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a b s t r a c t

We provide a revealed preference characterization of expected utility maximization in binary lotteries
with prize-probability trade-offs. We start by characterizing optimizing behavior when the empirical
analyst exactly knows the utility function or the probability function of winning. Next, we consider
the situation with both the probability function and the utility function unknown. In this case utility
maximization has empirical content when imposing the mild shape restriction that at least one of
these functions is log-concave.
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1. Introduction

We analyze models of expected utility maximization in which
he decision maker (DM) faces a binary lottery that is charac-
erized by a prize-probability trade-off. In particular, we take a
ramework where a lottery yields a reward r −b with probability
(b) and a payoff of zero with probability 1 − P(b). Here, the
alue of r is exogenously given and P is a cumulative distribution
unction. The DM’s problem is to choose the optimal value of b.
n other words, she faces a trade-off between the value of the
eward and the probability of winning.

This type of decision problem occurs frequently in economics.
notable example is the (independent private values, sealed-

id) first price auction where the DM is one of the participants.
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In this case the prize of the lottery is given by the value r of
the object for the DM minus the DM’s bid b to win the auction.
The DM can choose to increase the probability of winning the
auction (in a monotone equilibrium) by increasing her bid b,
ut this implies that the final value of winning the auction, i.e.
r − b), decreases. In what follows, we do not explicitly consider
he strategic aspect of this game and concentrate mainly on the
ingle-agent decision problem. Under the assumption that players
lay a Bayesian Nash equilibrium, the probability of winning,
iven the bid P(b), captures all the relevant information for the
M to choose her optimal bid. The first price auction is just one
nstance fitting in our general set-up. In Section 2 we will briefly
iscuss additional examples of often studied decision problems
hat are also characterized by prize-probability trade-offs in –
dmittedly – settings that are mostly more complex in reality.
Our main contribution is that we develop a revealed prefer-

nce approach to characterize behavior that is expected utility
aximizing under price-probability trade-offs. A distinguishing
nd attractive feature of our revealed preference characteriza-
ions is that they do not require a (non-verifiable) functional
pecification of the optimization problem. They define testable
onditions for optimizing behavior that are intrinsically nonpara-
etric and, therefore, robust to specification bias. To define these

estable conditions, we will assume that the empirical analyst can
se, for a given DM, a sequence of observations on rewards r
received when winning the lottery) and on money amounts b
called ‘‘bids’’ in what follows) that the DM is willing to forego
n order to increase her probability of winning. Our set-up is
nce analysis of expected utility maximization under prize-probability trade-offs.
021.102607.

learly data restrictive since it assumes multiple observations of

https://doi.org/10.1016/j.jmateco.2021.102607
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
mailto:laurens.cherchye@kuleuven.be
mailto:thomas.demuynck@ulb.be
mailto:bram.de.rock@ulb.be
mailto:m.freer@essex.ac.uk
https://doi.org/10.1016/j.jmateco.2021.102607


L. Cherchye, T. Demuynck, B.D. Rock et al. Journal of Mathematical Economics xxx (xxxx) xxx

t
t
p
C
e
i
i
(

e
o
l
u
h
f
O
C
f
W
u

M
t
n
f
t
i
a
o
d
a
(
a

k
t
t
t
a
r
b
i
c
a
v
f
M
r
I
o
m
S
f
a

t
o
h

i
t
s

t
c
d

u
o
(
w
d
w
t
s
i
s

O
S
p
o
c
t
l
t
u

2

w
a

i
t
c

o
e
l
t
e
o
a

he same agent. This makes our approach more readily applicable
o an experimental set-up that wants to investigate theoretical
roperties or identifications strategies for a given setting (see
apra et al., 2020, for a motivating review of different games and
xperiments). Coming back to our first price auction example, it
s in particular interesting to note that there is a sizeable exper-
mental literature that focuses on this specific decision situation
see, for example, Kagel and Levin (2016) for an overview).

As a preliminary remark, the nonparametric revealed prefer-
nce approach that we present in this paper follows the tradition
f Afriat (1967), Diewert (1973) and Varian (1982). A sizeable
iterature has emerged on testing decision theories under risk
sing this revealed preference approach. However, this literature
as mainly focused on choices involving Arrow–Debreu securities
rom linear budgets (see, for example, Varian, 1983; Green and
sband, 1991; Kubler et al., 2014; Echenique and Saito, 2015;
hambers et al., 2016; Polisson et al., 2020), with a few papers
ocusing on the full mixture space (see, for example, Kim, 1996).
e complement these earlier studies by considering expected
tility maximization in a distinctively different decision setting.

ain theoretical results. To set the stage, we start by assuming
hat the analyst perfectly knows either the probability of win-
ing P (as a function of b) or the DM’s utility function U (as a
unction of r − b).4 For this set-up, we show that the assump-
ion of expected utility maximization generates strong testable
mplications. Particularly, we derive a revealed preference char-
cterization of optimizing behavior that takes the form of a set
f inequalities that are linear in unknowns. The characterization
efines necessary and sufficient conditions for the existence of
utility function (when P is known) or a probability function

when U is known) such that the DM’s observed decisions on b
re consistent with expected utility maximization.
In most empirical settings, however, both P and U are un-

nown and the question arises whether we can obtain any
estable implications in such a case. Not very surprisingly, we find
hat the assumption of optimizing behavior does not generate any
estable restrictions for observed behavior when not imposing
ny structure on U and P . However, building on our first set of
esults, we show that this negative conclusion can be overcome
y imposing minimalistic shape constraints that are often used
n the literature.5 Specifically, we focus on the following three
ases: (1) P is strictly log-concave, (2) U is strictly log-concave,
nd (3) both P and U are strictly log-concave. Log-concavity is a
ery weak assumption that is closely linked to monotonicity (see,
or example, Cox et al., 1988; Bagnoli and Bergstrom, 2005).
ore specifically, log-concavity of U still allows the DM to be

isk-loving but (only) excludes extremely risk-loving behavior.
ntuitively, log-concavity of U imposes a single-crossing property
f utility functions that is frequently used in game theory and
echanism design (see, for example, Maskin and Riley, 2000).
imilarly, log-concavity of P is a minimal assumption that holds
or most commonly used distributions in the literature, making it
gain a fairly weak restriction.
For each of these models, we derive necessary and sufficient

estable conditions for expected utility maximization that are
f the law-of-demand type. They require respectively that (1)
igher rewards r must lead to higher payoffs r − b, (2) higher

4 Admittedly, the assumption that P is perfectly observed is rather demand-
ng. Therefore, in Appendix B we also present a statistical test derived from our
estable conditions in Section 3 when P can (only) be estimated from a finite
ample of observations.
5 Dziewulski (2018) followed a related mathematical approach in a concep-

ually different setting. Particularly, this author developed revealed preference
haracterizations of rationalizable behavior for common specifications of the
iscounted utility model by referring to notions of stochastic dominance.
 f

2

rewards r must lead to higher bids b, and (3) higher rewards
r must lead to both higher payoffs r − b and higher bids b.
These results are in line with comparative static results that have
been documented in the literature. A notable implication of our
nonparametric characterizations is that the testable conditions
are not only necessary but also sufficient for expected utility
maximization.

Empirical implications. Our theoretical results can have alterna-
tive empirical applications. For compactness, we do not provide
an empirical illustration of our theoretical characterization of
expected utility maximization in the current paper.6 Next, our
results can be employed to empirically test for equilibrium best-
responding behavior of players in games with prize-probability
trade-offs (such as auctions). If we assume that observed behavior
is in equilibrium, then each player should maximize her expected
utility with the prize-probability trade-off function (P(b)) defined
by the equilibrium actions of all other players.

Furthermore, our characterizations entail two important con-
clusions with direct empirical relevance. First, they show that the
assumption of expected utility maximization does have empirical
content even under minimalistic shape restrictions for P and/or
U . Moreover, as we will discuss in Section 5, even if the rewards r
are unobserved, the above comparative static results still enable
partial identification of the reward structure when (only) using
information on the observed bids. Second, our result for scenario
(1) shows that, for any log-concave distribution P and any data
set with payoffs r − b increasing in rewards r , we can find a
tility function U such that the combination (P,U) generates this
bserved data set. Similarly, it follows from our result for scenario
2) that, for any log concave utility function U and any data set
ith bids b increasing in rewards r , we can construct a probability
istributions P such that (P,U) generates the data set. In other
ords, even if we assume that either P or U is log-concave, it
urns out to be empirically impossible to (partially) identify more
pecific properties of these functions. These findings are similar
n spirit to those of Manski (2002, 2004) on the impossibility to
eparately identify decision rules and beliefs.

utline. The remainder of this paper is structured as follows.
ection 2 introduces our theoretical set-up and notation. It also
rovides a more formal description of the above cited examples
f decision problems that fit in our general framework. Section 3
onsiders the case in which the empirical analyst knows either
he probability function P or the utility function U . Section 4 ana-
yzes the setting with both P and U unknown. Section 5 discusses
he usefulness of our theoretical results when the rewards r are
nobserved. Section 6 presents our concluding discussion.

