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Abstract—One of the main challenges of radar-based localiza-
tion applications in indoor environments is the presence of strong
multipath. When the radar bandwidth is large enough, multipath
components can be resolved in range but they result in unwanted
ghost targets. We propose a novel multipath mitigation approach
that exploits the fact that multipaths are highly dependent on
the scene geometry. The multipath mitigation approach discards
the ghost targets based on the fused information of multiple
radars located at different positions in the scene. For such
radar fusion, the output of the radar signal processing chain
is translated into the world coordinate system that is common
for all the radars. We propose a radar alignment approach to
estimate the translation and rotation parameters from radar to
world coordinate system and vice versa. Our multipath mitigation
method is combined with an unscented Kalman filter to improve
the localization accuracy. We demonstrate the effectiveness of
our complete approach with a real experiment using two radars
to detect and track a target in a room with severe multipath.

I. Introduction
Localization of targets in an indoor environment is of great

importance for several applications like surveillance, activity
classification, localization of patients in hospitals, crowd mon-
itoring, etc [1]–[3]. Radar sensors measure the kinematics of a
target in a direct way, hence they are more accurate than visual
sensors like camera. In addition, radars can work in difficult
circumstances like bad illumination [4]. Accurate localization
and further tracking of targets can be challenging in an indoor
environment with all its constraints in area, obstructions, field
of view, etc. Additionally, the main drawback when using
radars in indoor environments is the presence of strong multi-
path. It is not possible to distinguish easily the Line-of-Sight
(LOS) ray from the multipaths when the radar bandwidth is not
large enough. Fortunately, affordable millimeter-wave radars
(usually Frequency Modulated Continuous Wave (FMCW)
radars) with several GHz of bandwidth are now available,
enabling good range resolution.

Multiple approaches to mitigate the effect of multipaths
have been studied in the literature. Such approaches require
high complexity operations to remove/mitigate multipaths and
most of them are focused on the Range-Doppler-Map (RDM)
or the baseband signal. In [5], a signal model of first and
second order multipaths is used. The signal model parameters
are estimated through a minimization procedure dependent
on the samples of the RDM. Then, the multipath effect
is removed by means of image deconvolution. In [6], the

multipath effect is removed only in the range domain by
extracting features from the received energy spectral density.
The features are fed to a Neural Network to correct the beat
frequency. MIMO Space-Time Adaptive Processing (STAP)
techniques are considered in [7]. Finally, Back Projection (BP)
algorithm is used in [8], [9] that exploit the fact that multipaths
are highly dependent on the scene geometry.

In this paper, we propose a multipath mitigation scheme
that exploits the same principle as in [8], [9] . Multiple
radars located at different positions receive multipaths coming
from different perspectives; therefore, they are independent
from one radar to another. The multipath mitigation approach
eliminates the detected ghost targets based on the combined
information of two radars after the Radar Signal Processing
(RSP). Such combination is done in a common coordinate
system, and therefore the radar alignment is very important.
Hence, our second contribution is a radar alignment approach
that estimate the translation and rotation parameters from
radar to world coordinate system and vice versa. The last
contribution of this paper is an experimental validation of
the proposed multipath mitigation approach using two FMCW
radars to detect and track targets in a room with severe
multipath.

The paper is organized as follows: In section II, we quickly
describe the system model, the radar signal processing chain,
and the effect of multipath. In sections III and IV, we propose
a multipath mitigation approach based on multiple radars and
a way to perform a spatial alignment on a common plane of
detections provided by both radars. Finally, a proof of concept
illustrating the use of the proposed mitigation approach is
described in section V.

II. System Model
We consider a FMCW radar transmitting a frame of M-

consecutive chirps. The transmitted chirps interact with the
objects in the scene. As a result, the received signal is a
modified version of the transmitted signal in phase and ampli-
tude. The received signal is then mixed with a replica of the
transmitted signal. After discarding terms that are negligibly
small in indoor scenarios like the residual phase noise from the
transmitter, the beat signal after I/Q sampling can be expressed
for the nth Analog to Digital Converter (ADC) sample and
mth chirp as in (1) as done in [10].
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y[n,m] = ARe
j
(
2πfbnTf+

4π
λ R(nTf+mTs)

)
(1)

