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Over the past decade, metagenomic sequencing approaches have been providing an ever-increasing
amount of protein sequence data at an astonishing rate. These constitute an invaluable source of infor-
mation which has been exploited in various research fields such as the study of the role of the gut micro-
biota in human diseases and aging. However, only a small fraction of all metagenomic sequences
collected have been functionally or structurally characterized, leaving much of them completely unex-
plored. Here, we review how this information has been used in protein structure prediction and protein
discovery. We begin by presenting some widely used metagenomic databases and analyze in detail how
metagenomic data has contributed to the impressive improvement in the accuracy of structure predic-
tion methods in recent years. We then examine how metagenomic information can be exploited to anno-
tate protein sequences. More specifically, we focus on the role of metagenomes in the discovery of
enzymes and new CRISPR-Cas systems, and in the identification of antibiotic resistance genes. With this
review, we provide an overview of howmetagenomic data is currently revolutionizing our understanding
of protein science.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The use of metagenomic sequencing is dramatically improving
our understanding of the evolution and ecology of microbial sys-
tems in various environments, from water and soil to the human
body [1–3]. For example, metagenomics has been essential in
revealing the mechanism of certain human diseases by detecting
changes in the gut microbiome [4–6] and in identifying and con-
trolling pathogens [7]. These advances have been made possible
by metagenomics high-throughput sequencing techniques,
through which billions of protein sequences have been character-
ized. Meanwhile, their number continues to grow at an impressive
rate. These huge amounts of data are an invaluable source of infor-
mation that has a big impact in different areas of protein science.

Protein three-dimensional (3D) structure prediction is one of
these areas. Since a seminal article [8], metagenomic sequence
data has been widely used to construct multiple sequence align-
ments (MSA) of target proteins, which are used as inputs to deep
learning models for structure prediction. Metagenomic informa-
tion has significantly contributed to improving the accuracy of
the predictors [8], which have achieved astonishing scores in
recent years [9,10]. Many studies have also been devoted to under-
standing the functions of proteins from metagenomic assembly,
even though only a small part is functionally annotated. Metage-
nomic data constitute a huge reservoir of information that can be
exploited to discover new proteins with specific functions. Indeed,
they have proven to be a fundamental resource for discovering
new enzymes with given stability properties [11–18], exploring
antibiotic resistance genes in different microbial communities
[19–23] and identifying new CRISPR-Cas systems [24–28].

In the next sections, we review widely known metagenomic
databases and their characteristics, and show how this huge
amount of information is used to improve the abovementioned
research fields, as schematically depicted in Fig. 1.

2. Metagenomic resources and databases

We start by reviewing the widely known and curated metagen-
ome resources and databases: IMG/M [29], MGnify [30], MetaClust
[31] and BFD [32]. These databases are extensively used by the
research community in a wide range of studies, e.g., protein struc-
ture prediction [8,9], metabolic gene cluster discovery [33],
enzyme discovery [11], and gene function prediction [34]. Their
characteristics and content, dated December 2021, are described
below; further details can be found in Table S1 of Supplementary
Material:

� IMG/M. The Integrated Microbial Genomes and Microbiomes
[29] is a comprehensive data management resource for the
analysis of annotated genomic and metagenomic sequence
data. It is increasing rapidly, reaching about 360 million genes
from isolated genomes and 66 billion genes frommetagenomes.
The latter mainly come from human gut microbiome and from
marine and freshwater microbial systems (see Fig. 2.a). The gen-
omes and metagenomes with their metadata attributes were
collected from the manually curated GOLD database [35] and
then annotated with the IMG annotation pipeline [36].
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Protein-coding genes were identified from (meta) genomic data
by the prediction program Prodigal [37], and functionally anno-
tated by using hidden Markov model (HMM)-based homolo-
gous sequence searches [38].
IMG/M includes a set of genomic tools for data analysis, such as
IMG/ABC for the study of biosynthetic gene clusters and sec-
ondary metabolites, and IMG/VR for the analysis of viral gen-
ome fragments derived from metagenomic samples. It also
provides multi-search capabilities to search the database for,
e.g., homologous proteins of a target sequence via BLAST [39],
KEGG enzyme classes and pathways [40,41], CATH families
[42] and Pfam domains [43].