. Set-up and notation

As explained in the introductory section, we consider a setting
here the DM can win a reward r with a certain probability. We
ssume that r > 0 and r ≤ r for some exogenously given r ∈ R.

The DM can choose a bid b ∈ [0, r]. Choosing a higher value of b
ncreases the probability of winning the reward. We model this
hrough a latent random variable b̃ (unobserved by the DM) with
umulative distribution function (cdf) P such that the award is

6 In an earlier version of the current paper (Cherchye et al., 2019) we used
ur revealed preference conditions to analyze Neugebauer and Perote (2008)’s
xperimental data on first-price auctions. For instance, there is a growing
iterature on the econometric analysis of auctions that focuses on identifying
he distribution of values from the observed distribution of bids (see, for
xample, Guerre et al. (2000) and Athey and Haile (2002, 2007)). Integrating
ur results in this econometric work may lead to verifying the underlying model
ssumptions and, consequently, to more robust conclusions (see also Appendix B
or related results).
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on whenever b ≥ b̃. In other words, the probability of winning
s equal to P(b) = Pr(b̃ ≤ b). The downside of increasing b is that
he value of winning is decreasing with the bid. As such, the DM
btains r − b if the reward is won (with probability P(b)), while
he DM’s payoff is zero if the reward is not won (with probability
− P(b)).
The standard expected utility model assumes that the DM has

Bernoulli utility function

: [0, r] → R+,

such that b solves:

max
b∈[0,r]

P(b) U(r − b), (1)

where we normalize the utility associated with zero payoff to
zero, i.e. U(0) = 0. We will assume throughout that P is con-
tinuous and strictly increasing on [0, r], and that U is continuous
nd strictly increasing on R.7 Observe that we can indeed restrict
≤ r in this optimization problem, as any bid b > r gives

negative expected utility and is therefore dominated by a choice
b = r , which gives zero expected utility. Next, we consider P to
e independent of r mainly to ease our exposition. Our results in
ection 3 (for known P or U) can be replicated for P dependent
n r without extra assumptions.
In particular, our results would still hold under the assumption

hat the probability of winning is conditional on the reward, that
s, P(b|r). For instance, this would allow us to extend our results
rom auctions with independent private values to auctions with
ffiliated values. However, replicating our results in Section 4 (for
nknown P and U) would require auxiliary assumptions when P
an depend on r .
Our general set-up applies to a wide variety of decision prob-

ems that are frequently encountered in economics. We illus-
rate this by discussing in turn first price auctions, crowdfund-
ng games, posted price problems and principal-agent problems.
learly our goal is not to claim that all these settings are special
ases of our set-up. On the contrary, we only want to briefly show
hat the basic underlying game can be formulated to fit into our
ramework. As such, this paper presents at least the necessary
estable implications that have to be satisfied in a more complex
nd general setting. Among other things, this also illustrates that
ur results can be used in other experimental settings than just
irst price auctions.

irst price auctions. In a first price auction, the DM (bidder) has
value r for the object. Placing a bid of b decreases the value of
inning the auction to r − b, while it increases the probability of
inning. In this case, the random variable b̃ is the value of the
ighest bid of all other participants, and P(b) = Pr(b̃ ≤ b) is the
robability that the DM wins the auction. Thus, if we consider
he Bayesian Nash equilibrium, the cdf P is generated as the
istribution of highest bids given the equilibrium bidding of other
layers. As an implication, if we assume equilibrium play, the DM
ust optimize her expected utility as in (1).

rowdfunding games. A crowdfunding game is an example of a
echanism to organize private provision of a public good.8 The

7 For our results, the monotonicity and continuity properties are inherited
rom P to U and vice versa. Particularly, we obtain readily similar revealed
reference characterizations as in Theorems 1 and 2 and 3 when relaxing
property of P (e.g., assuming that it is just increasing instead of strictly

ncreasing) and, simultaneously, the corresponding property of U (e.g., equally
ssuming that it is increasing instead of strictly increasing).
8 Similar games are discussed by Tabarrok (1998) and Zubrickas (2014).
e here consider a simplified version of the game in which there is no

ottery reward and only refund of contributions. In this sense, we are closer
o Tabarrok (1998). However, we do allow for differentiated (and not only
inary) contributions, as in Zubrickas (2014).
 e

3

participants in the game make bids for the public good. If the
sum of these bids is above a certain threshold, then the public
good is provided. Otherwise the payoff to all participants is zero.
This fits in our general set-up for the DM being a participant of
the crowdfunding game and r being the DM’s value of the public
good. Placing a bid lowers the value of the public good to r − b
hen the public good is provided. Let t̃ be the random variable
apturing the sum of the bids of all other participants, and let t
e the threshold above which the public good is provided. When
sing b̃ = t − t̃ , we can define the probability of the public good
eing provided by:

r(b + t̃ ≥ t) = Pr(t − t̃ ≤ b) = Pr(b̃ ≤ b) = P(b).

In the Bayesian Nash equilibrium of this crowdfunding game, the
cdf P equals the distribution of the sum of contributions of the
other players as defined by their equilibrium bidding. Thus, if we
assume equilibrium play, the DM has to maximize her expected
utility as in (1).

Posted price problems. In a posted price problem, the DM (buyer)
has a valuation r for the traded good. In order to obtain the good,
the DM posts a price b at which she is willing to buy the good.9

The seller (second-mover) then decides whether or not to accept
this offer. The DM receives a reward of r − b if the seller accepts,
and a payoff of zero if the seller rejects. As such, the seller’s
decision is based on her (unobserved) value b̃ for the good, which
we can assume to be random from the buyer’s point of view. The
seller will accept the offer if and only if the posted price is at least
as large as her reservation price b̃. In this case, the probability of
the trade is given by:

Pr(b̃ ≤ b) = P(b),

which is determined by the distribution of the seller’s reservation
price. Thus, the Perfect Bayesian Equilibrium generates the DM’s
problem in which she maximizes her expected utility as in (1) for
this specification of P .

Principal-agent problems. In a principal-agent model, the DM (as
principal) can receive a reward of size r with a probability that
depends on the effort e of the agent. In order to stimulate the
gent to exert effort, the principal can promise a conditional
onus of b to the agent, which the agent only gets if the principal
eceives the prize. Thus, the DM’s payoff in case the effort is high
nough equals r − b. It is also natural to assume that e is an
ncreasing function of b, say e(b), and that the reward is received
nly if the value of e is above the value of some random variable

˜. Defining the random variable b̃ = e−1(ẽ), we can set:

r(ẽ ≤ e(b)) = Pr(b̃ ≤ b) = P(b).

he agent chooses the effort level that maximizes her utility
hile accounting for the cost of effort. At the same time, the
robability P(b) depends on b as the agent’s utility is conditional
n the bonus that is promised to her. Therefore, in a Subgame
erfect Nash equilibrium, the DM maximizes her expected utility
s in (1), with the cdf P determined by the agent’s optimal effort
rovision. While, admittedly, this constitutes a most basic version
f a principal agent problem, the example illustrates once more
hat prize-probability trade-offs are relevant in many different
ettings.

9 The literature also frequently considers the alternative version with the
eller posting the price. It is easily verified that this seller-posted price problem
qually fits in general set-up.
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. When P or U is known

We assume that the empirical analyst observes a finite number
f rewards and bids for a given DM.10 As a first step of our analy-
is, we consider a setting where the researcher either knows the
df P or the utility function U . For these cases, we derive the non-
arametric revealed preference conditions for consistency with
xpected utility maximization. A typical instance with observed
occurs when the empirical analyst assumes a risk neutral DM.
ext, as indicated in the introductory section, a prime example
f the case with observed P is the first price auction of which
he participants play a symmetric equilibrium, in which case P
equals the cdf of the player types. In Appendix B, we relax the
assumption that P is fully observable and (only) assume that
the analyst can estimate the empirical distribution of P by using
a finite sample of observed winning probabilities. Under this
assumption we can develop a statistical test of expected utility
maximization by starting from our results in the current section.
In Section 4, we will focus on the case where both P and U are
nobserved.

ationalizability. We assume that the empirical analyst observes
DM who decides T times on the value of the bid b for various

values of the reward r . This defines a data set

D = (r t , bt )Tt=1,

which contains a return r t > 0 and corresponding bid bt ∈ [0, r t ]
or each observation t ≤ T .

