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Abstract
Stability is a key ingredient of protein fitness, and its modifi-
cation through targeted mutations has applications in various
fields, such as protein engineering, drug design, and delete-
rious variant interpretation. Many studies have been devoted
over the past decades to build new, more effective methods for
predicting the impact of mutations on protein stability based on
the latest developments in artificial intelligence. We discuss
their features, algorithms, computational efficiency, and accu-
racy estimated on an independent test set. We focus on a
critical analysis of their limitations, the recurrent biases
toward the training set, their generalizability, and interpret-
ability. We found that the accuracy of the predictors has
stagnated at around 1 kcal/mol for over 15 years. We conclude
by discussing the challenges that need to be addressed to
reach improved performance.
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Introduction
The accurate prediction of mutational effects on pro-

tein stability is of utmost importance in many fields
ranging from biotechnology to medicine. In rational
protein engineering applications, for example, the
www.sciencedirect.com
targeted redesign of proteins makes it possible to
optimize the biotechnological and biopharmaceutical
processes in which they are involved [1,2]. Stability
prediction also plays a key role in interpreting the
impact of human genetic variants and may provide a

better understanding of how these variants lead to
disease conditions [3,4]. Note that stability is all the
more important as it is the dominant factor in protein
fitness [5].

For these reasons, many studies have been devoted over
the last decade to the development of computational
tools that aim to predict in a fast and reliable way the
change in protein stability upon mutations [6e28].
These methods use information about protein
sequence, structure, and evolution, which are combined

through a variety of machine learning methods ranging
from simple linear regression to more complex models.
For more information, we refer to excellent recent re-
views [29,30] and comparative tests [31e33].

It has to be noted that, although recent advances in the
field of artificial intelligence (AI) and more specifically
in deep learning have considerably improved feature
selection and combination in multiple bioinformatics
problems such as three-dimensional (3D) protein
structure prediction [34,35,66,67], so far, they are not

often used in predicting the effects of mutations on
protein stability. Indeed, most current predictors use
shallow algorithms, probably because the amount of
experimental training data is too limited to allow for
deeper algorithms.

In this review, we concisely present the protein sta-
bility prediction methods that are available and
functional, and test their performance on an indepen-
dent set of experimentally characterized point muta-
tions, which are not part of any of the training sets. Our

main goal, here, is to take a critical look at the pre-
dictors by investigating their algorithms, limitations,
and biases, as schematically shown in Figure 1. We also
discuss the main challenges the field will have to face in
the years to come to strengthen the role of computa-
tional approaches in protein design and personal-
ized medicine.
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Brief overview and benchmark of the
current computational models
We collected existing computational methods predicting
the change in protein thermodynamic stability upon
point mutations defined by the change in folding free
energy DDG. We restricted ourselves to predictors that
are commonly used and currently available through a
working web server or downloadable code. These
methods, listed in Table 1, are almost all based on the 3D
protein structure and use a series of features, such as the
relative solvent accessible surface area of the mutated
residue, the change in folding free energy (DDW) esti-
mated by various types of energy functions, the change

in volume of the mutated residue (DVol), and the change
in residue hydrophobicity (DHyd). They also often use
evolutionary information either extracted from multiple
sequence alignments of the query protein or from sub-
stitution matrices, such as BLOSUM62 [36]. Several
machine learning algorithms were used to combine the
different features. These are most often algorithms that
have become classical, such as artificial neural networks,
support vector machines or random forests. Only a few
very recent predictors use novel deep learning ap-
proaches [18,20,27]. At the other extreme, a predictor

published this year uses a very simple model consisting
of a linear combination of only three features [37].

It is a difficult task to rigorously evaluate the accuracy of
predictors [32,33]. Indeed, performances depend on the
training and test sets, as well as on the evaluation
metric. Here, we have chosen to benchmark the
collected methods by estimating their accuracy in terms
of the root mean square error (RMSE) and the Pearson
correlation coefficient (r) between experimental and
predicted values for 830 mutations inserted in the 56-

residue b1 extracellular domain of streptococcal pro-
tein G (PDB code 1PGA) [38]. It has to be underlined
that this set of mutations is not included in the training
sets of the methods tested and is thus a truly inde-
pendent set.
Figure 1

Schematic representation of the challenges and limitations that protein
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The RMSE of the predictors varies between 0.9 and
1.4 kcal/mol, and the correlation coefficients vary be-
tween 0.3 and 0.7, as shown in Table 1. We observe a low
correlation between these two metrics; the method with
the worst RMSE (1.42 kcal/mol) has the best r (0.66).
This follows from the fact that Pearson correlation co-
efficients are essentially driven by the points that are far
from the mean, in contrast to RMSE, which takes all

points equally into account.

