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ABSTRACT Downlink exposure to electromagnetic fields due to cellular base stations in urban environ-

ments is studied using the stochastic geometry framework. A two-dimensional Poisson point process is

assumed for the base station distribution. Mathematical expressions of statistics of exposure are derived

from a simple propagation model taking into account the height of the base stations. The error on exposure

made by taking a limited number of base stations, instead of the whole set, is quantified. The relative

impact of the model parameters on the statistics of exposure is highlighted. The method is then applied

and the model parameters are calibrated using experimental data obtained by drive-tests in two Brussels

municipalities, in Belgium, for the 2100 MHz and 2600 MHz frequency bands. It is shown that the proposed

model fits experimental values, paving the way to a new methodology to assess general public exposure to

electromagnetic fields, for any frequency band. An insight is given on how to apply the methodology to a

real case without access to experimental data.

INDEX TERMS cellular networks, exposure, Poisson point process, stochastic geometry

I. INTRODUCTION

Electromagnetic field (EMF) exposure due to cellular net-

works is classically evaluated empirically either through in-

situ measurements [1], drive-tests [2], [3] or sensor net-

works [4]. Numerically, this evaluation, either by using ray-

launching softwares [5], ray-tracing softwares [6] or other

simulation methods based on propagation models [7]–[9], is

however difficult to obtain deterministically in a reasonable

time. It is also subject to many uncertainties (due to the num-

ber of base stations in operation, the environment geometry,

the presence of people and vehicles causing shadowing...). A

deterministic computation of EMF exposure at every point

of the area under study is not always required. Instead,

statistical values are often looked for, for instance to estimate

the probability of exceeding some exposure thresholds, or

to estimate the mean level of exposure. Numerous studies

developed statistical models for exposure assessment as in

[10] for 5G radio base stations using massive MIMO or

in [11] for a WiFi source in an apartment, based on the

Kriging method. There is however a lack of models able to

quickly, accurately and with a limited number of parameters,

determine exposure statistics in a real environment of a

scale larger than a few thousand square meters, without a

deterministic knowledge of the environment geometry. This

paper aims to lay foundations of an entirely new stochastic

approach to assess exposure to electromagnetic fields due

to cellular networks, using stochastic geometry (SG) and a

simple parametric propagation model.

Using SG in wireless communications is not a new con-

cept [12]. It has been applied in many fields, ranging from

automotive radar [13], to localization [14], including prob-

ability of coverage and spectral efficiency [15], cumulated

interference power [16] and outage probability [17] but to

our knowledge, only one recent paper exploits it for expo-

sure assessment [18]. The latter is a first attempt to model

exposure in millimeter wave bands, based on empirical prop-

agation models. But neither in-depth theoretical study, nor

experimental validation of the proposed models are included.
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EMF exposure is usually characterized in terms of incident

power density S (W/m2) [19], [20]. Power density may then

be translated into root-mean-square electric field strength

(V/m), as used in exposure standards:

E =
√

Z0 S (1)

where Z0 =
√

µ0/ǫ0 = 120π ≈ 377Ω is the impedance of

free-space.

In the first part of this paper, mathematical expressions are

derived to evaluate the statistics and cumulative distribution

function (CDF) of the power density emitted by a random

pattern of cellular base stations (BSs). The error made by

including only the few BSs closest to the calculation point

is evaluated. In the second part, we calibrate and validate the

model using experimental data obtained in two municipalities

of the Brussels-Capital Region, in Belgium, in the 2100 MHz

and the 2600 MHz frequency bands.

II. STOCHASTIC GEOMETRY MODEL OF EXPOSURE

A. EXPOSURE MODEL

In the SG approach, the BS spatial distribution for a given

cellular frequency band is considered as a random point

pattern with constant density λ in a given 2D region W ,

referred to as the window. According to [21], considering

together the BSs of all network providers as required for

exposure assessment, BS spatial distributions for any cellular

frequency band in European cities are well modeled using

homogeneous 2D-Poisson Point Processes Φ ∈ R
2 (PPP):

for any W , the number of points falling in W has a Poisson

distribution with mean λ · τ2(W),where τ2(W) is the area of

W . It implies that measures do not depend on the location

in space where the computation is performed. More details

about stochastic geometry and its applications to cellular

networks can be found in Kingman’s book [22] or the paper

by Andrews et al. [17].

For any BS of the PPP, the incident power density S can

be deduced from a path loss model

S(r) =
A

(r2 + h2)
α/2

, (2)

where S(r) is the power density due to the BS located

at a horizontal distance r, h the height of the BS, α the

path loss exponent (typically ranging from 2 to 5) and A
a multiplicative random variable modeling channel fading

and the effective isotropic radiated power (EIRP) of the BS.