For a given cdf P and a utility function U , we say that the data
et D is (P,U)-rationalizable if the observed bids bt maximize the
xpected utility of the DM given the primitives P and U . This
ields the next definition.

efinition 1. For a given cdf P and utility function U , a data set
D = (r t , bt )Tt=1 is (P,U)-rationalizable if U(0) = 0 and, for all
bservations t = 1, . . . , T ,

bt ∈ argmax
b∈[0,rt ]

P(b)U(r t − b).

The following theorem provides the revealed preference con-
ditions for a data set D to be rationalizable if the researcher knows
either P (but not U) or U (but not P).11

Theorem 1. Let D = (r t , bt )Tt=1 be a data set.

1. Let P be a cdf. Then, there exists a utility function U such that
the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P(bt ) > 0 and
bt < r t , and

(b) there exist numbers U t > 0 such that, for all observa-
tions t, s = 1, . . . , T ,

P(bt )U t
≥ P(r t − r s + bs)U s.

2. Let U be a utility function. Then, there exists a cdf P such that
the data set D = (r t , bt )Tt=1 is (P,U)-rationalizable if and only
if,

(a) for all observations t = 1, . . . , T , bt < r t , and
(b) there exist numbers P t > 0 such that, for all observa-

tions t, s = 1, . . . , T ,

P tU(r t − bt ) ≥ P sU(r t − bs).

10 We discuss the case of unobserved rewards in Section 5.
11 Appendix A contains the proofs of our main theoretical results. We slightly
buse notation in Theorem 1 by assuming that P(x) = 0 if x < 0.
4

Conditions 1.a and 1.b of Theorem 1 present a set of inequal-
ities that give necessary and sufficient conditions for rationaliz-
ability when the cdf P is given. The inequalities in 1.b are linear
in the unknown numbers U t , which makes them easy to verify.
Intuitively, every number U t represents the utility of winning the
auction in period t , i.e. U t

= U(r t − bt ). Further, condition 1.b
corresponds to the individual’s maximization problem in Defini-
tion 1. In particular, the expected utility of choosing the observed
bid bt should be at least as high as the expected utility of making
any other bid, including the bid r t − r s + bs. This yields the
condition

P(bt )U t
= P(bt )U(r t − bt )
≥ P(r t − r s + bs)U(r t − r t + r s − bs)
= P(r t − r s + bs)U s.

ext, conditions 2.a and 2.b present a set of inequalities that give
ecessary and sufficient conditions for rationalizability when the
tility function U is given. In this setting, the numbers P t can be
nterpreted as the probabilities of winning if the bid equals bt ,
.e. P t

= P(bt ). It is required that the expected utility of choosing
he bid bt is at least as high as the expected utility of choosing
nother bid bs, which yields
tU(r t − bt ) = P(bt )U(r t − bt ),

≥ P(bs)U(r t − bs) = P sU(r t − bs).

his shows that necessity of the conditions 1.a-1.b and 2.a-2.b in
heorem 1 is relatively straightforward and may seem a rather
eak implication. Interestingly, however, Theorem 1 states that
ata consistency with these condition is not only necessary but
lso sufficient for rationalizability. Particularly, in Appendix A.1
e provide a constructive proof that specifies a data rationalizing
tility function U and a data rationalizing cdf P based on the
onditions in statements 1 and 2 of Theorem 1.
As mentioned above, the results of this section can be ex-

anded to the case when the probability of winning depends
n r . Evidently, this extension is trivial when P(b|r) is observed.
f P(b|r) is unobserved, we need to slightly modify Theorem 1.
nstead of using numbers P t for every t = 1, . . . , T , we need
o introduce numbers P t,s for t, s = 1, . . . , T , where index t
orresponds to the potential value bt and index s to the potential
alue r s. In addition, we need to ensure that these numbers
orrespond to the same monotone function if r s = rm for some
,m = 1, . . . , T .

mpirical content. We conclude this section by illustrating the
mpirical content of the rationalizability conditions in Theorem 1.
articularly, we show that the conditions can be rejected as soon
s the data set D contains (only) two observations. First, for
onditions 1.a-1.b we assume a data set D with the observations
, s such that r s − bs, r t − bt , r t − r s + bs, and r s − r t + bt are all
trictly positive and

(bt ) =
1
10

P(r t − r s + bs) =
1
4
,

P(bs) =
1
3

P(r s − r t + bt ) =
1
2
.

Then, condition 1.b in Theorem 1 requires that there exists strictly
positive U t and U s such that

1
10

U t
≥

1
4
U s

⇔
U t

U s ≥ 2.5, and

1
2
U s

≥
1
3
U t

⇔
U t

U s ≤ 1.5,

which is impossible. We conclude that the data set is not ratio-
nalizable.
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Next, for conditions 2.a-2.b we assume that U(x) = x, which
means that utility is linear, and that both rt − bt and rs − bs are
strictly positive. Then, we must have

P t

P s ≥
r t − bs

r t − bt
and

P s

P t ≥
r s − bt

r s − bs
,

or any two observations t and s. Since at least one of the two
ight hand sides must be strictly positive, it must hold that

1 ≥
r t − bs

r t − bt
r s − bt

r s − bs
(r t − bt )(r s − bs) ≥ (r t − bs)(r s − bt )
− bt r s − r tbs ≥ −bsr s − bt r t

(r s − r t )(bs − bt ) ≥ 0.

his is violated as soon as r t > r s and bs > bt (or vice versa).

. When P and U are unknown

We next turn to the instance in which both the cdf P and util-
ty function U are unknown to the empirical analyst. We start by
a negative result: if no structure is imposed on P and U , then any
data set D is rationalizable (i.e. expected utility maximization has
no empirical content). Subsequently, we show that this negative
conclusion can be overcome by imposing a (strict) log-concavity
condition on P or U or on both. As discussed in the Introduction,
the assumption of log-concavity is a natural candidate to impose
minimal structure on the decision problem.

A negative result. A natural first question is whether the as-
sumption of expected utility maximization generates testable
implications if we do not impose any structure on P or U . The
following corollary shows that the answer is negative.

Corollary 1. Let D = (r t , bt )Tt=1 be a data set. If bt < r t for all
observations t, then there always exist a cdf P and a utility function
U such that D is (P,U)-rationalizable.

We can show this negative conclusion by using the cdf P(b) =

eb−r , which is a continuous and strictly increasing cdf on [0, r].
his function satisfies P(bt ) > 0 for all t , which makes that
ondition 1.a of Theorem 1 is satisfied. Thus, to conclude rational-
zability of D we only need to verify condition 1.b in Theorem 1.
pecifically, it suffices to construct numbers U t > 0 such that, for
ll t, s,

(bt )U t
= eb

t
−rU t

≥ P(r t − r s + bs)U s
= er

t
−rs+bs−rU s,

e meet this last inequality requirement when specifying U t
=

rt−bt > 0 for all observations t , as this gives

(bt )U t
= eb

t
−rer

t
−bt

= er
t
−r

= er
t
−rs+bs−rer

s
−bs

= P(r t − r s + bs)U s.

A crucial aspect of this rationalizability argument is that we have
used a cdf P that is log-linear. In such a case, we can always
set the utility function U to be equally log-linear on a suitable
interval of [0, r]. Such a combination of P and U rationalizes any
ata set D, as any choice of b < r gives the same level of expected

utility (i.e. er
t
−r ).

In what follows, we will show that we can overcome the
egative result in Corollary 1 when imposing strict log-concavity
n P or U , thereby also excluding the log-linear specifications. As
e will argue, this minimal structure suffices to give specific em-
irical content to the hypothesis of expected utility maximization.
5

Log-concave P or U. We first consider the case with P strictly
log-concave. Take any two observations t and s from a data set
D. When assuming that the cdf P is known but not the utility
function U , condition 1.b of Theorem 1 requires

P(bt )U t
≥ P(r t − r s + bs)U s, and

(bs)U s
≥ P(r s − r t + bt )U t .

or P(r t − r s + bs) > 0 and P(r s − r t + bt ) > 0, we can take the
og of both sides to obtain

(r t − r s + bs) − p(bt ) ≤ ut
− us, and

(r s − r t + bt ) − p(bs) ≤ us
− ut ,

here p = ln P and u = lnU . Adding up these two conditions
ives,

(r t − r s + bs) − p(bs) ≤ p(bt ) − p(r s − r t + bt ).

ithout loss of generality, we can assume r t ≥ r s. Using ∆ =
t
− r s ≥ 0, we get

(∆ + bs) − p(bs) ≤ p(bt ) − p(bt − ∆).

ecause the cdf P is strictly log-concave, the function p is strictly
oncave. Then, the above inequality will be satisfied if and only if
+ bs ≥ bt or, equivalently,

t
− bt ≥ r s − bs.

hus, strict log-concavity of P requires that, if the rewards r
eakly increase (i.e. r t ≥ r s), then the prizes r − b must also
eakly increase (i.e. r t − bt ≥ r s − bs). In Appendix A.2, we
how that this testable implication is not only necessary but also
ufficient for rationalizability of the data set D.
We can develop an analogous argument when U is strictly

og-concave. In this case, we obtain that a weak increase in the
ewards r (i.e. r t ≥ r s) must imply a weak increase in the bids
(i.e. bt ≥ bs). Again, this requirement is both necessary and

sufficient for rationalizability. The following theorem summarizes
our conclusions.