The parameters in (1) are defined as:
• AR: Received signal power
• Tf : Fast-time-axis ADC sampling interval
• Ts: Slow-time-axis sampling interval
• fb = 2BR(t)

cTc
: Beat frequency

• B: Chirp bandwidth
• R(t): Target-receiver distance at time t
• Tc: Chirp duration
• λ: Wavelength
Furthermore, in a system with multiple receivers located in

a straight line (uniform linear antenna array), an additional
phase shift occurs due to the antenna spacing, and thus the
beat signal can be expressed as in (2) where k is the antenna
index, d is the antenna spacing and θ is the angle of arrival.

y[n,m, k] = ARe
j
(
2πfbnTf+

4π
λ R(nTf+mTs)+

2π
λ kd sin(θ)

)
(2)

If multiple targets are present within the radar field-of-view,
then the beat signal is the sum of L detected targets located
at (Rl, θl), as shown in (3).

y[n,m, k] =

L∑
l=1

ARle
j
(
2πfblnTf+

4π
λ Rl(nTf+mTs)+

2π
λ kd sin(θl)

)
(3)

A. Radar Signal Processing

The characteristics of detected targets are computed using
the RSP shown as a block diagram in Fig. 1. The first step
produces the RDM. As can be seen in (1), the fast and
slow-time-axes are disentangled, therefore the RDM can be
computed by performing first a N-point Fast Fourier Transform
(FFT) across the fast-time-axis and then, a M-point FFT across
the slow-time-axis. Hence, the RDM is a 2-D map in which the
vertical and horizontal axes represent the range and Doppler
axes respectively. The RDM must be computed separately for
the K receive antennas. The presence of a target is given by
the amplitude of the cell for a particular range-Doppler index
values.

The second step in the RSP is the Constant False Alarm
Rate (CFAR) processing [11]. It selects a cloud of cells where
the presence of a target is considered true. The cell selection is
based on a comparison between the amplitude of the cell under
test and a threshold computed based on the amplitudes of the
neighboring cells and a probability of false alarm. The cloud
of detected cells are clustered using the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
[12]. Then, each cluster is represented by the cell of maximum
amplitude inside the cluster. The set of coordinates of such
representative cells is denoted as X . The CFAR and DBSCAN
processing are performed on one RDM for detection purposes.

According to (2), it is possible to extract the angle-of-arrival
information from the RDM’s of several antennas. For that

Fig. 1: FMCW Radar signal processing chain

reason, we used a MUSIC algorithm to compute the azimuth
angle for each element in X , using as input the samples of all
the RDM’s for the same range-Doppler index.

Finally, a set of detected targets is obtained as a result of the
RSP. Each detected target is characterized by range r, Doppler
velocity v, and angle of arrival θ as shown in (4).

Z = {zi = [ri, vi, θi]
T |zi ∈ X} (4)

B. Multipaths and Ghost Targets

Due to the nature of indoor environments, multiple replicas
of the transmitted signal arrive at the receiver. Such signal
replicas are denoted as multipaths and they are caused by
reflections of the transmitted signal on the interactive objects
present in the scene such as walls, people, etc.

Multipaths are highly dependent on the scene geometry and
they become weaker as the number of reflections increases.
Additionally, they can be classified according to the order of
interaction. Only the first and second order multipaths are
considered in this work (See Fig. 2). The first order multi-
paths are interactions in the following sequence: transmitter-
target-wall-receiver or transmitter-wall-target-receiver, mean-
while the second order multipaths are interactions in the
following sequence: transmitter-wall-target-wall-receiver.

From the receiver perspective, multipaths are observed as
incorrectly-assumed valid targets. Therefore, among the L de-
tected targets from the received signal in (3), only a subset of
them are valid real targets and the rest are copies of the real
targets. These false detected targets are due to multipaths and
are denoted as ghost targets. Hence, the set of detected targets
Z is the aggregation of the subset of real targets Zd and the
subset of ghost targets Zg , as expressed in (5).

Z = Zd ∪ Zg (5)

III. Multipath Mitigation
As explained in section II-B, multipaths are translated into

multiple detections of the same target at a different range,

(a) (b) (c)

Fig. 2: Multipath scenarios: a) LOS Ray, b) First order
multipath, c) Second order multipath



Fig. 3: Multipath mitigation approach: • real target, ◦ ghost
target

Doppler velocity, and/or angle of arrival. In this paper, only
the differences in range and angle are exploited.