� MGnify. It is a comprehensive hub for the analysis, exploration
and archiving of microbiome information [30]. It is one of the
world’s largest resources of microbiome data, and a user-
friendly platform integrating multiple genomic tools, which
makes MGnify widely used. A total of about 4,000 publicly
available studies corresponding to about 325,000 samples and
437,000 analyses were deposited in the database. These num-
bers are constantly growing and have doubled in the last two
years.
MGnify provides a non-redundant protein set generated from
the analysis of all the assembled datasets, which contains
more than 1 billion sequences [30]. It also uses Linclust [31]
to cluster the protein sequences with a sequence identity
and coverage of 90%; the cluster representative is chosen to
be the longest sequence. Moreover, it provides very useful
tools to, for example, query the non-redundant protein dataset
for sequence homologs using the HMM profile-based tool
HMMER [38]. Note that the user can choose to query only a
subset of the full set of proteins, corresponding to a type of
microbial niche (also called biome). As shown in Fig. 2.b, most
of the entries come from human microbiomes, but marine,
animal, plant, and soil biomes also contribute significantly to
the dataset.

� MetaClust. The MetaClust database contains about 1.6 billion
protein sequence fragments, predicted by the gene prediction
program Prodigal [37] from about 1,800 metagenomic and
400 metatranscriptomic datasets obtained from multiple
resources [29,44,45]. These sequences were clustered into 424
million classes using Linclust [31], a fast protein sequence clus-
tering algorithm able to cluster huge sets of sequences. The
thresholds used for the clustering is 50% sequence identity
and 90% sequence coverage. MetaClust is a ready-to-use tool,
providing 424 million representative sequences.

� BFD. Unlike other databases, the Big Fantastic Database (BFD) is
a sequence profile database. It contains about 65 million fami-
lies represented as MSAs and hidden Markov models (HMMs).
It is one of the largest and most used metagenomic databases,
as MSA and HMM representations are sometimes more conve-
nient to work with than non-redundant representative protein
sequence sets. It has been constructed by collecting about 2.5
billion protein sequences from UniProt/Trembl [46], SwissProt
[47], MetaClust[31], as well as the Soil Reference Catalog and
the Marine Eukaryotic Reference Catalog, assembled using the
de novo protein-level assembler PLASS [32], which is able to
recover more protein sequences frommetagenomes than classi-



Fig. 2. Sources of metagenomic data in (a) IMG/M and (b) MGnify databases. For more details, see Table S1 of Supplementary Material..

Fig. 1. Schematic representation of the pipeline from biomes, metagenome samples to protein structure prediction and discovery.
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cal assembly methods. The sequences were clustered using a
strict sequence identity cut-off of 30% and a coverage threshold
of 90% using MMseqs2/Linclust [31]. Clusters with less than
three entries were removed.
Here we only described metagenomics databases that were
commonly used in the last rounds of the Critical Assessment
of Structure Prediction (CASP) [48], a community-wide experi-
ment in which the competitors blindly predict the 3D structure
of target proteins and the accuracy of the predictions is evalu-
ated by a group of assessors. There are also other metagenomic
databases available in the literature, which are listed in Table S2
of Supplementary Material. Among them, one of the most com-
plete repositories is the MetaGenomics Rapid Annotation using
Subsystems Technology (MG-RAST) [49], which allows storage,
annotation, phylogenetic study and functional analysis of meta-
genomes. Other resources are mainly databases that collect
eukaryotic metagenomic data such as TOPAZ [50], SMAGs [51]
and MetaEuk [52] or viral metagenomes such as MetaVir [53],
VIROME [54], Metagenomic Gut Virus (MGV) [55] and Gut
Phage Database (GPD) [56].