Theorem 2. Let D = (r t , bt )Tt=1 be a data set.

1. Let P be a strictly log-concave cdf. Then, there exists a utility
function U such that the data set D is (P,U)-rationalizable if
and only if,

(a) for all observations t = 1, . . . , T , P(bt ) > 0 and
bt < r t , and

(b) for all observations t, s = 1, . . . , T , r t ≥ r s implies
r t − r s ≥ bt − bs.

2. Let U be a strictly log-concave utility function. Then, there
exists a cdf P such that the data set D is (P,U)-rationalizable
if and only if,

(a) for all observations t = 1, . . . , T , bt < r t , and
(b) for all observations t, s = 1, . . . , T , r t ≥ r s implies

bt ≥ bs.

The rationalizability conditions in Theorem 2 are of the law-
of-demand type and have a clear economic interpretation. If P is
strictly log-concave, then any increase in the reward r must lead
to an increase in the prize r−b that is obtained when winning the
lottery. Analogously, if U is strictly log-concave, then any increase
in the reward r must lead to an increase in the optimal bid b.
More surprisingly, these are the only testable implications for
(P,U)-rationalizability. They fully exhaust the empirical content
of expected utility maximization under the stated observability
conditions.
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Importantly, the conditions in statement 1 of Theorem 2 are
ndependent of a particular form for the cdf P . In other words,
s soon as the data set D is (P,U)-rationalizable by some utility
unction U for a strictly log-concave cdf P , it is rationalizable
for any strictly log-concave P that satisfies P(bt ) > 0. This is a
lear non-identification result. Apart from the property of strict
og-concavity and the fact that the observed bids must lead to
trictly positive probabilities, we will never be able to recover any
dditional property of the function P .
The same non-identification conclusion holds for the rational-

zability conditions in statement 2 of Theorem 2. As soon as the
ata set D is (P,U)-rationalizable for some strictly log-concave
tility function U , it is rationalizable for any strictly log-concave
tility function U .

og-concave P and U. We conclude this section by consider-
ng the case where both P and U are assumed to be strictly
og-concave. In such a situation, rationalizability requires that
he data set D satisfies simultaneously the conditions in state-
ents 1 and 2 of Theorem 2. As we state in the following theo-

em, this requirement is both necessary and sufficient for (P,U)-
rationalizability.

Theorem 3. Let D = (r t , bt )Tt=1 be a data set. Let P be a strictly
log-concave cdf and let U be a strictly log-concave utility function.
Then, the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P(bt ) > 0 and bt < r t , and
(b) for all observations t, s = 1, . . . , T ,

r t ≥ r s implies
(
bt ≥ bs and r t − bt ≥ r s − bs

)
.

Interestingly, this (nonparametric) characterization naturally
complies with existing theoretical findings in the (parametric)
literature on auctions. In that literature, it is well-established that,
when both P and U are strictly log-concave (and satisfy some ad-
ditional smoothness conditions), the DM’s (unique) optimal bid b
is increasing in r with a slope less than one (see, for example, Cox
and Oaxaca (1996)). We equally obtain that r t ≥ r s requires bt ≥

bs. In addition, in our nonparametric setting the slope condition
corresponds to r t − r s ≥ bt − bs for r t ≥ r s. From Theorem 3, we
conclude that these conditions are not only necessary but also
sufficient for rationalizability by a strictly log-concave cdf and
strictly log-concave utility function.

5. When rewards are unobserved

So far we have assumed that the rewards r are observed by
the empirical analyst. This assumption holds well in experimental
settings, where the exogenous variables are usually under the
control of the experimental designer. However, in a real life
setting this type of data set is often not available. From this
perspective, it is interesting to investigate the usefulness of our
above theoretical results in settings where the rewards r are
unobserved.

In what follows, we start by showing that the model of ex-
pected utility maximization no longer has testable implications
in such a case. This conclusion holds even when either the cdf
P or the utility function U is perfectly observable. For compact-
ness, we will only provide the argument for P observed and U
unobserved, but the reasoning for U observed and P unobserved
proceeds analogously. Importantly, however, this non-testability
result does not imply that it is impossible to identify bounds on
the rewards that are consistent with the observed bids under the
assumption of rationalizability. We will show this by discussing
the (partially) identifying structure that rationalizable behavior
imposes on the unobserved rewards.
6

A non-testability result. We consider a setting where the empiri-
cal analyst only observes a finite number of bids (bt )Tt=1. Further,
we assume that the empirical analyst knows the true cdf P but not
the utility function U . For simplicity, we assume that P(bt ) > 0
or all observations t . If this last condition were violated, the bids
ould violate condition 1.a in Theorem 1 and, thus, the observed
ehavior would not be (P,U)-rationalizable. To address the issue
f testability, we must characterize a finite collection of rewards
r t )Tt=1 such that the data set D = (r t , bt )Tt=1 together with P
atisfies the rationalizability conditions 1.a and 1.b in Theorem 1.
More formally, we must define (r t )Tt=1 such that bt < r t for all

and there exist numbers U t > 0 such that, for all observations
, t ,

(bt )U t
≥ P(r t − r s + bs)U s.

e will show that, for any (bt )Tt=1 and cdf P , we can always
pecify such a set (r t )Tt=1, which effectively implies non-testability
f expected utility maximization. Let r be strictly bigger than

maxt∈{1,...,T } bt , and take any ∆ > 0 that satisfies

∆ ∈

]
0, r̄ − max

t∈{1,...,T }

bt
[

.

For every observation t = 1, . . . , T , we then consider the value
r t = bt + ∆, which is contained in [0, r[. This specification of
the rewards ensures r t − bt = ∆, i.e. the payoff when winning is
the same for each observation t . Furthermore, for all t, s, we let
U t

= U s
= 1. It then follows that

P(bt )U t
= P(bt ) and P(r t − r s + bs)U s

= P(bt ),

which implies that the rationalizability condition 1.b in Theo-
rem 1 is trivially satisfied. We thus obtain the following non-
testability result.

Corollary 2. For every data set D = (bt )Tt=1 and cdf P such
that P(bt ) > 0 for all observations t, there exist values (r t )Tt=1
and a utility function U such that the data set D′

= (r t , bt )Tt=1 is
P,U)-rationalizable.

artial identification of rewards. Importantly, the negative conclu-
ion in Corollary 2 does not imply that it is impossible to identify
he underlying values r t that (P,U)-rationalize the observed be-
avior. Since our characterizations in Theorems 1–3 define nec-
ssary and sufficient conditions for (P,U)-rationalizability, they
an still be used to partially identify the distribution of rewards.
his (partially) identifying structure defines the strongest possible
nonparametric) restrictions on the unobserved rewards for the
iven assumptions regarding U and P .
Let us first consider identification on the basis of Theorem 1.

ssuming P(bt ) > 0 for all observations, we have for any two
bservations t and s that the values r t and r s providing a (P,U)-
ationalization for some U must satisfy the inequality:

P(r t − r s + bs)
P(bt )

P(r s − r t + bt )
P(bs)

≤
Ut

Us

Us

Ut
= 1,

which puts restrictions on the reward differences r t − r s. In
general, these restrictions will depend on the shape of the cdf P .

This illustrates that, generically, the rewards r t can only be
partially identified, meaning that there are multiple values of
(r t )Tt=1 that satisfy the rationalizability restrictions. As an impli-
ation, the distribution of rewards cannot be uniquely recovered
hen only using information on P . This may seem to contradict

the vast literature on auction theory that focuses on identifying
the distribution of rewards from the distribution of bids (see,
for example, Athey and Haile, 2007). However, these existing
identification results all rely on additional functional structure
that is imposed on the utility function U . By contrast, our result
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n Theorem 1 is nonparametric in nature, and only assumes that
is strictly increasing.
Next, if the empirical researcher does not know P but assumes

hat it is strictly log-concave, then we can use statement 1 of
heorem 2 to partially identify the rewards. Specifically, these
ewards must satisfy bt < r t and, in addition:

r t − r s ≥ 0 implies r t − r s ≥ bt − bs.

