjusted by adding random Gaussian noise with an SD of 0.1 km. 
To avoid negative values due to the additional noise for observa-
tions very close to exposed bedrock (<400 m), the absolute value of the 
noisy distance to outcrops is considered. The observations are then 
increased by 0.1 km and log-transformed to reduce the skewness of 
the distribution.

Classifier
The positive and the unlabeled observations are used to train the 
classifier. The negative observations are only used for the calibra-
tion of the classifier, because of their limited reliability. Training a 
classifier with this nontraditional training set is referred to as posi-
tive and unlabeled learning (PUL) (17, 54). PUL is successfully ap-
plied in classification problems occurring in real-world domains, 
such as land surface classifications using remote-sensing data (54) 
or classification of genes or proteins in molecular biology databases 
(17). As there is neither prior nor posterior motivation that the data 
are distributed normally, we use a kernel density estimation (KDE) 
to estimate the multidimensional density distributions of the posi-
tive and unlabeled observations (55), and we combine these proba-
bility density estimates with Bayes’ rule to get the final classifier. To 
briefly describe the underlying theory and the necessary adjustments 
due to the nontraditional training set of positive and unlabeled ob-
servations, we use “x” to indicate an observation (consisting of mul-
tiple attributes, such as surface velocity and surface temperature), 
“s” to indicate whether the observation is labeled (s = 1) or unlabeled 
(s = 0), and “y” to indicate the value of the label (y = 1 for a positive 
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label and y = 0 for a negative label). Given the absence of negative 
observations for training, if the observation of the training set is 
labeled, the label will be positive for certain

	​ p(y =  1  ∣  s  =  1 ) = 1​	 (1)

Using KDE, the multivariate densities of the positive and the un-
labeled observations are estimated, i.e., p(x|s  =  1) and p(x|s  =  0). 
These densities are evaluated on the observation that needs to be 
classified and are then transformed into the posterior probability 
that the observation is labeled or unlabeled, i.e., p(s = 1|x) and 
p(s = 0|x). To derive the probabilities, Bayes’ rule and the law of 
total probability are used

	​​ 
p(s =  1  ∣  x )  =  ​ 

p(x  ∣ s  =  1 ) × p(s =  1)
  ────────────   p(x) ​  =

​    
​ 

p(x ∣  s  =  1 ) × p(s =  1)
   ─────────────────────────     p(x  ∣  s =  1 ) × p(s =  1 ) +  p(x  ∣  s =  0 ) × p(s =  0) ​

​​	 (2.1)

and

	​ p(s =  0 ∣ x ) = 1 − p(s =  1 ∣  x)​	 (2.2)

Our final objective is to determine the probability that an obser-
vation is positive or negative, i.e., p(y = 1|x) and p(y = 0|x). To 
obtain these values, the priors p(s = 1) and p(s = 0) are adjusted. 
These priors are obtained by calculating the proportion of labeled 
and unlabeled observations, respectively. The ratio of positive and 
negative observations exceeds the ratio of labeled and unlabeled 
observations, as not all positive observations are labeled. Therefore, 
the priors p(s = 1) and p(s = 0) are scaled using a cost parameter as 
in Bayes’ decision rule of minimum risk

	​ p(y =  1 ) = ​  ​n​ labeled​​ ×   ────────────  ​n​ labeled​​ ×  + ​n​ unlabeled​​ ​   
                      and p(y  =  0 ) = ​  ​n​ unlabeled​​  ────────────  ​n​ labeled​​ ×  + ​n​ unlabeled​​ ​​	 (3)

where nlabeled is the number of labeled observations, nunlabeled is the 
number of unlabeled observations, and  is the cost parameter. The 
estimates for p(y = 1) and p(y = 0) are used in Eq. 2 instead of 
p(s = 1) and p(s = 0), respectively, to approximate p(y = 1|x) and 
p(y = 0|x)

	​ p(y =  1 ∣  x ) ≈ ​ 
p(x ∣ s  =  1 ) × p(y  = 1)

   ────────────────────────     p(x ∣  s  = 1 ) × p(y  = 1 ) +  p(x  ∣  s =  0 ) × p(y =  0) ​​	  (4.1)

and

	​ p(y =  0  ∣  x ) ≈ ​ 
p(x ∣  s  =  0 ) × p(y  =  0)

   ────────────────────────     p(x ∣  s  = 1 ) × p(y  =  1 ) + p(x ∣  s  = 0 ) × p(y  = 0) ​​	 (4.2)

Observations are classified as positive when

	​ p(y =  1  ∣  x ) > p(y  = 0 ∣  x ) ,  which equals  p(y =  1  ∣  x ) >  0.5​	 (5)

Before classifying observations, the classifier is calibrated to 
select predictive features (see the “Feature selection” section) using 
the ROC curve (Fig. 3C). This ROC curve is constructed with the 
calibration data and different values of  through a cross-validation 

procedure. For 10-fold cross-validation, the positive observations 
(reprojected meteorite finding locations) are subdivided into 10 sets 
of observations, which represent the nine most productive field 
sites, and all remaining observations (Fig. 7). The classifier is trained 
successively with all but one of the 10 sets of positive observations. 
The unused positive observations, together with a set of negative 
observations, and arbitrary values for , are then used to estimate 
the true-positive and false-positive rates, which are combined in 
the ROC curve (Fig.  3C). Consequently, each point on the ROC 
curve (so-called “operating point”) corresponds to a value of . 
The 10-fold cross-validation procedure thus results in 10 different 
ROC curves from which an average curve is calculated (Fig. 7). To 
compare the performance of the classifier in different settings, 
the AUC is used, where a larger area means a better performance 
(Fig. 3C).

