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Abstract
Passive Radars based on Wi‐Fi signals provide an excellent opportunity for human
sensing without violating the privacy of individuals. Due to the limited integration time of
Wi‐Fi bursts and relatively low bandwidths, Fourier Transform‐based methods do not
provide the required accuracy. Herein, a Wi‐Fi‐based passive radar algorithm is proposed
for indoor human movement detection with super resolution which relies on the ESPRIT
algorithm to estimate range/speed parameters from limited number of measurements. To
determine the number of targets in the environment, a new Model Order Selection
(MOS) method is proposed which exploits the orthogonality between the basis vectors of
signal and noise subspaces obtained from the sample covariance matrix of the mea-
surements. The new MOS method along with the proposed algorithm are numerically
analysed and compared with other existing methods. Finally, the performance of the
algorithm is experimentally validated in indoor conditions.

1 | INTRODUCTION

Passive Radars (PR) are devices that make use of existing
communication signals as Signal of Opportunity (SO) for
detecting and tracking targets in an environment. Thereby,
PRs do not emit any signals. It is well‐known that radar
estimation accuracy largely depends on three parameters [1]:
the ambiguity function of the signal, which determines the
suitability of the signal for radar processing; the bandwidth,
which determines the range resolution; and the integration
time, which determines the speed resolution. In recent years,
the interest in PRs has increased [2] since communication
technologies evolved and wider bandwidths became available
to support higher throughput requirements. Wi‐Fi 6
(802.11ax) signals [3] are ideal SOs for PRs since they are
modulated with Orthogonal Frequency Division Multiplexing
(OFDM) whose ambiguity function implies sufficient accu-
racy [4]. Moreover, the availability of the SOs is increased
[5] since the Wi‐Fi 6 standard is designed for densely
deployed Access Points (AP). Furthermore, the widest

available bandwidth is 160 MHz, which provides roughly a
1‐m range resolution.

However, 1‐m range resolution is not enough to guar-
antee a robust range detection of human targets, especially
when indoor conditions are considered. Moreover, the Wi‐Fi
signals consist of bursts of OFDM frames. Hence, the
duration of the SO will not be long enough to achieve the
desired speed resolution. This is one of the main differences
between Wi‐Fi and Digital Video Broadcasting (DVB) based
PRs [6]. For the latter, the integration time can be adjusted
as desired since the signal is always available due to its
broadcasting nature. Moreover, approximately 0.5 m/s speed
resolution is required to estimate the human main‐body
speed with an average velocity of 1.4 m/s. Thus, the inte-
gration time has to be at least 50 ms at 5.6 GHz with
classical Discrete Fourier Transform (DFT)‐based radar
processing. This is an unrealistic assumption for Wi‐Fi sys-
tems since a typical Wi‐Fi burst is a few ms long. These two
problems, regarding the limitations on the range and speed
resolutions, are discussed within the recently formed Task
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Group for Wi‐Fi Sensing [7], that aims at indoor monitoring
of human movements based on the Wi‐Fi signals. In Ref. [8]
different Wi‐Fi protocols are considered as SO to estimate
range/Doppler parameters as well as breathing response of
humans with classical DFT‐based processing.

In this work, the limitations of the classical processing
methods on the accuracy of the range and speed estimations
are addressed. To achieve higher accuracies than DFT‐based
methods, super‐resolution algorithms constitute interesting
alternatives. In Ref. [9], by exploiting the unique OFDM frame
structure of Radar‐Communications systems, the range and
Doppler frequencies are estimated with ESPRIT and Least
Square (LS) algorithms, respectively. However, the considered
target velocities are 80 and 100 km/h, which yield high
Doppler frequencies. Moreover, the ESPRIT algorithm re-
quires certain characteristics from the sampled covariance
matrix which are not discussed. In Ref. [10], 802.11p signals are
used for radar processing, where the delay and Doppler are
estimated with ESPRIT. However, the integration time is
considered to be around 50 ms, which already provides high
accuracy with DFT‐based methods. Moreover, the methodol-
ogy to estimate the number of targets is not mentioned. It is
also discussed that, for targets with weak reflectivity (such as
humans), it is difficult for ESPRIT to estimate the speeds
between � 2 and 2 m/s due to the presence of the static clutter.
Therefore, a novel algorithm is proposed that estimates the
range and speed of the targets with super‐resolution. During
the estimation stages, if a target with zero (or close‐to‐zero)
speed is estimated, that target is assumed to be static clutter.
Hence, its contribution is removed from the measured signal to
guarantee a more robust detection.

In order to guarantee robust parameter estimation,
subspace based super resolution algorithms require the size
of the signal subspace, also known as Model Order Selection
(MOS). Regarding the MOS methods that is, estimating the
number of targets, the literature is extensive (see Refs. [11]
and [12] and the references therein). Maximum a posteriori
(MAP) method yields the optimal order selection rule [13].
Other approaches based on the Kullback‐Leibler (KL) in-
formation criterion exists, which minimise the KL discrep-
ancy between the probability density function (PDF) of the
measured data and the PDF of the assumed model [14].
However, in real‐life, neither MAP nor KL can be used
since the associated PDFs are not available. Akaike Infor-
mation Criterion (AIC) [15] is another MOS method which
requires a set of candidate models. Once AIC values are
obtained for each candidate model, the one with the
smallest AIC value is selected as the best fit. AIC requires
the computation of residual sum of squares (RSS) for all
realistic and possible candidate models since the best model
is determined among the candidate models. On the other
hand, eigenvalue thresholding is proposed in [16], which
computes a threshold by iterating through the eigenvalues of
the sample covariance matrix by assuming that eigenvalues
corresponding to noise subspace have much smaller ampli-
tudes compared to ones corresponding to signal subspace.
The contribution of our work is fourfold:

� A new algorithm inspired by ESPRIT is proposed, which
provides range and speed estimations with sub‐metre and
sub‐metres‐per‐second accuracies, respectively. The pro-
posed algorithm requires relatively high signal‐to‐noise‐
power‐ratio (SNR), which is a valid assumption when indoor
scenarios are considered.

� The flexibility of the proposed algorithm allows static clutter
removal, making the estimation of human movements more
robust.

� A new metric is proposed as a MOS tool to select the
correct size of the signal subspace, that is the number of
targets in the environment.

� The proposed algorithm is experimentally validated in an
indoor scenario by using Software Defined Radios (SDRs).

Moreover, the designed algorithm estimates the range and
Doppler frequency of the targets in the environment.