This last statement is equivalent to:

bt > bs implies (r t − r s ≥ bt − bs or r t − r s < 0),

which again puts bounds on the reward differences r t − r s.
Similarly, if U is assumed to be strictly log-concave but P is

nconstrained, then statement 2 of Theorem 2 imposes bt < r t
nd:
t
≥ r s implies bt ≥ bs.

his condition can be rephrased as:
t > bs implies r t − r s > 0,

hich defines restrictions on the sign of r t − r s.
Finally, if we assume that both P and U are strictly log-

oncave, then Theorem 3 requires bt < r t and:
t
≥ r s implies (bt ≥ bs and r t − bt ≥ r s − bs),

his is equivalent to:
t > bs implies r t − r s ≥ bt − bs,

hich once more specifies restrictions on r t − r s.
We conclude with a simple example that illustrates the appli-

ation of these identification constraints to retrieve information
n latent rewards. Specifically, we assume a data set with four
bservations (i.e. T = 4) containing the bids b1 = 1, b2 = 4, b3 =

and b4 = 10. Then, if we assume that both P and U are strictly
og-concave, (P,U)-rationalizability imposes the restrictions
1 > 1,
2

≥ r1 + 3,
3

≥ r2 + 4,
4

≥ r3 + 2.

t follows from our argument that any rewards r1, r2, r3 and r4
atisfying these constraints will provide a (P,U)-rationalization
f the observed behavior. This clearly shows the partially infor-
ative nature of our nonparametric identification results.

. Concluding discussion

We provided a nonparametric revealed preference character-
zation of expected utility maximization in binary lotteries with
rade-offs between the final value of the prize and the probability
f winning the prize. We have assumed an empirical analyst who
bserves a finite set of rewards r and bids b for the DM under
tudy. We started by characterizing optimizing behavior when
he empirical analyst also perfectly knows either the probability
istribution of winning P (as a function of b) or the DM’s utility
unction U (as a function of r − b).

In a following step, we considered the case where both func-
ions U and P are fully unknown. For this setting, we first showed
hat any observed bidding behavior is consistent with expected
tility maximization if no further structure is imposed on these
nknown functions. However, we also established that imposing
og-concavity restrictions does give empirical bite to the hypoth-
sis of expected utility maximization. Specifically, we derived
estable implications of the law-of-demand type when either the
 w

7

robability distribution P or the utility function U is assumed
to be log-concave. Log-concavity of P imposes that rewards and
final prizes should go in the same direction, and log-concavity
of U requires that rewards and bids must be co-monotone. In-
terestingly, these co-monotonicity properties fully exhaust the
empirical content of expected utility maximization under the
stated log-concavity assumptions.

While our main focus was on testing expected utility maxi-
mization when both rewards r and bids b are observed, we have
also considered the use of our results in the case where the
rewards are no longer observed (which is often relevant in non-
experimental empirical settings). On the negative side, we have
shown that expected utility maximization is no longer testable in
such a case, even if P or U is fully known. On the positive side, we
have demonstrated that our characterizations do impose partially
identifying structure on the rewards r that can rationalize the
observed behavior in terms of expected utility maximization.

Follow-up research may fruitfully focus on extending our the-
oretical results towards a broader range of decision problems
characterized by prize-probability trade-offs. A first avenue could
focus on introducing heterogeneity to either P or U . Allowing for
P to change across observations would allow for encompassing a
broader set of applications such as settings where the DM is com-
peting with different numbers of bidders. Our results can readily
be adapted when P is observed, but will require extra identifying
information if P is not observed. Similar conclusions hold for
allowing U to change in order to capture for instance settings
where one only has one observation from multiple participants
(instead of multiple observations for one agent).

Next, an interesting alternative application concerns contest or
all-pay auctions. The key difference between this setting and our
current set-up is that the DM has to pay the bid even if she loses
the auction. Thus, increasing the probability of winning decreases
not only the DM’s potential prize but also her payoff when she
does not get the prize. Another possible application pertains to
the double-auction bilateral trade mechanism. This mechanism
differs from the posted price model presented in Section 2 in
that the seller and the buyer simultaneously post a price. Trade
occurs at the average of these two prices if the seller’s price does
not exceed the buyer’s price, while there is no trade otherwise.
Once more, the DMs face a clear prize-probability trade-off as
posting a higher/lower price increases the probability of trade for
the buyer/seller. However, a main difference with our set-up is
that the potential prize becomes stochastic, as it depends on the
(randomly) posted price of the other party.

Appendix A. Proofs

A.1. Proof of Theorem 1

Statement 1: P is known but U is not. (⇒) Let D = (r t , bt )Tt=1 be
P,U)-rationalizable. Let us first derive condition 1.a. Given that
is strictly increasing on [0, r], P(bt ) can only be zero if bt = 0.
hen, the expected utility of choosing bt = 0 is given by:

(0)U(r t ) = 0.

otice that, as U is strictly increasing and U(0) = 0, we have that
(r t ) > 0. Given continuity of U and the fact that P is strictly
ncreasing, there must exist a ε > 0 such that P(ε) > 0 and
(r t − ε) > 0. As such:

(ε)U(r t − ε) > 0,

hich means that bt = 0 can never be an optimal choice.
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Next, if bt = r t , and consequentially U(r t − bt ) = U(0) = 0,
e have that:

(r t )U(0) = 0.

otice that P(r t ) > 0 as r t > 0. Given continuity of P and the fact
hat U is strictly increasing, there must exist a ε such that:

(r t − ε)U(ε) > 0.

gain this implies that bt = r t can never be an optimal bid.
Finally, to derive condition 1.b, let U t

= U(r t − bt ) > 0. Then,
by optimality of bt , we have that:

P(bt )U t
= P(bt )U(r t − bt ),
≥ P(r t − (r s − bs))U(r t − (r t − r s + bs)),
= P(r t − r s + bs)U s,

which is exactly condition 1.b.
(⇐) To prove sufficiency, we construct a regular Bernoulli utility
function U : R → R that rationalizes the data set. Define:

U(x) = min
{
αx, min

t=1,...,T

{
U t P(bt )

P(r t − x)
s.t. P(r t − x) > 0

}}
, (2)

where we choose:

α > max
t

U t

r t − bt
. (3)

Notice that U(x) is well-defined (i.e. finite valued), continuous
and strictly increasing as it is the minimum of a finite number of
strictly increasing, continuous functions. Also, for all observations
t:

0 < U t P(b
t )

P(r t )
,

hich follows from the fact that P(bt ) > 0, strict monotonicity of
P and U t > 0. As such, we have U(0) = α0 = 0.

Next, for all t we have U(r t − bt ) = U t . Indeed, from the
definition, we immediately obtain the inequality U(r t − bt ) ≤ U t

and, by assumption (3), we have U t < α(r t −bt ). If the inequality
would be strict, i.e. U(r t − bt ) < U t , then there must be an
observation s such that:

U s P(bs)
P(r s − r t + bt )

< U t .

This, however, contradicts condition 1.b.
Finally, let us show that the data set D = (r t , bt )Tt=1 is (P,U)-

rationalizable by the function U(x) defined in (2). Consider any
b ∈ [0, r t ], then we have:

P(b)U(r t − b) ≤ P(b)U t P(b
t )

P(b)
= P(bt )U t .

Statement 2: U is known but P is not. (⇒) Let D = (r t , bt )Tt=1
be (P,U)-rationalizable. As in our proof of statement 1, we can
show that bt < r t for all t , which obtains condition 2.a. To derive
condition 2.b, let us set P t

= P(bt ). As in our proof of statement
1, we can show that P t > 0. Then, choosing bt should provide at
least as much utility as choosing bs. As such:

P tU(r t − bt ) = P(bt )U(r t − bt ) ≥ P(bs)U(r t − bs) = P sU(r t − bs),

which obtains condition 2.b.
(⇐) To prove sufficiency, we need to construct a cdf P . Define the
function:

V (b) = min
{
αb, min

t=1,...,T

{
P t U(r t − bt )

U(r t − b)
s.t. r t > b

}}
, (4)

where we choose:

α > max
P t

. (5)

t bt

8

Notice that V (b) is well-defined (i.e. finite valued), non-negative,
continuous, and strictly increasing as it is the minimum of a finite
number of strictly increasing, continuous functions. Given this,
define:

P(b) =
V (b)
V (r)

,

which obtains that P is a cdf on [0, r].
Next, for all t we have V (bt ) = P t . Indeed, as r t > bt , we

have that V (bt ) ≤ P t . If the inequality is strict, then P t < αbt (by
condition (5)) implies that there is an observation s such that:

V (bt ) = P s U(r s − bs)
U(r s − bt )

< P t .

This, however, contradicts condition 2.b.
Let us finish the proof by showing that the data set D =

r t , bt )Tt=1 is (P,U)-rationalizable. If not, then there is a b ∈ [0, r t ]
uch that:

(b)U(r t − b) > P(bt )U(r t − bt ) =
P t

V (r)
U(r t − bt ).

his inequality requires that U(r t − b) > 0, which implies that
< r t . As such, V (b) ≤ P t U(rt−bt )

U(rt−b) . Given this:

P(b)U(r t − b) ≤
P t

V (r)
U(r t − bt )
U(r t − b)

U(r t − b) =
P t

V (r)
U(r t − bt ),

contradiction.

