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Understanding the role of stability strengths and weaknesses in proteins is a key objective
for rationalizing their dynamical and functional properties such as conformational changes,
catalytic activity, and protein-protein and protein-ligand interactions. We present
BRANEart, a new, fast and accurate method to evaluate the per-residue contributions
to the overall stability of membrane proteins. It is based on an extended set of recently
introduced statistical potentials derived from membrane protein structures, which better
describe the stability properties of this class of proteins than standard potentials derived
from globular proteins. We defined a per-residue membrane propensity index from
combinations of these potentials, which can be used to identify residues which
strongly contribute to the stability of the transmembrane region or which would, on the
contrary, be more stable in extramembrane regions, or vice versa. Large-scale application
to membrane and globular proteins sets and application to tests cases show excellent
agreement with experimental data. BRANEart thus appears as a useful instrument to
analyze in detail the overall stability properties of a target membrane protein, to position it
relative to the lipid bilayer, and to rationally modify its biophysical characteristics and
function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/
BRANEart.
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1 INTRODUCTION

The broad family of integral membrane proteins provides indispensable components of living cells.
Being embedded in biological lipid membranes, these proteins include important scaffolds and
functional sites, which bind targeted molecules floating around in the cytosol or in the extracellular
medium. They therefore serve as attractive drug targets (Engel and Gaub, 2008; Cournia et al., 2015).

Stability and physico-chemical characteristics greatly vary between transmembrane (TM) and
extramembrane (EM) regions of an integral membrane protein due to the difference in their
surrounding chemical environment. EM domains in the cytosolic or extracellular medium resemble
globular proteins as their surfaces are exposed to water, while residues embedded within the
membrane are exposed to lipids and are thus characterized by an elevated hydrophobicity (Leman
et al., 2018; Mbaye et al., 2019). Because of this mixed environment, the study of folding and stability
of membrane proteins is very challenging and only few tools have been dedicated to investigate them
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(Lomize et al., 2012; Alford et al., 2015; Postic et al., 2015; Lu et al.,
2018). Another reason why membrane proteins are less studied
than globular proteins is their lower number of experimental
three-dimensional (3D) structures (Shimizu et al., 2018).

Just as for globular proteins, the native structure of a
membrane protein corresponds to the global minimum of the
free energy landscape in physiological conditions. In general,
however, some protein residues or regions, taken individually, are
not in their global free energy minimum and correspond to what
we call stability weaknesses (Kwasigroch and Rooman, 2006; De
Laet et al., 2016; Hou et al., 2021). Indeed, not all residues can
simultaneously adopt their lowest free energy conformations,
because of the polypeptide chain which constraints the relative
motions of the residues. Native conformations can be viewed as
the best compromise between conflicting interactions. We define
strong and weak residues as residues that are, or are not,
optimized for stability properties, respectively. For example,
stability weaknesses occur when a contact between two
residues in the native structure does not have a favorable free
energy contribution and can thus easily break, change
conformation, and/or remain flexible. They often play a key
role in protein function, interactions, and conformational
changes. The concept of stability weaknesses is close to the
notion of frustration except that the latter also includes kinetic
constraints on fast folding (Ferreiro et al., 2014).

To further advance these issues, we implemented and expanded a
series of new statistical mean-force potentials designed to specifically
describe the stability properties of membrane proteins, which were
first introduced in Mbaye et al. (2019). Based on these potentials, we
defined here a per-residue membrane propensity index which
predicts whether residues situated in the membrane have a
stabilizing contribution or would prefer to be in EM regions, and
similarly for residues outside the membrane. This index thus
identifies strong and weak residues in EM and TM regions, and
can also be used to predict how a protein is, or is not, inserted in the
membrane.

It is to be noted that we are studying here relative, EM/TM,
strengths and weaknesses, defined from the difference in folding free
energy according to whether a residue is in one or the other region.
They are different from the strengths and weaknesses defined as
residues of which the folding free energy contribution is either highly
optimal or not optimal at all in a given environment, as for example
computed by the SWOTein web server for globular proteins (Hou
et al., 2021). These quantities are related but nevertheless different
and give complementary information.

We made our computational tool freely available in the form
of a web server called BRANEart, designed to help the scientific
community to explore stability strengths and weaknesses in
membrane proteins, which is a key element in the study of
their stability and function.

2 MATERIALS AND METHODS

2.1 Protein Structure Data Sets
The membrane protein data set Dmem comes directly from a recent
study (Mbaye et al., 2019). It consists of 163 X-ray structures of

integral membrane proteins that have been collected from the
Protein Data Bank (PDB) (Berman et al., 2000). The selected
structures have a resolution of at most 2.5 Å and a pairwise
sequence identity of at most 30%, computed using the PISCES
protein sequence culling server (Wang and Dunbrack Jr, 2003).

The setDmem contains 107 α-helical and 52 β-barrel polytopic
membrane, and 4 α-helical monotopic proteins that do not span
the lipid bilayer completely. Each of these proteins was annotated
using OPM (Orientations of Proteins in Membranes) (Lomize
et al., 2012), a curated web resource that positions the biological
lipid bilayer on experimentally resolved structures of integral
membrane proteins and membrane-bound peptides. Using these
annotations, the TM and EM portions of each protein were
further segregated in two subsets DTM

mem and DEM
mem.

All selected protein chains in Dmem were considered in the
context of their biological assembly (or biounit), which
corresponds to their functional quaternary conformation. This
ensures a more realistic representation of the surrounding protein
environment experienced by the protein. The biological units
were taken to be those defined by the authors of the X-ray
structures or, in absence of author annotations, as those
predicted by the Protein Interfaces, Surfaces and Assemblies
(PISA) tool (Krissinel and Henrick, 2007).