A can be written A = p · B with p = EIRP
4π and B is

any random variable modeling fading. In the following, the

expected value of A, E [A], will be noted A. It is worth noting

that, in our approach, the BS network is homogenized in the

sense that BSs share common features in terms of height and

EIRP.

For all BSs of all network providers present in the PPP, the

power densities can be summed up, assuming that all signals

are uncorrelated, to get SWN , the total EMF power density

and hence the total exposure for the whole network of BSs

(WN) in a determined frequency band

SWN =
∑

i|BSi∈Φ

S(ri) =
∑

i|BSi∈Φ

A

(h2 + r2i )
α/2

. (3)

B. EXPOSURE DUE TO THE nth
NEAREST BASE

STATION

We start by studying separately the contribution of each BS

of the PPP. Let Sn = Sn(r) be the power density due to

the nth nearest BS to the calculation point. The probability

density function (PDF) of the distance rn to the nth nearest

BS is given by the Erlang distribution of order n [23]

f(rn) = 2
(λπ)n

(n− 1)!
r2n−1
n e−λπr2n . (4)

The expected power density due to the nth nearest BS is

given in the following theorem.

Theorem 1. The expected power density due to the nth

nearest BS is

E [Sn] = A (λπ)
α/2 eλπh

2

σn
{−α/2},

σi
{x} =

i−1
∑

l=0

(

−λπh2
)i−l−1

l! (i− l − 1)!
Γ̃1+l+x.

Proof. From the independence between A and the distance

rn and from the use of the Erlang distribution (4) of order n,

it follows that

E [Sn] = A
2 (λπ)

n

(n− 1)!

∫ ∞

0

1

(r2 + h2)
α/2

r2n−1 e−λπr2 dr.

Using the change of variable r2 → t
λπ −h2 and the Binomial

theorem, this expression becomes

E [Sn] = A
(λπ)n (λπ)

α/2−1

(n− 1)!
eλπh

2

∫ ∞

λπh2

t
− α/2

× e−t
n−1
∑

l=0

(

n− 1

l

)(

t

λπ

)l
(

−h2
)n−1−l

dt.

Theorem 1 is then obtained by using the upper incomplete

Gamma function Γ(z, t) defined as

Γ(z, t) =

∫ ∞

t

uz−1 e−u du, ℜ(z) > 0. (5)

Γ̃i is used as a simplified notation for Γ
(

i, λπh2
)

. When

α > 2, the incomplete Gamma function is not properly

defined since the first argument of the incomplete Gamma

function is sometimes negative. In this case, the Gauss
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continued fraction can nonetheless be used for numerical

calculations [24]

Γ(z, t) =
tze−t

t+
1− z

1 +
1

t+
2− z

1 +
2

t+
3− z

1 +
. . .

(6)

Simplifications can be made when considering the nearest

BS. They lead to the next corollary.

Corollary 1. The mean value of the power density due to the

nearest BS is

E [S1] = (λπ)
α/2 A eλπh

2

Γ
(

1− α

2
, λπh2

)

.

Using Corollary 1, Theorem 1 can also be written as

E [Sn] = E [S1] · Ξ[1]
n (7)

where

Ξ[1]
n =

σn
{−α/2}

Γ̃1−α/2

=
n
∑

l=1

(

−λπh2
)n−l

(l − 1)! (n− l)!

Γ̃l−α/2

Γ̃1−α/2

, (8)

using the change of index l + 1 → l. Fig. 1 shows the ratio

(8) as a function of n. As can be seen from this figure, for

the sets of parameters that will be identified in section III, the

nearest BS provides the main contribution to exposure but the

second BS is also important since the ratio E [S2] /E [S1] is

around 15%. From the fourth nearest BS, the contribution is

lower than 5% for both sets of parameters. Note that Ξ
[1]
n is

dependent on the values of the model parameters. Nonethe-

less, from this figure, we see that Ξ
[1]
n has a nearly logarithmic

decay. A physical intuition can be given by observing the

following proposition.

Proposition 1. The ratio between the expected values of the

inverse of the distance to the nth nearest BS, 1/rn, and the

inverse of the distance to the nearest BS, 1/r1, asymptotically

has a logarithmic decrease.

Proof. The expected value of the inverse of the distance to

the nth nearest BS, 1/rn, is, by using (4)

E

[

1

rn

]

=
Γ (n− 1/2)√
λπ (n− 1)!

.

The logarithm of the ratio between E [1/rn] and E [1/r1] is

then

log
E [1/rn]

E [1/r1]
= log

Γ
(

n− 1
2

)

(n− 1)! Γ
(

1
2

) = log
(2 (n− 1))!