Notice that each detected target, expressed as in (4), is
measured and expressed in the radar coordinates system.
Furthermore, each radar is associated to a different coordinate
system with the origin located on the radar itself. Therefore,
a common coordinate system of arbitrary origin is chosen
denoted as world coordinate system.

The principle of the proposed mitigation approach considers
a multi-radar sensor set-up. It is shown in Fig. 3 and it is
stated as follows: “Two FMCW radars are located at different
positions and both radars illuminate the same scene where D
valid targets are present. Expressing the detected targets of
both radars in the world coordinate system reveals that the
subset of real targets of both radars overlap with each other,
whereas the subset of ghost targets do not”.

It is important to clearly identify the detecting device and
the reference coordinate system for a detected target, therefore
the following notation is used: the left superscript represents
the coordinate system, the right superscript represents the
detecting device. Therefore, the position vector Pi of the i - th
target can be expressed in multiple ways:

• APApi = [Ari,
Aθi]

T : Position vector of target i in Polar
coordinates of radar A detected by radar A.

• BPBcj = [Brj ,
Bθj ]

T : Position vector of target j in
Cartesian coordinates of radar B detected by radar B.

• wPAci = [wxi,
wyi]

T : Position vector of target i in world
Cartesian coordinates detected by radar A.

Notice that wxi and wyi are the Cartesian coordinates in
the world coordinate system, and Axi,

Ayi are the Cartesian
coordinates in the coordinate system of radar A. The conver-
sion between Polar and Cartesian coordinates, for target-i, is
denoted as the function Υ as defined in (6). Notice that, for
simplicity, θ is the complementary angle of the azimuth angle,
i.e., θ is measured related to the radar’s y-axis.

Pci = Υ(Ppi) = [xi, yi]
T where :

{
xi = ri sin θi
yi = ri cos θi

(6)

Therefore, the conversion of the coordinates for target-i
from the radar Polar coordinate system to the world Cartesian
coordinate system is shown in (7), where RA(φA) and TA
are the rotation and translation matrices for the radar A
defined in (8). Even though (7) and (8) are defined for radar A,
they are analogous for radar B.

wPAci = RA(φA)Υ(APApi) + TA (7)

RA(φA) =

[
cosφA sinφA
sinφA cosφA

]
TA = [TxA , TyA ]T (8)

The estimation of the Rotation and Translation matrices is
addressed in section IV. Hence, they are assumed to be known
in this section. Once all the detected targets are expressed in
the same coordinate system, only the targets that satisfy the
inequality (9) are kept as real targets, i.e., only targets detected
by radar A that are close to targets detected by radar B are
selected.

(wPAci − wPBcj )W(wPAci − wPBcj )
T < dmax (9)

dmax = PmaxWPTmax (10)

In inequality (9), dmax is the maximum weighted euclidean
distance between the detected target i and detected target
j. W is a 2x2 diagonal weighting matrix with diagonal
elements defined as diag(W) = [wx, wy]T , and wx and wy
are the weights on the x and y components respectively. In
equation (10) Pmax is the vector of maximum difference per
component in the world coordinate system.

IV. Radar Alignment
The process of estimating the rotation and translation pa-

rameters [φ, Tx, Ty]T is known as radar alignment. This pro-
cess is important for the following reason: to use the mitigation
approach proposed in section III, the rotation and translation
matrices need to be known beforehand. The simplest approach
to estimate the parameters of the rotation and translation
matrices is to measure them manually. Nevertheless, a small
error in the rotation angle φ will cause a significant error of
the Cartesian components for large ranges. Conversely, a small
error in the translation parameters Tx, Ty will cause the same
small error in the whole plane.

Therefore, a similar radar alignment approach used in [3]
is used in this paper, and it is described as follows:

1) The translation parameters Tx, Ty are measured manu-
ally, i.e. Tm = [Tmx , T

m
y ]T , the right superindex denotes

the manual procedure.
2) The rotation angle φ is obtained by minimizing the

sum of squared alignment errors. Such minimization
is shown in (11) for radar A, where Q is the number
of alignment targets, wPmci is the Cartesian position
vector of alignment target i measured manually in the
world coordinate system and wPAci is the Cartesian



position vector of alignment target i detected by radar A
and expressed into the world coordinate system. The
term wPAci is computed as in (7) keeping constant the
translation matrix, i.e., TA = TmA

φ̂A = arg min
φA

Q∑
i

||wPmci − wPAci ||2 (11)

Even though the extraction of the positions of the detected
targets by the radars seems to be straightforward, it is not.
Due to the static clutter (floor, walls, etc), a static alignment
target cannot be detected easily by the radar. Therefore, a non-
static alignment target that moves in a well known trajectory
is used. One of the points of such trajectory is chosen as
the alignment target point wPci needed in (11). A pendulum
was chosen as non-static target in the experiments, and the
alignment target point is the lowest point of the trajectory,
also known as equilibrium point or maximum velocity point.

