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Abstract—Iterative localization is currently seen as an
attractive solution to localize a transmitter in a cellular network.
It has been shown that, by iterating between a range estimation
step and a multi-lateration step, it is possible to refine the
estimation in the first step, where only local information is
used at iteration one. The iterative approach gets close to the
performance of direct localization; nevertheless, it does not seem
to converge to the direct localization performance for medium
and low signal-to-noise-ratio values, due to the fact that it still
suffers from loss of information due to projections and data
representation. In this work, we propose to approximate the
range log-likelihood at the base station with a Dirichlet kernel
and to perform all the processing in a common xy-domain so that
projections are no longer needed. We numerically show that our
approach brings significant performance gains as compared to
the time-of-arrival based iterative position estimation algorithm,
getting really close to the performance of direct localization.

Index Terms—Localization, iterative processing

INTRODUCTION

Cellular networks have evolved towards increasingly
accurate geo-location services. In 4G and 5G, localization has
become an important functionality. What is more, a positioning
reference signal (PRS) is included in the protocol to support
device localization based on the estimation of the signal
time-of-arrival (ToA) [1]. The direct position estimation (DPE)
algorithm estimates the transmitter position using a grid search
comparing the signals received by each base station (BS) to the
signals that would theoretically be received if the transmitter
was at that position [2], [3]. Therefore, all the baseband signals
are communicated to a processing node known as fusion
centre (FC), which demands high communication bandwidth
between the BSs and the FC. To reduce the amount of
communicated data a two-step localization algorithm can be
used. It consists in a range estimation step at the BS followed
by a multi-lateration step at the FC [4]. Some information is
lost in the first step, since only local information is available at

the BS. Moreover, [5] analytically demonstrates that the direct
estimation approach DPE always outperforms the two-step
approach.

For such a reason, the iterative position estimation (IPE)
algorithm has been proposed in [6] that iterates over the two
steps with the goal of refining the estimation in the first step.
In the multi-lateration step, the IPE computes a different range
prior distribution for each BS, based on the range information
computed in the first step at the BS and sent to the FC.
Such range prior is then fed back to the BS to refine the
range estimation in the first step. Moreover, the IPE algorithm
introduces an iterative framework that has been extended and
studied more in depth in [7] and [8] where the effect of
multipath channels and time-misalignment between transmitter
and receiver was studied over the algorithm. Finally, it has
been also shown that the iterative framework proposed by
the IPE algorithm could be used in different applications
and scenarios such as angle of arrival (AOA)-based iterative
localization [9] and localization on WLAN-like systems [10].

Nonetheless, the IPE algorithm does not seem to converge
to the DPE performance due to the fact that it still suffers from
two losses of information. First, since the BSs are located at
different positions in the scene, the IPE algorithm projects the
combined information of all other BSs from the xy-domain
to the range domain of the particular BS to compute the
prior information; hence, losing some information due to
such projection. Second, it communicates the information
between steps using the first two order moments of the range
probabilistic density function (PDF), i.e., range mean and
range variance. As explained in this paper, such parameters
are not the best suited for the iterative framework specially
for medium and low signal-to-noise-ratio (SNR) values, since
the range distribution becomes a multi-modal distribution with
only one of the modes/peaks giving information about the
transmitter position and the remaining modes/peaks caused by



noise. Therefore the selection of the correct mode can be done
by taking advantage of the additional information sent by the
other BSs from the second iteration on-wards.

Contributions: in this work two improvements of the IPE
algorithm are proposed, so that its speed of convergence and
mean square error (MSE) are enhanced. First, we propose to
keep all the processing in the xy-domain to avoid any loss
of information due to the projections onto the range domain.
Second, we propose to use a Dirichlet kernel function to better
approximate the range log-likelihood at the BS, using the
iterative scheme to select the correct mode/peak of the range
distribution based on the information shared by the other BSs.

The rest of the paper is organized as follows. Section II
first introduces the orthogonal frequency-division multiplexing
(OFDM) signal model. Section III secondly describes the
proposed iterative positioning algorithm. After detailing
mathematically all the approximations and assumptions a short
summary of the new updated iterative framework is given.
Section IV finally assesses numerically the performance in
terms of MSE of the iterative algorithm and discusses the
reasons for the performance improvement.

SYSTEM MODEL

We consider a cellular network operating with the
OFDM modulation. We assume a static transmitter that is
simultaneously connected to K time-synchronized BSs in its
neighbourhood. Besides, we consider that the communication
takes place in a communication bandwidth B. The OFDM
modulation splits the communication bandwidth in orthogonal
sub-carriers that are allocated to data or pilot symbols. A cyclic
prefix (CP) is added to each block of transmitted symbols to
maintain the orthogonality between the sub-carriers even in
the presence of channel time dispersion.