Despite the huge amounts of sequences in the different metage-
nomic databases described above, their overlap with standard pro-
tein sequence databases such as UniProtKB [57] is very limited.
Therefore, the combination of metagenome and genome sequence
databases has the enormous potential to provide improved biolog-
ical information.
436
3. Integrating metagenomics data to structure prediction
pipelines

3.1. Boosting protein structure prediction accuracy

In the last two decades, huge improvements have been made in
the field of protein structure prediction. Many predictors have
been developed with a steady increase in performance, achieving
amazing prediction accuracy in CASP14, the last round of the CASP
competition [48]. AlphaFold2 [58] was the best performing
method, reaching an accuracy close to that of the experimental
methods, even for difficult targets for which no structural tem-
plates were available [48].

The improved performance of structure predictors is due to sev-
eral technological advances, among which novel machine learning
algorithms such as deep learning and end-to-end prediction mod-
els; for more detailed analyses of these approaches, we refer to
excellent reviews on the subject [9,10]. Another breakthrough is
certainly the incorporation of data from large metagenomic data-
bases, which allows building deeper and better quality MSAs than
when limiting the search to genomic sequences; this is especially
true when the number of genomic sequences is low. In turn, these
enhanced MSAs are used to gain more precise protein structure
information through the application of coevolutionary approaches.

The idea that coevolutionary models extracted from MSAs can
be used to gain information on protein structure dates back almost



Fig. 3. Metagenomics in protein structure prediction. (a) Quantitative MSA enrichment when adding metagenomic sequences: probability distribution of RN , which is defined
as the ratio between the number of effective sequences Neff in MSAs constructed from both metagenomic and genomic sequence databases, and from genomic sequences
only; the values come from the study of 5,721 Pfam families [8]; (b) Schematic representation of the two types of protein structure prediction pipelines based on MSAs: the
optimization of multiple intermediate steps such as the identification of coevolutionary signals and the prediction of contact maps, and an end-to-end differentiable model
which enables a single optimization from the input MSA to the output 3D structure; (c) Number of times metagenomic databases have been used in structure prediction
methods in the last three CASP experiments [48,77,78].
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thirty years [59], even though it only started to be a focus of the
research community when a series of seminal papers introduced
the coevolution formalism of direct coupling analysis (DCA) [60–
62] (see also [63] for a recent review). Basically, residues that are
close in the 3D protein structure tend to coevolve along the evolu-
tionary history. Indeed, if an interaction between two residues is
essential for the stability of the protein structure, the mutation of
one of the residues causes an evolutionary pressure on the second
residue, which favors compensatory mutations to restore the orig-
inal interaction, thus maintaining the molecular function of the
protein [64].

Since these early approaches, many studies have been devoted
to extracting coevolutionary signals from MSAs and using them
to predict protein contact maps [65–70]. These contacts are then
used as constraints in modeling tools to guide the protein structure
prediction pipeline. A key step of these pipelines is to build and
curate MSAs. Widely known algorithms for MSA construction are
PSI-BLAST, which uses position-specific sequence profiles [71],
and HHblits [72] and HMMsearch [73], which use HMM profiles.
Note, however, that low-quality or shallow MSAs can lead to inac-
curate predictions, when the substitution statistics are not well
estimated.

The first time metagenomic data was used to improve MSA
quality was in 2017 [8]. It was shown that substantially deeper
MSAs can be obtained by combining the Integrated Microbial Gen-
omes and Microbiomes (IMG/M) database [29] to the genomic
sequence cluster database UniRef30 [74]. Indeed, the addition of
metagenomic data leads to the increase of the effective number
of sequences Neff (as defined in [61]) by a factor of about 3.5 on
437
average for the approximately 5,000 protein families from the
Pfam database [43]. In particular, about 500 families show an
increase in Neff by a factor of 10, and a few families, by a factor
of 100 [8] (Fig. 3.a). This improvement led to more accurate predic-
tions of the protein contact maps for about 20% of the Pfam fami-
lies considered using the contact map predictor GREMLIN [75],
which in turn led to more accurate 3D structures generated via
the de novo structural modeling tool Rosetta [76].