Finally, we also set up a second data set Dglob of 4,860
monomeric globular protein structures from the PDB, to be
used as an independent set for validating our method. The
proteins from this data set have a monomeric biological unit,
a good quality X-ray structure with a maximum resolution of
2.5 Å and a pairwise sequence identity of at most 25%.

The list of all proteins belonging to the data sets Dmem and
Dglob are given in the GitHub repository https://github.com/
3BioCompBio/BRANEart.

2.2 Statistical Potentials
Statistical potentials are coarse-grained mean-force energy
functions derived from frequencies of associations of sequence
and structure motifs in a data set of known protein structures.
These frequencies are transformed into free energies using the
inverse Boltzmann law (Sippl, 1990; Kocher et al., 1994; Dehouck
et al., 2006). These potentials depend on the characteristics of the
data set from which they are derived. For example, temperature-
dependent statistical potentials are obtained from protein data
sets of different melting temperatures (Folch et al., 2010; Pucci
et al., 2014), and solubility-dependent potentials from proteins of
different solubility (Hou et al., 2018).

Here we derived a series of membrane protein potentials from
the sets DTM

mem and DEM
mem, extending the work of Mbaye et al.

(2019). More precisely, we considered the following first and
second order statistical potential terms (Dehouck et al., 2006):

ΔWxy � −kBT ln
F x, y( )

F x( ) F y( ) (1)

ΔWxyz � −kBT ln
F x, y, z( ) F x( ) F y( ) F z( )
F x, y( ) F x, z( ) F y, z( ) (2)

where kB is the Boltzmann constant, T, the absolute temperature
conventionally taken to be room temperature, and F, the relative
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frequencies computed from a given data set of protein structures.
The variables x, y, z stand for any of the four elementary structure
or sequence descriptors s, d, t and a: s is an amino acid type, d, the
spatial distance between the average side chain geometric centers
of two residues separated by at least one residue along the
polypeptide chain (Kocher et al., 1994), t, a (ϕ, ψ, ω)
backbone torsion angle domain (Rooman et al., 1991), and a,
a solvent accessibility bin where the solvent accessibility is defined
as the ratio (in %) between the solvent accessible surface area
(ASA) of a residue in the structure and in an extended Gly-X-Gly
conformation (Kocher et al., 1994).

We constructed two versions of each of the potentials defined
by Eqs. 1, 2. In the first, all frequencies F were computed from the
structure set DTM

mem, i.e., considering only protein regions
embedded in the lipid membrane. In the second, all
frequencies F were computed from DEM

mem, thus considering
only extramembrane protein regions. The potentials extracted
from TM regions, ΔWTM

χ with χ � xy or xyz, describe the stability
properties of membrane proteins inside the lipid membrane,
while the potentials extracted from EM regions, ΔWEM

χ ,
describe the stability properties outside the lipid bilayer. Note
that the only membrane protein potentials that we constructed
and analyzed earlier are the inter-residue distance potentials
ΔWμ

sd and ΔWμ
sds (Mbaye et al., 2019), where μ is either EM

or TM.
The full list of 19 membrane statistical potentials derived here

and their characteristics are given in SupplementaryMaterial S1.

2.3 Per-Residue Folding Free Energies
The statistical potentials ΔWμ

χ defined above are used to compute
the contribution of each residue i in a given protein to its overall
folding free energy ΔGi,μ

χ . This is done by allocating an equal
amount of energy to each of the interacting residues that carry the
structural descriptors a, t and d included in χ. More precisely, we
applied the following rules according to the structural descriptors
used (De Laet et al., 2016; Hou et al., 2021):

• If the structure descriptors involved in χ are localized on a
single residue i (which is the case when e.g., χ � st, sa, sst,
ssa), the total contribution is assigned to that residue. For
example, the per-residue folding free energy contribution
ΔGi,μ

st can be written as

ΔGi,μ
st � ∑L

j�1
ΔWμ

sjti (3)

where sj denotes the amino acid type at position j and ti, the
backbone torsion angle domain at position i; L is the
sequence length. Note that the torsion and solvent
accessibility descriptors t and a are required to be in a
sequence windows of maximum 17 residues centered on the
sequence descriptor s, thus |i − j| ≤ 8 (Supplementary
Material S1). Outside this window, ΔWμ

sjti � 0.
• If the structure descriptor is localized on two residues i and j
(e.g., χ � sd, tt, aa, sds, saa, stt), half of the energy
contribution is assigned to each of the two residues. For
example, the per-residue folding free energy ΔGi,μ

sds is:

ΔGi,μ
sds �

1
2
∑L
j�1

ΔWμ
sidijsj

(4)

where si and sj denote the amino acid types at positions i and
j, respectively, and dij is the distance between residues i and j
(Supplementary Figure S1A). Similarly, we have for the
per-residue folding free energy ΔGi,μ

saa:

ΔGi,μ
saa �

1
2

∑L
j,k�1

ΔWμ
skajai

(5)

where ai and aj denote the solvent accessibility bin of residue
i and j, respectively, and sk is the amino acid type of residue
k. Both descriptors ai and aj are required to be in a sequence
window of maximum 17 residues centered on the sequence
descriptor sk, thus |i − k| ≤ 8 and |j − k| ≤ 8 (Supplementary
Material S1).