To finally classify observations as positive or negative, a single 
point on the ROC curve, corresponding to a value of the cost , 
needs to be selected. Selecting an operating point implies a trade-off 
between the false-positive and true-positive rates. On the one hand, 
for low false-positive rates, the precision of the classifier is high, but 
the sensitivity is low. On the other hand, for high true-positive rates, 
the sensitivity of the classifier is high, but the precision is low. The 
trade-off between sensitivity and precision is quantified by maxi-
mizing the harmonic mean of the two metrics (i.e., maximizing the 
F1 score). Here, the precision and sensitivity are estimated using the 
true-positive and false-positive rates obtained during the cross-
validation (using the actual negative data, dark blue in Fig. 3 and 
table S1). In summary, the optimal operating point is obtained 
empirically by varying the cost  that reweighs the positive class 
prior to accommodate for the positive and unlabeled data. The 
optimal value for  was found to equal 200.

The classifying algorithm, written in Python using the Scikit-learn 
library, consists of three steps. (i) First, the input data are trans-
formed (see the “Data for features” section) and standardized for 
the mean to be 0 and the variance to be equal to 1. Then, a principal 
component analysis is performed to reduce the dimensionality of 
the data. The dimensionality of the data needs to be reduced, as the 
number of investigated features equals six, while to obtain a reliable 
estimate of the density using the limited number of positive obser-
vations (2,554), the dimension of the data should be reduced to five 
(56). (ii) The multidimensional densities of the first five (or less, 
depending on the dimensionality of the observations) principal 
components of the labeled and unlabeled observations are estimated 
through a KDE with a 10-fold cross-validation to obtain the band-
width parameter. For the KDE of the unlabeled observations, a 
random selection of 10,000 observations is used. (iii) The decision 
rule (Eqs. 3 to 5) is applied to classify observations as positive or 
negative.

Post-processing
To obtain the outlines of the classified MSZs, the classified pixels 
are post-processed using the GIS-software QGIS and GRASS. First, 
isolated positive and negative pixels are eliminated arbitrarily by 
applying a majority filter three times. The first two filtering steps 
use a circular kernel with a two-pixel radius, while the third step 
consists of using a one-pixel radius circular kernel. Subsequently, 
smooth outlines of the filtered results are obtained by vectorizing 
the raster data and smoothing the edges iteratively using a Chaiken 
filter with a 350-m tolerance value (10 iterations).
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Where-to-go index
The where-to-go index, used to rank MSZs, is calculated by consid-
ering three parameters that are important for a successful field 
mission. For each of the three parameters, the rank of the MSZ is 
calculated and subsequently summed up to obtain the where-to-go 
index. Hence, MSZs with low where-to-go indices correspond to 
MSZs with a high potential, and vice versa.

The three considered parameters are as follows: (i) the distance to 
the nearest research station, which is computed in QGIS using a dataset 
of Antarctic Facilities (COMNAP 2019, v3.3.0, released 4 May 2020), 
where only “open” stations are considered. In defining this 
parameter, we prioritized simplicity and interpretability, as the true 
logistic complexity of a field visit is impossible to summarize in a 
single quantitative value. (ii) The median of the a posteriori proba-
bility of all grid cells within the (potential) MSZ. The a posteriori 
probability relates to the probability to find meteorites at a given 
location (Fig.  5; see the “Classifier” section). (iii) A parameter 
representing the presence of temporary snow layers. This parameter 
corresponds to the number of days during the meteorite collecting 
season (November to March) for which at least 50% of the MSZ is 
snow free. For large MSZs (>20 km2), we use an alternative criterion: 
here, at least 10 km2 should be snow free. To estimate whether a 
location (within an MSZ) is snow free, we use the shortwave white 
sky albedo from the MCD43A3 MODIS Albedo Daily 500-m product 
(57). A threshold between snow and ice was found by performing 
various tests and was set at 0.72; values smaller than this threshold 
are considered to represent snow-free days. No measurements 
have been disregarded using the quality bands, because the uncer-
tainties are assumed to be reduced by considering a large time span 
(18 February 2000 until 9 February 2021) and a uniform number of 
measurements over the entire continent is preferred. Despite po-
tential biases introduced by considering all data (58, 59), this 
approach is considered to be sufficient for the specific purpose.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj8138
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