After this first study [8], multiple structure prediction tools
integrating metagenomic data have been developed. Already in
the CASP13 experiment [77], several methods used this source of
information to predict residue-residue contacts [79–81], 3D struc-
ture [82–85] and structure refinement [86]. DeepMSA [87], an
open-source automated pipeline for the construction of deep align-
ments using metagenomic information, has also been introduced
in CASP13. It is based on different types of sequence sources, two
genomic sources (UniClust30 [88] and UniRef90 [74]) and a
metagenomic source (MetaClust [31]). These databases are queried
via a hybrid homology-detection approach including HHblits [72]
and HMMER [89]. The high quality MSAs generated from DeepMSA
has been shown to significantly improve long-range contact pre-
diction accuracy [87].

In a later investigation [90], metagenomic sequence data col-
lected by the Tara Oceans expeditions [45] and from MetaClust
[31], another metagenomic database, were used in addition to Uni-
Ref [91] to increase the number of effective sequences Neff of about
400 Pfam families. For 27 of them, an enriched MSA was obtained
with an Neff increase by a factor of two, which, again, led to an
improvement of their predicted 3D protein structures.
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The metagenomics contribution to the field has become even
more important in the last CASP rounds (CASP14), where the
majority of the methods used metagenomics sequences either for
predicting inter-residue contacts or distances as a preliminary step
in protein structure modeling [92,81,93], or directly using them in
the end-to-end structure prediction model without intermediate
steps [58,94,95,83,96] (see Fig. 3).

Some of the prediction methods in CASP14 used the DeepMSA
pipeline to query the target sequence against metagenomics data-
bases. However, the best performing methods such as AlphaFold2
[58], D-I-Tasser [97] and RoseTTaFold [95] developed new,
improved pipelines for homologous sequence search which com-
bine multiple methods to mine metagenomics databases. For
example, AlphaFold2 [58], which dominated CASP14 and achieved
astonishing prediction accuracy, employs homologous searches in
UniRef90 and MGnify using JackHMMER, and in BFD and Uni-
clust30 using HHBlits. The output MSAs of these searches are then
deduplicated and stacked together to further improve the amount
of homologous sequences collected. This pipeline led to an average
improvement of the structure prediction performance of approxi-
mately 6% in terms of the global distance test score [58].

The DeepMSA approach has been generalized to DeepMSA2 [97]
in which, in addition to the Uniclust30 and UniRef90 genomic
sequence databases, the four widely known metagenomic
sequence databases described in the previous sections are mined
(MetaClust, BFD, MGnify and IMG/M). The full pipeline consists
of a complex series of steps including multiple rounds of database
mining with JackHammer, HHBlits and HMMsearch (see [97] for
technical details). It provides MSAs that are 40% to 150% deeper
than the original DeepMSA pipeline, which in turn leads to statis-
tical significant improvements in both residue-residue distance
and protein structure predictions [97].

Recently, a more computation-efficient pipeline for MSA gener-
ation has been introduced [98]. It employs MMseqs2 [31] to mine
UniRef30 and, using the sequence profile generated, performs an
iterative search against two new databases: BFD/MGnify and
ColabFoldDB. The former was created by merging BFD and MGnify
databases through a MMseqs2 search of MGnify sequences among
the BFD clusters of representative sequences. The aligned matches
were assigned to the corresponding BFD clusters; the non-
matching MGnify sequences were used to generate new clusters.
The latter database (ColabFoldDB) was essentially constructed in
the same way but includes, in addition to BFD/MGnify, sequences
retrieved from other metagenomic databases such as MetaClust,
GPD, MGV, TOPAZ, MetaEuk and SMAGs.

The improved accuracy of these different methods compared to
standard approaches that do not rely on metagenomic information
demonstrates the central role played by metagenomics in the field
of protein structure prediction. This is due to the fact that the cur-
rent sequence databases are far from complete, despite their rapid
growth, and that they contain too few homologous sequences for
too many target proteins. Metagenome sequence databases have
the advantage of filling this gap. Note that the combined use of
multiple metagenomic databases with different mining algorithms
and parameters further improves homologous sequence search
and thus helps construct deeper MSAs and identify more accurate
evolutionary information needed for protein structure prediction.