• For the potential χ � sswhich does not contain any structure
descriptor, an equal amount was allocated to each of the two
residues carrying a sequence descriptor s (Supplementary
Figure S1B):

ΔGi,μ
ss � 1

2
∑L
j�1

ΔWμ
sjsi

(6)

For further details, we refer the reader to Supplementary
Material S1, S2 and to previous studies (De Laet et al., 2016;
Mbaye et al., 2019; Hou et al., 2021).

In a last step, the folding free energy values so obtained for
each residue i were smoothed by taking a weighted average over
the 5-residue sequence window [i − 2, i + 2] (Mbaye et al., 2019):

ΔGi,μ

χ � 1
1 + 2c + 2β

c ΔGi−2,μ
χ + β ΔGi−1,μ

χ + ΔGi,μ
χ + β ΔGi+1,μ

χ(
+c ΔGi+2,μ

χ ) (7)

The weighting parameters c and β were chosen to minimize the
level of weaknesses in the membrane protein data set (see Section
2.5). For the N- and C-terminal residues, the smoothing was done
on the residues present in the [i − 2, i + 2] sequence interval.

In this way, each residue i was tagged with two folding free
energy values ΔGi,EM

χ and ΔGi,TM
χ for each statistical potential χ,

irrespective of its location, in either EM or TM regions.

2.4 Membrane Propensity Index
We introduced a per-residue membrane propensity indexMPri to
predict to what extent a residue i in a folded protein corresponds
to a stability strength or to a weakness when placed in a given,
lipid or aqueous, environment. From a physico-chemical
perspective, MPri estimates whether a residue shows a
preference for the EM or TM environments, and can be
interpreted as an index of stability of a residue within its
structural context. It is defined as a linear combination of all
folding free energy terms derived in the previous subsection:

MPri � ∑
μ

∑
χ

αμχ ΔG
i,μ

χ + αLlogL + αN (8)
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where αμχ , αL and αN are real-valued parameters that need to be
optimized (see Section 2.5) and L is the protein length.

2.5 Model Training and Parameter
Optimization
To estimate the membrane propensity index MPri introduced in
Eq. 8, we needed to identify 42 free parameters introduced in Eqs
7, 8: c, β, αL, αN and 38 αμχ parameters corresponding to one
parameter for each of the 19 statistical potentials derived from
either EM or TM regions (listed in Supplementary Table S1). We
performed this parameter identification by minimizing the
overall amount of structural weaknesses in the proteins from
theDmem set. The general idea behind this procedure comes from
the minimal frustration principle (Ferreiro et al., 2014) stating
that proteins have evolved, and still evolve, to optimize the
folding energy landscapes.

To perform the parameter identification on theDmem data set,
we need to know if each of the residues in the proteins of this set is
in an EM or TM region. For this, we searched the residue
annotations in the OPM database (Lomize et al., 2012). These
annotations were then assigned to the vector O, with the
convention that zero corresponds to an EM region and one to
a TM region. O is thus the target binary output in the model
training. The data set is rather well balanced with about 40% of
the residues belonging to TM regions and about 60% to EM
regions. Note that the OPM annotations are predictions and may
also suffer from inaccuracies.

We defined the cost function C as the square of the difference
between the OPM annotations and the predicted membrane
propensity MPr defined in Eq. 8:

C � ∑
i

MPri −Oi( )2 (9)

where the sum is over all residues in the Dmem training set. The
parameter identification was done with Python (v.3) using the
regression subroutine LinearRegression. Note that logistic
regressions were also tested in the training process, but yielded
less good results.

The performance of the predictor was evaluated using a strict
leave-one-out cross validation procedure, in which each protein,
in turn, was excluded from Dmem and all steps of our
computations, i.e., from the derivation of the statistical
potentials to the computation of the per-site folding free
energy and the parameter identification. The excluded protein
was then predicted blindly. Note that, since the maximum
pairwise sequence identity in Dmem is 30%, the maximum
identity between the training set proteins and the target
protein is also 30%.

The BRANEart model outputs a continuous membrane
propensity score MPr varying approximately between −0.5 and
1.5. Values that are close to one identify residues predicted to be
stable in lipid environment, with the most stable having the
highest MPr score. In contrast, MPr values close to zero represent
residues that are predicted to be stable in aqueous environment,
with the most stable having the lowest MPr score. Residues that

strongly contribute to the stability of the region to which they
belong are considered as stability strengths, and residues that
would be more stable elsewhere in the protein are called stability
weaknesses.

2.6 EM/TM Residue Classification
The membrane propensity score MPr was also used to set up a
binary classifier that predicts whether residues in a membrane
protein belong to TM or to EM regions. For that purpose, we
transformed the continuous MPr scores into a discrete binary
function, where 0 means EM and 1 TM, using an appropriate
cutoff value ϕ0 such that a residue i is predicted to be in the TM
region if MPri ≥ ϕ0 and in the EM region otherwise. The value of
ϕ0 was identified to minimize the difference with OPM
assignments.

To evaluate the performance of this classifier, we used the
balanced accuracy (BACC) defined as:

BACC � 1
2

TP
P

+ TN
N

( ) (10)

where TP and TN mean true positives and true negatives,
respectively, and P an N positives and negatives.

In order to check our predictions using a threshold-
independent metric, we also computed the AUC, i.e. the area
under the receiver operating characteristic (ROC) curve, which
plots sensitivity as a function of specificity for different threshold
values.

2.7 Normalization of Crystallographic
B-Factors
We considered crystallographic B-factors to get information
about protein structural flexibility. However, B-factors of
different protein structures cannot be compared without
proper normalization (Smith et al., 2003). Two types of
normalization were considered here.