.2. Proof of Theorem 2

In order to give the proof, we need to introduce some defini-
ions and notation.

A directed network G = (T , E) consists of a finite set of nodes
and edges E ⊆ T × T . An edge e ∈ E is called an incoming

dge for the node t if e = (s, t) for some s ∈ T and it is called
n outgoing edge if e = (t, s) for some s ∈ T . Two nodes t, s are
onnected if there is a sequence of edges

1 = (t, n1), e2 = (n1, n2), . . . , ek = (nk−1, s),

onnecting t to s. We call e1, . . . , ek a path from t to s.
A cycle C = (e1, . . . , ek) on the network G consists of a

ollection of edges such that

1 = (n1, n2), e2 = (n2, n3), . . . , ek = (nk, n1).

e call {n1, . . . , nk} the nodes of the cycle and k the length of the
ycle. For a node ni in the cycle, ni+1 is called the successor of ni
f i < k and n1 if i = k. Similarly, ni−1 is called the predecessor of
i if i > 1 and nk if i = 1. We also denote the successor of ni as
i+ and its predecessor as ni−.
To start, let us give some preliminary results.

reliminary results.

emma 1. Let P be a cdf and let D = (r t , bt )Tt=1 be a data set
uch that P(bt ) > 0 and bt < r t for all t. Then, there exists a utility
unction U such that D is (P,U)-rationalizable if and only if, for all t ,
here exists numbers ut such that, for all t, s with P(r t −r s+bs) > 0,

(r t − r s + bs) − p(bt ) ≤ ut
− us,

here p(x) = ln(P(x)).

roof. (⇒) Let D be (P,U)-rationalizable. Then, from condition
.b in Theorem 1, we know there exist number U t > 0 such that,
or all t, s:

(bt )U t
≥ P(r t − r s + bs)U s.
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f P(r t − r s +bs) > 0 we can take logs on both sides, which gives:

(r t − r s + bs) − p(bt ) ≤ ut
− us,

s we wanted to show.
⇐)Assume that there are numbers ut such that, for all t, s with
P(r t − r s + bs) > 0:

p(r t − r s + bs) − p(bt ) ≤ ut
− us.

Taking exponents on both sides gives P(r t − r s + bs)U s
≤ P(bt )U t

shows that condition 1.b of Theorem 1 holds in the case where
P(r t − r s + bs) > 0. For the case where P(r t − r s + bs) = 0 then
condition 1.b is always satisfied as the left hand side is then equal
to zero. Applying Theorem 1 shows that there exists a utility
function U such that D is (P,U)-rationalizable. □

The following Lemma is close in spirit to the results of Rochet
(1987) and Castillo and Freer (2016).

Lemma 2. Let P be a cdf and let D = (r t , bt )Tt=1 be a data set
such that P(bt ) > 0 and bt < r t for all t . Then, there exists a
utility function U such that D is (P,U)-rationalizable if and only
if, for all cycles C on the network G = (T , T × T ), which satisfy
P(r t − r t+ + bt+) > 0 for all nodes t, we have:∑
t∈C

p(r t − r t+ + bt+) − p(bt+) ≤ 0.

Proof. (⇒) From Lemma 1 we have that there are numbers ut

such that, for all nodes t of C:

p(r t − r t+ + bt+) − p(bt ) ≤ ut
− ut+.

Summing the left and right hand sides over all nodes t of the cycle
C gives:

0 ≥

∑
t∈C

(
p(r t − r t+ + bt+) − p(bt )

)
=

∑
t∈C

(
p(r t − r t+ + bt+) − p(bt+)

)
.

(⇐) Assume m is the node in the cycle with the highest value rm.
It follows that, for all nodes t in the cycle:

rm − r t + bt > 0,

so by strict monotonicity of P , P(rm − r t + bt ) > 0. Let E be the
set of edges (t, s) such that P(r t − r s +bs) > 0. Let Pt be the set of
all paths on the graph G′(N, E) that start at m and end at t . Notice
that Pm includes the path (m,m). Given that P(rm − r t + bt ) > 0
exists for all nodes t , the set Pt is non-empty. Now define, for all
t:

ut
= min

π∈Pt

∑
(s,s+)∈π

p(bs) − p(r s − r s+ + bs+).

Because of the condition in the lemma, an optimal solution to this
problem will be path that does not have a cycle. Indeed, if a path
includes a cycle, this makes the right hand side only larger. This
shows that the minimum is bounded from below and, therefore,
the value ut is well-defined.

Also, if P(r t−r s+bs) > 0 then, for any path in Pt , we can create
a path in Ps by adding the edge (t, s). Therefore, for all s, t:

us
≤ ut

+ p(bt ) − p(r t − r s + bs).

Using Lemma 1, we can conclude that the data set D is (P,U)-

rationalizable for some utility function U . □

9

Statement 1: P is strictly log-concave. Lemma 2 shows that there
exists a utility function U such that the data set D is (P,U)-
rationalizable if and only if, for all cycles C on G = (T , T × T ),
which satisfy P(r t − r t+ + bt+) > 0 for all nodes t , we have:∑
t∈C

p(r t − r t+ + bt+) − p(bt+) ≤ 0, (6)

with p(x) = ln(P(x)). We will show that this condition is satisfied
if and only if for all observations t, s, r s ≥ r t implies r s − bs ≥
t
− bt .

⇒) Consider two observations t and s. If P(r t − r s +bs) = 0, then
t must be that r t − r s + bs ≤ 0, since P is strictly increasing. In
articular:
t
≤ r s − bs.

s bs ≥ 0, this implies r t ≤ r s and also r t −bt ≤ r s −bs. Similarly,
f P(r s − r t + bs) = 0, we obtain r s ≤ r t and r s − bs ≤ r t − bt . So
he result holds for both these cases.

Next, consider the case where both P(r t − r s + bs) > 0 and
(r s−r t +bt ) > 0. Without loss of generality, assume that r s ≥ r t .
hen, given the cycle C = {(t, s), (s, t)}, we must have (by (6)):

p(r t − r s + bs) − p(bs) + p(r s − r t + bt ) − p(bt ) ≤ 0
p(r s − r t + bt ) − p(bt ) ≤ p(bs) − p(bs − (r s − r t )).

iven strict concavity of p, this can only hold if r s − r t + bt ≥ bs
r, equivalently, r s − bs ≥ r t − bt , as we needed to show.
⇐) We work by induction on the length of the cycle C in order
o show that condition (6) is satisfied. If C has length 2, the proof
s similar to the necessity part above. Let us assume that the
ondition holds for all cycles up to length n − 1 and consider a
ycle of length n. Let t be the node of the cycle with the lowest
alue of r t . Denote by C ′ the cycle where the edges (t−, t) and
t, t+) are removed and the edge (t−, t+) is added. Using this
otation we have:∑
s∈C

p(r s − r s+ + bs+) − p(bs+)

=

∑
s∈C ′

(
p(r s − r s+ + bs+) − p(bs+)

)
+ p(r t− − r t + bt ) − p(bt ) + p(r t − r t+ + bt+)

− p(r t− − r t+ + bt+). (7)

otice that P(r t − r t+ + bt+) being strictly positive implies also
hat P(r t− − r t+ +bt+) > 0 since r t− ≥ r t . As such we can indeed
ake the logarithm.

The first term on the right hand side of (7) is negative by the
nduction hypothesis. As such, it suffices to show that:

(r t− − r t +bt )−p(bt ) ≤ p(r t− − r t+ +bt+)−p(r t − r t+ +bt+). (8)

efine ∆ = r t− − r t ≥ 0 and set r t− − r t+ + bt+ = b̃ ≥ 0. Then,
ubstituting into (8) gives:

(∆ + bt ) − p(bt ) ≤ p(b̃) − p(b̃ − ∆).

s p is strictly concave and strictly increasing, this holds when-
ver:

∆ + bt ≥ b̃
r t− − r t + bt ≥ r t− − r t+ + bt+

r t+ − bt+ ≥ r t − bt .

his is indeed the case, as r t+ ≥ r t .

tatement 2: U is strictly log-concave. This proof is readily analo-
ous to the proof of statement 1.
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.3. Proof of Theorem 3

We first state some preliminary results.

reliminary results.

emma 3. Let (zt , yt )Tt=1 be a collection of numbers zt , yt ∈ R.
Then, the following statements are equivalent:

1. For all cycles C in G = (T , T × T ) where the values yt are not
equal over all nodes t in C, we have that:∑
t∈C

zt (yt+ − yt ) > 0.

2. For all t, s we have that:

yt > ys ⇒ zt < zs.