This paper is structured as follows. In Section 2, the
802.11ax Wi‐Fi frame structures and modulation parameters
are briefly explained, along with the signal model. Then, the
classical radar processing stages are reminded. In Section 3, the
three stages of the proposed algorithm are explained in detail:
the range estimation, MOS for range and the speed estimation.
In Section 4, the extension of the algorithm is explained, as
well as how our additions enhance its accuracy for more
crowded areas. In Section 5, the impact of different parameter
choices and the computational complexity of the extended
algorithm are discussed. In Section 6, the numerical analysis for
various scenarios are provided that demonstrates the accuracy
of the algorithm. In Section 7, the proposed algorithm and
MOS method are experimentally validated in indoor conditions
by using SDRs both for APs and PRs. Finally, in Section 8, the
conclusion is drawn.

Some notations

The letters n, m, q and v are used to indicate the fast‐time (for
range processing), slow‐time (for Doppler processing), OFDM
subcarrier and the Doppler spectrum bins, respectively.
Functions with lowercase letters such as f(t) and fm, indicate
that f is a continuous or discrete function of t or m in the time‐
domain, respectively. Functions with two variables such as f[n,
m] mean that both variables are in the time‐domain. Moreover,
capital letters F[q, m] are used to indicate that the corre-
sponding equality is written as a function of the subcarrier
indices and slow‐time. Meanwhile, the calligraphic capital let-
ters F½n; v� are used to indicate that the corresponding equality
is a function of the fast‐time and Doppler bins.

Moreover, u and U denote a vector and a matrix, respec-
tively. ui indicates the i‐th entry of the vector u, and Ui,j in-
dicates the (i, j)‐th element of the matrix U . Up denotes the
matrix formed by the columns of U indexed by the vector p
while up denotes the p‐th column vector of the matrix U.
Moreover, [i: i þ L] denotes a unit‐spaced vector of size L,
whose elements are the integers between i and i þ L where i
and L are also integer numbers. Thus, ui:iþL is defined as the
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sub‐vector of u, such that ui:iþL ¼ [ui…uiþL]. Similarly, the
sub‐matrix Ui:iþL is formed by the columns of U, such that
Ui:iþL ¼ [ui…uiþL]. When it is necessary, capital letters are
used as indices to indicate the size of a matrix for example UQ
is a square matrix of size Q‐by‐Q.

Moreover, the matrix IQ is defined as the identity matrix of
size Q. XT, XH and Xþ denote transpose, Hermitian transpose
and Moore‐Penrose inverse, respectively. The output of the
operator diagðX Þ ∈ CQ is the vector whose entries are the
diagonal elements of an arbitrary square matrix X ∈ CQ�Q.
Similarly, the output of the operator DiagðxÞ ∈ CQ�Q is the
diagonal matrix, whose diagonal elements are the entries in the
vector x ∈ CQ. The hat symbol is used to denote the result of
an estimation for example bx, bx or bX , whereas tilde symbol is
used to indicate that a decision is made on the estimated pa-
rameters for example ~x, ~x or ~X . Moreover, the following pair
of words are used interchangeably, since the link within the
pairs are simple conversions: the propagation‐delay/range and
the Doppler‐frequency/speed.

2 | SIGNAL MODEL

2.1 | 802.11ax Wi‐Fi Frame Structure and
Signal

The newest amendment of the Wi‐Fi standard, 802.11ax, is
designed to be used in dense deployment scenarios. A detailed
overview of the 11ax standard can be found in Ref. [5]. The
new OFDM parameters which are relevant for this work are
summarised in Table 1 and the effects of these parameters on
the PR performance are summarised here below:

� The highest carrier frequency ( fc) is 5 GHz, which yields
higher Doppler shifts for the same target velocities.

� The maximum allowed bandwidth (B ) is 160 MHz,
increasing the range resolution.

� The number of subcarriers (Q ) is increased by a factor of 4
for each bandwidth compared to the previous amendment
of the standard. Therefore, the OFDM symbol duration is
also increased by a factor of 4.

On the other hand, it is well known that the Wi‐Fi APs
work by transmitting bursts of OFDM frames, as plotted in
Figure 1. Each frame consists of training symbols (known as
the preamble) and data symbols. The training symbols are used
to synchronize the devices, as well as to estimate the channel
parameters. Therefore, these symbols are fixed by the standard,
and are known a priori.

Let us define Ms and Mf as the number of OFDM symbols
in one frame and the total number of transmitted frames by the
AP in one burst, respectively. The transmitted signal,
composed of M ¼ MsMf OFDM symbols, can be written as

sðtÞ ¼
XM� 1

m¼0

XQ� 1

q¼0
Xq;m exp j2π

q
QT
ðt � mTsÞ

� �

uðt � mTsÞ

where T and Ts represent sample duration and OFDM symbol
duration, respectively. Moreover, the element Xq,m is picked
from matrix X ∈ CQ�M , whose elements are the complex
symbols of the mth OFDM symbol mapped on the subcarrier
q. Therefore, the rows and columns of X represent the
different subcarrier indices and OFDM symbols, respectively.
Moreover, the rectangle pulse‐shaping function is defined as

uðtÞ ¼ 1; 0 ≤ t < Ts
0; elsewhere

�

Let P be the total number of propagation paths in the
channel. The vectors α ∈ CP , τ ∈ RP and f ∈ RP contain the
path gains, propagation delays, and Doppler frequencies each
associated with a path, such that

α ¼ ½α1 α2 … αP�
τ ¼ ½τ1 τ2 … τP�
f ¼ ½f 1 f 2 … f P�

ð1Þ

The time varying channel impulse response (CIR) can be
written as

hðτ; tÞ ¼
XP

l¼1

αp δ τ − τp
� �

expð−j2πf ptÞ

Here, the path gain and the propagation delay are considered
as constants during the integration time, MTs, which is in the
order of a few milliseconds. This is a realistic assumption for
the signals reflected from moving humans whose average
speed is 1.5 m/s. Since the path gain and the propagation delay
are functions of the path distance, they cannot significantly
vary for the given integration time and speed. The received
signal can be modelled as the convolution of the transmitted
signal and the CIR, which can be written as

rðtÞ ¼
XP

p¼1
αp

PM−1

m¼0

PQ−1

q¼0
Xq;m exp j2π

q
QT
ðt − mTs − τpÞ

� �

:

 

expð−j2πf ptÞ uðt − mTs − τpÞ
�
þ zðtÞ

where z(t) is the Additive White Gaussian Noise (AWGN) with
zero‐mean and variance σ2. Moreover, after the received signal is
low pass filtered, it is sampled at instants t ¼ nT þ mTs where
n ¼ � Qcp, …, Q � 1 and m ¼ 0, …, M � 1. It is given by

r½n;m� : ¼rðt ¼ nT þmTsÞ

The sampled windowing function, u[n þ (m0 � m)] ≔u
(nT þ (m0 � m)Ts � τp) ¼ δm,m0 for nT þ (m0 � m)
Ts < M ∗ Q. Moreover, if QcpT > τp, ∀p (the CP duration
is longer than all propagation delays), the CP will contain
the inter‐block‐interferences (IBI). Since the useful parts of
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the OFDM symbols, obtained by cancelling the CP, are not
corrupted by the IBI, the received sequence can be written
as

r½n;m� ¼
PP

p¼1
αp
PQ−1

q¼0
Xq;m exp j2π

q
QT
ðnT � τpÞ

� �

:

�

expð� j2πf pnTÞ expð� j2πf pmTsÞ
�
þ z½n;m�

ð2Þ

where n ¼ 0, …, Q � 1, and z[n, m]: ¼ z(t ¼ nT þ mTs) are
the independently and identically distributed noise samples. It

is also assumed that the Carrier Frequency Offset (CFO) is
already estimated and compensated. When the DFT is applied
in order to obtain the OFDM spectrum, the second expo-
nential causes a very small Inter‐Carrier‐Interference (ICI) and
can be neglected.

In order to perform the radar processing, the PR has to
reconstruct the transmitted data symbols, so that the channel
transfer function (CTF) can be estimated. However, as
mentioned earlier, Wi‐Fi frames contain priorly known training
symbols to estimate the channel parameters. Our recent anal-
ysis showed that using only the training field in the preamble is
sufficient for radar processing [17], which is validated with
experiments.

TABLE 1 Key parameters of 802.11ax
standard

Parameters Values Units

Carrier frequency fc 2.4 ‐ 5 GHz

Bandwidth B 20 ‐ 40 ‐ 80 ‐ 160 MHz

Sampling duration T ¼ 1/B 50 ‐ 25 ‐ 12.5 ‐ 6.25 Ns

Number of subcarriers Q 256 ‐ 512 ‐ 1024 ‐ 2048

Number of active

Subcarriers Qa 242 ‐ 484 ‐ 996 ‐ 1992

Subcarrier spacing Δf 78,125 Hz

Cyclic prefix (CP) size Qcp 16 ‐ 32 ‐ 64

OFDM symbol duration

Without the CP QT 12.8 Μs

OFDM symbol duration

With the CP Ts ¼ (Q þ Qcp)T 13 ‐ 13.2 ‐ 13.6 Μs

Number of OFDM

Symbols in one frame Ms 30 …50

Wi‐Fi frame duration Tf ¼ MsTs 408 …800 Μs

Number of Wi‐Fi

Frames in one burst Mf 2 …16

F I GURE 1 Wi‐Fi frame structure
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Let us assume that at the beginning of each frame, there is
only one training symbol such that the CTF can be estimated by
using only the received samples corresponding to the training
symbols. In other words, only the columns of X corresponding
to the training symbols are used. Therefore, rn, m in (2) is
downsampled by Ms along its second dimension that is rd[n,
m] ¼ r[n, mMs], leaving only Mf training symbols. For each
training symbol, rdn, m contains the fast‐time samples indexed
by n and every sample is also identified by a slow‐time indexm.
Instead of using the notation rdn,m, we continue to use r[n,m]
for the sake of simplicity. Thus, for the rest of the paper r[n,m] is
the downsampled signal with m ¼ 0, …, Mf � 1. Finally, this
processing scheme allows us to model the Wi‐Fi frames, trans-
mitted by an AP and received by the PR, as pulse‐compression
radar signals. The pulse (which is the training symbol) is
modulated with OFDM, and the time separation between the
two pulses is given by Tf. Therefore,Mf can be considered as the
number of pulses where Tf is the pulse repetition interval (PRI).

2.2 | Classical Wi‐Fi‐based Passive Radar
processing

The classical Wi‐Fi‐based PR processing is based on non‐
parametric methods such as DFT which does not exploit the
structure of the input signal but relies on the definition of the
Power Spectral Density (PSD). Therefore, the range and
Doppler accuracies are directly limited by the system band-
width and integration time, respectively.

2.2.1 | Range processing

Once the received signal is filtered, sampled, synchronized,
downsampled, moved to the frequency domain and the channel
estimation is performed, the estimated CTF can be written as

bHq;m¼
XP

p¼1
αpexp � j2πf pmTs

� �

exp � j2π
qτp
QT

� �

þW ½q;m�

ð3Þ

where W[q, m] is defined as the noise samples divided by the
transmitted symbols. The Inverse Discrete Fourier Transform
(IDFT) of (3]) along the subcarrier indices q, can be written as

bh½n;m� ¼ :
PQ−1

q¼0

bH ½q;m�exp j2π
qn
Q

� �

; n¼ 0;…;Q � 1

¼
PP

p¼1
αpexpð� j2πf pmTsÞ:

PQ−1

q¼0
exp � j2π

q
Q

n �
τp
T

� �� �

þW ½q;m�
� �

ð4Þ

¼
PP

p¼1
αp expð� j2πf pmTsÞ Ξ n �

τp
T

h i
þ w½n;m�

ð5Þ

where Ξ[n] is the Dirichlet function and the fast‐time index
n corresponds to the delay bins, which forms Mf number of
delay profiles. Moreover w[n, m] is the IDFT of the noise
spectrum, or equivalently, the noise added to the m‐th delay
profile. Notice that, the second sum in (4) takes its
maximum value only if τp/T is equal to n. To satisfy this
condition, the propagation delay has to be an integer mul-
tiple of the sampling interval. If the fractional part of τp/T
is zero, the IDFT yields the Dirichlet function centred at the
corresponding delay bin, while its nulls are exactly on the
other delay bins. Therefore, the energy peak corresponding
to a target appears only at the corresponding delay bin.
Otherwise, the maximum and the nulls of the Dirichlet
function lie between two delay bins. Thus, the energy of the
target leaks to the other delay bins.