22n−2 [(n− 1)!]
2

Using Stirling’s approximation, the ratio becomes

log
E [1/rn]

E [1/r1]
= log

1
√

π (n− 1)
+ log (1 + ǫ1)− 2 log (1 + ǫ2)

with

ǫ1 = O

(

1

2(n− 1)

)

, ǫ2 = O

(

1

n− 1

)

.

This can be further simplified to give

log
E [1/rn]

E [1/r1]
= log

1
√

π (n− 1)
+ ǫ, ǫ = O

(

1

n

)

.

Taking the limit to the infinity leads to

lim
n→∞

log
E [1/rn]

E [1/r1]
= −1

2
log n− 1

2
log π.

Proposition 1 shows a logarithmic decrease. When rn >>
h, which is usually quickly the case, Sn can be approximated

by A/rαn , therefore it is not surprising that Ξ
[1]
n has a logarith-

mic decrease.

0 1

-20

-10

0

FIGURE 1. Ratio between the mean value of the power density coming from

the nth nearest BS and the mean value of the power density coming from the

nearest BS as a function of n.

We also give here as Theorem 2 and Corollary 3 the kth

moment and the variance of the power density received from

the nth nearest BS.

Theorem 2. The moment of order k of the power density

received from the nth nearest BS is

E
[

Sk
n

]

= Ak (λπ)
kα
2 eλπh

2

σn
{−kα/2}.

Proof. The proof is obtained by a development similar to the

proof of Theorem 1.

Theorem 2 enables to compute any moment of Sn. Again,

this equation can make E
[

Sk
1

]

appear, generalizing Ξ
[k]
n for

the order k.

E
[

Sk
n

]

= E
[

Sk
1

]

· Ξ[k]
n , (9)

Ξ[k]
n =

σn
{−kα/2}

Γ̃1−kα/2

=
n
∑

l=1

(

−λπh2
)n−l

(l − 1)! (n− l)!

Γ̃l−kα/2

Γ̃1−kα/2

. (10)

Theorem 3. The variance of the power density received from

the nth nearest BS is

V [Sn] = (λπ)α eλπh
2

[

A2 σn
{−α} − eλπh

2

A
2
(

σn
{−α

2 }

)2
]

.
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Proof. The proof is immediate since V [Sn] = E
[

S2
n

]

−
(E [Sn])

2
.

C. EXPOSURE DUE TO THE n NEAREST BASE

STATIONS

The mean value of the cumulated power density due to the

n nearest BSs, S[n] is given by Theorem 4. The kth-order

moment of S[n] is given by Theorem 5.

Theorem 4. The mean value of the cumulated power density

due to the n nearest BSs, S[n] is

E
[

S[n]

]

= E

[

n
∑

i=1

Si

]

= A (λπ)
α/2 eλπh

2
n
∑

i=1

σi
{−α

2 }.

Proof. This theorem directly follows from Theorem 1 and

the assumption of uncorrelated BSs.

The relative error made by truncating the network to the n
nearest BSs is shown in Fig. 2. By taking only the closest BS,

as often done in exposure studies, an error of around 10% is

committed for the sets of parameters calibrated in section III.

The error made by truncating the sum of power densities to

the first neighbors is dependent on α. The lower α, the higher

the relative error hence the number of neighboring BSs to

take into account. The whole-network reference E [SWN ]
will be derived in the following section.

0 1

0

-10

20

log10(n)

1
0

lo
g

1
0

E
[S

W
N
]−

E
[S

[n
]]

E
[S

W
N
]

λ = 17 BS/km2 - h = 32m - α = 3.55 - EIRP = 68dBm

λ = 6 BS/km2 - h = 38m - α = 3.25 - EIRP = 68dBm

FIGURE 2. Relative error between E
[
S[n]

]
(4) and E [SWN ] (6).

λ = 6BS/km2, α = 3.25, h = 38m, EIRP = 67.96 dBm.

Theorem 5. The moment of order k of the cumulated power

density due to the n nearest BSs is

E

[

S
k
[n]

]

= Ak (λπ)
kα/2

e
λπh2 ∑

|~k|=k

(k
~k

) n−1∑

p=1

(−1)
p−1

×





n−1∏

j=p+1

1

τ
(j)

(p+1)









p∏

l=1

1

τ
(p)

(l)





[

Γ̃
τ
(n)
(1)

−
(

λπh
2
)τ

(p)
(1) Γ̃

τ
(n)
(p+1)

]

where we use the notations

τi = 1− ki
α

2
, τ

(b)
(a) =

{

∑b
i=a τi if a ≤ b,

τ
(b)
(a) = 0 if a > b.