3.2. Is more metagenomics always better?

We underlined in the previous subsection the rapid accumula-
tion of metagenomic sequences and the impressive size of metage-
nomics databases with e.g., the IMG database containing more than
60 billion microbial genes [29]. Although these databases represent
an invaluable source of information, deep MSA construction by
querying them is becoming computationally expensive and
438
memory-demanding. The precise identification of MSA characteris-
tics that may improve the accuracy of contact and structure predic-
tion is still an open question in the community. Indeed, having
more sequence homologs in the alignment is not always better
[87] considering that there is a trade-off between the effective
number of sequences, the sequence coverage, and the alignment
accuracy.

In an interesting recent study [99], the link between microbial
niches and homologous protein families was investigated for a
set of about 2,000 Pfam families with no structural templates. Four
different microbial biomes, from gut, lake, soil and fermentor, were
used in turn for MSA enrichment to test their ability to improve 3D
structure prediction. It turned out that the structural modeling of
the Pfam families is more precise when only one or a few specific
biomes linked to the target protein family are used.

This has led to propose a prediction model called MetaSource
which is able to identify one biome or a set of biomes which allows
better MSA construction and modeling of a given Pfam family [99].
Note that this approach yields not only an improved accuracy but
also a significant increase in computational efficiency: it is around
3.3-fold faster than considering all sets of metagenomic informa-
tion [99].

4. Integrating metagenomics data for functional annotation
and validation

4.1. Boosting enzyme discovery using metagenomics

Metagenomic sequencing data started to be used to identify
new proteins with specific enzymatic activity and stability proper-
ties. The use of huge amounts of sequence data extracted from a
wide variety of different environments, from animal rumen to mar-
ine, water and soil, has revolutionized the discovery process of
novel enzymes in the last decade [11]. We can estimate from pre-
vious reviews on the topic that at least 500 new enzymes have
been identified using metagenomics-based approaches; this
underlines the deep impact of metagenomics in this important
biotechnological research field [11]. Here we provide a non-
exhaustive list of enzyme types whose development has been
boosted by using of such approcahes.

The HotZyme project [100], for example, has been devoted to
the extensive screening and analysis of metagenomes from ther-
mal springs around the world, with the aim to first discover and
then characterize novel thermostable hydrolases of industrial
interest. Metagenomics screening resulted in 100 potentially new
hydrolases, of which 12 have been biochemically and structurally
characterized, including carboxylesterases, lactonases and cellu-
lases. Metagenomics data has also been widely used for the identi-
fication of lignin-degrading enzymes such as laccase, xylanase, b-
glucosidase, acetyl xylan esterases, arabinofuranosidases, and
lyases [12–15]. These enzymes, which catalyze the depolymeriza-
tion of lignin, have been discovered by different consortia such
as RAS [101] and LigMet [12] through the mining of metagenomes
from different environments such as rice straw compost, sugarcane
soil samples, bovine rumen and insect intestinal tracts.

Marine-related metagenomics data also provides huge amounts
of information. Large expeditions collecting marine samples such
as Tara Ocean [45,102] and GEOTRACES [103] have led to the meta-
genome assembly of more than 25,000 genomes. These efforts
have contributed to the discovery and functional characterization
of a wide series of novel enzymes [16–18], such as cold-adapted
lipases and esterases which are of key importance in food and
biotechnology industry. Other discovered enzymes of interest are
novel thermostable biocatalysts including lipolytic enzymes,
hydrolases, fumarase and b-glucosidase, as well as a series of
enzymes that are tolerant to salt, acid or basic pH, or heavy metals.
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There are basically two main approaches for the discovery of
new enzymes from metagenomic data, which are function-based
and sequence-based screenings [104]. In the former, DNA frag-
ments from environmental metagenomes are first cloned and
expressed using expression vectors to produce proteins which
are then screened in vivo or in vitro for enzymatic activities
[105]. This is the most frequently used approach and allows the
identification of enzymes that do not share sequence similarity
with known counterparts. However, it is laborious and requires
reliable and high-throughput screening methods that are difficult
to generalize [104].