V. Tracking
To show the applicability of the multipath mitigation ap-

proach in current real applications, an indoor-people-tracking
algorithm has been implemented. Since the movement of peo-
ple is quite irregular and so, highly non-linear, the Unscented
Kalman Filter (UKF) has been chosen as described in the
following sections.

A. Tracking Architecture

The centralized algorithm takes as inputs the detections
from both radars after multipath mitigation. Hence a unique
track is generated by the UKF as shown in Fig. 4. Furthermore,
the UKF receives less erroneous data since the ghost targets
are removed before the tracking stage.

B. UKF

To implement the UKF, it is enough to define the process
and measurement functions as in [13]. The tracking is done
in the world coordinate system where the target position and
velocity are tracked in Cartesian coordinates. It is assumed
that the axes are independent from each other, and therefore,
a Newtonian model can be applied per axis as in [3]. Conse-
quently the state vector x is defined as in (12), where x and
y are the target position and ẋ and ẏ are the target velocity in
the world Cartesian coordinates.

x = [x, ẋ, y, ẏ]T (12)

Fig. 4: Radar tracking architecture

1) Process Function: The model chosen in this paper is the
constant velocity model detailed in (13), where x[k] is the state
vector at iteration k, Fx and Fy are the transition matrices for
the x and y axes respectively. Fx and Fy are defined in (14)
where ∆T is the time between iteration k and k− 1, i.e., the
time between consecutive RDM’s.

x[k] =

[
Fx 0
0 Fy

]
x[k − 1] (13)

Fx = Fy =

[
1 ∆T
0 1

]
(14)

2) Measurement Function: It projects the state space into
the measurement space which is defined by the nature of the
sensor. In this paper, the measurement space is defined by
the radar detections, i.e., by z = [r, v, θ]T . The measurement
function is easily defined as shown in the set of equations (15)
considering the simplest case scenario i.e., the state and the
measurement spaces have the same origin, and only one radar
is used. The first two equations of (15) are nothing else than
a Cartesian to Polar coordinates conversion. Notice that, for
convenience, θ is defined as the complementary of the azimuth
angle. The third equation is a projection of the velocity over
the radial axis where 〈·, ·〉 represents the inner product.

z = h(x) =


r =

√
x2 + y2

θ = arctan(xy )

v = 1
r 〈 [ẋ, ẏ]T , [x, y]T 〉

(15)

When a second radar is added to the measurement function,
not only the dimensionality increases as shown in (16), but also
a change of coordinate system must be considered.

z = [zTA, z
T
B ]T = [rA, vA, θA, rB , vB , θB ]T (16)

Since the tracking is done in the world coordinate system,
the state space should be first translated to the radar coordinate
system. Such translation is given by (17), where the state
vector is divided into a position vector xp = [x, y]T and a
velocity vector xv = [ẋ, ẏ]T . Notice that RA(φA) and TA are
the translation matrices computed in section IV, and that the
left superscript represents the reference coordinate system.{

Axp = RA(φA)−1(wxp − TA)
Axv = RA(φA)−1(wxv)

(17)

Finally, equation (15) can be used after translation to the
radar coordinate system as shown in (18).

zA = h(Ax) ; zB = h(Bx) (18)

VI. Experiments and Results
We conducted indoor measurements, by placing two FMCW

radars on tripods as illustrated in Fig. 5a. We collected a
dataset for pedestrians and the recorded dataset has been
used to evaluate the different modules of radars alignment
and multipath mitigation. Two TI FMCW radars operating



(a)

(b) (c)

Fig. 5: Radar alignment: a) Experimental setup, b) Before,
c) After.