We consider that P equispaced pilot sub-carriers are
allocated along the communication bandwidth, i.e., the
frequency difference between two consecutive pilot
sub-carriers is constant and referred to as ∆f measured
in Hz. Only the pilot sub-carriers are considered in this
work, but the study can be extended to a bigger group of
considered sub-carriers as long as all of them are equispaced.
For simplicity, the channel is considered to be a single
propagation delay τk between the transmitter position (x, y)
and BS-k. Additionally, the propagation delay is related to the
distance δk between transmitter and BS-k by the expression:
τk = δk/c, where c is the speed of light. If τk is shorter
than the CP duration (which is a reasonable assumption for
typical system parameters), the signal received on the pilot p
at BS-k is

rkp = spe
−j

2πp∆f
c δk + wkp, (1)

where rk,p and wk,p are the received signal and corrupting
noise respectively, for pilot sub-carrier-p at BS-k, and sp is
the symbol at pilot sub-carrier-p. The noise wkp is assumed
to be independent zero mean circularly symmetric complex
Gaussian of variance σ2

w and equal in all BSs.

Finally, similarly to the system model adopted in [6], a
vector model is constructed at each BS-k by stacking all the
received pilot symbols as

rk = s(δk) + wk, (2)

with
rk = [rk,1...rk,P ]T , (3)

wk = [wk,1...wk,P ]T , (4)

s(δk) = [s1e
−j1ϕδk ...sP e

−jPϕδk ]T , (5)

where the constant ϕ is used to simplify the notation and it is
defined as ϕ =

2π∆f

c .

ITERATIVE POSITIONING ALGORITHM

The DPE algorithm estimates the transmitter position based
on all the received signals; thus, all the received baseband
signals collected by the BSs must be communicated and
gathered in a FC. The posterior distribution of the transmitter
position is given by (6), where α is a normalization factor
ensuring that the integral of the posterior distribution in the
scene is 1, and p(x, y) is the prior PDF of the transmitter
position

p(x, y|r1, ...rK) =
1

α

K∏
k=1

pk(rk|x, y)p(x, y). (6)

We assume that the transmitter can arbitrarily be located
on a finite rectangle in the scene; hence, x and y are two
mutually independent uniformly distributed random variables.
Therefore, the prior PDF is expressed as p(x, y) = p(x)p(y),
where p(x) is uniformly distributed for x ∈ [xmin, xmax] and
0 elsewhere; and p(y) is also uniformly distributed for y ∈
[ymin, ymax] and 0 elsewhere. Further, taking the logarithm
of (6) yields the log-posterior distribution written as

P(x, y) =

K∑
k=1

Lk(rk|x, y) + b, (7)

where P(x, y) denotes the log-posterior distribution of the
transmitter position, i.e., P(x, y) = log

(
p(x, y|r1, ...rK)

)
.

The first term on the right-hand side of (7) is nothing else
than the sum of the log-likelihoods of the received signal
at each BS, i.e., Lk(rk|x, y) = log (pk(rk|x, y)); and b is
a constant term considering the normalisation factor and the
uniformly distributed prior.

In order not to communicate the complete received signal
rk to the FC or to any other node, we look for a function
that depends on just a few parameters, to represent the
log-likelihood as accurately as possible. Based on (2), the
log-likelihood of the received signal at BS-k can be expressed
as in (8), where δk is the range between transmitter and BS-k;
hence, s(δk) is defined for all values in the xy-domain search
grid, i.e., δk(x, y).



Lk(rk|x, y) = − 1

σ2
w

(rk − s(δk))H(rk − s(δk))−P log(πσ2
w)

(8)
Further, exactly equal to the approach proposed in [6],

the expression can be simplified as shown in (9), where
all the constant terms, such as the received power rHk rk
and transmitted power s(δk)Hs(δk), have been gathered in
a common coefficient bk. Lastly, <(.) denotes the real part
operator.

Lk(rk|x, y) =
2

σ2
w

<(rHk s(δk)) + bk (9)

Notice that the received signal at BS-k is a single vector
defined as rk = s(δ̃k) + wk, where δ̃k is the actual range
to be estimated between transmitter and BS-k. Therefore, we
can rewrite (9) as

Lk(rk|x, y) =
2

σ2
w

<(s(δ̃k)Hs(δk)) +
2

σ2
w

<(wH
k s(δk)) + bk,

(10)
By inspecting (10), we can make two remarks. First, we
consider that the noise term wk is uncorrelated with the
transmitted signal s(δk); hence, at high SNR values, the
second term in the right hand side of (10) will be smaller than
the first one. While for medium and low SNR values the two
terms can be comparable, as a result the range PDF becomes
a multi-modal distribution but only one of the modes/peaks
gives information about the transmitter position. Therefore, if
the correct range mode δ̃k is chosen, the other modes caused
by noise can be omitted. Finally, we propose to omit the noise
term, even though it could lead to the selection of a wrong
range mode, and further we propose to use the iterative scheme
to correct the selection of the correct range mode δ̃k.