The B-factors were extracted from the PDB files of all
protein structures from Dmem and Dglob. For each residue, the
average over the B-factors of the heavy main chain atoms was
computed, and similarly for the heavy side chain atoms. In
the next step, the outliers were removed from the
distribution of the per-residue B-factors, separately for
backbone and side chain, following the outlier removal
technique introduced in Smith et al. (2003). The filtered
sets of per-residue average B-factor values (x) were then
normalized (xN) for each protein chain P in Dmem and
Dglob using two standard techniques (Smith et al., 2003;
Touw and Vriend, 2014):

1. The zero-mean-unit-variance technique:
xPN(i) � (xP(i) − μP)/σP, where μP is the mean and σP the
standard deviation of x-values in protein P. The distribution of
normalized xP

N values has zero mean and standard deviation
equal to one.

2. The min-max scaling technique:
xPN(i) � (xP(i) −min(xP))/(max(xP) −min(xP)), with
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min and max meaning minimum and maximum. This
technique scales xP to xP

N ∈ [0, 1].

3 RESULTS AND DISCUSSION

3.1 Setting up BRANEart
We set up the BRANEart predictor, which predicts for each
residue in a protein structure a membrane protein index MPr,
defined as a linear combination of several types of statistical
potential values, derived from either EM or TM regions of a set of
membrane protein structures (DEM

mem andDTM
mem), as defined in Eqs

1–8. The coefficients of the linear combination were identified to
follow OPM annotations at best (Lomize et al., 2012), through the
minimization of Eq. 9, with the definition that an MPr close to
one means a preference to be located in a TM region and an MPr

close to zero, to be in an EM region. This identification was
performed in strict cross validation (Section 2.5). In what follows,
we only show the cross-validated values.

The MPr index yields a quantitative measure of the stabilizing
or destabilizing contribution that a residue has in a specific
environment, in other words, whether it acts as a weakness or
a strength in that environment. Note that we compared here
aqueous and lipid environments, but that this approach can be
generalized to the comparison of other environments.

3.2 Large-Scale Application of BRANEart
We applied BRANEart to the membrane protein data set Dmem

and to the globular monomeric protein set Dglob defined in
Section 2.1, and computed the per-residue MPr score for the
56,715 and 1,258,648 amino acid residues contained in these two
sets. Note that the huge difference in size between these two sets,
of more than an order of magnitude, is due to the paucity of
experimental structures available for membrane proteins.

As seen in Table 1, the mean 〈MPr〉 value is close to zero in
globular proteins, 〈MPr〉 � 0.13, with a low standard deviation of
σ � 0.13. This means that the large majority of the residues are
stabler in an aqueous than in a lipid environment, which is
obviously the case. Residues in membrane proteins have
intermediate preferences (〈MPr〉 � 0.40) with a much larger σ
of 0.37. However, splitting membrane proteins into TM and EM
regions clarifies these findings: residues in EM regions clearly
prefer to be in an aqueous environment (〈MPr〉 � 0.18), while

TABLE 1 | Mean per-residue index 〈MPr〉 and standard deviation σ of the
distributions computed for the four protein structure sets considered in this
paper; N is the number of residues in each data set.

Data set Protein type 〈MPr〉 σ N

Dglob Globular proteins 0.13 0.13 1.3 × 106

Dmem Membrane proteins 0.40 0.37 5.7 × 105

DTM
mem

Trans-membrane regions 0.74 0.27 2.3 × 105

DEM
mem

Extra-membrane regions 0.18 0.22 3.4 × 105

FIGURE 1 |Distribution of MPr scores computed from different of protein data sets: (A)membrane proteinsDmem, (B) globular proteinsDglob, (C) TM regionsDTM
mem

and (D) EM regions DEM
mem. The color code is defined in Table 2.
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residues inside the membrane prefer a lipid environment (〈MPr〉
� 0.74). These excellent results are a first validation of BRANEart.

The MPr distributions are plotted in Figure 1 for each of the
four data sets. They all show a unimodal bell-shaped distribution,
except the one computed from Dmem which is more spread out
with two peaks, a narrow peak and a flatter one. This distribution
is the union of the two unimodal distributions computed from the
sets DTM

mem and DEM
mem, which are shifted relative to each other and

show a marked preference for lipid and aqueous environments,
respectively. The distribution from DEM

mem is roughly centered
around the same MPr value as the one obtained fromDglob, but is
less peaked although the proteins from both sets are in an
aqueous environment. This suggests that there are more
stability weaknesses in membrane proteins than in globular
proteins or more precisely, that there are more residues in the
EM regions of membrane proteins than in globular proteins
which would prefer to be in a lipid environment.

To graphically visualize the level of stability of a residue, we
defined stability classes in terms of the ϕ0 threshold value defined in
section 2.6 and the standard deviation of the MPr distribution and
we colored the residues accordingly, as explained in Table 2.
Residues that are strong in aqueous environments but weak in
lipid environments are colored in blue. Residues that are strong in
the phosholipid bilayer and weak in aqueous solvent are colored in
green. Different color graduations were defined to further
differentiate between highly stable, stable, moderately stable and
mildly stable residues in EM regions, and equivalently in TM regions.

Interestingly, the amount of strengths and weaknesses in TM
and EM regions are almost identical, as computed from the MPr
distributions: 7% of the residues are weak in both regions, 75% are
strong and the remaining ones are neutral. Without surprise,
most residues thus contribute to the stabilization of the regions to
which they belong; note that the functional residues are usually
among the weak residues.