Proof. (1 ⇒ 2) Suppose the condition in statement 1 holds. Then,
given a cycle C = {(t, s), (s, t)} we have that, if yt ̸= ys:

zt (ys − yt ) + zs(yt − ys) > 0,
⇔(zs − zt )(yt − ys) > 0.

As such, yt > ys implies zt < zs, as we wanted to show.
(2 ⇒ 1) We use induction on the length of the cycle C . For
a cycle of length 2 the proof is similar to the first part of the
proof. Assume that the equivalence holds for all cycles up to
length n − 1 and consider a cycle C of length n. If the cycle
C = {(t1, t2), (t2, t3), . . . (tn, t1)} contains two nodes ti, tj (i < j)
with yti = ytj , then we can break up C into two cycles of smaller
length. In particular, we have the smaller cycles:

C1 = {(t1, t2), . . . , (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)}, and
C2 = {(ti, ti+1), (ti+1, ti+2), . . . (tj−2, tj−1), (tj−1, ti)}.

Also, as yti = ytj we have:∑
t∈C

zt (yt+ − yt ) =

∑
t∈C1

zt (yt+ − yt ) +

∑
t∈C2

zt (yt+ − yt ).

By the induction hypothesis, the sum on the right hand side is
greater than 0, so the sum on the left is then also greater than 0.

Next, we consider the case where there is a cycle C of length
n and where, for all nodes t, s ∈ C , yt ̸= ys. Let t be the node in
C with the smallest value of yt , and let C ′ be the cycle obtained
from C by removing the edges (t−, t), (t, t+) and adding the edge
(t−, t+). Then,∑
s∈C

zs(ys+ − ys) =

∑
s∈C ′

zs(ys+ − ys),

+ zt−(yt − yt−) + zt (yt+ − yt ) − zt−(yt+ − yt−).

The first expression on the right hand side is strictly greater than
zero by the induction hypothesis. As such, it suffices to show that,

zt−(yt − yt−) + zt (yt+ − yt ) − zt−(yt+ − yt−) ≥ 0

⇔zt−(yt − yt−) + zt (yt+ − yt ) − zt−(yt+ − yt ) − zt−(yt − yt−) ≥ 0

⇔(zt − zt−)(yt+ − yt ) ≥ 0.

By assumption, we have yt+ > yt , so the second part of the
product is strictly positive. In addition, we have yt− > yt so
zt− < zt by statement 2 of the lemma, which shows that the
first part of the product is also strictly positive. □

Lemma 4. Let (zt , yt )Tt=1 be a collection of numbers zt , yt ∈ R and
let C be a cycle in G = (T , T × T ). Then, there exists a collection of
cycles C such that:

1. For all C̃ ∈ C and all nodes t, s ∈ C̃ we have yt ̸= ys,
10
2.
∑

s∈C zs(ys+ − ys) =
∑

C̃∈C
∑

s∈C̃ zs(ys+ − ys),
3.
∑

s∈C 1[ys ̸= ys+] =
∑

C̃∈C
∑

s∈C̃ 1[ys ̸= ys+].

Proof. Consider a cycle C in G = (T , T × T ). We will build the
collection C in two steps. First, we remove from C all edges (t, s)
where yt = ys. In order to do this, if C contains an edge (t, s)
where yt = ys we construct a new cycle C by deleting the edges
t−, t) and (t, s) and adding the edge (t−, s). The resulting cycle
′ has the feature that:

s∈C

zs(ys+ − ys) =

∑
s∈C ′

zs(ys+ − ys),

nd:

s∈C

1[ys+ ̸= ys] =

∑
s∈C ′

1[ys+ ̸= ys].

his process can be repeated until we finally arrive at a cycle C̃
uch that, for any edge (t, s) we have yt ̸= ys together with:

s∈C

zs(ys+ − ys) =

∑
s∈C̃

zs(ys+ − ys),

nd:

s∈C

1[ys+ ̸= ys] =

∑
s∈C̃

1[ys+ ̸= ys].

e take C̃ as a starting point of the second step. If C̃ contains no
wo nodes t and s (not connected by an edge) such that yt = ys,
hen we set C = {C̃}. Else, let C̃ = {(t1, t2), . . . , (tn, t1)} be such
hat, for at least two nodes ti, tj (i < j) in C , we have yti = ytj .
e decompose C̃ into two new cycles C̃1 and C̃2, in the following
ay:

˜1 = {(t1, t2), . . . (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)} and
˜2 = {(ti, ti+1), . . . (tj−1, tj)}.

otice that C̃1 and C̃2 satisfy:

s∈C̃

zs(ys+ − ys) =

∑
s∈C̃1

zs(ys+ − ys) +

∑
s∈C̃2

zs(ys+ − ys),

nd:

s∈C̃

1[ys+ ̸= ys] =

∑
s∈C̃1

1[ys+ ̸= ys] +

∑
s∈C̃2

1[ys+ ̸= ys].

gain we can repeat this process over and over until we obtain
collection C of cycles such that, for all nodes ti, tj ∈ C̃ ∈ C, we
ave yti ̸= ytj . Moreover:∑
t,t+)∈C

zs(ys+ − ys) =

∑
C̃∈C

∑
(t,t+)∈C

zs(ys+ − ys),

nd:∑
t,t+)∈C

1[yt ̸= yt+] =

∑
C̃∈C

∑
(t,t+)∈C̃

1[yt ̸= yt+],

hich we wanted to show. □

emma 5. Let (zt , yt )Tt=1 be a collection of numbers such that
t , yt ∈ R. Then, the following statements are equivalent.

1. For all cycles C in G = (T , T × T ) where the values yt are not
all equal over the nodes t of C, we have that:∑

zt (yt+ − yt ) > 0.

t∈C
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2. There exist numbers ut such that, for all t, s:

ut
− us

≤ zs(yt − ys),

with a strict inequality if yt ̸= ys.

Proof. (2 ⇒ 1) This is easily obtained by summing the inequality
in statement 2 over all edges (t, t+) of the cycle C .
(1 ⇒ 2) Let M be the collection of all cycles in G = (T , T × T )
such that, for all M ∈ M and all nodes t, s in M , yt ̸= ys. Notice
that any cycle in M can have at most |T | nodes, so the number
of elements in M is finite.

Given that there are only finitely many cycles in M, there
should exist an ε such that, for all M ∈ M,∑
s∈M

zs(ys+ − ys) > ε|M|,

where |M| is the number of nodes in M .
Now, fix a node m and let Pt denote the collection of all finite

paths in G = (T , T × T ) from m to node t . Define:

ut
= min

π∈Pt

∑
s∈π

zs(ys+ − ys) − ε1[ys+ ̸= ys].

In order to show that this is well-defined, we need to show that
there are no cycles C in G = (T , T × T ) such that:∑
s∈C

zs(ys+ − ys) − ε1[ys+ ̸= ys] < 0.

If ys+ = ys for all s ∈ C , then this is obviously satisfied. Else we
have, by Lemma 4, a collection of cycles in M such that:∑
s∈C

zs(ys+ − ys) =

∑
M∈C

∑
s∈M

zs(ys+ − ys),

and:∑
s∈C

1[ys+ ̸= ys] =

∑
M∈C

∑
s∈M

1[ys+ ̸= ys].

Then:∑
s∈C

zs(ys+ − ys) − ε1[ys+ − ys],

=

∑
M∈C

∑
s∈M

zs(ys+ − ys) − ε
∑
M∈C

∑
s∈M

1[ys+ ̸= ys],

=

∑
M∈C

(∑
s∈M

zs(ys+ − ys) − ε1[ys+ ̸= ys]

)
> 0,

by assumption on the value of ε. As such, we can restrict the
minimization over the set of all paths without cycles, which
shows that ut is bounded from below and therefore well-defined.
Now, for all paths from m to t we can define a path from m to s
by adding the edge (t, s). This means that,

us
≤ ut

+ zt (ys − yt ) − ε1[ys ̸= yt ],

so us
≤ ut

+ zt (ys − yt ) and us < ut
+ zt (ys − yt ) if ys ̸= yt as we

wanted to show. □

Main part of the proof of Theorem 3. (⇒) First, notice that, by
continuity and monotonicity of P and U , we have that P(bt ) > 0
and U(r t − bt ) > 0. As such, the choice bt also optimizes the
log of P(b)U(r t − b), denoted by p(b) + u(r t − b). This objective
function is strictly concave, so a solution has to satisfy the first
order condition:

∂pt − ∂ut
= 0,
11
where ∂pt is a suitable supergradient of p(bt ) and ∂ut is a suitable
supergradient of u(r t − bt ), and where we use that 0 < bt < r .12
Then, strict concavity of u and p gives:

p(bt ) − p(bs) ≤ ∂ps(bt − bs) = ∂us(bt − bs), (9)

u(r t − bt ) − u(r s − bs) ≤ ∂us [(r t − bt ) − (r s − bs)
]
, (10)

here the inequality (9) is strict if bs ̸= bt and the inequality (10)
s strict if r t − bt ̸= r s − bs. If we exchange t and s in conditions
9) and (10) and add them together, we obtain:

≤ (∂us
− ∂ut )(bt − bs), (11)

≤ (∂us
− ∂ut )

[
(r t − bt ) − (r s − bs)

]
, (12)

here (11) is strict if bt ̸= bs and (12) is strict if r t − bt ̸= r s − bs.
f bt > bs, then, for (11) to hold, we must have that ∂ut < ∂us,
hich implies we need in turn that r t − r s ≥ bt − bs to satisfy
12). As such, we obtain that r s ≥ r t implies bs ≥ bt .