Moreover, the delay profile can be converted to the range
profile by simply multiplying each delay bin with the range
resolution. Thus, (5) is known as the range/slow‐time map,
meaning that the range information is extracted from the CTF.
Notice that for each object along the range profile that is ∀np,
there is a phase that evolves over the slow time indexm. These
phase shifts contain the Doppler information for the given
range bin, and they can be extracted by computing the DFT
along the slow‐time index m of (5)

bH½n; v� ¼
XMf −1

m¼0

bh½n;m�exp � j2π
vm
Mf

 !

where v¼ � Mf
2 ;…;

Mf
2 � 1, yielding

bH½n; v� ¼
XP

p¼1
αp Ξ n �

τp
T

h i
Ξ½v � f pT s� þW½n; v� ð6Þ

where Wn; v is the noise spectrum of the Doppler profiles.
Here, a similar dilemma as before is faced. Depending on the
system configuration and the speed of the object, the
Dirichlet function will be sampled either at its maximum and
nulls, or it will cause leakage. In either case, (6) is known as
the range/Doppler Map (RDM). It can be seen that RDM is a
function that associates each object in the environment with
its relative distance and velocity. Notice that, after the range
and Doppler processing, the AWGN at the receiver z(t), acts
like a noise floor on each cell of the RDM, denoted as
W½n; v�. In other words, if an object has lower amplitude αp
than the noise floor, the object will not appear on the RDM.
Moreover, the noise floor corresponds to the mean of the
noise, and the variance of the noise creates additional peaks
on the RDM. Therefore, once the RDM is obtained, a
detection algorithm is used to separate the real targets from
the noise peaks [1].
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3 | A NOVEL RANGE AND SPEED
ESTIMATION ALGORITHM

The parametric, also known as model‐based, methods assume
that the signal satisfies a given model. Thus, the parameters of
the model can be estimated from noisy measurements. This is
essentially why parametric methods can perform better than
DFT‐based methods. However, the model order has to be
carefully selected so that the parameter estimation is reliable.
The novelty of the proposed algorithm is twofold. First, the
number of targets in the environment is over‐estimated and
their corresponding range/speed parameters are estimated
with ESPRIT. Second, the new MOS method is used to discard
the non‐real targets after the range estimation, such that the
speed estimation is performed only for the real targets. For the
sake of clarity, we start by focussing on a scenario where there
is only one target, hence one Doppler frequency, at any given
range. Then, the algorithm is extended for a more realistic
scenario in Section 4.

Let us begin by defining the matrix D whose columns are
the cisoids in the frequency‐domain, each associated with the
propagation paths p ∈ [1, P] between the AP and PR

D ¼

1 … 1

exp −j2π
1
QT

τ1
� �

… exp −j2π
1
QT

τP
� �

⋮ ⋱ ⋮

exp −j2π
Q − 1
QT

τ1
� �

… exp −j2π
Q − 1
QT

τP
� �

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

∈ CQ�P

ð7Þ

Similarly, the Doppler phases can be organised in matrix
form

Ω¼
1 … exp � j2πf 1ðMf � 1ÞTf

� �

⋮ ⋱ ⋮
1 … exp � j2πf PðMf � 1ÞTf

� �

0

@

1

A ∈ CP�Mf ð8Þ

where the rows of the matrix Ω contain the Doppler phases
which evolve with respect to the Doppler frequency fp and the
column (or slow‐time) index m. For easy notation and future
reference, let us define

B ¼DiagðαÞΩ; ∈ CP�Mf ð9Þ

whose rows are obtained after scaling the rows of Ω by α with
respect to the path index p. Finally, the Mf estimated CTFs,
given in (3), can be written in matrix form:

cH ¼DB þW ; ∈ CQ�Mf ð10Þ

where cH contains the channel estimates for Mf frames and Q
subcarriers, and it is the input of the algorithm. The elements
of W are the noise samples in (3) that is Wq,m ¼ W[q, m].

Figure 2 shows the steps of the algorithm which is
composed of three consecutive stages. The first group of
blocks, named as Range Estimation, corresponds to the
propagation delay estimation with ESPRIT and amplitude
estimation with LS, both explained in Section 3.1. Then, the
estimated ranges are refined with the new MOS method,
described in Section 3.2. Finally, the Doppler frequencies are
estimated as explained in Section 3.3.

3.1 | Range estimation

The range estimation stage is grouped in two subsequent
stages. First, the partial covariance matrix and its eigenvalue
decomposition are obtained for the estimation algorithms.
Then, the target ranges, and their associated Doppler vectors,
are estimated with ESPRIT and LS, respectively.

3.1.1 | Partial covariance matrix

First, we remind that ESPRIT is a subspace‐based method that
requires the eigenvalue decomposition of the sample covari-
ance matrix. ESPRIT works with the estimates of basis vectors
of the underlying signal [18]. Therefore, the rank of the sample
covariance matrix has to be at least P, so that the signal basis
vectors contain the necessary information on all propagation
delays. Once this condition is satisfied, the signal basis vectors
form the corresponding Vandermonde matrix, which can be
derived through the Carathéodory parametrisation as shown in
[19]. The Kth‐order sample covariance matrix is computed as
follows

RK ¼
1
Mf

XMf

m¼1

1
Q � K

XQ−K

i¼1

cH i:iþK ;mðcH i:iþK ;mÞ
H

h i
ð11Þ

where RK ∈ CK�K with Q > K > P, and the subscript K is
used to indicate the size of the matrix. In words, Mf number of
covariance matrices are obtained with a sliding window of size
K. Then, all covariance matrices are averaged. This procedure
allows the rank of the sample covariance matrix to be more
than P, and possibly full‐rank, regardless of the rank of the
matrix cH . This rank requirement is crucial to provide robust
parameter estimation with ESPRIT [19]. The eigenvalue
decomposition of the matrix RK can be written as

RK ¼ VΛV H ð12Þ

where the matrixV ∈ CK�K includes all the eigenvectors whose
span is the signal subspace (with K � P supernumerary noise
eigenvectors), while the diagonal matrix Λ ∈ CK�K contains the
corresponding eigenvalues. The over‐estimated number of tar-
gets is defined as Po and it is set before the algorithm is executed.
ESPRIT algorithm is applied on the Po number of eigenvectors
associated with the Po largest eigenvalues where K > Po > P.
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3.1.2 | Parameter estimation

Now that the eigenvectors are obtained, the range of each
possible target can be estimated with the ESPRIT algorithm,
whose output is the vector defined as

bτ ¼ ESPRITðV 1:PoÞ ∈ RPo ð13Þ

whose elements are the estimated propagation delays. Let us
construct the matrix whose elements are the approximated
subcarrier‐path pairs

bD ¼

1 … 1

exp � j2π
1
QT
bτ1

� �

… exp � j2π
1
QT
bτPo

� �

⋮ ⋱ ⋮

exp � j2π
Q � 1
QT

bτ1
� �

… exp � j2π
Q � 1
QT

bτPo

� �

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

∈ CQ�Po

ð14Þ

In ideal conditions that is the propagation delays are esti-
mated without any errors due to noise, the matrix D is a sub‐
matrix of bD . Thus, the goal of the proposed MOS stage is to
find a set of column indices corresponding to the true paths.
After the matrix bD is built, the complex amplitudes corre-
sponding to its columns can be estimated with the LS method

bB ¼ bD
þ
cH ; ∈ CPo�Mf ð15Þ

where the entries in bB contain complex amplitude per slow‐
time index m as well as the Doppler phases that rotates over
slow‐time.