Note that these results must be interpreted with care.
Indeed, both RMSE and r values depend on the distri-
bution of experimental DDGs and, more specifically, on
its variance [39]. The ranking of the prediction methods
and their scores thus crucially depend on the metric
used and the test DDG distribution.

In addition, we also tested two other widely known
stability predictors, FoldX [14] and Rosetta [15], which

are physics-based rather than AI-based and use full-
atom representations rather than simplified descriptions
of protein structures. These two methods reach
reasonable correlations with r values of 0.36 and 0.44,
respectively, slightly lower than AI-based methods
(CrD = 0.48). In contrast, their RMSE values are above
3 kcal/mol, which is much worse than the average RMSE
of 1.02 kcal/mol of AI-based methods. The lesser per-
formance of these two methods has already been
observed [31] and could be due to the use of detailed
atomic representation, which makes them sensitive to

resolution defects.

Evolution of predictor performance over
time
We have analyzed the average performance of all the
methods according to their year of development. We
clearly see in Figure 2a that the average accuracy has not
improved in the last 15 years, but basically remains
constant, despite all efforts and the improved perfor-
mances claimed by the authors of the newly published
stability prediction methods have to address in the coming years.

www.sciencedirect.com
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Table 1

List of artificial intelligence-based DDG predictors studied.

Method
(Year)

3D Feature type RMSE (kcal/mol)
r

Run time
(min)

AI method Ref.

MUpro
(2006)

Neighbors 1.17
r = 0.26

< 1 Support vector
regression

[16]

I-Mutant 3.0
(2007)

✓ Residue type, RSA,
Residue environment

0.92
r = 0.38

~ 400 Support vector
regression

[10]

PoPMuSiC v2.1
(2011)

✓ Statistical potentials,
DVol, RSA

0.95
r = 0.56

< 1 Artificial neural
network

[6]

SDM
(2011)

✓ RSA, Environment-specific
Substitution frequencies

0.95
r = 0.46

~ 250 Linear
combination

[43]

mCSM
(2014)

✓ Graph-based signatures,
Atomic distance patterns

1.10
r = 0.44

~ 250 Regression via
Gaussian process

[11]

MAESTRO
(2014)

✓ Statistical potentials,
PSize, ASA, SS, DHyd, DIP

0.91
r = 0.58

< 1 Linear regression,
ANN, SVM

[19]

AUTOMUTE 2.0
(2014)

✓ 4-Body statistical potential
ASA, depth, SS, Vol

1.16
r = 0.30

~ 1 Random forest,
Tree regression

[21]

INPS-3D
(2016)

✓ Contact potential, RSA, EvolInfo,
Bl62, DHyd, DMW, MutI

0.96
r = 0.52

~4 Support vector
regression

[8]

STRUM
(2016)

✓ Energy functions, homology modeling,
DHyd, DVol, DIP, DMW, EvolInfo

1.05
r = 0.49

~200 Gradient boosting
regression

[9]

PoPMuSiCsym

(2018)
✓ Statistical potentials

DVol, RSA
0.98

r = 0.54
< 1 Artificial neural

network
[44]

DDGun3D
(2019)

✓ BL62, DHyd, RSA,
Statistical potentials

0.94
r = 0.57

~ 30 Non-linear
regression

[26]

DeepDDG
(2019)

✓ ASA, SS, H-bonds, EvolInfo,
Residue distances/orientations

1.42
r = 0.66

~ 5 Shared residue-pair
deep neural network

[20]

ThermoNet
(2020)

✓ Aromatic, positive, negative,
Hyd, H-bond donor/acceptor

1.01
r = 0.29

~ 100 3D convolutional
neural network

[18]

PremPS
(2020)

✓ EvolInfo, RSA, DHyd, Hyd,
Aromatic, charged, Leu

0.95
r = 0.57

~4 Random
forest

[17]

SimBa
(2021)

✓ RSA, DVol
DHyd

0.99
r = 0.53

< 1 Linear
regression

[37]

SAAFEC-SEQ
(2021)

EvolInfo, neighbors, DVol,
DHyd, DFlex, PSize, H-bond

0.91
r = 0.49

~ 30 Gradient boosting
decision tree

[28]

