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Abstract—This paper presents a crowd monitoring system
based on the passive detection of probe requests. The system
meets strict privacy requirements and is suited to monitoring
events or buildings with a least a few hundreds of attendees. We
present our counting process and an associated mathematical
model. From this model, we derive a concentration inequality
that highlights the accuracy of our crowd count estimator. Then,
we describe our system. We present and discuss our sensor
hardware, our computing system architecture, and an efficient
implementation of our counting algorithm—as well as its space
and time complexity. We also show how our system ensures the
privacy of people in the monitored area. Finally, we validate
our system using nine weeks of data from a public library
endowed with a camera-based counting system, which generates
counts against which we compare those of our counting system.
This comparison empirically quantifies the accuracy of our
counting system, thereby showing it to be suitable for monitoring
public areas. Similarly, the concentration inequality provides a
theoretical validation of the system.
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I. INTRODUCTION

CROWD counting systems count crowd numbers in spe-
cific geographical areas and provide these numbers to

personnel responsible for their analysis. What follows reviews
some use cases of crowd counting systems.

In the particular case of public events, event managers
have expressed their interest in leveraging modern counting
technologies to i) monitor events in real time [1, Sec. 7], ii)
predict crowd counts in the future [1, Sec. 5.1.1], and iii)
perform post-analyses, to analyze the causes of overcrowding
after its occurrence. In particular, computing real-time crowd
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densities in strategic areas allows security managers to decide
whether an event has reached its maximum capacity [1],
[2]. Crowd count time series can be fed into forecasting
algorithms to predict overcrowding [3], [4]—which allows
security personnel to execute countermeasures anticipatedly.

Crowd management in large events is not the only endeavor
that benefits from crowd counting systems. For example, we
installed the crowd counting system this paper presents on
one of the main commercial streets of Brussels, namely Rue
Neuve (Nieuwestraat in Dutch), to estimate attendance during
winter sales. It has been reinstalled in the same street to track
attendance as Covid-19 lockdown measures get incrementally
relaxed. Finally, we also installed our monitoring system in
the largest library of our university: the Humanities library.

To summarize, the use cases of crowd counting systems
include the monitoring of i) public events (to prevent over-
crowding) ii) commercial streets (to estimate attendance) iii)
public places wherein some degree of social distancing should
be attained and iv) public buildings (e.g., university libraries).

A. Related work

1) Mainstream approaches to crowd counting: This section
reviews the main approaches to crowd counting. Because the
measurement principles underlying some of these approaches
make their field of applicability different from that of the
system of this manuscript, no extensive details about them
are provided. The main recent works contending with this
manuscript are more thoroughly commented in the next sec-
tion. The reviewed approaches below are mainly inspired from
[5, Sec. 3] and [6, Sec. 1.1]. Another excellent review of recent
works in crowd monitoring making use of WiFi is [7, Sec. 2
and Table 1]. Other more general reviews are [8], [6, Sec. 1.1]
and [9, Sec. 2 and Table 1].

A common counting approach is cameras, traditional or
thermal [10]. Cameras typically suffer from privacy concerns;
from a technical point of view, they suffer from line-of-sight
obstructions, non-ideal meteorological conditions, low illumi-
nation and high contrast. Thermal cameras are less sensitive
to all these issues except for line-of-sight obstructions.

Sensor networks are another option. These represent a
vast body of approaches. For example, CO2 sensors are an
option but are sensitive to air renewal. Acoustic sensors are
another option and can be combined with the former one [11].
Another approach, which shall be more extensively developed
in the following subsection, is a network of sensors measuring
their pairwise communication channels and computing signal
attenuation to infer crowd density.

https://ieeexplore.ieee.org/document/9691257
https://ieeexplore.ieee.org/document/9691257
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Aggregated mobile phone data, which provide time series
of numbers of people per geographical cell [12] are another
interesting avenue of information for estimating crowd counts.
However, the granularity of these data is sometimes too coarse,
making them unsuitable to estimate the attendance of, e.g., a
university library.

A modern and newer solution is based on WiFi monitoring
systems. Such systems wait for individuals’ smartphones to
connect to a network or install an application (cooperative
approach), or they monitor over-the-air beacon signals sent by
these smartphones (non-cooperative approach). This solution
is newer than most of the previous ones because, two decades
ago, no one had Wi-Fi or Bluetooth-enabled electronic devices.
The subsection that follows discusses this solution extensively.

Another bleeding-edge approach is the monitoring of
the electromagnetic spectrum [13]. This solution is non-
cooperative and consists in monitoring frequency bands used
by telco operators and their customers to make calls, send text
messages and have mobile internet access. We do not have the
legal expertise to determine to what extent licensed frequency
bands can be monitored in each European country, however.

Finally, another emerging technique is the use of modern
radars to count people or estimate their flow [14]. These radars
are non-cooperative systems and can even reuse existing over-
the-air transmissions for radar processing (they are then called
passive radars). The feasibility of this last solution for dense
crowds remains an open topic of research, however.

2) The most relevant former works on crowd counting:
Several works from other teams have tackled the problem
of crowd counting and share similarities with the present
manuscript. When possible, this section presents accuracy
figures for surveyed papers. Table I summarizes the main
features of the counting systems that are the main contenders
to that presented in this paper. Section VII compares them
with the system this paper proposes.

The authors of [15]–[17] deployed tens of nodes across
rooms to be monitored and make them communicate with one
another. The received powers for all communication links are
a proxy for the number of attendees, because human bodies
attenuate WiFi signals (the higher the attenuation, the higher
the number of people). This solution is fully non-cooperative,
is compatible with low numbers of attendees (<100 people),
is not affected by MAC address randomization and can be
calibrated easily when the monitored room is empty. However,
nodes must be at a low height (< 2 meters) for human bodies
to attenuate signals. Moreover, tens of nodes are necessary to
monitor a single room (they installed approximately one node
per 15 to 40 square meters based on [15, Fig. 2, 13, and 24]).
Besides, their counting errors are higher than ours: Results in
[15, Fig. 11] indicate a mean relative error ranging from 14.6
% to 22.1 % depending on the training method.