3.2 | Model Order Selection: range

The newMOSmethod relies on the orthogonality between basis
vectors corresponding to signal and noise subspaces. In the
MOS stage, the cisoids corresponding to the estimated propa-
gation delays in (14) are projected to the noise subspace so that
the angle between the constructed vector and the noise subspace
can be obtained for each possible target delay. The proposed
MOS metric corresponds to this angle, as illustrated in Figure 3.
If the constructed vector does not belong to the noise subspace,
the angle between its orthogonal projection and itself should be
high that is it better fits to the signal subspace, than the noise
subspace. On the other hand, if the constructed vector does not
correspond to a real‐path, the corresponding angle should be
small. Our target recovery algorithm tends to identify the indices
in which the upper‐mentioned metric is sufficiently high.

Therefore, depending on this metric, a given path can be dis-
carded, or kept for Doppler frequency estimation. In order to
project the estimated vectors onto the noise subspace, the noise
projection matrix is required.

3.2.1 | Full‐size covariance matrix: let us define
the following column vector, to obtain the noise
projection matrix

bh ¼
1
Mf

XMf

m¼1

bhm; ∈ CQ ð16Þ

In other words, bh is an estimate of the channel coefficients
for all subcarriers averaged over Mf frames. Then, another
sample covariance matrix can be defined

RQ ¼ bhbh
H
; ∈ CQ�Q ð17Þ

Notice that the maximum possible rank of the sample
covariance matrix RQ is 1, since only one vector is used to
obtain the covariance matrix. This is one of the reasons for the
averaging given in (16) (the other reason is to improve the SNR
for a more clear separation between the signal and noise
subspaces).

F I GURE 2 The block diagram of the proposed algorithm. The
numbers located at the upper‐left corner of each block, points to the
corresponding equation number of the given block
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3.2.2 | Detection Refinement

Finally, the noise projection matrix can be directly obtained
without any eigenvalue decomposition, since the rank of the
sample covariance matrix is 1. The constructed cisoids can be
projected to the noise subspace, as follows

G ¼ IQ �
RQ

‖bh‖2

 !

bD ; ∈ CQ�Po ð18Þ

where IQ is the identity matrix of size Q. The matrix inside the
first parenthesis corresponds to the noise projection matrix
obtained without eigenvalue decomposition. Thus, the col-
umns of the matrix G corresponds to the noise projections of
the cisoids in bD . The angle between the columns of G and bD
can be obtained as follows

θp ¼ arccos
bd pgp

‖bd p‖‖gp‖

 !

; p¼ 1 … Po ð19Þ

where θp is the p‐th entry of the vector defined as θ ∈ RPo . The
entries in θ are used as a metric to decide on the accuracy of an
estimation. Let κ be the set defined as

κ ≔ fp ; θp > T dg ð20Þ

where the cardinality of the set κ is ~P. Moreover, T d is a
numerically obtained threshold which mainly depends on the
SNR of the echo signals (see Section 6] for further discussion
about the threshold).

In other words, all entries in the vector θ are compared
with the threshold. If the entry θp is above the threshold, its
corresponding index p is placed in the decision set κ. The MOS
stage is finalised by keeping the reliable estimations

~τ ¼ bτκ; ∈R
~P ~D ¼ bD κ; ∈C

~P ~B ¼ bB κ;:; ∈R
~P �Mf ð21Þ

where the tilde symbol is used to indicate that the corre-
sponding vectors and matrices are obtained after the MOS
stage.

3.3 | Speed estimation

As mentioned previously, the Doppler information is available
in the rows of the matrix ~B. Let us define the vector ~f ∈ R

~P

whose entries are the estimated Doppler frequencies. Its en-
tries can be obtained by the following equality

~f p ¼
1
Mf

XMf

m¼1
�

∠~Bp;m
2πmTf

; p¼ 1;…; ~P ð22Þ

where ~f p is the p‐th entry of the vector ~f . However, this
method only works when there is only one Doppler frequency
at the corresponding range. In other words, the matrix model
given in (10), assumes that each row vector of B has only one
Doppler frequency for the corresponding propagation delay, or
equivalently the corresponding column in D. Clearly, this is not
a realistic assumption for real channels where there can be
multiple Doppler frequencies at each range. If there are mul-
tiple targets at a given range with different speeds, their con-
tributions to the rows of B, hence ~B, would be combined. This
additional and necessary condition requires an extension to the
algorithm.

4 | EXTENSION OF THE ALGORITHM

In this section, the focus is on a more realistic scenario where
multiple targets with different Doppler frequencies are present
at any given range. Thus, the Simple Doppler Estimation block
in Figure 2 is replaced by another layer of super‐resolution
parameter estimation. Before modelling the scenario and
explaining the algorithm, let us make the link between the
super‐resolution range and speed estimations. For range esti-
mation, the number of propagation delays are over‐estimated.
Then, their corresponding propagation delays are estimated
from the columns of cH . Afterwards, the matrix bD is con-
structed, with supernumerary propagation delays to select the
real‐paths with the new MOS method. Similarly, the number of
Doppler frequencies can be over‐estimated and their corre-
sponding Doppler frequencies can be estimated from ~B with
ESPRIT. The estimate of the matrix Ω, namely bΩ, can be
constructed based on the estimated Doppler frequencies to be
used in the MOS stage for speed. The corresponding block
diagram is given in Figure 4.