Mean C RMSE D=
C r D =
s(Exp)=

1.02 ± 0.13
0.48 ± 0.12
0.98

The RMSE (in kcal/mol) and linear correlation coefficient r are computed for the experimentally characterized mutations in the b1-extracellular domain of
streptococcal protein G [38]; s(Exp) is the standard deviation of the experimental DDG distribution (in kcal/mol). Abbreviations used: AI, artificial
intelligence; ANN, artificial neural network; ASA, solvent accessible surface area; RSA, relative ASA; Depth, localization on surface, undersurface, or
core; PSize, Protein size; Vol, residue volume; DVol, change in residue volume upon mutation; DMW, change in molecular weight; DFlex, change in
flexibility; Hyd, residue hydrophobicity; DHyd, change in Hyd; SS, secondary structure; MutI, mutability index of the native residue [45]; BL62,
BLOSUM62 matrix [36]; Neighbors, type of residues in the neighborhood along the sequence; EvolInfo, evolutionary information from protein families;
SVM, supporting vector machine.
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methods. This is strikingly different from the situation in
the field of protein structure prediction, for example,
which has experienced an impressive improvement

during the same period [40]. Whether the accuracy limit
on predicted DDGs is due to the relatively low number of
mutations in the training set, more fundamental reasons,
or uncontrolled biases in the predictors is currently a
topic of debate [39,41,29]. We discuss this issue more
extensively in the next sections. It must again be noted
that the RMSE threshold and the ranking of the perfor-
mance of the method can be somewhat different on other
test mutations [31e33]. But the lower limit on RMSE is
basically always around 1 kcal/mol.
www.sciencedirect.com
It is instructive to look at the correlations between the
predictions of the different methods, shown in Figure
2b. They are all reasonably good, with an average cor-

relation coefficient of 0.5. This reflects that the
different methods use roughly the same information but
that there is room for improvement and further boosting
the prediction accuracy by selecting informative fea-
tures that have not yet been combined.

Another important characteristic of a prediction method
is its speed. Indeed, as many current projects require
investigating protein stability properties at a large, pro-
teome, scale [42], the predictors have to be able to run
Current Opinion in Structural Biology 2022, 72:161–168
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Figure 2

Evaluation of the DDG prediction methods listed in Table 1 on the basis of the experimentally characterized mutations in the b1-extracellular domain of
streptococcal protein G [38]. (a) Average root mean square error (RMSE) of the predictors as a function of their development date. (b) Correlation co-
efficients r between the DDGs predicted by the different methods.
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fast enough to scan the proteome in a reasonable time.
All the methods tested are relatively fast, with some
extremely fast such as PoPMuSiC, SimBa, MAESTRO,

and AUTOMUTE (see Table 1).
Limitations and prediction biases
The generalization property in machine learning is the
ability of the algorithm to correctly predict unseen data.

The protein stability predictors, such as all machine
learning-based methods, tend, however, to be biased
toward thedata setsonwhich theyare trained.Themajority
of the methods analyzed here [7,11,43,44,8,19,37,17,28]
were trained on thedata set knownas S2648 [7]. It contains
2648 mutations with experimental DDG values collected
from the literature and the ProThermdatabase [46], which
were thoroughly checked and manually curated. Other
predictors use subsets of S2648 or a slightly larger data set
known as Q3421 [9].

Multiple hidden biases such as feature and hyper-
parameter selection biases that are difficult to control
can affect the generalization properties of the pre-
dictors trained on these data sets. These problems are
even more severe when complex algorithms are used
or when the training sets are small and unbalanced. In
the following, we quantitatively analyze a series of
biases that often affect stability predictors and are
primarily caused by various imbalances in the training
Current Opinion in Structural Biology 2022, 72:161–168
data sets and discuss the strategies used to limit
their impact.

Cross-validation biases
Often, prediction performance is evaluated using a k-
fold cross-validation procedure. This is not always suf-
ficient to estimate the accuracy of the methods and
assessments on test sets are usually also provided, even
though their sizes are usually small. Going back to cross-
validation, there are different ways to perform the
random split of the data set into k folds, at the level of
the mutation, position, protein, and even protein clus-
ter. Random splitting at the mutation level introduces
some distortions because the knowledge of the effect of
a mutation at a given position makes the prediction of

another substitution at the same position easier. Split-
ting at the position level can also introduce some biases.
To have more reliable estimations, cross-validation at
the protein level has to be performed or even at the
protein cluster level where all proteins that are similar to
the target protein one wants to predict are removed
from the training set.