We also examined how the MPr values change as a function of
the solvent accessibility in globular proteins. Therefore, we
divided all the residues in Dglob into three disjoint bins: core
residues with solvent accessibility < 20%, intermediate residues
with 20% ≤ accessibility < 50%, and surface residues with
accessibility ≥50%. The average MPr score in these groups
gradually drops from core to surface: 0.15 (σ � 0.15), 0.13
(σ � 0.10), 0.08 (σ � 0.10). As seen in Figure 2, the whole
MPr distribution is shifted towards lower values, and becomes
more peaked. This reflects the fact that residues in the core of
globular proteins locally feel a hydrophobic environment and
have a slightly higher MPr, while surface residues are in direct
contact with water and have a lower MPr.

3.3 Application to α-helical and β-barrel
Membrane Proteins
Membrane proteins of which the TM region has an α-helical or a
β-barrel conformation exhibit different folding and stability
properties (Leman et al., 2018; Mbaye et al., 2019). Indeed, the
former type of proteins are essentially localized in the cytoplasmic
membranes of eukaryotic and prokaryotic cells and quite rarely in
outer membranes, whereas the latter type of proteins is found in
outer membranes of Gram-negative bacteria, mitochondria or
chloroplasts.

We observe from the distributions depicted in Figures 3A,B
that residues pertaining to α-helical folds have a bigger preference
for lipid environments than those pertaining to β-barrel folds.
Indeed, average 〈MPr〉 values are equal to 0.44 (σ � 0.40) and
0.34 (σ � 0.31) for α and β proteins, respectively. If we focus on
the TM regions, this tendency is even more marked (Figures
3C,D): 〈MPr〉 � 0.78 (σ � 0.28) and 0.63 (σ � 0.23).

These results are in line with a series of facts. First, α-helices
are coiled structures stabilized by regularly spaced hydrogen
bonds between residues at positions i and i + 4 along the
polypeptide chain. In contrast, β-sheets are stabilized by
hydrogen bonds between residues from different β-strands,
which are usually not close along the chain (Berg et al., 2002).
They thus harbour greater geometric variability than α-helices
and display greater deviations from ideal backbone bond angles
(Touw and Vriend, 2010; Basu et al., 2014). Secondly, β-fold
membrane proteins mainly have channel or porin conformations,
through which molecules can cross the membrane. The internal
faces of these β-barrels are therefore more hydrophilic even
though they are in TM regions. They thus often correspond to
weaknesses when computed in lipid environments. Finally, the
asymmetrical bilayer of phospholipids in which β-barrel proteins
are usually inserted have different characteristics than standard
phospholipid bilayers. This implies that our statistical potentials
generated from TM regions of the whole set of membrane

TABLE 2 |Classes of MPr scores defined in terms of the classification threshold ϕ0
defined in section 2.6 and the standard deviations σ™ and σEM of the MPr
distributions computed fromDTM

mem and DEM
mem, respectively. The colors used in the

visualization frameworks of the BRANEart web server are here defined.

Color Index range Type

MPri ≤ ϕ0 − 2σEM Highly stable in water

ϕ0 − 2σEM < MPri ≤ ϕ0 − 3/2σEM Stable in water

ϕ0 − 3/2σEM < MPri ≤ ϕ0 − σEM Moderately stable in water

ϕ0 − σEM < MPri ≤ ϕ0 − 1/2σEM Mildly stable in water

ϕ0 − 1/2σEM < MPri ≤ ϕ0 + 1/2σTM Neutral

ϕ0 + 1/2σTM < MPri ≤ ϕ0 + σTM Mildly stable in lipids

ϕ0 + σTM < MPri ≤ ϕ0 + 3/2σTM Moderately stable in lipids

ϕ0 + 3/2σTM < MPri ≤ ϕ0 + 2σTM Stable in lipids

ϕ0 + 2σTM ≤ MPri Highly stable in lipids
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proteins could be less accurate for this kind of proteins (see
Mbaye et al. (2019) for further details).

3.4 Protein Embedding in the Membrane
The MPr score can be used not only to identify weak and strong
regions but also to predict the protein embedding in the lipid
bilayer membrane and more specifically, whether residues are
inside or outside the membrane. For that purpose, we
transformed the per-residue MPr scores into a binary

function, where 0 and 1 mean EM and TM, respectively, using
the ϕ0 threshold value defined in section 2.6. We computed the
BACC and AUC scores (Eq. 10 and Supplementary Material S4)
between the so predicted membrane assignments and OPM
annotations, in a strict protein-level cross validation (Section
2.5). The BACC score is equal to 0.87 and the AUC score
reaches 0.94.

These scores are very high and we did not expect better results.
Indeed, weak residues in TM and EM regions fall in the class of

FIGURE 2 | Distribution of MPr scores computed from the globular protein set Dglob for residues that are (A) situated in the core, (B) half buried and (C) solvent
exposed. The color code is defined in Table 2.

FIGURE 3 |MPr distribution computed from the membrane proteins in Dmem that have an α-helical or β-barrel structure. (A) α-folds (TM and EM), (B) β-folds (TM
and EM), (C) TM region of α-folds and (D) TM region of β-folds. The color code is defined in Table 2.
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wrong predictions, even though some of them are truly weak and
are essential for membrane protein functioning as we will see in
the next two subsections.