Next, if r t − bt > r s − bs, then for (12) to hold, we must have
hat ∂ut < ∂us, which implies we need in turn that bt ≥ bs to
atisfy (11). As such we obtain r t − r s > bt −bs ≥ 0 and thus also
t > r s. Again, by contraposition, we can conclude that r s ≥ r t
mplies r s − bs ≥ r t − bt .
⇐) Taking the contraposition, we have that bt > bs implies
t > r s and r t − bt > r s − bs implies r t > r s. Then, by combining
emmata 3 and 5 we have that there are numbers ut and pt such
hat, for all observations t, s:
t
− us

≤ r s
[
(r t − bt ) − (r s − bs)

]
, (13)

t
− ps ≤ r s(bt − bs), (14)

here the inequality (13) is strict if r t − bt ̸= r s − bs, and the
nequality (14) is strict if bt ̸= bs. As shown in Matzkin and
ichter (1991), these inequalities imply the existence of continu-
us, strictly increasing and strictly concave functions ũ and p such
hat, for all t:

˜(r t − bt ) = ut , and p(bt ) = pt .

nd r t is a supergradient of u(r t − bt ) and p(bt ). Define the
unction:

(x) = min{ln(αx), ũ(x)},

here we choose α > 0 such that, for all t:

n(α(r t − bt )) > ut .

he function u(x) is still strictly concave, strictly monotone and
ontinuous. In addition, for all t we have that u(r t − bt ) = ut

nd r t is a supergradient of u(r t − bt ), but now we also have that
imx→0 ũ(x) = −∞. Define:

(x) = exp(u(x)),

nd:

(b) = exp (p(b) − p(r)) .

hen, U is strictly increasing, strictly log-concave and U(0) = 0
nd P is between 0 and 1, strictly increasing and strictly log-
oncave on [0, r].
For these definitions of U and P , let us show that the data set

D = (r t , bt )Tt=1 is (P,U)-rationalizable. That is, that bt maximizes
p(b) + u(r − b). We know that P(bt )U(r t − bt ) > 0, so we only
need to consider values b < r t with P(b) > 0. By concavity of p
and u we have, for all such b:

p(b) + u(r t − b) −
(
p(bt ) − u(r t − bt )

)
≤ r t (b − bt ) + r t

[
(r t − b) − (r t − bt )

]
= 0,

as we needed to show.

12 For the definition and basic properties of supergradients please
see Rockafellar (1970).
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ppendix B. When U is unknown and P can be estimated

In this appendix, we show how to use the characterization
n statement 1 of Theorem 1 to derive a statistical test of ra-
ionalizability when U is unknown, but the empirical analyst
an construct an estimate of the cdf P from a finite sample of
bservations.
Let us assume that we have a random sample of m values

(b̂j)j≤m, drawn i.i.d. from a cdf G. The sample used for the cdf
of G is a separate data set than the one used for the revealed
preference test. We assume that the cdf G can be linked to the
cdf P by a known function Γ : [0, 1] → [0, 1] such that, for all

∈ [0, r],

P(b) = Γ (G(b)) .

This function Γ will generally depend on the specific setting at
hand. For instance, in a first price auctions we can take G to
epresent the distribution of bids of a random participant in the
uction, while P equals the distribution of the highest bid among
ll participants different from the DM. Then, for an auction with
+ 1 randomly drawn participants in total (i.e. k participants
ifferent from the DM) and independent bids, we get:

(b) = (G(b))k,

hich yields the function Γ (x) = xk.13 Of course, if it is possible
o directly obtain i.i.d. draws from the distribution P , we can set
equal to the identity function.
Given the finite sample (b̂j)j≤m, it is possible to construct

n estimator of the cdf G by using the empirical distribution
unction:

m(b) =
1
m

m∑
j=1

1[b̂j ≤ b],

where 1[.] is the indicator function that equals 1 if the premise is
rue and zero otherwise. This estimator has a small sample bias
qual to:

m(b) = Gm(b) − G(b).

Next, we recall that our characterization in statement 1 of Theo-
rem 1 only requires us to evaluate the distribution P (and hence
G) at a finite number of values r t − r s + bs, where P(r t − r s +
s) > 0 for t, s ∈ {1, . . . , T }. From now on, we will assume that
(r t − r s +bs) > 0 for all such t, s. Correspondingly, we construct
finite vector of errors εm, with entries14:

εm)t,s = Gm(r t − r s + bs) − G(r t − r s + bs).

he vector
√
mεm has an asymptotic distribution that is multi-

variate normal with mean zero and variance–covariance matrix
Ω , where:

Ω(t ′,s′),(t,s) =

⎧⎪⎪⎨⎪⎪⎩
G(r t − r s + bs)(1 − G(r t

′

− r s
′

+ bs
′

))
if r t − r s + bs ≤ r t

′

− r s
′

+ bs
′

G(r t
′

− r s
′

+ bs
′

)(1 − G(r t − r s + bs))
if r t

′

− r s
′

+ bs
′

< r t − r s + bs

.

Standard results yield:

m ε′

m(Ω)−1εm ∼
a χ2(K ),

where ∼
a denotes convergence in distribution and K is the size

of the vector ε.15

13 The sample (b̂j)j≤m of bids can then be obtained via m repetitions of the
ollowing procedure. Draw a random subject from the population, endow this
ubject with a random reward and ask her for her optimal bid.
14 For simplicity, we assume that all values r t − r s +bs are distinct. Obviously,
his does not affect the core of our argument.
15 See, for example, Sepanski (1994).
12
Of course, in practice we do not observe the matrix Ω . We can
pproximate it using the finite sample analogue Ω̂m, where:

Ω̂m)(t ′,s′),(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gm(r t − r s + bs)

(
1 − Gm(r t

′

− r s
′

+ bs
′

)
)

if r t − r s + bs ≤ r t
′

− r s
′

+ bs
′

Gm(r t
′

− r s
′

+ bs
′

)
(
1 − Gm(r t − r s + bs)

)
if r t

′

− r s
′

+ bs
′

< r t − r s + bs

.

ecause Ω̂m is a consistent estimate of Ω , it follows that:

ε′(Ω̂m)−1ε ∼
a χ2(K ).

e can use this last result as a basis for an asymptotic test of
ationalizability. Specifically, consider the null hypothesis:

0 :

{
there is a utility function U such that the data set

D = (r t , bt )Tt=1 is (P,U)-rationalizable.

}
.

o empirically check this hypothesis, we can solve the following
inimization problem:

P.I : Zm = inf
em ,̂Gt,s∈[0,1],U t>0

me′

m(Ω̂m)−1em,

s.t. ∀t, s : et,s = Gm(r t − r s + bs) − Ĝt,s, (15)

Γ (Ĝt,t )U t
≥ Γ (Ĝt,s)U s, (16)

Γ (Ĝt,s) < Γ (Ĝt ′,s′ ) for all r t − r s + bs < r t
′

− r s
′

+ bs
′

.

(17)

f the hypothesis H0 holds true, the above problem has a feasible
olution with:

ˆ t,s = G(r t − r s + bs).

s such, we must have:

m ≤ m ε′

m(Ω̂m)−1εm.

et us denote by cα the (1 − α) × 100th percentile of the χ2(K )
istribution. Then, if H0 holds, we obtain:

lim
→∞

Pr[Zm > cα] ≤ lim
m→∞

Pr
[
m ε′

m(Ω̂m)−1εm > cα
]

= α,

hich implies that we can construct an asymptotic test of H0
y solving problem OP.I for the given data set and subsequently
erify whether its solution value exceeds cα .
Two concluding remarks are in order. First, our empirical

ypothesis test is conservative in nature when compared to the
heoretical test (based on Theorem 1) that uses the true distri-
utions P and G. Second, implementing our hypothesis test in
rinciple requires solving the minimization problem OP.I, which
ay be computationally difficult due to the constraints (16)–(17)

hat are nonlinear. For some particular instances of the function
, however, it may be possible to convert this problem into
problem that can be solved by standard algorithms. See, for
xample, the working paper version of this paper (Cherchye et al.
2019)) for an application of this procedure to a first price auction
etting.
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