Proof. The proof is given in Appendix A.

Note that the case k = 1 corresponds to Theorem 4. Again,

the variance of the distribution can be deduced from Theorem

5.

D. WHOLE NETWORK

Well-known mathematical results of signal-plus-interference-

to-noise ratio and power coverage studies [25]–[27] can be

adapted to study exposure. The expected value of the power

density (3) is given in the following theorem.

Theorem 6. The expected value of the total power density

SWN , distributed according to a PPP Φ ∈ R
2, for the

propagation model (3) with a path loss coefficient α > 2,

is

E [SWN ] =
2πλA

α− 2

1

hα−2
.

Proof. The calculation is obtained by applying Campbell’s

formula [22]

E [SWN ] = λA

∫ 2π

0

dθ

∫ ∞

0

1

(r2 + h2)
α/2

r dr.

Theorem 6 clearly shows the relative impact of the BS

density, the path loss exponent and the BS height on the mean

exposure. Similarly, the variance of the distribution is given

as Theorem 7.

Theorem 7. The variance of the total power density SWN ,

distributed according to a PPP Φ ∈ R
2, for the propagation

model (3) with a path loss coefficient α > 2, is

V [SWN ] =
2πλA2

2α− 2

1

h2α−2

with A2 = EA

[

A2
]

. Theorems 6 and 7 are valid no matter

the fading distribution chosen for A.

To obtain the cumulative distribution function of (3), the

two-sided Laplace transform of the distribution, LSWN
, is

needed. The Laplace transform of the distribution of the

power density due to a limited number of BSs can be obtained

from a power series of the moments of the distribution, given

by Theorem 5, but no closed-form expression could be found.

The Laplace transform of SWN is given by the following

lemma.

Lemma 1. The Laplace transform of the total power density

SWN is given by

LSWN (s)

= exp

(

2πλ

α

∫

∞

hα

(

EA

[

exp

(

−s
A

x

)]

− 1

)

x
2
α
−1dx

)

.

Proof. This can be calculated similarly to what is done in

[28], chapter 1. The definition of the Laplace transform leads

to

LSWN
(s) = E

[

e−s SWN
]

= EΦ,A

[

exp

(

−s
∑

i∈Φ

A

(r2i + h2)
α/2

)]

.
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Using the probability generating functional [29], this leads to

LSWN
(s)

= exp

(

2πλ

∫ ∞

0

EA

[

exp

(

−sA

(r2 + h2)
α/2

)

− 1

]

r dr

)

.

Finally, with the change of variable
(

r2 + h2
)α/2 → x, this

expression becomes

LSWN
(s)

= exp

(

2πλ

α

∫ ∞

hα

EA

[

exp

(

−s
A

x

)

− 1

]

x
2/α−1dx

)

.

EA

[

exp
(

−s A
x

)]

corresponds to the Laplace transform of
A/x. The Laplace transform LSWN

can therefore be calcu-

lated if the distribution of A is known. Theorems 8 and 9

respectively give the Laplace transform for A deterministic

and A following an exponential distribution.

Theorem 8. The Laplace transform of the total power den-
sity for the no-fading case is

L
determ.
SWN

(s) = exp

(

πλh2

[

1−1 F1

(

−
2

α
; 1−

2

α
;
−sA

hα

)])

.

Proof. Under the no-fading hypothesis, i.e. for A determin-

istic,

EA

[

exp

(

−s
A

x

)]

= exp

(

−s
A

x

)

.

Theorem 8 is then obtained using the relationship [30] in

combination with Lemma 1
∫ ∞

a

(

exp

(

b

z

)

− 1

)

zv−1dz

=
1

v
av [1−1 F1 (−v; 1− v; b/a)]

where 1F1(a; b; z) is the Kummer confluent hypergeometric

function.

Proposition 2 corresponds to an excellent approximation

of the expression of Theorem 8 given by [27], which can be

used for numerical calculations.

Proposition 2. An approximation of the Laplace transform
of the total power density for the no-fading case is

L
determ.
SWN

(s) ≈



































e
πλh2

∞∑

j=1

2 (−sA)j

hα j j! (j α− 2) ,

∣

∣

∣

∣

sA

hα

∣

∣

∣

∣

≤ c,

e

πλh2







− (sA)
2
α

h2
Γ



1−
2

α



+1







,

∣

∣

∣

∣

sA

hα

∣

∣

∣

∣

> c.

No analytical solution exists for c, the intersection point of

the two parts of the absolute value of this function. There is

a finite number of solutions. For numerical calculations, it is

preferable to take the largest solution in absolute value.