Second, the first term can be rewritten as a sum of cosines
by developing the real part operator. The two remarks are
applied to (10) and the new expression is

Lk(rk|x, y) ≈ 2

σ2
w

P∑
p=1

|sp|2 cos (pϕ(δk − δ̃k)) + bk. (11)

Note that the Dirichlet kernel is also defined as a sum of
cosines as shown in (12), where P is the order of the Dirichlet
kernel and the coefficient 1/(1 + 2P ) ensures a maximum
amplitude to be equal to one.

DP (u) ,
1

1 + 2P

(
1 + 2

P∑
p=1

cos (pu)
)

(12)

Therefore, we can rewrite (11) in terms of a Dirichlet kernel,
as shown in (13), where we considered (as it is common)
equipowered pilots, i.e., |sp| = 1. Notice that the constant term
−1/σ2

w is added as a result of replacing the sum of cosines
by the Dirichlet kernel in (11).

Lk(rk|x, y) ≈ 1 + 2P

σ2
w

DP
(
ϕ(δk(x, y)− δ̃k)

)
+bk−

1

σ2
w

(13)

Finally, we approximate the log-likelihood Lk(rk|x, y) by
a function Mk(x, y), i.e.

Lk(rk|x, y) =Mk(x, y) + Ek(x, y), (14)

where Ek(x, y) is the error for such approximation. Based on
(13) we define Mk(x, y) as a Dirichlet kernel of order P
centered at range δ̃k and amplitude ak as

Mk(x, y) = akDp
(
ϕ(δk(x, y)− δ̃k)

)
, (15)

The function Mk is completely defined with the two
parameters δ̃k and ak. Notice that we choose to define the
amplitude ak as

ak = Lk(rk|x, y)|x=x̃k,y=ỹk , (16)

where x̃k, ỹk is the location of the maximum peak of the
approximated log-posterior defined in (17); and not directly
equal to (1 + 2P )/σ2

w, to take into account the small effect of
the discarded term in (10) over the magnitude of the peak of
the Dirichlet kernel. Lastly, all the constant terms in (13) can
be included/handled in the normalization of the distribution,
and thus they are not taken into account in (15). The main
reason for approximating the range log-likelihood defined in
(8) with (14) is to simplify the exchange of information among
the BSs.

Distributing the FC to the nodes; therefore, assuming a
fully connected network, each BS-k builds an approximation
of the log-posterior denoted as P̂k as shown in (17), where
the communicated parameters by all other BSs are used to
approximate each of their log-likelihoods. Notice that the
constant term is omitted since it can be handled in the
normalization.

P̂k(x, y) = Lk(rk|x, y) +

K∑
j 6=k

Mj(x, y) (17)

As done in the original IPE algorithm proposed in [6], the
estimated transmitter position (x̂, ŷ) can be computed in the
minimum mean squared error (MMSE) sense by computing
the expectation of the posterior distribution as shown in (18).
Notice that the expectation is regarding the approximated
posterior distribution p̂k = 1

α exp(P̂k), where the denominator
α is nothing else than a normalization factor ensuring that the
integral of p̂k over the scene is 1.

x̂ = E[x|r1, ...rK ] ŷ = E[y|r1, ...rK ] (18)

In summary, the iterative procedure proposed in [6] can be
updated and outlined in the two following steps.

A. Range Estimation / Refinement:

This step takes place at each BS-k, and it has the goal
of estimate the parameters of the function Mk(x, y), such
that the approximated range log-likelihood is communicated
to other BSs with only two parameters. It estimates the
parameters ak, δ̃k based on the knowledge of the approximated



posterior P̂k(x, y) defined in (17) of the previous iteration.
The parameter δ̃k is computed as the range between the BS-k
position and the maximum point of the approximated posterior,
i.e.

x̃k, ỹk = argmax
x,y

(P̂k(x, y)), (19)

δ̃k =
√

(x̃k − xbsk)2 + (ỹk − ybsk)2, (20)

where (xbsk , ybsk ) is the position of BS-k. At iteration 1, all
Mj 6=k are zero, and only the local information is used in (19),
i.e., P̂k(x, y) = Lk(rk|x, y). What is more, at first iteration
there are multiple tuples (x̃k, ỹk) that are the maximum points
of the xy-domain log-posterior at BS-k, but all of them are at
the same range δ̃k.