Note that we used annotations of OPM (Lomize et al., 2012) to
train the predictor, and that these annotations are actually also
computational predictions. Some discrepancies between the
results of our prediction and OPM could therefore be due to
errors of OPM rather than of our predictor. Moreover, the
discrepancies between OPM and BRANEart predictions are
essentially located close to the membrane borders and
highlight some structural flexibility in these regions as
illustrated in Supplementary Figure S5. We could use our
predictor to yield new EM/TM assignments, which would
differ from OPM assignments in some places. Alternatively,
the MPr score could be used as a feature, in combination with
other features, to improve the accuracy of the membrane protein
embedding in the membrane (Lomize and Pogozheva, 2013;
Postic et al., 2016).

3.5 Probing Membrane Helix Associations
Experimental data about the association energy ΔGass

α of a series
of 16 membrane structures that contain a single α-helix crossing
the membrane were collected from Lomize et al. (2020). We
analyzed how the MPr score of these transmembrane structures
change upon dimerization or tetramerization and whether there
is a quantitative relation between this score and the experimental
ΔGass

α values. For this purpose, we defined the quantity T as the
difference in MPr score between the transmembrane helix dimer
AB and the two helices A and B:

T � 1
2

∑LA+LB
i

MPri AB( ) −∑LA
i

MPri A( ) −∑LB
i

MPri B( )⎛⎝ ⎞⎠ (11)

where LA and LB are the number of residues in A and B. In the
case the complex is a tetramer, the MPr score of the four separate
monomers are subtracted from that of the complex, and divided
by four. We computed the Pearson correlation coefficient r
between ΔGass

α and T for the 16 transmembrane helical
complexes, and found a very high value of 0.91 (p-value < 10−5).

For comparison, we computed the correlation coefficient
between ΔGass

α and the interaction energy predicted by the
popular tools TMPFold (Lomize et al., 2020), PDBePISA
(Krissinel and Henrick, 2007), and PRODIGY (Xue et al.,
2016). We found these correlation coefficients to be equal to
0.89, 0.85 0.75, respectively. BRANEart thus outperforms these
three methods on the considered test set.

Note that BRANEart was not designed for predicting stability
inside the membrane, but rather to detect the protein regions that
prefer to be inside or outside themembrane. This result comes thus
as an additional, unexpected, application of BRANEart. Note also
that the predictions were completely blind as no experimental
association energies were used in the model construction.

The list of all proteins with their experimental ΔGass
α values,

the T score and the predictions of TMPFold, PDBePISA and
PRODIGY can be found in the github repository: https://github.
com/3BioCompBio/BRANEart.

3.6 Relating the MPr Score to Biophysical
Quantities
This section explores the relationships between the MPr score
that identifies stability strength and weakness regions in
membrane proteins and several quantities describing structural
and biophysical residue properties. We started by computing the
correlation between MPr and different hydrophobicity scales for
all residues belonging to DTM

mem. A wide variety of hydrophobicity
scales have been derived in the past decades using experimental or
knowledge-based approaches, which describe the difference in
stability of residues embedded in water or lipid bilayers
(Engelman et al., 1986; Hessa et al., 2005; Koehler et al., 2009;
Moon and Fleming, 2011). These scales are employed in
algorithms that predict the TM segments of membrane
proteins (Deber et al., 2001; Tian et al., 2020).

Our BRANEart MPr score is only weakly correlated with these
various hydrophobicity scales: the Pearson correlation coefficient
is always around r �−0.20 (see Supplementary Material S3.1 for
details). This is not surprising as the MPr score contains much
more information than simple hydrophobicity values and takes
into account structural data and their complexity. It classifies TM
and EM residues with much higher accuracy and can properly
describe the local stability of different conformations of the same
membrane protein, as shown in the next subsection.

We also explored the relationship between the BRANEart MPr
score and the depth in the lipid bilayer. Our membrane-
dependent potentials are based on a series of conformational
descriptors and their combinations, but do not use depth in
contrast to some other statistical potentials (Senes et al., 2007;
Schramm et al., 2012). Despite this, we found a good correlation
between the per-residue MPr scores and the absolute values of the
Z-depth, defined as the distance between the residue side chain
centroids and the plane parallel to the membranes cutting the
bilayer into two equal parts. The Pearson correlation coefficient is
indeed r �−0.55. This means that the larger the MPr score and
thus the larger the preference of a residue for a lipid environment,
the deeper it is embedded in the lipid membrane. Note that the
relationship is non-linear as can be seen from Supplementary
Figure S3. This suggests the use of non-linear functions of our
statistical potentials to predict the Z-depth more precisely.

Finally, we investigated whether MPr scores are correlated with
residue flexibility, estimated from crystallographic B-factors that
indicate the relative vibrational motion of atoms in different parts
of the structure. To be able to compare the B-factors of different
proteins, they need to be properly normalized. We used two
normalization techniques, the zero-mean-unit-variance and min-
max-scaling techniques, described in Methods subsection 2.7. We
computed the Pearson correlation coefficient between the MPr
scores and the per-residue normalized B-factors of all residues in
Dmem, separately for backbone and side chains. The correlations are
all low and negative, with r in the [−0.1, −0.3] range, both for side
chains andmain chains, for the two normalization schemes, and for
TM and EM regions. For comparison, we also computed the
correlation between MPr and B-factors in the globular protein
set, Dglob, with very similar results. Further details can be found in
Supplementary Material S3.3.
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This characteristic anti-correlation can be explained by the
opposite trends of MPr scores and B-factors. For the B-factor, the
higher the value, the higher the degree of flexibility. For the MPr
score, a higher value means a higher preference for lipid
environments that restrict atomic movements. The anti-
correlation thus means that EM regions are more flexible
than TM regions. The low value of the correlation is due to
the fact that the MPr score contains information about stability
across different environments, which is much more than
information about flexibility. Note, moreover, that stability
and MPr are related to free energy in which flexibility is
entropically favorable.