Theorem 9. Let A = p · B where p = EIRP
4π and B ∼

Exp(1), an exponential random variable with unit rate, so

that E [B] = 1. The Laplace transform of the total power

density for the Rayleigh-fading case is then

LRay.
SWN

(s)

= exp

(

−2πλ

α− 2
sph2−α

2F1

(

1, 1− 2

α
; 2− 2

α
;
−s p

hα

))

.

Proof. For a Rayleigh fading,

EA

[

exp

(

−s
A

x

)]

=
1

1 + p s
x

.

This expression can be replaced in the Laplace transform of

Lemma 1. The change of variable xh−α − 1 → y then leads

to

L
Ray.
SWN

(s)

= exp

(

−2πλ

α
sph2−α

∫

∞

0

1

y + s p h−α + 1
(y + 1)

2
α
−1 dy

)

Finally, the expression of Theorem 9 is obtained using the

relationship [31]
∫ ∞

0

t−b+c−1 (t+ 1)a−c (t− z + 1)−a dt

=
Γ(b) Γ(c− b)

Γ(c)
2F1(a, b; c; z)

where 2F1(a, b; c; z) is the Gauss confluent hypergeometric

function.

The CDF of SWN is then obtained numerically by apply-

ing the inversion theorem [32] that we recall in the following

theorem.

Theorem 10. If S is a one-dimensional distribution function,

its CDF is given by the following expression for which t is

real:

F (x) =
1

2
− 1

π

∫ ∞

0

ℑ
[

e−itx LS(−it)
]

t
dt.

Consequently, using the relationship E =
√
Z0 · S for

the x-axis, we finally obtain the CDF of E. A comparison

between CDFs with and without unit-rate Rayleigh-fading is

shown in Fig. 3. As expected, probabilities of exceeding any

electric field strength is lower in the Rayleigh-fading case.

The difference with the no-fading case is however small, as

suggests the Kolmogorov-Smirnov distance of 0.07 between

the CDFs. In the following, we only work under a no-fading

hypothesis. To recall, the aim of this paper is to introduce a

simple and quick method for assessing exposure, which can

then be used to accurately study the impact of an increase in

base station density, for example. The numerical calculation

of the Laplace transform of SWN being several orders of

magnitude faster under the assumption of no-fading, thanks

to the approximation given by Proposition 2, we will only

work under this hypothesis in the following. The fitting

method proposed in the next section would have been exactly

the same if we had not worked under this assumption. Ex-

posure being slightly larger without considering fading, the

hypothesis is also consistent with the conservative approach
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FIGURE 3. CDF FEWN
with a Rayleigh fading and without fading.

λ = 6BS/km2, α = 3.25, h = 38m, EIRP = 67.96 dBm.
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FIGURE 4. CDF FEWN
for several values of λ. α = 3.25, h = 38m, EIRP

= 67.96 dBm.

policy advocated by organizations issuing guidelines to limit

exposure to EMF. The CDF, for different values of λ, α and

h, are respectively shown in Fig. 4, Fig. 5 and Fig. 6, making

it possible to observe the impact of these parameters on the

shape of the CDF. Clearly, the path loss exponent has the

greatest impact on exposure.
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FIGURE 5. CDF FEWN
for several values of α. λ = 6BS/km2, h = 38m,

EIRP = 67.96 dBm.
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FIGURE 6. CDF FEWN
for several values of h. λ = 6BS/km2, α = 3.25,

EIRP = 67.96 dBm.

III. EXPERIMENTAL RESULTS

Using the Brussels database of BS locations, the BS density

for each frequency band was calculated over a 4.5 km2-area

that is spread over two municipalities of Brussels, Belgium.

All network providers and all communication standards were

combined since we cannot differentiate by measurements the

technology used in a frequency band. The BS density is

16 BS/km2 and 6 BS/km2 for the 2100 MHz and 2600 MHz

bands, respectively.

Statistical distributions for the power density were exper-

imentally obtained by drive-tests in this Brussels area. The

comprehensive experimental set-up is described in [2]. A

spectrum analyzer was mounted on a moving car, taking

calibrated measurements along the three polarization axes

in the 2100 MHz and 2600 MHz frequency bands with a

resolution bandwith of 3MHz. A GPS was used to tag the

measurements with position. Measurements were averaged

over squared local areas of 2m × 2m. This size was chosen

heuristically, small enough to keep the spatial sampling rel-

evant, but large enough to smooth out fading. Measurements

were obtained for around 16 000 4m2-squares. We focused

on the UMTS 2100, LTE 2100 and LTE 2600 bands:

S2100 =
2 140.1MHz
∑

f=2 110.3MHz

Sf +
2 169.7MHz
∑

f=2 154.9MHz

Sf (11)

S2600 =
2 640MHz
∑

f=2 620MHz

Sf +
2 690MHz
∑

f=2 655MHz

Sf (12)

where Sf is the power density measured at frequency f .