The work [6] proposes a crowd monitoring solution for user
localization in large buildings. They rely on clients connected
to access points they control. Therefore, their approach is
partially cooperative. As a result, they depend on users will-
ingly connecting to their access points but do not have to deal
with MAC randomization issues. Their method estimates the
positions of individuals in a x-y plane for each floor and crowd

counting is a byproduct. While the authors have arguments to
claim that their method should not be sensitive to high crowd
densities [6, Sec. 5.1], their experiments cover environments
hosting less than 100 people. Their accuracy figures range
from 90 to 96 % depending on the area monitored. A similar
work is [18].

An older and seminal work is [19] in which the authors
emulate APs for common service set identifiers (SSIDs) and
SSIDs present in the information elements (IEs) of detected
PRs. They also send request to send (RTS) packet injection.
[19] thus describes an active scanning system.

Another work is [20], whose described system collects
data essentially identical to these of the present work (entries
that consist of a timestamp, a MAC address and a received
signal strength indicator). Their focus is on density monitoring
and trajectory tracking. They do not refer to MAC address
randomization, probably because their measurements were
obtained a few years ago (between 2014 and 2016 according to
[20, Sec. IV-C]), a time at which MAC address randomization
was not a significant issue. Therefore, it is not clear that the
accuracy of their monitoring system would be as high with
today’s smartphone anonymization. We reverse engineered
[20, Fig. 13] to estimate the average relative counting error
and obtained a figure of 14.5 %.

The authors of [21] and [7] presented a crowd monitoring
based on WiFi probe requests. Their work filters out all locally
administered MAC addresses [7, Sec. 4], relies on SHA-256
hashes without peppers [7, Sec. 3.3] for data anonymiza-
tion purposes, thereby making their anonymization procedure
somewhat vulnerable to brute force attacks [22]–[24].

B. Contributions

The contributions of this paper focus on a WiFi-based
crowd monitoring system that detects probe requests (PRs)
over the air. PRs are WiFi control packets emitted by user
equipements (UEs) (e.g., smartphones) that request nearby
access points (APs) to make their existence known. The rate
of PR transmission is a proxy for the number of smartphones
with WiFi enabled in the covered area—which, up to an
extrapolation factor, approximates the number of attendees.
Thus, the extrapolation factor converts the measured rate of
PRs into a number of attendees.

The contributions are the following:
1) A novel WiFi-based sensing process enforcing strict pri-

vacy standards. This includes a time and space/memory
complexity analysis and a review of privacy features.

2) A mathematical model of the sensing process and an
associated concentration inequality for the proposed
unbiased crowd count estimator; it shows that it concen-
trates around its expectation and that the concentration
increases with number of attendees.

3) An experimental validation of the sensing process using
real-world measurements from a library endowed with
a third-party camera-based counting system.

This paper relies on indoor crowd counts for experimental
validation but it is merely a matter of convenience for vali-
dation by cameras: third-party camera-based counting systems
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TABLE I
COMPARISON OF CROWD COUNTING SYSTEMS MOST SIMILAR TO THAT OF

THE PRESENT MANUSCRIPT — “COOPERATION" REFERS TO THE
INDIVIDUALS HAVING TO CONNECT TO A SPECIFIC ACCESS POINT OR

INSTALL AN APPLICATION FOR THE COUNTING SYSTEM TO WORK
PROPERLY — ACCURACY REFERS TO THE MEAN RELATIVE DEVIATION OF

THE COUNTS FROM THE GROUND TRUTH (IT IS A MEAN ABSOLUTE
PERCENTAGE ERROR)

Work(s) Principle & Validation Cooperation Accuracy
[15]–

[17]
(2020)

Nodes communicating and
estimating attenuation as a
proxy for human presence.
Validated for hundreds of at-
tendees and more.

Not required 14–22 %

[6]
(2019)

Number of people connected
to access points are mea-
sured and methods from
geostatistics applied to es-
timate their position. Vali-
dated for < 100 individuals.

Required 4–10 %

[20]
(2018)

Density monitoring and tra-
jectory tracking based on
Wi-Fi probe requests (data
set is from 2014-2016). Val-
idated on hundreds of indi-
viduals.

Not required ≃ 14 %

[7],
[21]
(2019–
2020)

Density monitoring and tra-
jectory tracking based on
Wi-Fi probe requests (with
randomized MAC addresses
filtered out). Validated but
without ground truths.

Not required Not avail-
able

[13]
(2021)

Crowd counting based on
the analysis of the electro-
magnetic spectrum on cellu-
lar bands.

Not required 5–15 %

can be easily installed in such controlled environments, with
little need for a vast network of cameras and time-consuming
calibration procedures. Installing camera systems in complex
environments with numerous line-of-sight obstructions and
overlapping fields of vision would be more involved. Thereby,
choosing an indoor environment with controlled entrances and
exits eases the experimental validation of the counting system
by providing an environment for which cameras are efficient
and reliable. Nevertheless, it does not mean that the counting
system cannot be installed outdoors.

C. Relation to the former works of the authors

Our previous works on forecasting [3], [4]—whose main
purpose was to demonstrate the interest of crowd monitoring
systems for forecasting—gave a minimal overview of the
counting system this manuscript presents. This manuscript
details the system architecture and compares counts of the
WiFi system against those from a third-party camera-based
system for an indoor environment. It also presents mathemat-
ical results on the accuracy of the estimator and the effects
of the anonymization procedure. Finally, it presents a detailed
complexity analysis of the counting algorithm.

This manuscript presents new experimental results in an
indoor environment. It is worth pointing out that our previous
work [3] already provided some evidence of the accuracy of
the counting system in an outdoor environment. It compared
the counts generated by the counting system of this paper

against those of a telecommunication operator and showed
both series of counts to match.