The second approach is sequence-based and applicable when
the enzymes sought are closely related in terms of sequence simi-
larity to enzymes collected in known databases. This in silico
method queries large metagenomic datasets with HMM profiles
[38] constructed from sequences of known enzymes and their close
homologs. While this method is more efficient than function-based
methods, it is more limited in terms of sequence space explored. It
can also lead to false hits, due to misannotations in poorly curated
datasets. Examples of automatic computational pipelines for
metagenomic enzyme discovery through sequence-based screen-
ing are MetaHMM [106] and ANASTASIA [107].

4.2. CRISPR-Cas system identification in microbiomes

CRISPR-Cas, where Cas is an enzyme and CRISP the acronym of
Clustered Regularly Interspaced Short Palindromic Repeats, is a
system employed by most archaea and bacteria as immunological
defense against invading DNA [108]. In brief, short fragments of
foreign DNA are integrated into CRISPR loci, which causes the
memorization of the infection. These are transcribed into CRISPR
RNA, which are then used as guides for Cas proteins to specifically
interfere with invading nucleic acids upon reoccurring infection.

Due to its huge potential for genome editing, the CRISPR-Cas
system is used as a precise technology in biological and clinical
research and applications [109], and metagenomic datasets are
therefore mined to discover new such systems [24]. For example,
three sources of metagenomic data were used for this purpose
[24], from two soil environments and one water environment. As
many as 155 million protein-coding genes were extracted from
these, using Prodigal, a protein-coding gene predictor for prokary-
otic genomes [37]. This set of sequences were searched for Cas pro-
tein homologs using HMMER [38], while CRISPR arrays were
identified using the CrisprFinder detection tool [110]. This analysis
led to the identification of novel CRISPR-Cas systems: CRISPR-Cas9
in archaea, and CRISPR-CasX and CasY in bacteria, which are
among the most compact CRISPR-Cas systems known to date [24].

The International Metagenomics and Metadesign of Subways
and Urban Biomes (MetaSUB) consortium provided 4,728 metage-
nomic samples from mass-transit systems of 60 cities around the
world [111]. These data led to the discovery of 838,532 CRISPR
arrays predicted by an improved version of CrisprFinder [25], of
which 3,245 had unambiguous annotations. More recently, 2.9 mil-
lion CRISPR loci have been functionally and taxonomically profiled
from 2,355 body-wide human microbiomes from 17 different body
sites [26], thus increasing of one order of magnitude the number of
known CRISPR in the human microbiome. The Crass tool has been
used for that purpose, which identifies and reconstructs CRISPR
from unassembled metagenomic data [112]. Also, the abundance
of different Cas proteins was profiled and associated with CRISPR
subtypes to obtain information about the functional and evolution-
ary role of CRISPR-Cas systems in human microbiomes.

The studies that identified CRISPR-Cas systems by mining meta-
genome resources are not limited to these few examples but
include other studies that use completely different metagenomic
environments such as the irrigation of water sources [27], various
439
human microbiomes from skin to oral microbiomes [113,114] and
extreme environments ranging from antarctic snow to hot springs
[28,115]. To discover CRISPR repeats in these metagenomes, sev-
eral bioinformatics tools have been developed, among which
MinCED (github.com/ctSkennerton/minced), MetaCRAST [116],
Crass [112], and metaCRT [113].

Finally note that metagenomic databases can also by mined to
explore anti-CRISPRs, i.e. natural inhibitors of the CRISPR-Cas sys-
tem [117]. For example, a high-throughput approach has been
developed to discover anti-CRISPR genes from metagenomics data
based on their functional activity [118]. The action of eleven DNA
fragments from soil, animal, and human metagenomes were iden-
tified and tested in vitro to decrease Cas9 activity in Streptococcus
pyogenes.