Notice that (x̃k, ỹk) are different from the estimated
transmitter position (x̂, ŷ), since (x̃k, ỹk) are related to the
selected mode of the multi-modal range PDF, while (x̂, ŷ) are
computed in (18).

B. Range Prior Communication / Reconstruction

In this step, BS k sends the parameters ak, δ̃k computed
in the previous step; and receives the parameters aj , δ̃j
from all other BSs. Then it reconstructs each range
log-likelihood approximationMj(x, y) using (15) and updates
the approximated posterior P̂k(x, y) using (17) to finally go
back to Estimation/Refinement step. Notice that theMj(x, y)
is defined and reconstructed in the xy-domain. What is more,
the log-likelihood Lk = (rk|x, y) is also in the same domain,
hence there is no need of any projections since all the terms
in (17) are compatible.

Notice that in the first iteration, the parameters ak, δ̃k
are computed based on the local information only; hence,
at medium and low SNR the selected δ̃k might not be the
right mode of the multi-modal range distribution. Nevertheless,
thanks to the information shared by the other BS, the selection
of the right mode δ̃k can be corrected at the second iteration.

NUMERICAL RESULTS

The performance of the proposed algorithm is investigated
by assessing the MSE using Monte-Carlo simulations. The
considered scene consists on K = 4 BSs located on
the corners of a 100m-sided square. The transmitter lies
at arbitrary positions inside the rectangular scene and
communicates with the BSs over a bandwidth of 20 MHz. At
each BS, the processing is done using a single OFDM symbol
containing P = 64 equispaced pilots with ∆f = 312.5kHz.
The MSE of the estimator is averaged over 1000 transmitter
positions, channel and noise realizations. The SNR is defined
as SNR =

∑
p |sp|2/(Pσ2

w).
All the BSs have similar MSE curves when using the

proposed algorithm; hence, only the MSE of BS one is shown
in Figure 1. Further, the MSE is compared to the centralized
DPE algorithm used as a reference, as in [6]. It can be seen
that the MSE of the proposed algorithm gets very close to the
one of the centralized DPE algorithm.

We also show in Figure 2 the MSE of the IPE algorithm
proposed in [6], where the FC has been divided and distributed
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Fig. 1: MSE of transmitter position for the proposed algorithm
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Fig. 2: MSE of transmitter position for the IPE algorithm
proposed in [6]

to the BSs, so that each BS can compute the transmitter
position. It can be clearly seen that: 1) our algorithm converges
faster than the IPE (about two iterations) and 2) our algorithm
closely converges to the DPE performance while the IPE does
not.

As mentioned before, such improvement comes from the
chosen model used to communicate the range log-likelihood
combined with the iterative scheme to select the correct
mode of the multi-modal range distribution at medium and
low SNR values. To better show such advantage, a single
realization is analyzed for different SNR values, where the
transmitter was located at a range δ̃ = 81.1m from the BS.
Figures 3a and 4a show the range log-likelihood defined in (9)
omitting the constant term bk. Notice that, for the sake of
visual comparison, the peak value of (9) was added as a
constant to the range log-likelihood that uses the range mean
and variance, such that all range log-likelihoods have the same
maximum peak.



0 50 100 150

Range [m]

-10

-5

0

5

10

15

20
L

k
 -

 b
k

(1/ 2
w

)Real(rHs)

Dirichlet

Mean & Var

(a) Log-likelihood as defined in (9) omitting the constant term bk

0 50 100 150

Range [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
d
f

(1/ 2
w

)Real(rHs)

Dirichlet

Mean & Var

(b) Normalized range PDF

Fig. 3: Range log-likelihood and range distribution
representation for SNR = -5 dB
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Fig. 4: Range log-likelihood and range distribution
representation for SNR = -10 dB

Similarly, Figures 3b and 4b show the range PDF for
different SNR values (-5 and -10 dB respectively). On the
one hand, for high SNR, both models represent the main lobe
of the range log-likelihood well enough, so the normalized
range distributions are practically overlapped (See Figure 3b).
On the other hand, for lower SNR, using the range mean and
variance as in [6] takes into account the side lobes generated
by noise; thus, it distorts the shape of the multi-modal range
PDF degrading the performance (See Figure 4b).

When the main lobe is comparable to the noise lobes, it
is possible to select a wrong peak at iteration one, but such
error is corrected in the following iterations by adding the
information gathered by all other BS.

CONCLUSION

In this work, we proposed an improvement to the IPE
algorithm presented in [6] to reduce the loss of information
due to the processing with local information. The localization
is done by means of an iterative process, in which each BS
shares just a few parameters between all other BSs, hence
the transmitter position is available at each BS at the end of
each iteration. Numerical results show that the performance of
the final algorithm gets close to the performance of a direct
localization.
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