D. Outline

The paper is organized as follows. Section II describes the
sensing process. In particular, it presents the mathematical
model for the sensing process and the associated concentration
inequality. Section III presents the digital architecture of
the system, including a complexity analysis of the counting
algorithm. Section IV discusses how the present system is
compatible with modern European privacy laws. Section V
then validates the accuracy of the counting system using real-
world measurements acquired at the Humanities library of
our university using a third-party camera counting system.
Section VI briefly describes practical matters when designing
and deploying WiFi monitoring systems. Finally, Section VII
compares the present system with its contenders listed in
Table I and Section VIII is the conclusion.

II. THE SENSING PROCESS

A. The principle

The estimated crowd counts of the counting system are
derived from PRs [25, Chapter 4]. WiFi devices periodically
transmit PRs to request nearby access points (APs) to send
back probe responses. This is an active scanning mechanism
to discover APs. WiFi devices transmit PRs even when not
linked to a WiFi network. Thus, measuring the rate of PRB
transmission in an area gives an idea of the number of WiFi-
enabled devices in the covered area, a number which can be
extrapolated to a crowd count. See Figure 1 for an illustration
of the process. Several almost identical PRs are sent in a row,
within a time frame lasting less than 10 ms [26, Sec. 2.1]; in
this paper, those sets of PRs are referred to as probe request
bursts (PRBs).

S
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Detection range of
Sensor 1

Detection range of
Sensor 2

Individual 1 Individual 2 Individual 3

Fig. 1. Two sensors sniff probe request bursts of three individuals carrying
smartphones. Dashed ellipses illustrate the detection range of the associated
sensor.

B. Probe requests

PRs contain a source address (SA) field of six bytes [25,
Fig. 4-52], which is usually a randomized MAC address. Re-
cent operating systems implement this randomization process
to make smartphone tracking difficult [26]–[28].
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Some older works from 2016-2017 show that anonymized
PRs may be “deanonymized" (see, e.g., [28], [29]). In the
future, however, deanonymization methods may not work if
operating systems strengthen anonymization. For example,
[28, Section 4] partially relies on sequence numbers [25,
Figure 4-52], which are numbers associated with each PR that
are incremented in between consecutive PRs. So far, it appears
that such sequence numbers are not randomly reset from one
PRB to the next one—a fact that the authors [25] leverage
to track smartphones. Should sequence numbers be randomly
reset in the future, the strategy may not work anymore. More
generally, MAC address randomization is likely to get tougher
in the future [15, Sec. 1]; as pointed out in [7, Sec. 4], “the
IEEE 802.11 working group has created a Topic Interest Group
(TIG) on Randomized and Changing MAC addresses (RCM)".

As discussed later on, MAC address randomization does not
affect the counting system, which makes it future-proof, in op-
position to other WiFi monitoring systems either deanonymiz-
ing PRBs or identifying non-randomized PRBs (see [7]).

C. A mathematical sensing model

This section derives the statistical estimator that estimates
counts from a measured rate of PRB transmissions. It also
presents a statistical analysis of the estimator, deriving its
distribution and a concentration inequality for it. In what
follows, P and E denote the probability of an event and the
mathematical expectation, respectively.

First of all, let nppl denote the number of individuals in
an area. This is the quantity the estimator should estimate as
accurately as possible. In what follows, index i (1 ≤ i ≤ nppl)
indexes a particular individual.

These individuals may or may not have a device with fea-
tures enabled. Moreover, smartphones send PRBs at different
rates depending on the operating system version. These two ef-
fects are accounted for by random variables Pi (1 ≤ i ≤ nppl)
defined for each individual: Pi is the average number of PRBs
with different source addresses that the WiFi device carried by
individual i sends over the air per time frame of tf seconds.
The time frame duration tf is assumed to be sufficiently short
to ensure that no WiFi device sends PRBs with different source
addresses in that time frame; as a result, Pi ≤ 1. If individual
i carries no WiFi-enabled device or has disabled WiFi on a
capable device, then Pi = 0. The Pi are independently and
identically distributed (iid.). We denote the mean of Pi by p,
that is E[Pi] =: p.

There are K < ∞ possible values {αk}1≤k≤K for Pi

because there exists a finite number operating system configu-
rations; the probability rk := P[pi = αk] obeys

∑K
k=1 rk = 1,

with αk = 0 corresponding to individual i having no WiFi-
enabled device.

The number of distinct PRBs within a time frame of
tf seconds is X :=

∑nppl

i=1 Xi, with Xi being equal to 1
if individual i’s WiFi device sends a PRB. The equalities
P[Xi = 1|Pi = αk] = αk and P[Xi = 0|Pi = αk] = 1 − αk

follow from this definition. Hence, the law of total probability
shows that the marginal distribution of Xi obeys [3, Sec. II-
D] P[Xi = 1] =

∑K
k=1 P[Xi = 1|Pi = αk]P[Pi = αk] =

∑K
k=1 αkrk =: E[Pi] =: p. The mean of Xi is E[Xi] :=

1 P[Xi = 1] + 0 P[Xi = 0] = E[Pi] =: p. Consequently, an
unbiased estimator of the number of individuals nppl is

Ĉ := βX, (1)

where E[Ĉ] = nppl with extrapolation factor β := 1/p.
Variable X is a sum of nppl statistically independent and
identically distributed (iid) Bernoulli random variables Xi of
parameter p := E[Pi]. As a result, X = Ĉ/β follows a
binomial distribution B(nppl, p).

D. Concentration inequalities and asymptotic analysis

Now that an unbiased estimator and its distribution have
been derived, this subsection derives a a concentration inequal-
ity for the estimator Ĉ around its mean. Loosely speaking, this
inequality is theoretical evidence that the estimator is reliable.
Results from [30] are used and the resulting concentration
inequality is compared against a canonical concentration in-
equality for bounded random variables. A key quantity de-
pending on p is K(p), defined below.

Definition 1. Let K : [0, 1] → R : p 7→ K(p), where [30,
Eq. (4)]

K(p) =


0 if p ∈ {0, 1}
1/4 if p = 1/2

p− q

2(log p− log q)
if p ∈ (0, 1)\{1/2}

, (2)

with q := 1− p.

Proposition 1 helps understanding the shape of K(p).