Without losing any generality, let us assume that there are L
number of objects in the environment, all at the same distance,
causing the same propagation delays τ0 ¼ τl, ∀l. Furthermore,
let us assume that the matrix bD is successfully constructed, and

F I GURE 3 The x and y axes represent the noise and signal subspaces,
respectively. The constructed vector bd p is projected to the noise subspace,
yielding the vector gp, and θp is used as the MOS metric
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bB is estimated. After the range MOS stage, the decision set κ
contains only one entry since all the objects cause the same
propagation delay. That entry corresponds to the index of the
column defined as ~d ¼ bD κ, such that

~d ¼ 1exp � j2π
1
QT

τ0
� �

… exp � j2π
Q � 1
QT

τ0
� �� �T

∈ CQ ð23Þ

Similarly, ~b ¼ ð~Bκ;:Þ
T is the column vector obtained after

the range MOS (21), and its entries are

~bm ¼∑L
l¼1αlexpð� j2πf lT f ðm � 1ÞÞ; m¼ 1…Mf ð24Þ

In other words, the column vector ~b contains the sum of
different Doppler cisoids, since all objects are located at the
same range. Clearly, the equation given in (22) cannot be used
to estimate the frequencies in (24).

As mentioned previously, in this section it is assumed
that all the targets cause the same propagation delays.
Therefore, the speed estimation and MOS stages will be
explained only on the column vector ~b. However, in reality,
there can be multiple true ranges in the channel. In that
case, the speed estimation and MOS stages will be repeated
for each column of the matrix ð~BÞT that is for each unique
range, hence columns of ~D.

4.1 | Speed estimation

Let us define the covariance matrix used for the speed
estimation

RLo ¼
1

Mf � Lo
∑Mf � Lo

i¼1
~bi:iþLoð

~bi:iþLoÞ
H

h i
∈ CLo�Lo ð25Þ

where the value of Lo should satisfy the following condition to
make sure that RLo satisfies the rank condition: Lo > Mf/2. The
eigenvalue decomposition of the matrix RLo can be written as

RLo ¼ VΨV
H ð26Þ

where the matrix V ∈ CLo�Lo contains the eigenvectors associ-
ated with the eigenvalues in the diagonal matrix Ψ ∈ CLo�Lo .
Notice that, the covariance matrix defined in (25) and its eigen-
value decomposition in (26) are the Doppler frequency coun-
terparts of (11) and (12), respectively. Therefore, the columns of
the matrix V can be used to estimate the Doppler frequencies
withESPRIT. In contrast to the range estimation, all the columns
of the matrix V are used, since Lo is already small due to the
restrictions on Mf. Therefore Lo is also the over‐estimated
number of Doppler frequencies obtained through ESPRIT

bf ¼ ESPRITðVÞ; ∈ RLo ð27Þ

Moreover, the matrix bΩ ∈ CLo�Mf can be built, which is
the Doppler frequency counter‐part of bD , and its rows are
defined as

bωl;: ¼ 1 exp � j2πbf lT f

� �
… exp � j2πbf lðMf � 1ÞTf

�h i
;

∈ CMf

where bωl;: is the l‐th row of bΩ. Finally, the amplitude of each
Doppler cisoid can be estimated with LS

bα ¼ ð bΩ
T
Þ
þ~b;∈ CLo ð28Þ

where the entries in vector bα are the complex amplitudes per
estimated Doppler frequency.

4.2 | Model Order Selection: speed

In order to refine the estimated Doppler frequencies, one last
covariance matrix is defined as follows

RMf ¼
~b~b

H
; ∈CMf�Mf ð29Þ

F I GURE 4 The block diagram of the proposed algorithm. The
numbers located at the upper‐left corner of each block, points to the
corresponding equation number of the given block
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where RMf is rank 1. Hence, similar to (17]) and (18]), the
Doppler cisoids can be projected to the noise subspace as
follows

G ¼ IMf �
RMf

‖~b‖2

� �

Diagð|bα|Þ bΩ
� �T

; ∈CMf�Lo ð30Þ

where IMf is the identity matrix of size Mf and |bα| is the
vector whose entries are the absolute values of the entries
in bα. Similarly to the range MOS stage, the MOS metric
can be obtained through the definition given in (19) that
is, by computing the angle between columns of G and bΩ

T
.

In order to decide whether the path l is reliable or not,
each angle is compared against a numerically obtained
threshold as shown in (20). Once the decision set with
cardinality ~L is obtained, the speed MOS stage yields the
vectors ~f and ~α.

Moreover, obtaining the amplitude and Doppler frequency
pairs for a given range allows to filter out the static clutter. For
human movement detection, the static clutter creates a crucial
problem since the energy of the clutter echoes is usually higher
than the echoes from humans [20]. Thus, human echoes can be
concealed by the static clutter echoes. Once the amplitude of
the clutter is estimated in (29), its contribution can be removed
from the signal given in (24), and the estimation stages,
described between (25) and (29), can be repeated to increase
the estimation accuracy of the remaining, non‐clutter objects.
Finally, the dynamic targets in most indoor scenarios can be
characterised by their micro‐Doppler signatures on the range‐
Doppler maps [21]. However, the considered integration time
in this work roughly corresponds to 6 � 8 ms, which is quite
low for extracting the micro‐Doppler information.

5 | COMPUTATIONAL COMPLEXITY
ANALYSIS AND PARAMETER
DEFINITIONS

In this section, the computational complexity of the proposed
algorithm and MOS method is analysed by mainly focussing on
the most resource demanding computations, such as matrix
multiplications, eigenvalue decompositions, and pseudo‐
inverses. Moreover, comments on how to fix the parameters of
the algorithm are provided. Table 2 shows the computational
complexity for the extended version of the algorithm. The first
and second columns of the table correspond to the output of
the computation and the equation where the output is defined,
respectively. The third column indicates the time complexities
with Big‐O notation [22,23]. The last column shows the esti-
mated number of operations for fixed values of the parameters
(e.g., P0, K, Lo). On the other hand, the processing time in
seconds can also be obtained to assess the complexity of the
algorithm. However, such a study would be a very unique case
since the time complexity depends on the implementation level
(MATLAB, C/Cþþ, HDL, etc.), type of the processing unit,
and many variables. Therefore, the complexity analysis is only
focused on the Big‐O notation. In the remainder of this sec-
tion, the range‐group refers to the computations that appear in
the range estimation and MOS stages, which are the first seven
rows of Table 2. Similarly, the speed‐group refers to the last
seven rows, hence the speed estimation and MOS stages.