3.7 Application to Leucine Transporters
In general, membrane proteins undergo conformational changes to
accomplish their biological functions (Latorraca et al., 2017;
Chataigner et al., 2020). Residues that are at the basis of these
large-scale movements are often stability weaknesses (Hou et al.,
2021) or in other words, frustrated (Ferreiro et al., 2014). Indeed,
functional constraints prevent them to adopt conformations with
high stability contributions. Here we show howwe can use theMPr
score to gain insight into the functional role of these residues. Note
that, to our knowledge, no other method employs dedicated energy
functions to study frustration in membrane proteins.

As an example, we analyzed leucine transporter (LeuT), a
bacterial homodimeric protein containing twelve transmembrane
helices, which uses the electrochemical potential of sodium ions
to transport leucine from outside to inside the cell (Penmatsa and

Gouaux, 2014). Both the substrate-free outward-open LeuT
structure and the inward-open apo conformation have been
resolved via X-ray crystallography (Krishnamurthy and
Gouaux, 2012) (PDB codes: 3tt1 and 3tt3, respectively).

We analyzed the difference in membrane propensity index
(ΔMPr) between the two conformations in Figure 4A. We can
easily identify the two regions with highest ΔMPr in absolute
value: the transmembrane helix 1 (TM1) and the extracellular
helix 4 (EL4), which are key elements that allow the opening and
closing of the intracellular and extracellular gates, respectively
(Krishnamurthy and Gouaux, 2012). We thus focused on these
two regions and analyzed their MPr values in both outward and
inward conformations (Figures 4B–E).

The transmembrane segment TM1 (residues 11–35) is a
kinked helix formed by two helical regions, TM1a (residues
11–21) and TM1b (residues 25–35), separated by a hinge
fragment (residues 22–24). TM1a undergoes a large movement
upon opening of the intracellular gate (Figures 4B,C). Despite the
fact that the whole TM1 is inside the lipid membrane, the hinge
residues have a very low MPr score in both conformations. They
are thus stability weaknesses, relating them to their functional
role in facilitating the opening and closing of the gate, as
confirmed by experiments (Krishnamurthy and Gouaux,
2012). The MPr of TM1a changes significantly during the
(closed → open) conformational transition. In the inward-
open conformation, when the intracellular gate is open, TM1
is only found weakly stable (Figure 4C), whereas in the outward-
open conformation, when the intracellular gate is closed, TM1a

FIGURE 4 | Leu transporter: MPr score in the outward-open (PDB code 3tt1) and inward-open (PDB code 3tt3) conformations (A) Difference in MPr score (ΔMpr)
between the two conformations as a function of the sequence position; the positions of the helices TM1 and EL4 are indicated. (B–E)MPr of the TM1 and EL4 helices as
a function of the sequence position, and TM1 and EL4 helices embedded in the 3D structure, colored according to the code defined in Table 2; (B) TM1, outward-open
conformation; (C) TM1, inward-open conformation; (D) EL4, outward-open conformation; (D) EL4, inward-open conformation.
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establishes stabilizing contacts with TM5 and TM7 which is
reflected by high MPr values (Figure 4B).

In a similar way, we identified the strong and weak residues in
the outer membrane environment related to the conformational
movement that EL4 undergoes while opening and closing of the
extracellular gate. EL4 (residues 309–321) is a helix of which the
last residues (319–321) are unwound and called hinge; its position
appears displaced in the outward-open and inward-open
conformations. In the outward-open conformation, when the
extracellular gate is open, the N-terminal EL4 residues 309–311
are stable in aqueous environment but the hinge residues are
weak (Figure 4D). While closing the gate, EL4 changes in terms
of its stability profile, with its N-terminus becoming weak and its
C-terminus and the hinge getting more stable (Figure 4C) due to
extensive contacts including hydrophobic interactions and a
hydrogen bond between Ala 319 and Asp 401 in TM10.

This example illustrates howwe can use BRANEart to identify in a
simple way residues in membrane proteins that are not optimized for
their stability, which is particularly relevant for functional residues.

3.8 Application to Human Phospholamban
As a second test case, we studied the stability of human
phospholamban (PLB), a protein anchored into the cardiac
sarcoplasmic reticulum membrane, which is essential to
myocardial contractility (Koss and Kranias, 1996). Let us start
with the analysis of the MPr index as a function of the sequence,
computed from the standard pentameric form of PLB (PDB code
1zll). As shown in Figure 5A, the two domains of the protein are
easy to identify: the EM part (residues 1–22) has low MPr values
and thus the propensity to be stable in water, and the TM part
(residues 23–52) has overall much higher MPr values indicating
its stability in lipids. A closer look shows that the TM region must
be divided in two: the C-terminal part (residues 33–52) is apolar,
contains the well known motif LxxIxxx (Mravic et al., 2019) and
has high MPr values indicating its stability in lipids, whereas the
N-terminus (residues 23–32) is a TM weakness.

Note that the latter part connects the EM and TM regions and
is very close to the water-membrane interface. It thus probably
changes dynamically from the lipid TM to the aqueous EM
environment and vice versa. This prediction is in perfect

agreement with both NMR data (Oxenoid and Chou, 2005),
molecular dynamics simulations (Kim et al., 2009; Mravic et al.,
2019) and mutagenesis data (Fujii et al., 1989; Simmerman et al.,
1996), which identified this region as highly dynamical,
unimportant for the stabilization of the structure, but crucial
for modulating functional interactions of PLB.