Proposition 1. With K defined as in (2), we have the following
properties:

1) K is continuous and convex
2) K is symmetric around p = 1/2
3) K increases on p ∈ [0, 1/2] and decreases on [1/2, 1]
4) K(p) ≤ 1/4.

Proof. All statements are available almost verbatim in [30,
Lemma 2.1].

Proposition 2 states the concentration inequality for Ĉ.

Proposition 2. With K defined by (2) and Ĉ by (1), we have,
for any φ > 0,

P[|Ĉ − nppl| ≥ φnppl] ≤ 2 exp

(
−φ2

2
nppl

p2

K(p)

)
. (3)

Proof. The previous subsection has already shown that X is
of a sum of nppl iid. Bernoulli random variables of parameter
p. Thus, [30, Corollary 6.1 (ii)] directly implies

P[|X − npplp| ≥ x] ≤ 2 exp

(
−x2

2npplK(p)

)
.

With Ĉ = βX = X/p and x = φnpplp,

P[|Ĉ − nppl| ≥ φnppl] = P[|X − npplp| ≥ φnpplp]

≤ 2 exp

(
−φ2

2
nppl

p2

K(p)

)
.
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This concentration inequality upper bounds the probability
that Ĉ diverges from its mean nppl as a function of a
proportion φ of the mean. In particular, it shows that the
probability of a divergence of φnppl decreases exponentially
with the number of people in the area nppl—which means that
the relative accuracy of the estimator increases with nppl and
becomes infinite as nppl → ∞.

As limp→1− p2K(p)−1 = +∞, if every individual is
guaranteed to send one PRB (p = 1), the relative estimator
accuracy is infinite. Conversely, using L’Hôpital’s rule,

lim
p→0+

p2

K(p)
= lim

p→0+

2 log p−1

p−2
= lim

p→0+

−2pp−2

−2p−3
= 0,

which suggests that if no individual sends PRBs (p = 0), the
estimator is worthless.

Finally, this section compares (3) against Hoeffding’s in-
equality (see [31] and [32, Theorem 2.8]). Without proof
details, one easily obtains Hoeffding’s inequality:

P[|Ĉ − nppl| ≥ φnppl] ≤ 2 exp
(
−2φ2npplp

2
)
, (4)

which is also obtained by using (3) and K(p) ≤ 1/4 (see [30,
Remark 5.1]), which shows (3) outperforms (4). In particular,
the Hoeffding’s inequality fails to predict that p = 1 implies a
perfect accuracy of the estimator, a task at which the presented
concentration inequality (3) succeeds.

III. DIGITAL ARCHITECTURE

A. Overview

Our system comprises i) a set of sensors, ii) a processing
subsystem on a central server collecting all PRBs and pro-
cessing them in real time, and iii) a dumping subsystem (that
is part of the central server) that further anonymizes and then
dumps PRBs. All communications between the sensors and
the central server use layers of authentication; they are secured
using HTTPS, thereby encrypting packets and also preventing
man-in-the-middle attacks. Figure 2 depicts the general system
architecture, with each of the three subsystems discussed in
the next subsections.

B. The sensing subsystem

As shown in Figure 2, the sensing subsystem may be
decomposed in three parts: the scene for which to estimate
crowd counts, the cluster of nS sensors deployed to count
the crowd and a communication link for each sensor. The
communication links may be a wired Ethernet connection, a
cellular link or a Wi-Fi connection to a local access point
(AP), and they may be different among sensors. Although all
three link options are viable, the experiments this manuscript
describes were made using 4G communication links only.

The sensors i) detect PRBs, ii) anonymize them and iii)
send them to a central server.

1) Hardware: Each WiFi sensors comprises [3, Sec. II-B]
• A Raspberry Pi 3B (running Raspbian Stretch).
• An Alfa AWUS036NHA WiFi dongle (chipset Atheros

AR9271L) supporting monitor mode—a state that makes
the dongle capture all over-the-air WiFi messages, with-
out being restricted to those of a particular WiFi network.

The dipole antennas shipped with Alfa AWUS036NHA
dongles equip sensors. Sensor antennas point perpendic-
ularly to the ground.

• A 4G dongle granting access to the Internet.

Figure 3 shows a photograph of a sensor.
2) Software: The sniffing program has been written in

multi-threaded C++ and uses packet capture library libpcap.
For each detected PRB, sensors send [3, Sec. II-B] “i) an
anonymized MAC address of the PRB, ii) the timestamp of
detection iii) a received signal strength indicator (RSSI) value,
which is a number quantifying the received power". Stress tests
of the sensors have revealed that neither the WiFi dongle nor
the Raspberry Pi fail to handle large PRBs transmission rates.

3) Anonymization: All sensors periodically retrieve from
the central server an up-to-date array of (cryptographic) server
peppers. Each pepper of the array is associated with a one-
minute time frame, during which it will be used. The central
server regenerates the server peppers in real time, and it deletes
old peppers so that they cannot be retrieved in the future.
The server uses an entropy pool (/dev/urandom on Linux
distributions) to generate cryptographically secure peppers. A
sensor pepper is also hardcoded in the C++ codebase of all
sensors; it is common to all sensors (at least all sensors located
in the same area and thus likely to detect identical PRBs
simultaneously). It is a final line of defense in case the server
peppers get compromised.

As depicted in Figure 4, for every received probe request,
the sensor prepends a global pepper to the full MAC address
before computing the SHA-256 hash of the concatenated byte
sequence, whose 256 bits are truncated to 64 bits. The pepper
is the concatenation of the sensor pepper and the server pepper,
both of 128 bits.

As shown in [33], the system meets four essential require-
ments. First, time synchronization is accurate enough to make
sensors use identical peppers at identical time instants (at least
when operating on networks with low latency, such as LTE
networks [34]). Second, from the SA identifiers, it is realisti-
cally impossible to recover the original MAC addresses. Third,
tracking individuals for more than one minute is not possible.
Fourth, the collision rate of the truncated SHA-256 hash is
less than 10−9 for 107 MAC addresses (which corresponds
to an unrealistically high number of individuals). Satisfying
the first and fourth requirements ensures anonymization does
not tamper with the counting method. The second and fourth
requirements consist in privacy-enhancing features.