First of all, the condition Q � K > K has to be satisfied so
that the rank requirement of RK in (11) is also satisfied.
However, if Po > K then the eigenvectors in (12) will not have
the Vandermonde structure, and the propagation delays will
not be estimated accurately [19]. The time complexity of RQ is
determined only by the number of subcarriers Q. The eigen-
vectors in V are obtained from the eigenvalue decomposition
of the covariance matrix RK. Hence, the corresponding
complexity is proportional only to the parameter K. The en-
tries in the vector bτ are estimated by the ESPRIT algorithm
which involves an LS estimation and an eigenvalue decom-
position. Hence, the complexity of bτ depends on K and the
over‐estimated number of propagation delays Po. Notice that,
setting Po < P entails miss detections. On the other hand,
setting Po to a high value for example, Po ¼ 200, is not a
realistic assumption since it implicitly means that 200 unique
ranges are expected in the environment. This also increases the
time consumption in MOS step since 200 range estimations
have to be tested. Moreover, the matrix bB is obtained through
the LS algorithm, and the parameters that determines its
complexity are Po and Mf. Finally, the complexity of the matrix
multiplication for the noise projection is mainly determined by
Q and Po.

The processes that appear in the range‐group are
equivalent to the processes that appear in the speed‐group
with only two differences. First, the size of the matrices and
vectors in the speed‐group are much smaller than their
counterparts in the range‐group. In the speed‐group, the
number of available measurements Mf determines the size of
the matrices and vectors, and Mf is assumed to be a

TABLE 2 Complexity of different algorithms

Equation Time Complexity Number of Multiplications

RK (11) OððQ � KÞK2Mf Þ
109.06

RQ (17) OðQ2Þ 106.02

V (12) OðK3Þ 107.52

bτ (13) OðP3o þ P2oKÞ 105.93

bB (15) OðPoQðPo þMf ÞÞ
106.5

G (18) OðQ2PoÞ 107.7

RLo
(25) Oð~PðMf � LoÞL2oÞ 104.31

RMf
(29) Oð~PM2

f Þ
104.01

V (26) Oð~PL3oÞ 104.31

bf (27) Oð~PL3oÞ 104.31

bα (28) Oð~PðL3o þ L2oMf ÞÞ
104.79

G (30) Oð~PM2
f LoÞ 104.91
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relatively small number for example Mf ≤ 32. Second, all the
computations in the speed‐group are repeated for each
uniquely estimated propagation delay that is for each column
of ~D. Therefore, their complexities scale with the parameter
~P.

In order to quantitatively compare the complexities, the
following values are set based on Table 1 for all the upper‐
mentioned parameters: Q ¼ 1024, K ¼ 320, Mf ¼ 16, Lo ¼ 8
and Po ¼ 48. Finally, the number of unique ranges is set to
~P ¼ 40 for demonstrative purposes. There are a few observa-
tions that can be made regarding the complexities.

� The three most demanding computations are in the range‐
group. Since Q ≈ 103, it is not a surprise that the three most
demanding computations are functions of Q as well.

� Since Q is not controlled by the PR designer, and K is set
automatically as a function of Q, the only solution to reduce
the time consumption is to optimise the corresponding
computations.

� If the signals transmitted by the AP has lower bandwidth, Q
will be a smaller value, as shown in Table 1. Hence, the
complexity of the corresponding computations will be
lowered at the cost of losing estimation accuracy.

� Even though the computations in the speed‐group are
repeated ~P times, the range‐group still requires most of the
resources, which means that the main optimization is
required in the range‐group.

� Since Mf and hence Lo are limited by the nature of Wi‐Fi
signals. Therefore, the only parameter that can significantly
vary in the speed‐group is ~P.

6 | NUMERICAL ANALYSIS

This section is divided into two subsections. First subsection
aims at showing the statistical consistency of the proposed
MOS metric. Moreover, the threshold defined in (20) and its
relation to SNR conditions are also discussed. The second
subsection starts by defining the various scenarios that will be
used to compare the proposed MOS method with other MOS
methods.

6.1 | MOS metric and threshold

In order to demonstrate the statistical relevance of the
proposed metric and to find the related threshold, a target is
simulated assuming a varying distance and the system pa-
rameters are summarised in Table 3. For each target distance
1000 realisations are executed. After each realization, the
entries in θ ∈ RPo (19) are sorted in decreasing order. Since
there is only one target, θ1 and θ2 are the metrics corre-
sponding to the real and non‐real paths. In other words, θ1
and θ2 are the angles between the constructed vectors
corresponding to the real and non‐real paths respectively,
and their orthogonal projections on the noise subspace.
More importantly, θ2 corresponds to the spurious noise

target whose constructed vector is closest to the signal
subspace since the entries in θ are sorted.

In Figure 5, the probability density functions correspond-
ing to θ1 and θ2 parameters are shown for a fixed distance and
different Mf values. When the number of available measure-
mentsMf increases, the sample covariance matrix in (11) will be
closer to its noise‐free counter‐part due to the averaging. This
has two outcomes: i) the estimation accuracy is improved; ii)
the proposed MOS method becomes more reliable. The
standard deviation of the metrics corresponding to the non‐
real paths is very small that is the metric is well concentrated
around its mean for spurious noise targets. On the other hand,
the underlying distribution of the metric corresponding to the
real‐path is highly affected by the variation of Mf: when Mf
increases, standard deviation decreases and mean increases,
meaning that the reliability of the metric increases along with
the estimation accuracy.

In Figure 6, 95% confidence regions of the underlying
normal distributions are shown for the θ1 values. On the other
hand, only the means are shown for the non‐real paths, since
their variations are very small. It is clear that the threshold for
the metric can be set to different values as a function of the
detected target distance for example, if the estimated target
distance is below 15 m, the threshold can be set to 20°, else it
can be set to 10°. Moreover, regardless of the number of
measurements and the target distance, θ2 does not vary
significantly since the thermal noise power is constant for a
given signal bandwidth. Therefore, the metric corresponding
to the non‐real paths are close to zero. However, once the
target distance is increased, the standard deviation corre-
sponding to the target's underlying normal distribution in-
creases. Since the estimation accuracy is reduced, the
constructed vectors corresponding to the real‐paths start to be
misaligned with the signal subspace.

Therefore, based on our analysis, three conclusions can
be made regarding the proposed metric: i) the threshold
based decision making gets more reliable as SNR increases;
ii) for low but realistic values of Mf, the proposed metric is
reliable as long as the target distance is below 25 m; iii) the
gap between the metrics of real and non‐real paths widens
as SNR increases, which provides a sufficient margin for
decision errors and shows the statistical consistency of the
proposed metric.