It should be noted that the extent to which the type of
data set splitting affects prediction performances is
highly dependent on the prediction model. For example,

the drop in performance of predictors that do not use
complex machine learning, such as PoPMuSiC and
www.sciencedirect.com
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SimBa, is almost negligible when passing from residue
level to protein level [47]. In contrast, a substantial
decrease in accuracy is undergone, for example, by
STRUM, with correlation coefficients and RMSE be-
tween experimental and predicted DDGs that pass from
(0.77, 0.94 kcal/mol) for 5-fold cross validation at mu-
tation level to (0.64, 1.14 kcal/mol) at position level and
(0.54, 1.25 kcal/mol) at protein level [9]. A similar drop

in performance of about 20e30% when strict cross
validation procedures are used has also been observed
in [17].
Bias toward destabilizing mutations
At fixed environmental conditions, the change in folding

free energy upon mutation is antisymmetric by defini-
tion. More precisely, if protein B is a mutant of protein
A, we have that DDG (A / B) = � DDG (B / A).
However, most of the stability predictors violate this
relation, as shown by a series of studies [48,44,49,41].
This is mainly because training data sets are dominated
by destabilizing mutations, which, in turn, results from
the vast majority of mutations in a given protein being
destabilizing. For example, the ratio between the
numbers of destabilizing and stabilizing mutations in
the data sets S2648 [7] and Q3421 [9], which are widely

used as training sets, are equal to 3.7 and 3.2, respec-
tively, with a mean CDDGD of about 1 kcal/mol in
both sets.

Some of the recent predictionmethods got rid of this bias
and satisfy the antisymmetry property by construction
[17,27,8]. To check the extent to which it is the case, a
balanced data set such as Ssym [44] must be considered,
which contains, for each mutation A/ B, the backward
mutation B/ A and thus an even number of stabilizing
and destabilizing mutations. The deviation from anti-

symmetry d = DDG (A / B) þ DDG (B / A) is an
important measure for the evaluation of the lack of bias.

Protein and mutation biases
Another type of bias arises from the fact that training
data sets do not provide a good sampling of the types of
mutations and proteins, as recently discussed in [41].
Often, mutation data sets are dominated by a few pro-
teins which contain most of the entries and are therefore
likely to bias the prediction toward them. For example,
the 10 proteins from S2648 and Q3421 that contain the
largest number of mutations represent 50% and 40% of

the entries, respectively. The types of substitutions are
also not well sampled; among the 20 � 19 = 380
possible amino acid substitutions, 78 and 38 are not
sampled at all in S2648 and Q3421, respectively. The
top 10 types are substitutions into alanine, which ac-
count for 25% of the entries in the data sets.

The way in which different methods are affected by this
bias is extensively evaluated in [41] by introducing an
www.sciencedirect.com
unbiased test set with respect to mutation types. Most
of the prediction methods are shown to be biased. They
are able to correctly predict the effect of certain types of
mutations, while they completely miss others.
Current and future challenges
Deep learning approaches
Deep learning algorithms, such as convolutional neural
networks, have provided spectacular improvements in a
series of bioinformatics problems, such as protein
structure prediction [40]. Such methods are starting to
be used in the prediction of the impact of mutations on
protein stability [18,20,50,27], but most of the current

methods still use standard shallow machine learning
approaches. This is due to the fact that deep learning
methods require large amounts of input data for training
[51], while standard training data sets such as S2648 [6]
or Q3421 [9] only include a few thousand entries and are
thus too small for these approaches. New mutation data
have recently been collected [52e54], which will
certainly increase the size of the training data sets after
proper curation. However, these sets will probably
remain too limited, with the consequence that deep
learning is unlikely to outperform standard machine

learning approaches without overfitting issues in the
near future, even though unsupervised pre-training can
help prevent these issues to some extent [51,27].

Prediction model complexity and interpretability
The application of a wide variety of AI algorithms with
different complexity to the prediction of protein sta-
bility is very informative. These algorithms range from

deep learning approaches such as 3D convolutional
neural networks [18] to extremely simple models such
as linear regression [37]. Complex algorithms can cap-
ture the intricate relationships between input features
and training data better than simpler models, but they
are in general more prone to overfitting. Moreover, most
of them act as black boxes, which makes their results
more difficult to interpret. Note that both over- and
underfitting are serious problems for generalization.
Therefore, the development of a prediction model must
be a trade-off between these two extremes. We would

like to point out that the best current methods are not
always those that use the most complex AI techniques
(see Table 1).