C. The processing subsystem

The processing subsystem of Figure 2 comprises three
submodules. The first one, referred to as “Web server" is there
to allow sensors to interact with the server through secured
Web APIs. The second, “Real-time processing" is the process
computing counts, a process that is extensively detailed in
what follows. The third, periodic dumping, triggers a dump
of PRBs temporarily stored in the main relational database
into the PRB dump file system. This remaining part of this
subsection discusses the “Real-time processing” submodule.
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Fig. 2. General architecture of the counting system

Raspberry Pi 3B 4G dongle
Alfa AWUS036NHA 

WiFi dongle

Fig. 3. Photograph of the inside of a sensor.

The PRBs measured by all sensors are to be processed
jointly and usually in real time (this corresponds to “Real-
time Processing" in the processing subsystem of Figure 2).
The task here is to generate a count for each time frame
of one minute and each sensor of an event, while counting
smartphones detected simultaneously by several sensors only
once. This will be accomplished by looping through each time
frame of one minute and, for each one of them, two main steps
are to be carried out: i) a filtering operation that extracts all
PRBs measured during the time frame ii) the association of
each observed anonymized MAC address in the filtered dataset
to only one sensor: the one having measured the highest signal
power—this is a coarse measure of proximity between the
device transmitting the PRB and each sensor.

As shown in Figure 2, PRBs are stored in a typical relational
database or in a file system hosting binary files (each of which
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Fig. 4. (From [33]) Scheme of the anonymization procedure executed by
sensors

gathers PRBs for a specific sensor ID and 24-hour period).
Every PRB of the dataset consists of four entries:

1) A timestamp ts (whose precision is of one second) that
indicates when the PRB has been acquired

2) A sensor ID sensorid indicating which sensor ac-
quired the PRB

3) An anonynomized MAC address amac of 64 bits
4) A received signal strength indicator (RSSI) rssi that

quantifies the received power when detecting the PRB.

In a relational database, an index allows for efficient search
using the timestamp ts whereas, in a file system, all files store
PRBs sorted by their timestamps.

1) First stage of the counting algorithm: The starting point
of processing PRBs is about extracting all the PRBs that have
been measured within a one-minute time frame (e.g., from
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11:29:01 AM to 11:30:00 AM). This means the 4-tuples (ts,
sensorid, amac, rssi) from the database go through a
filter that only keeps the entries for which ts is within the time
frame limits. This is an easy task because PRBs are already
indexed or sorted by their timestamps. This first operation
provides a reduced dataset of 3-tuples (sensorid, amac,
rssi) that is one of the inputs of the second stage.

2) Second stage of the counting algorithm: Algorithm 1
describes the second stage. Besides the reduced dataset from
the first stage, which is the array arr_mac, the algorithm also
uses as input a user-provided hash table of RSSI lower bounds
for each sensor, whose key is a sensorid and whose value is an
object with only one field, rssilowerbound. This lower bound
allows users to exclude any PRB measured by a given sensor
whose RSSI value is below rssilowerbound. Because the RSSI
is linked to the distance to the sensor, it provides a coarse
way of tuning the effective detection range of sensors. Such
RSSI bounds are typically stored in the relational database in
Figure 2 under the name “Configuration".

Besides the inputs, the algorithm initializes an empty hash
table ht whose keys are anonymized MAC addresses amac
and values are a 2-tuples (sensorid, RSSI), see step 1 in
Algorithm 1). It keeps track of the highest measured RSSI
for each anonymized MAC address and of the sensor having
measured it. Algorithm 1 also initializes an array of counts
counts_per_sensor that is initially filled with zeroes
(step 17 in Algorithm 1) and will eventually contain the counts
for each sensor for the time frame being processed.

The algorithm loops through every reduced PRB in
arr_mac (a 3-tuple (sensorid, amac, rssi) denoted
by prb) and extracts its sensor ID (sensorid) and its
anonymized MAC address (amac), see steps 2 to 4 in Al-
gorithm 1. It then determines whether the PRB is to be dis-
carded immediately because its RSSI is below the prescribed
threshold for the sensor (step 5). If not discarded, it checks
whether the anonymized MAC address amac has already been
encountered before (step 6). If so and if the RSSI measured
prb.rssi is higher than those encountered so far for amac
(step 7), ht[amac] is modified so that sensorid becomes
the sensor ID for which the highest RSSI has been observed
for amac (steps 8 and 9). Similarly, if amac has never been
observed before (step 11), ht[amac] is modified identically
(steps 12 and 13).

At step 17 of Algorithm 1, ht contains all the observed
anonymized MAC addresses (without duplicates) and, for each
one of them, it provides the sensor ID having measured the
highest RSSI. It is then sufficient to perform steps 18 to 20
to compute the number of unique devices estimated to be the
closest to each sensor. A final step before returning the sensor
counts for the current one-minute time frame is step 21, which
exists to be explicit about the cleaning of ht and its impact
on time complexity.

In practice, the counts obtained are stored in a specialized
database for time series (see Figure 2). InfluxDB is an example
and, with the right compression codecs, Clickhouse has also
proved to provide compact storage as well as fast querying.
Both databases can be distributed across several nodes to offer
robustness, scalability and high throughputs.

ALGORITHM 1:
Compute counts for a single time frame from PRBs.
Comments on the right indicate time complexity (steps
without complexity have time complexity O(1)).