4.3. Functional annotation and analysis of the resistome using
metagenomics data

Antimicrobial resistance is another central problem in microbi-
ology where metagenomic data plays a fundamental role. The
identification of antibiotic resistance genes (ARG) in soil-dwelling
bacteria, human gut microbiota and other microbial communities,
which can potentially act as ARG reservoirs [119–121], is impor-
tant to fully understand the origin, evolution and maintenance of
antibiotic resistance. Indeed, these genes can be exchanged
through lateral gene transfer and confer antibiotic resistance to
pathogens. For example, infant gut microbiome was investigated
and revealed a cohort of resistance genes in fecal microbiota of
pediatric patients, even without their prior exposure to the selec-
tive pressure of antibiotics [122]. These findings explain how a
healthy human gut can act as a reservoir for ARGs.

An interesting method, taking advantage of 3D protein struc-
tures, was developed to predict ARGs in gut microbiota [20]. This
method, based on a combination of homology modeling and
machine learning techniques, is able to correctly identify ARGs:
from the 71 predicted ARGs, antibiotic resistance activity was
detected in vitro in 51 of them. The method was also tested on
an experimentally validated functional metagenomic dataset from
soils, highlighting very good performance, especially in terms of
sensitivity. Furthermore, metagenomic sequencing from respira-
tory specimens of patients with and without chronic respiratory
diseases such as severe asthma, chronic obstructive pulmonary
disease and bronchiectasis showed that respiratory tract micro-
biota also harbors a core of ARGs dominated by genes resistant
to macrolide antibiotics [21]. This finding was independent of the
health status of the patients and of their previous exposure to
antibiotics.

Soil is certainly another reservoir of ARGs, since it is in direct
contact with antibiotics used in livestock farming and agriculture.
Evidence of ARG exchange between soil-dewling bacteria and clin-
ical pathogens was shown from functional metagenomics analyses
of soil-derived bacteria cultures [22]. Multidrug-resistant soil bac-
teria were shown to harbor ARGs against five important classes of
antibiotics: b-lactams, aminoglycosides, amphenicols, sulfon-
amides, and tetracyclines. Furthermore, the analysis of metage-
nomic data from gut microbiota of migratory birds revealed
about 1,000 ARGs that can be classified into about 200 different
types associated to specific antibiotic resistance [23]. Compared
to environmental metagenomes, microbiota of migratory birds
have a lower phylogenetic diversity but more antibiotic resistance
proteins, thus suggesting the possible role of birds as ARG
reservoir.

Finally, possible differences in the ARG distribution according to
the ecological niches were investigated [19]. The analysis of
human, animal, water, soil, plant and insect metagenomes from
the MG-RAST database [123] led to conclude that the human
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microbiome is characterized by the highest relative ARG
abundance.
5. Conclusion

The use of metagenomics data has become essential in different
domains of research during the last decade. Indeed, considerable
efforts to improve the standardization of data analyses and
metagenomic databases have resulted in impressive developments
in enzyme discovery, 3D protein structure prediction and function
annotation. The study of the role of human microbiota in disease,
aging and antibiotic resistance has also greatly benefited from
these developments.

The explosion of the amount of metagenomic data is currently
creating a challenge for bioinformatics tools, especially in the data
storage and analysis and in the integration of different metage-
nomic techniques, including metatranscriptomics, metaproteomics
and metabolomics. The improvements of these tools will lead in
the near future to further advances in these fields, but will also
boost or continue to fuel a series of other applications that have
not been analyzed in this mini-review such as protein function
prediction [124], predictions of protein–protein interactions and
protein complex structures [95,125,126] and the detection and
tracing of novel viral pathogens [127,128].
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[34] Vidulin V, Šmuc T, Džeroski S, Supek F. The evolutionary signal in
metagenome phyletic profiles predicts many gene functions. Microbiome
2018;6(1):1–21.

[35] Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J,
Kandimalla M, Chen I-MA, Kyrpides NC, Reddy T. Genomes OnLine Database
(GOLD) v. 8: overview and updates. Nucleic Acids Res 2021;49(D1):D723–33.

[36] Clum A, Huntemann M, Bushnell B, Foster B, Foster B, Roux S, Hajek PP,
Varghese N, Mukherjee S, Reddy T, et al. DOE JGI Metagenome Workflow.
Msystems 2021;6(3):e00804–20.

[37] Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinform 2010;11(1):1–11.

[38] Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7(10):
e1002195.