We also analyzed the MPr index of the different types of PLB
structures. More specifically, we compared the stability of the wild-
type monomeric and pentameric forms (PDB code 1zll) (Oxenoid
and Chou, 2005), of a highly stable designed pentameric variant
(PL5, PDB code 6mqu) (Mravic et al., 2019) and of a water-soluble
tetrameric variant (WSPLB, PDB code 1yod) (Slovic et al., 2005).
The MPr values of the TM region (residues 28–50) in all these
structures are reported in Figure 5B. The TM region of the
monomeric form shows a clear preference for the lipid
environment with all residues having an MPr value bigger than ∼
0.5. The pentamer form is predicted to be more stable than the
monomer form since inter-chain interactions between the TM
fragments strongly stabilize this structural assembly. Note that
both the monomer and pentamer forms do exist in phospholipid
bilayers even though the latter is dominant. Such oligomer
equilibrium is dynamic and can change due to mutations or
phosphorylation (Cornea et al., 1997).

The PL5 variant has the largest MPr values and is the most
stable form in the lipid environment. This is again in perfect
agreement with experiments; in redesigning this protein
fragment, the polar residues have been substituted by apolar
residues to get stronger interchain interactions driven by apolar
sidechain packing and an increased stability of the overall fold
(Mravic et al., 2019). Finally, the redesigned, truncated, water-
soluble variant has extremely low propensities to be in a lipid
environment, as can easily be seen from our predictions.

3.9 Application in the Evaluation of Docked
Complexes
BRANEart has recently been applied in the context of COVID-19
research to cross-check the correctness of docked peptide-protein
complexes between angiotensin II and its cognate receptor,
angiotensin converting enzyme 2 (ACE2) (Basu et al., 2021).

FIGURE 5 | Phospholamban case study. (A)MPr values computed for the pentameric structure of the full-length phospholambam (PDB code 1zll); (B) amino acid
sequences and MPr values for the TM fragment (residues 28–50) of four different PLB structures: PLBmonomer (light green, PDB code 1zll), PLB pentamer (green, PDB
code 1zll), redesigned pentamer PL5 (dark green, PDB code 6mqu) and water soluble PLB tetramer (blue, PDB code 1yod).
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The survey was performed by comparing the MPr profiles of the
peptide ligand and the docking sites in the top-ranked docked
poses returned by ClusPro 2.0 (Desta et al., 2020). BRANEart
unanimously selected peptides mapping to ACE2’s deep pocket
buried in the hydrophobic core. This result shows the usefulness
of BRANEart to analyze hydrophobicity compatibility between
protein and/or peptide partners.

3.10 BRANEart Web Server: Features and
Functionalities
We implemented our structure-based prediction method into the
easy-to-use BRANEart web server. To run a query, the user first
chooses the structure of a membrane protein by either providing its
4-letter code which is then automatically retrieved if available in the
PDB, or by uploading a protein structure file in PDB format. The
user is then asked to select the relevant chain(s) on which BRANEart
has to perform the predictions, taking into account the other chains
present in the structure file. Finally, the computation starts.

The main BRANEart output is the MPr score for each amino
acid residue in the selected chain(s) of the target protein structure.
In addition to returning these values as a downloadable text file, the
web server also displays a table with the MPr of each residue of the
targeted protein chain(s), colored according to the code defined in
Table 2. In addition, BRANEart provides a multi-featured browser
tool to visualize the protein 3D structure, where each residue is
colored according to its MPr score. It has several advanced
visualization functionalities. More precisely, it is possible to:

• hide/show specific chain(s) in the displayed structure, and
zoom in and out by left dragging the mouse.

• switch to a full screen visualization mode and take a “.png”
snapshot of the visualized structures.

• select a residue of interest by double clicking on it. The
neighboring residues are then displayed in “ball and sticks”.

• download a PyMol session file (.pml) (The PyMOLMolecular
Graphics System, Version 2.0 Schrödinger, LLC) to switch to
the PyMol representation of the 3D structure.

For further technical details and information about the web
server, we refer to the BRANEart help page.

4 CONCLUSION

We presented BRANEart, a computational method to identify the
stability strengths and weaknesses in membrane proteins. Extending
and combining the newly developed membrane statistical potentials
introduced in Mbaye et al. (2019), we defined a MPr score that
quantifies whether a residue is stable in a lipid or aqueous
environment. Large-scale predictions and applications to test
cases show BRANEart’s ability to correctly identify regions in
their respective environment that strongly contribute to the
stabilization of their host protein, and residues that have instead
low impact on stabilization but have functional roles.

Note that our approach can be extended to identify strengths
and weaknesses in other environments than the membrane, for

example in hot and cold environments using temperature-
dependent potentials (Folch et al., 2010).

We additionally provided a user friendly web server that, on
the basis of the 3D structure of the target membrane protein,
computes the MPr score for each residue in the input structure.
Visualization tools are provided which simplify the
understanding and interpretation of BRANEart results.

To our knowledge, BRANEart is the first accessible, fast and
accurate tool that use dedicated membrane protein potentials to
identify stability strengths and weaknesses in membrane proteins.
The use of such mean force potentials drastically simplifies the
analysis of membrane protein stability, since the effect of the lipid
environment is considered in an implicit manner. BRANEart can
be used in a wide series of applications that range from the
analysis of the conformational changes in membrane proteins,
the embedding of proteins in the lipid membrane, to the
identification of residues to target for the rational modification
of biophysical characteristics of membrane proteins.
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