Require: List of PRBs arr_mac for the time frame of interest
only, 3-tuples (sensorid, amac, rssi); Hash table sensors, of
key sensorid and of value {rssilowerbound}

1: Initialize a hash table ht whose keys are 64-bit anonymized
MAC addresses (or equivalently, random tokens) and whose
values are 2-tuples (sensorid, rssi).
// Loop through all PRBs associated to time frame of interest

2: for all prb in arr_mac do ▷ O(length of arr_mac)
3: sensorid := prb.sensorid ▷ O(1)
4: amac := prb[amac] ▷ O(1)

// Check if PRB should be discarded based on RSSI
5: if prb.rssi > sensors[sensorid].rssilowerbound then

// Check if amac already detected previously
6: if amac in ht then ▷ O(1)

// Check if PRB detected has highest RSSI
// for amac among those of all sensors

7: if prb.rssi > ht[amac].rssi then
// A new highest RSSI has been found

8: ht[amac].sensorid := sensorid
9: ht[amac].rssi := prb.rssi

10: end if
11: else

// amac detected for the first time
12: ht[amac].sensorid := sensorid
13: ht[amac].sensorid := prb.rssi
14: end if
15: end if
16: end for
17: Initialize array of counts counts_per_sensor with zeros
18: for all elem in ht do ▷ O(length of ht)
19: counts_per_sensor[elem.sensorid] += 1 ▷ O(1)
20: end for
21: Empty hash table ht ▷ O(length of ht)
22: return counts_per_sensor

1 s t r u c t p rb
2 {
3 t i m e _ t t s ; / / 32− b i t UNIX t imes t amp
4 u i n t 1 6 _ t s e n s o r i d ; / / Se nso r ID
5 i n t 8 _ t aMAC [ 8 ] ; / / Anonymized MAC addr .
6 i n t 8 _ t r s s i ; / / RSSI
7 } ;
8

Fig. 5. Example of a C structure representing a probe request burst. In this
case, any standard compiler appends 1 trailing pad byte for data alignment
purposes; thus, the structure size is 16 bytes. The size of rssi is that of the
antenna signal field of standard RadioTap headers.

3) Complexity analysis: This subsection deals with com-
plexity analysis (in time and in space). Let nS denote the
number of sensors, each one of which capturing no more
than nmeas PRBs for a one-minute time frame.With the data
structure in Figure 5, storing all the PRBs for a given time
frame has a memory footprint of nSnmeas 16 10−6 MB.

The memory of the hash table ht used for processing PRBs
is also reasonable. Let nb denote the number of buckets of the
hash table. In practice, nb can be chosen to get a load factor
lower than or equal to α so that nb = nSnmeasα

−1. Setting
the number of buckets beforehand requires one to know the
maximum number of PRBs per time frame attained in practice
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(and the proportion of duplicated PRBs).
With a C structure similar to that of Figure 5, each 2-tuple

(sensorid, rssi) of the hash table consists of 8 bytes
(including two trailing pad bytes). Assuming that collision
resolution relies on separate chaining with linked lists [35,
Chap. 11], the baseline memory footprint of the hash table is
equal to nb 8 10−6 MB on a 64-bit architecture. Every node of
the linked list has a memory footprint of 16 bytes (8 bytes for
the pointer and 8 bytes for the 2-tuple value). Thus, loading
nSnmeasα

−1 entries in the hash table has a memory footprint
of nSnmeas(8 α−1+16) 10−6 MB (the first and second terms
correspond to the bucket pointers and the nodes of the linked
lists, respectively).

As a conclusion, processing a large event is computationally
tractable from a space complexity point of view. For large
events lasting several days, loading all the measurements in
memory at once may be impossible but is also pointless:
the proposed method processes time frames sequentially and
independently from one another.

It is now time to turn to time complexity. With a properly
designed hash table, insert and search operations have an
average time complexity of O(1). Looping through all entries
in arr_mac has a time complexity of O(nSnmeas). The
reason is that the number of loops is nSnmeas (step 2), each
one of which including only operations of time complexity
O(1). Counting all entries in the final hash table with specific
sensor IDs has a time complexity of O(nSnmeas) because the
prescribed load factor makes the number of buckets directly
proportional to nSnmeas. Releasing the linked lists of all
buckets also has a time complexity of O(nSnmeas) (step
21). Globally, the average time complexity is O(nSnmeas).
It is easy to show that the worst-case time complexity is
O((nSnmeas)

2)—which is attained if all the SA identifiers
are mapped onto the same bucket, thereby creating a unique
linked list of size nSnmeas.

D. The dumping subsystem
1) Principle: The system periodically dumps PRBs from

the SQL database into binary files stored in the “PRB dump
file system" in Figure 2. Each dump file corresponds to a
particular sensor and a particular day. This keeps in check
the size of the SQL table storing PRBs and its indexes. It
also makes it straightforward to backup these files in a cheap
storage location (e.g., in "cold storage“ facilities).

If the system does not ingest excessive throughputs of data,
storing binary dump files on ext4 file systems is acceptable
and can easily support volumes of at least 8 terabytes (using
conventional hard drives or storage solutions from cloud
providers). Otherwise, is it possible to use a distributed file
system such as CephFS; the latter option provides redundancy,
scalable IO throughputs and support for volumes larger than
10 petabytes.

2) Anonymization: The SQL database stores anonymized
MAC addresses; theoretically, a deterministic link still exists
between the original MAC address and its corresponding SA
identifier. Removing the link is beneficial because someone
could identify a vulnerability of SHA256 in the future. There-
fore, the dumping program randomizes SA identifiers per time

frame using, e.g., the Mersenne twister. The links “SA identi-
fier → final SA identifier" are reset after each time frame of
one minute. A cryptographically secure pseudorandom number
generator (CSPRNG) is not needed as the only requirements
are i) to remove any deterministic link between the original
MAC address and the identifier ii) and having uniformly
distributed identifiers. This approach also makes it impossible
for hackers to revert their way back to the original SAs on the
basis of the dump files, even if they intercept the peppers.

IV. LEGAL MATTERS ABOUT PRIVACY

Nowadays, an important topic about crowd monitoring
systems is whether they comply with privacy laws. This is
particularly true in Europe since May 25, 2018—the date
that saw the advent of the European general data protection
regulation (GDPR). The present system satisfies European and
Belgian privacy laws because it does not allow administrators
or third parties to (see Section III-B)

• recover the original MAC addresses or other personal data
about individuals carrying the detected WiFi devices,

• track MAC addresses over time.
In this sense, it is possible to consider that no personal data
are processed and, as a result, tracked individuals need not be
informed of tracking.