[39] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol 1990;215(3):403–10.

[40] Kanehisa M. Enzyme annotation and metabolic reconstruction using kegg. In:
Protein Function Prediction. Springer; 2017. p. 135–45.

[41] Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG:
integrating viruses and cellular organisms. Nucleic Acids Res 2021;49(D1):
D545–51.

[42] Sillitoe I, Dawson N, Lewis TE, Das S, Lees JG, Ashford P, Tolulope A, Scholes
HM, Senatorov I, Bujan A, et al. CATH: expanding the horizons of structure-
based functional annotations for genome sequences. Nucleic Acids Res
2019;47(D1):D280–4.

[43] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL,
Tosatto SC, Paladin L, Raj S, Richardson LJ, et al. Pfam: The protein families
database in 2021. Nucleic Acids Res 2021;49(D1):D412–9.

[44] Kodama Y, Shumway M, Leinonen R. The Sequence Read Archive: explosive
growth of sequencing data. Nucleic Acids Res 2012;40(D1):D54–6.

[45] Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G,
Djahanschiri B, Zeller G, Mende DR, Alberti A, et al. Structure and function
of the global ocean microbiome. Science 2015;348(6237):1261359.

[46] . Nucleic Acids Res 2017;45(D1):D158–69.
[47] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its

supplement trembl in 2000. Nucleic Acids Res 2000;28(1):45–8.
[48] Pereira J, Simpkin AJ, Hartmann MD, Rigden DJ, Keegan RM, Lupas AN. High-

accuracy protein structure prediction in CASP14. Proteins: Structure,
Function, Bioinform 2021;89(12):1687–99.

[49] Meyer F, Bagchi S, Chaterji S, Gerlach W, Grama A, Harrison T, Paczian T,
Trimble WL, Wilke A. MG-RAST version 4-lessons learned from a decade of
low-budget ultra-high-throughput metagenome analysis. Briefings Bioinform
2019;20(4):1151–9.

[50] H. Alexander, S.K. Hu, A.I. Krinos, M. Pachiadaki, B.J. Tully, C.J. Neely, T. Reiter,
Eukaryotic genomes from a global metagenomic dataset illuminate trophic
modes and biogeography of ocean plankton, biorxiv, doi:10.1101/
2021.07.25.453713..

[51] T.O. Delmont, M. Gaia, D.D. Hinsinger, P. Fremont, C. Vanni, A.F. Guerra, A.M.
Eren, A. Kourlaiev, L. d’Agata, Q. Clayssen, E. Villar, K. Labadie, C. Cruaud, J.
Poulain, C. Da Silva, M. Wessner, B. Noel, J.-M. Aury, T.O. Coordinators, C. de
Vargas, C. Bowler, E. Karsenti, E. Pelletier, P. Wincker, O. Jaillon, Functional
repertoire convergence of distantly related eukaryotic plankton lineages
revealed by genome-resolved metagenomics, bioRxiv, doi:10.1101/
2020.10.15.341214..

[52] Karin EL, Mirdita M, Söding J. MetaEuk-sensitive, high-throughput gene
discovery, and annotation for large-scale eukaryotic metagenomics.
Microbiome 2020;8(1):1–15.

[53] Roux S, Tournayre J, Mahul A, Debroas D, Enault F. Metavir 2: new tools for
viral metagenome comparison and assembled virome analysis. BMC
Bioinform 2014;15(1):1–12.

[54] Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, Furman
M, Jamindar S, Nasko DJ. VIROME: a standard operating procedure for
analysis of viral metagenome sequences. Standards Genomic Sci 2012;6
(3):421–33.

[55] Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, Proal AD,
Fischbach MA, Bhatt AS, Hugenholtz P, et al. Metagenomic compendium of
189,680 DNA viruses from the human gut microbiome. Nature Microbiol
2021;6(7):960–70.

[56] Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD.
Massive expansion of human gut bacteriophage diversity. Cell 2021;184
(4):1098–109.

[57] UniProt: the universal protein knowledgebase in 2021, Nucleic Acids
Research 49 (D1) (2021) D480–D489..
441
[58] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
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