Parameters of the model (1)-(3) under the no-fading hy-

pothesis have first been fitted by minimizing

K(θ) =

(
Q05(θ)

Q05,exp
− 1

)2

+

(
Q10(θ)

Q10,exp
− 1

)2

+

(
Q25(θ)

Q25,exp
− 1

)2

+

(
Q50(θ)

Q50,exp
− 1

)2

+

(
Q75(θ)

Q75,exp
− 1

)2

+

(
Q90(θ)

Q90,exp
− 1

)2

+

(
Q95(θ)

Q95,exp
− 1

)2

+

(
µ(θ)

µexp
− 1

)2

(13)
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where θ = (h, α,EIRP) is the 3-tuple of parameters. Qx is

the x%-quantile and µ the mean of the distribution of SWN

using θ. The notation "xexp" refers to statistics obtained from

the experimental distribution. The minimization of K(θ) is

an exhaustive search onto a regular grid G = Ih×Iα×IEIRP

with Ih = [10; 60]m with a step of 1m, Iα = [2; 5] with

a step of 0.05 and IEIRP = [56.0; 81.0]dBm with a step of

0.01 dBm. In a second phase, the median of the distributions

of heights and EIRPs, computed thanks to Brussels database,

were taken as values of h and EIRP in the model. The model

was then calibrated by minimizing K(θ) with the remaining

unknown parameter θ = α.

Statistical parameters of the distributions are listed in

Tables 1 and 2 for the 2100 MHz and 2600 MHz frequency

bands, respectively. The optimal sets of parameters θ for

the propagation model (3) are also listed in this table. Fixed

parameters, estimated a priori from the existing databases,

are marked with a star ∗ for clarity.

TABLE 1. Parameters of the statistical distributions of the power density for the

2100 MHz frequency band, in the Brussels-Capital Region (Ixelles and Etterbeek).

Exp: experimental results. SG: CDF obtained by a numerical Gil-Pelaez inversion.

Qx’s are the quantiles, µ the mean.

Frequency UMTS 2100 + LTE 2100

band Exp SG - θ = (h, α, EIRP) SG - θ = (α)

λ (BS/km2) 16.66∗ 16.66∗

h (m) 32 28∗

α 3.55 3.45

EIRP (dBm) 67.76 65.45∗

Q05 (W/m2) 5.38 · 10−06 6.91 · 10−06 7.54 · 10−06

Q10 (W/m2) 7.59 · 10−06 9.42 · 10−06 1.01 · 10−05

Q25 (W/m2) 1.64 · 10−05 1.70 · 10−05 1.76 · 10−05

Q50 (W/m2) 4.25 · 10−05 3.83 · 10−05 3.90 · 10−05

Q75 (W/m2) 1.33 · 10−04 1.17 · 10−04 1.16 · 10−04

Q90 (W/m2) 3.67 · 10−04 3.91 · 10−04 4.02 · 10−04

Q95 (W/m2) 6.57 · 10−04 7.85 · 10−04 8.60 · 10−04

µ (W/m2) 1.64 · 10−04 1.49 · 10−04 1.68 · 10−04

KS distance 0.04 0.06

TABLE 2. Parameters of the statistical distributions of the power density for the

2600 MHz frequency band, in the Brussels-Capital Region (Ixelles and Etterbeek).

Exp: experimental results. SG: CDF obtained by a numerical Gil-Pelaez inversion.

Qx’s are the quantiles, µ the mean.

Frequency LTE 2600

band Exp SG - θ = (h, α, EIRP) SG - θ = (α)

λ (BS/km2) 6.48∗ 6.48∗

h (m) 38 33∗

α 3.25 3.20

EIRP (dBm) 67.96 65.75∗

Q05 (W/m2) 1.08 · 10−05 1.01 · 10−05 1.07 · 10−05

Q10 (W/m2) 1.17 · 10−05 1.32 · 10−05 1.32 · 10−05

Q25 (W/m2) 1.64 · 10−05 2.07 · 10−05 2.07 · 10−05

Q50 (W/m2) 3.91 · 10−05 4.21 · 10−05 4.02 · 10−05

Q75 (W/m2) 1.30 · 10−04 1.16 · 10−04 1.07 · 10−04

Q90 (W/m2) 3.72 · 10−04 3.83 · 10−04 3.55 · 10−04

Q95 (W/m2) 6.64 · 10−04 8.29 · 10−04 7.94 · 10−04

µ (W/m2) 1.80 · 10−04 1.72 · 10−04 1.73 · 10−04

KS distance 0.07 0.08

As seen in Fig. 7 and Fig. 8, the SG CDFs well fit the ex-

perimental ones. The x-axis is expressed in terms of electric

field strength E instead of power density using (1). To esti-

mate goodness-of-fit, the two-sample Kolmogorov-Smirnov

(KS) distance, based on cumulative distribution functions,
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FIGURE 7. CDF of E for the network made of BSs from all network providers

in Brussels for the 2100 MHz band.
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FIGURE 8. CDF of E for the network made of BSs from all network providers

in Brussels for the 2600 MHz band.