The interpretability of the model at biophysical and
biochemical levels can be another characteristic to be
considered in the model design. For example, it has been
shown in [37] that just three simple features, that is, the
relative solvent accessible surface area of the mutated
residues, and the change in residue volume and in hy-
drophobicity upon mutations, combined using a linear

model, can achieve performances similar to state-of-the-
art prediction methods that use up to hundred features
and complex machine learning. Novel techniques for
Current Opinion in Structural Biology 2022, 72:161–168
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interpreting model predictions [55e57], such as SHAP
(SHapley Additive exPlanations) [55], have recently
been introduced in the AI field. Their application to
protein stability predictors could help to better identify
the relative importance of features and lead to more
accurate prediction models retaining interpret-
ability properties.

Are we stuck with the limit of 1 kcal/mol RMSE ?
Surprisingly enough, all the methods developed over the
past fifteen years have an accuracy evaluated in cross

validation by an RMSE slightly greater than 1 kcal/mol,
while most validations on independent test sets are even
worse with RMSEs between 1.5 and 2.5 kcal/mol
[32,33]. On the test protein we used here, the situation
is somewhat more favorable, with a lower value of
0.9 kcal/mol (Table 1); this is, however, related to the
particularly low standard deviation of the experimental
DDG distribution in this case (1 kcal/mol). The idea that
1 kcal/mol represents a hard limit for the prediction
accuracy has already been suggested in [41].

Several reasons can explain this limit. First, all the pre-
dictors are based on a series of approximations, such as
the use of the wild type structure but not the mutant
structure. They, thus, neglect the possible structural
modifications caused by the mutations to the folded
structure and, moreover, also overlook perturbations to
the unfolded state [41]. In addition, entropy contribu-
tions to the folding free energy are largely overlooked,
even though the methods based on statistical mean
force potentials do not neglect them completely.
Another reason comes from the intrinsic errors on

experimental DDG values. In particular, both thermal
and chemical measurements of DDG generally involve
approximations [58]. In addition, all the DDG values in
the data sets have not been determined under the same
conditions, and the dependence of DDG on, for
example, temperature or pH can be important.

Whether the value of 1 kcal/mol is a true limit that
cannot be circumvented, as suggested through a theo-
retical estimation of the experimental DDG distribution
and noise [39,59], is an open question. Our observation

that the performance of the methods does not increase
with time (Figure 2a) supports this view. This question
must be further investigated to understand if and how
the current state-of-the-art predictors can be signifi-
cantly improved.

To address these issues, a systematic blinded experi-
ment fully dedicated to the evaluation of protein sta-
bility changes upon mutations would be of great benefit,
in the same way that CASP (predictioncenter.org) and
CAPRI (capri-docking.org) are for structure predictions

and CAGI (genomeinterpretation.org), for genome
variant interpretation.
Current Opinion in Structural Biology 2022, 72:161–168
Metagenomic data
Metagenomic sequence data are a valuable source of
sequence information that started to be used in protein
structure prediction since a seminal article [60] and is
now also extensively used in enzyme discovery [61]. For
example, most methods used such information as input
in the last round of the CASP experiment (CASP14)
[60]. Indeed, the enrichment of sequence data from
metagenomic databases, even though they are often
noisy, can improve protein sequence alignments and
thus provide a more accurate assessment of how evolu-

tion shapes families of homologous proteins.

Metagenomic sequence data are not yet used in the
field of protein stability prediction, even not by the
methods that have sequence conservation among their
features. This could be a way to boost the predic-
tion accuracy.

Multiple mutations versus single-point mutations
Another challenge is to predict the effect of multiple
mutations. It is of particular interest in protein design
because multiple mutations can clearly lead to a higher
degree of protein stabilization or destabilization [62,63].

Yet, the vast majority of computational methods predict
only the effect of single-site substitutions [29]. Point
mutations can of course be combined to model multiple
mutations but this leads to neglect any direct or indirect
epistatic interactions between mutated residues
[64,65]. The scarcity of experimental data on multiple
mutations in a variety of proteins, as well as the degree
of complexity compared to point mutations are the
current limitations that prevent obtaining satisfactory
prediction accuracy.
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