V. EXPERIMENTAL VALIDATION

A previous experimental evaluation focusing on the extrap-
olation factor for public events is [3, Sec. II-E and Fig. 2];
this former analysis compares the WiFi counts the system
generates with those from a telco operator. This paper and
section provide an experimental evaluation of the accuracy
of the WiFi system in an indoor environment. Experimental
validation relies on third-party counts from Affluences and
their 3D Video sensor system [36], which has been installed
at the entries and exits of the Humanities library at Université
libre de Bruxelles (ULB). This provides a ground truth from
a third-party, commercially available counting system.

As in [3], two accuracy measures are used: the root mean
square error (RMSE) and the mean absolute percentage error
(MAPE). For a time series {xt}0≤t≤N−1 of N true counts
and a time series {x̂t}0≤t≤N−1 of N approximated counts,

RMSE :=

√√√√ 1

N

N−1∑
t=0

(xt − x̂t)2 (5)

and

MAPE :=
100%

N

N−1∑
t=0

|xt − x̂t|
|xt|

. (6)

Both accuracy measures are extensively used in the liter-
ature. RMSE is an absolute measure of the error variance
and thus tends to penalize high errors proportionally more
than smaller ones because of its quadratic nature. MAPE is
a relative measure of the error xt − x̂t normalized using the
ground truth time series {xt}0≤t≤N−1. MAPE penalizes errors
linearly but an absolute error tends to be penalized more if it
is associated to a low ground truth count.
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A. Measurement setup

The measurement setup at the Humanities library consists in
six sensors installed on three (consecutive) floors of an eight-
story building.

B. Extrapolation to account for partial coverage

In ideal circumstances, sensors cover the whole area to be
monitored. In practice, budget or infrastructure constraints may
prevent an installation with full coverage and the total counts
of people are extrapolated on the basis of counts for a sub-
area. Thereby, with Ĉ(part) denoting the (partial) counts for
the covered sub-area,

Ĉ = κĈ(part) = κβX, (7)

where Ĉ, β and X are defined in Section II-C and κ is an
extrapolation factor converting counts for the sub-area into
counts for the whole area. (If the whole area is covered,
κ = 1.) The global extrapolation factor is then β̃ := κβ.
A more complete model that includes noise signals for both
extrapolations is

Ĉ = κĈ(part) + e(κ)

= κ(β
C

κβ
+ ϵ(β)) + e(κ)

= C + κϵ(β) + e(κ) ,

where C denotes the true count whereas e(κ) and ϵ(β) denote
errors linked to the two extrapolation procedures. As the
Affluences cameras provide counts for the whole library and
the WiFi system covers three stories of out eight, κ > 1 and
e(κ) ̸= 0.

C. Estimate the global extrapolation factor

The global extrapolation factor β̃ shall be fit using a
least squares approach with N measurements for each sub-
system. Let cAffl. ∈ RN and cWiFi ∈ RN denote counts
from the Affluences cameras and WiFi subsystem, respec-
tively.Affluences/Camera and WiFi counts are available every
30 minutes and 5 minutes, respectively. The WiFi count
series is thus downsampled by 6 to obtain comparable and
compatible time series for both subsystems. The linear model
y = Ax is particularized by the substitutions y = cAffl.,
A = cWiFi and x = [β̃] ∈ R1×1. The pseudoinverse of
A with linearly independent columns is A+ = (cWiFi)+ =
((cWiFi)HcWiFi)−1(cWiFi)H, which provides a least squares
estimate for β̃ that is

Estimate[β̃] := ⟨cWiFi, cAffl.⟩/∥cWiFi∥22, (8)

where ⟨cWiFi, cAffl.⟩ denotes the inner product of cWiFi and
cAffl..

D. Preprocessing pipeline

The WiFi system works all the time; however, its accuracy
should only be evaluated during opening times. To do this, a
preprocessing pipeline processes both the Affluences and WiFi
time series in the following way:

1) Extract a particular time frame with counts available
every 30 minutes (all days from 2019-04-02 until 2019-
06-01)

2) Remove week-ends, holidays and days during which any
of the two systems was malfunctioning; the following
days were removed: 2019-04-22 (holiday), 2019-05-01
(holiday), 2019-05-14 (tests), 2019-05-23 (Affluences
malfunction) and 2019-05-30 (holiday).

3) Restrict the time ranges to those during which the library
is guaranteed to be opened (from 9:00 AM to 6:00 PM).

E. Results with a unique global extrapolation factor
As a first step, the analysis relies on the pessimistic as-

sumption that β̃ is constant over time. This is not necessarily
true because sensors cover only three floors of the library and
students pursue different endeavors over time; for example,
many projects are over by May, which means that the students
spread differently in the floors of the library as they use less
frequently the rooms to discuss with fellow classmates for
projects. This pessimistic approach generates a lower bound
on the accuracy of the WiFi system because e(κ) ̸= 0 and
e(κ) is an error term linked to the partial coverage that does
not usually appear for ideal installations. In other words, any
system with limited coverage would be subject to noise e(κ)

and all systems with full coverage have e(κ) = 0.
Figure 6 compares Affluences counts against WiFi ones, for

the restricted time frame running from 09:00 AM to 6:00 PM.
Figure 7 does the same but displays the full days, which makes
the plot easier to read.

The estimated global extrapolation factor is equal to 5.031
(for time frames of tf = 60 seconds), see (8). Comparatively,
in our previous studies with full coverage [3], [4], we obtained
a value of 3 for time frames of tf = 30 seconds (which
is equivalent to an extrapolation factor of 1.5 with tf = 60
seconds). This suggests κ ≃ 5/1.5 ≃ 3.33, which is realistic
given the coverage (three floors out of eight).
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Fig. 6. Comparison from 9:00 AM to 6:00 PM of camera and WiFi counts on
selected days, with a global extrapolation factor estimate of 5.031, obtained as
described in Section V-C. Affluences refers to a third-party camera counting
system and is a ground truth.

For Figure 6, the RMSE and MAPE values are of 120.9 and
12.7 %, respectively. The mean of the counts is equal to 824.
These figures are thus upper bounds on the error of the WiFi
system.
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Fig. 7. Full comparison of camera and WiFi counts on selected days, with a
global extrapolation factor of 5.031. Affluences refers to a third-party camera
counting system and is a ground truth.