is computed at the end of the table. The error between the

experimental and simulated distributions is of the order of

magnitude of the accuracy of the measuring device. Fitted

values for optimal parameters θ = (h, α,EIRP) are realistic

on physical grounds. Indeed, values obtained for h and EIRP

are very close to the medians of the database distributions.

Values of α for the two calibrations θ = (h, α,EIRP) and

θ = α are close whether or not the height and EIRP are

fixed. Parameter α is very close to path loss exponents from

deterministic models of the literature, computed in urban

environments similar to Brussels. For example, Ichitsubo et

al. [8] obtained α = 3.1 for a center frequency of 2600 MHz

and the COST231 model [7] gives α = 3.55 for a BS height

of 27m up to 2 GHz, very close to 2100 MHz.

Two approaches can then be followed to estimate the

model parameters. The first approach requires pre-calibration

with experimental data through the minimization of K(θ) in

the city of interest. If experimental data is not available, the

height, density and EIRP can be deduced from an antenna

database while the path loss exponent can be retrieved from

a similar path loss model in the literature, at the price of a

less good fitting to experimental CDFs. Note that the model

parameters must be determined once and for all: they can
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then be used as a basis for studies such as BS densification,

for example.

Taking the distribution of the power density due to

the nearest BS, S1, leads to a mean power density of

1.39 · 10−4 W/m2 (computed from Corollary 1) instead of

1.72 · 10−4 W/m2 when considering all BSs (from Theorem

6) for the LTE 2600 frequency band with optimized h, α
and EIRP parameters. Expressed in terms of the electric field

strengths, these values respectively correspond to 0.23V/m
and 0.25V/m. Similarly, for the LTE 2600 band, the 50%-

and 95%-quantiles of the electric field are respectively

0.08V/m and 1.51V/m for the nearest-BS approximation

against 0.13V/m and 0.56V/m when the whole set of BSs

is considered.

IV. CONCLUSION

In this paper, we have introduced the use of stochastic ge-

ometry for exposure assessment. We have shown some gen-

eral mathematical expressions of the statistics of the power

density, coming from a limited number of the network’s BSs

or from all BSs. In particular, we have obtained a numerical

CDF of the power density due to all BSs for a simple prop-

agation model, when the BS pattern can be approached by

a PPP. We have then applied this framework to experimental

measurements realized in Brussels, Belgium. We have shown

that the model faithfully reproduces real-world values at

2.1 GHz and 2.6 GHz, bands for which the base station

densities are very different. As this model only differs for

the different frequency bands in its parameters, i.e. density,

height, EIRP and path loss exponent, the model is generic

and can be applied to any 5G-like frequencies. However, the

validation would require measurements performed at these

frequencies.

.

APPENDIX A PROOF OF THEOREM 5

The kth moment of the resulting power density from the n
nearest BSs is given by

E

[

Sk
[n]

]

= E





(
n∑

i=1

S(ri)

)k




=
∑

k1+k2+...+kn=k

( k

k1, k2, · · · , kn

)

E

[

S
k1
1 S

k2
2 · · ·Skn

n

]

=
∑

|~k|=k

(k

~k

)

E

[
n∏

i=1

S
ki
i

]

(14)

using the multinomial theorem [33], where

(

n

k1, k2, k3, . . . , km

)

=

(

n
~k

)

=
n!

k1!k2!k3! · · · km!
=

n!
∏m

i=1 ki!
(15)

is a multinomial coefficient, generalization of the binomial

coefficients. To evaluate the quantity

E [Sm1
1 Sm2

2 Sm3
3 · · ·Smn

n ] , (16)

we need to first introduce some notations and properties. In

the following, we define M =
∑n

i=1 mi and we use the

properties

τi = τ
(i)
(i) , (17)

τ
(b)
(a) + τ

(c)
(b+1) = τ

(c)
(a) , (18)

for which the notation τ
(b)
(a) has been defined in the statement

of Theorem 5.