Radar Tm
x [m] Tm

y [m] φm[◦] φ̂[◦] Er(φm)[m2] Er(φ̂)[m2]
A 0.56 0.30 -30 -34.33 0.31 0.0041
B 3.03 0.25 25 27.09 0.13 0.0018

TABLE I: Alignment parameters

in MIMO mode are used in our experiments. Both radars
were configured with non-overlapping frequencies to enable
simultaneous operation. Radar A works from 77 GHz to
79 GHz and radar B works from 79 GHz to 81 GHz. This
also means that the range resolution is 7.5 cm. Considering the
fact that the both radars operate at different acquisition rates,
we time-stamped the measurements and updated the system
with measurements having very close time-stamps. This allows
obtaining a uniform synchronization.

A. Radar Alignment

In our experiment, four alignment target points were con-
sidered at the following locations given in meters: wPmc1 =
[0.68, 3.26]T , wPmc2 = [3.60, 3.34]T , wPmc3 = [1.93, 1.25]T ,
and wPmc4 = [1.88, 4.96]T . A pendulum was oscillating at
each of these locations, and only the maximum-velocity point
or point of equilibrium was taken as explained in section IV.
The height of the radars in the 2D case is irrelevant, nonethe-
less it is worth to mention that the radars are placed at the same
height. In Fig. 5b and 5c, The manually measured and radar
detected alignment points are plotted in the world coordinate
system. It is observed that for small errors in azimuth, the
alignment error is larger for large ranges. Finally, Fig. 5c
shows the result after the radar alignment with the method
proposed in this paper. The manually measured and final
estimated alignment parameters of both radars are displayed
in Table I, where the right super-index m is for manually
measured parameters. Er(φm) is the squared alignment error
using the manually measured azimuth angle, and Er(φ̂) is the
squared alignment error using the estimated azimuth angle.
Notice that once the radar alignment procedure is completed,
the alignment targets are removed from the scene.

Fig. 6: Radar measurements before multipath mitigation

Fig. 7: Radar measurements after multipath mitigation

B. Multipath Mitigation

One person was moving from one alignment target position
to another in the following sequence: Pc1, Pc2, Pc3, Pc4. The
radar measurements are displayed in Fig. 6 where the ghost
targets caused by multipaths are easily observed. For instance,
in the range plot of the same figure, the real targets are the
red and blue lower curves, meanwhile the ghost targets appear
at a longer range with less intensity.

The proposed multipath mitigation approach stated in
section III was used with the following parameters: since
axes x and y are independent and equally relevant for the
tracking, matrix (W) has the following diagonal elements
diag(W) = [1, 1]T . The average shoulder width of a person
is 40 cm, and thus it was taken as the maximum distance
per component, i.e. Pmax = [0.4, 0.4]T . As a result the ghost
targets where removed as can be seen clearly in Fig. 7.

The Multipath mitigation approach proposed in section III
is a simple and easy to implement algorithm. Nonetheless, it
is not perfect and needs an additional improvement step, as
discussed hereafter:



Fig. 8: Indoor people tracking result before multipath mitiga-
tion

• Remaining ghost targets: In some cases, ghost targets
and real targets are close from each other, e.g. when
the person walks next to the side walls. Therefore, the
mitigation approach fails to discriminate real targets from
ghost (Fig. 7).

• Occlusion limitation: The mitigation approach works as
long as both radars detect the real target. In the case
where only one of them detects it, the valid real detection
is discarded as if it were a ghost target detection.

C. Tracking

If no multipath mitigation is performed, ghost targets can
lead to generation of erroneous tracks. Such tracks can be
eliminated by the track management; however, the required
time to eliminate the track can be long. An example of
erroneous track is shown in Fig. 8, where the tracking is
performed in the world coordinate system.

Thanks to the mitigation approach proposed in Section III,
the ghost targets are removed before the tracking. Hence, it
not only reduces the computational load of the UKF but also
prevents the creation of erroneous tracks as shown in Fig. 9.

VII. Conclusion
An efficient and easy to implement multipath mitigation

approach was proposed. This approach exploits an arrange-
ment of multiple radars located at different locations, taking
advantage of the different measurements of the same scene.
We developed a complete suite of algorithms to calibrate the
radars in the scene and to fuse the information provided by
the radars to get multipath-free detections. Furthermore, we
demonstrated the feasibility and efficacy of the method in a
people tracking application in a multipath environment.
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