The accuracy estimate based on indoor measurements is
pessimistic for large events or buildings because the experi-
ment we could carry out suffers from errors linked to:

1) the relatively low number of people in the monitored
area (300 people on the three stories against thousands
in larger events)

2) the extrapolation of the crowd counts from three floors
to eight floors

3) the use of RSSI thresholds that we have been tuned
coarsely. In large events or using directional WiFi an-
tennas, however, such thresholds would not be necessary
as the whole area is large and surrounding areas do not
host a significant number of attendees.

F. Results with weekly global extrapolation factors

This final subsection estimates the global extrapolation
factor for each week separately, to better reflect the time-
varying distribution of the students across the different floors.
Mathematically, it translates into a partial extrapolation factor
κ in (7) being a function of time. Again, the time-varying
nature of the extrapolation factor stems purely from the
monitoring of a sub-area and extrapolation of counts to the
full area. The global extrapolation factor β is constant for
events or buildings that are fully covered.

Albeit a rather theoretical exercise, compensating the time-
varying nature of the extrapolation factor gets accuracy figures
closer to those that would have been obtained with full
coverage. The improvements resulting from this exercise also

TABLE II
IN “AVERAGE", ALL WEEKS ARE WEIGHTED IDENTICALLY (THAT IS,

WITHOUT TAKING INTO ACCOUNT THAT SOME WEEKS COMPRISE ONLY
FOUR DAYS). “GLOBAL TIME SERIES" CORRESPONDS TO STATISTICS

OBTAINED ON THE AGGREGATED TIME SERIES, AS DESCRIBED IN
SEC. V-E.

Week starting on Estimate[β̃] Mean of counts RMSE MAPE
2019-04-01 4.75 604 90.3 13.4 %
2019-04-08 4.89 708 94.1 12.0 %
2019-04-15 4.84 752 108.2 12.9 %
2019-04-22 4.79 752 99.5 10.5 %
2019-04-29 4.66 862 138.0 13.6 %
2019-05-06 5.11 913 120.0 11.3 %
2019-05-13 5.37 934 120.0 10.9 %
2019-05-20 5.24 962 105.6 9.2 %
2019-05-27 5.47 954 124.3 11.5 %

Average 5.01 827 111.1 11.7 %
Global time series 5.03 824 120.9 12.7 %

suggest that a partial coverage leads to inflated errors in
comparison to full-coverage scenarios.

Table II reports the results, including the ones of Sec. V-E
on its last row. It shows that the global extrapolation factor
estimates increase over time, which stems from the humanities
library becoming more crowded as examination sessions get
closer. A possible explanation is that students favor working
on floors that happen to be covered by the sensors and move to
the remaining floors as seating options become scarcer; thus,
the global extrapolation factor increases over time.

Finally, as expected, using extrapolation factors optimized
per week improves the average RMSE and MAPE in com-
parison to using the one obtained for the global, aggregated
time series. Nevertheless, the RMSE and MAPE improvements
stemming from using weekly extrapolation factors are lower
than 10 %.

VI. PRACTICAL CONSIDERATIONS WHEN DEPLOYING
SENSORS

In public events, our experience is that sensors are often not
connected to a dedicated power supply line, sharing instead
power supplies with other devices (e.g., lightning devices).
These other circuits may be unplugged to save power at night
or during daytime. Even if the sensors were connected to
dedicated circuits, these could malfunction or be shut down for
maintenance without prior notice. Therefore, we recommend
making sensors unaffected by improper shutdowns, by using
high-quality persistent storage (e.g., using high-end eMMC
memory) and by mounting the operating system in read-only
mode.

VII. A COMPARISON OF THE PRESENT COUNTING SYSTEM
WITH ITS CONTENDERS

Before reaching the conclusion, it is important to compare
the present system with its main contenders listed in Table I
of Section I-A. In particular, accuracy is an interesting basis
of comparison. The accuracy figure obtained in this work
(of about 12 %) is comparable or better than all the listed
works except for [20], which is a cooperative system in
that it requires individuals to connect their WiFi devices
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to access points. Moreover, [20] has not been tested for
areas hosting hundreds of individuals. The work [13] has
sometimes better accuracy and sometimes worse accuracy than
the present counting system; it also has not been tested on
crowds of more than 100 people (see [13, Fig. 6]). Of course,
it is always dangerous to compare accuracy figures without
testing all counting systems on a common monitoring area.
Unfortunately, such an endeavor is impossible to carry out
given that many of the contenders are novel solutions that
are not yet commercially available and are expensive and
time-consuming to reimplement (with inevitable implementa-
tion differences anyway). Nevertheless, accuracy comparisons
make it possible to determine whether the accuracy of different
counting systems are similar, which appears to be the case
here.

As a conclusion, the counting system that this manuscript
presents is a strong contender in comparison to the other
existing systems, especially for large crowds (at least a few
hundreds of people or more). It does not depend on user
cooperation and has been experimentally validated on large
crowds. Moreover, it does not require costly equipment and
the required sensor density (of about one sensor per 25 m
x 25 m = 400 m2 for dense crowds) is comparable or lower
than that of other counting systems (in particular, it is an order
of magnitude below the sensor density required for [15]–[17],
which ranges from one sensor/(15 m2) to one sensor/(40 m2)).
Finally, among non-cooperative systems, our accuracy figures
are competitive.

This work is also unique in that it provides a statistical
model of the counting process and derives a concentration
inequality that shows its relative accuracy increases with the
number of monitored individuals. In this sense, it offers some
degree of theoretical validation.

VIII. CONCLUSION

This paper describes a crowd monitoring system relying
on probe requests transmitted by attendees’ smartphones in
the monitored area. This system is suitable for indoor and
outdoor areas hosting at least a few hundreds of attendees.
The monitoring system ensures strict privacy requirements
are met and is therefore compatible with modern privacy
laws. We provided both theoretical and experimental evidence
that our system computes accurate estimates of the number
of attendees. Despite non-ideal experimental conditions, the
MAPE we computed is of less than 13 %.
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