Moreover, we use, as previously, the change of variable

λπ
(

r2i + h2
)

→ ti and the following lemmas involving the

upper incomplete Gamma function:

Lemma 2. The integration property of the incomplete

Gamma function is

∫ ∞

l

tb−1 Γ(z, t) dt =
1

b

(

Γ(b+ z, l)− lb Γ(z, l)
)

.

Proof. The proof is immediate using an integration by parts

and the result lim
t→∞

tb Γ(z, t) = 0.

Lemma 3. In the particular case b = 1, Lemma 2 has a

simplified statement

∫ ∞

l

Γ(z, t) dt = Γ(1 + z, l)− lΓ(z, l).

Lemma 4. The recurrence formula of the incomplete

Gamma function is

Γ(z + 1, t) = tz e−t + z Γ(z, t).

Proof. Using the definition of the incomplete Gamma func-

tion twice and using an integration by parts, we obtain

Γ(z + 1, t) =

∫ ∞

t

uz e−u du

=
[

−uz e−u
]∞

t
+ z

∫ ∞

t

uz−1 e−u du

= tz e−t + z Γ(z, t).

Using the joint probability distribution for the n nearest

BSs

f(r1, r2, · · · , rn) dr1 dr2 · · · drn
= (2λπ)

n
e−λπr2n r1 r2 · · · rn dr1 dr2 · · · drn,

(19)

the quantity (16) can be expressed as

E
[
S
m1
1 S

m2
2 · · ·Smn

n

]
= AM (λπ)M

α/2 eλπh2
∫

∞

λπh2
t
−α/2 m1
1

×

∫
∞

t1

t
−α/2 m2
2 · · ·

∫
∞

tn−1

t
−α/2 mn
n e−tn dtn · · · dt2

︸ ︷︷ ︸

∗

dt1.

(20)
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Let us extract the term underbraced by a star for conve-

nience.
∫

∞

t1

t
−α/2 m2
2 · · ·

∫
∞

tn−1

t
−α/2 mn
n e

−tn dtn · · · dt2

=

∫
∞

t1

t
−α/2 m2
2 · · ·

∫
∞

tn−2

Γ






τn
︷ ︸︸ ︷

1 − α/2 mn, tn−1






× t
α/2 mn−1
n−1 dtn−1 · · · dt2

=

∫
∞

t1

t
τ2−1
2 · · ·

∫
∞

tn−3

1

τn−1

[

Γ
(

τ
(n)

(n−1)
, tn−2

)

−t
τn−1
n−2 Γ (τn, tn−2)

]

t
τn−2−1

n−2 dtn−2 · · · dt2

=

∫
∞

t1

t
τ2−1
2 · · ·

∫
∞

tn−4

[
1

τn−1 τn−2

Γ
(

τ
(n)

(n−2)
, tn−3

)

−
t
τn−2
n−3

τn−1 τn−2

Γ
(

τ
(n)

(n−1)
, tn−3

)

−
1

τn−1 τ
(n−1)

(n−2)

Γ
(

τ
(n)

(n−2)
, tn−3

)

+
t
τ
(n−1)
(n−2)

n−3

τn−1 τ
(n−1)

(n−2)

Γ (τn, tn−3)







t
τn−3−1

n−3 dtn−3 · · · dt2

=

∫
∞

t1

t
τ2−1
2 · · ·

∫
∞

tn−4




1

τ
(n−1)

(n−2)
τ
(n−2)

(n−2)

Γ
(

τ
(n)

(n−2)
, tn−3

)

−
t
τ
(n−2)
(n−2)

n−3

τ
(n−1)

(n−1)
τ
(n−2)

(n−2)

Γ
(

τ
(n)

(n−1)
, tn−3

)

+
t
τ
(n−1)
(n−2)

n−3

τ
(n−1)

(n−1)
τ
(n−1)

(n−2)

Γ
(

τ
(n)

(n)
, tn−3

)







t
τn−3−1

n−3 dtn−3 · · · dt2

= ...

=

n−1∑

p=1

(−1)
p−1





n−1∏

j=p+1

1

τ
(j)

(p+1)









p∏

l=2

1

τ
(p)

(l)



 Γ
(

τ
(n)

(p+1)
, t1

)

t
τ
(p)
(2)

1

(21)

Using (18) and replacing (21) in (20), we obtain the theorem:

E
[
S

m1
1 S

m2
2 · · ·S

mn
n

]
= AM (λπ)

Mα/2
e
λπh2

n−1∑

p=1

(−1)
p−1

×





n−1∏

j=p+1

1

τ
(j)

(p+1)









p∏

l=1

1

τ
(p)

(l)





[

Γ̃
τ
(n)
(1)

−
(

λπh
2
)τ

(p)
(1) Γ̃

τ
(n)
(p+1)

]

.

(22)
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