The accuracy of the proposed algorithm is compared with
the DFT‐based processing, and the results are shown in
Figure 7. In this scenario, three targets are simulated: two of
them 5 m away with 1 and 2 m/s speeds, the third target 6 m
away with 2 m/s speed. For the DFT‐based radar processing,
2000 OFDM symbols are used. Hence, the integration time is
roughly 28 ms, corresponding to 35 Hz Doppler frequency
resolution, or equivalently, 1 m/s speed resolution. Moreover,
Blackman window is applied on Doppler profiles in order to
suppress the sidelobes, while also increasing the width of the
mainlobe. First of all, the accuracy of the DFT‐based pro-
cessing is poor since range and speed accuracies are limited to
1.5 m and 1 m/s, respectively. Moreover, since the Blackman
window is applied, the increased mainlobe width of the targets
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cause the detection algorithm to detect additional targets. On
the other hand, the proposed algorithm shows small errors on
the range and speed estimations that is, sub‐metres and sub‐
m/s accuracies are reached.

The scenarios illustrated in Figure 8 and summarised in
Table 4 are considered. In Figure 8, ΔR and ΔV represent the
relative range and speed difference between the targets,
respectively. The PR/AP pair is located at the origin, hence a
quasi‐monostatic radar geometry is considered. Moreover, the
reference range of the first target is denoted by R0. The first
two scenarios aim to identify the minimum required ΔR and
ΔV between two targets such that they can be resolved at the
fixed reference range R0. The third and fourth scenarios aim to
show the impact of SNR on the estimation accuracy by only
varying the reference range R0. The accuracy of the algorithm

is measured by computing the Root Mean Square Error
(RMSE) of the range and speed estimations. The estimation
errors are averaged over 1000 realisations of the parameters.
The simulation parameters are selected to comply with the
802.11ax standard, and they are summarised in Table 3. The
radar cross section (RCS) of the targets is set to ‐4 dBsm to
emulate the reflectivity of humans. Finally, notation A1(1,10),
mainly used in the captions, indicates that the target A1 is
moving at 1 m/s speed and located at 10 m range.

In Figure 9, the proposed metric is compared with the AIC
[15] and eigenvalue thresholding [16] as a function of the
number of targets. The distance between any two targets is
2 m, roughly corresponding to the DFT‐based range resolu-
tion. First of all, as new targets are included in the simulation,
the overall estimation accuracy is reduced since the targets at
further distances have relatively lower SNR. In other words, if
the SNR of a target echo is weak, its propagation delay will be
estimated with considerably higher errors and the corre-
sponding vector in (14) will be poorly constructed. Since our
target recovery algorithm relies on the angle between the
constructed vector and its orthogonal projection on the noise
subspace, a poorly constructed vector yields a miss detection
that is the corresponding target will be considered as noise.
However, on average 9 out of 12 targets are still detected in the
worst case. On the other hand, the eigenvalues of the covari-
ance matrix RK, given in (11), do not hold the required in-
formation about the signal and noise subspaces explaining why
the eigen‐thresholding method shows such poor statistical
performance.

In Figure 10, the performance of the three MOS methods
are illustrated as a function of ΔR and ΔV. When the first
scenario is considered, the AIC and the proposed metric follow
the same trend. The targets cannot be resolved due to the poor

TABLE 3 Parameters used in the numerical analysis

Parameter Value Unit

Carrier frequency fc 5.6 GHz

Bandwidth B 80 MHz

Number of subcarriers Q 1024

CP Length Qcp 64

OFDM symbol duration T 13.6 μs

Number of OFDM symbols in one frame Ms 40

Number of frames Mf 16

Transmit power Ptx 20 dBm

Target RCS σ ‐4 dBsm

Covariance matrix size K 320

Over‐estimated number of unique ranges Po 32

Over‐estimated number of speeds Lo 8

F I GURE 5 The PDFs of θ1 and θ2 are shown when Mf ¼ 16 and
Mf ¼ 256 values, even though the latter one is an unrealistic value when Wi‐
Fi standard is considered. The target distance is 15 m

F I GURE 6 The horizontal axis above the graph corresponds to the
theoretical SNR for the given distance and Mf values
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SNR at the reference distance when ΔR < 0.5 m. Once ΔR ≥
0.5 m, both the AIC and the proposed MOS method correctly
estimate the number of real‐paths. The eigen‐thresholding
performs very poorly because the eigen‐structure of the
covariance matrix RK is altered and the estimated noise
threshold is too large. In the second scenario, the eigen‐
thresholding requires ΔV ≥ 1.2 m/s to find the correct model
order due to the same reasoning as before. However, both AIC
and the proposed metric can find the correct model order as
long as ΔV ≥ 0.5 m/s at the given reference distance. We
remind that AIC estimates the quality of each candidate model,
relative to the other candidate models to select the best fit. To

do so, RSS is computed and an AIC value is obtained for each
candidate model. Once all AIC values are obtained, the one
with the smallest value is selected as the best fit. On the other
hand, the proposed MOS method evaluates each possible path
independent from other paths by executing the proposed al-
gorithm only once. Finally, if the proposed MOS method fails
to detect the true number of targets during the range stage, this
error can have two outcomes. If it is a false detection, the MOS
during the speed stage can still remove that particular target.
Else, it is a miss detection, and the target will not be detected
by the algorithm. However, if the proposed MOS method fails
during the speed stage, there is has no chance for recovering/
removing the targets.

The range and speed estimation accuracy of the algorithm
are provided for the first scenario in Figure 11. Whether the
MOS stage is used or not, once ΔR > 60 cm, the two targets
are resolvable with high accuracy. If the MOS stage is not used,
the number of targets to be estimated is directly provided to
the estimator that is, Po is set to two in (13). Therefore, when
ΔR < 60 cm, the algorithm estimates two different ranges
regardless of the resolvability of the targets. However, there is
only one range that can be reliably estimated due to the
presence of the noise: the combined range of the two targets.
Even though the estimation of the combined range is accurate,
the second estimated range is incorrect due to the SNR con-
ditions, which increases the overall estimation error. On the
other hand, the proposed MOS method identifies only one
resolvable target, and only its range is estimated. Moreover,
since the Doppler estimation is performed for the targets
identified during the range estimation, the quality of the
Doppler estimation directly depends on the quality of the
range estimation. Therefore the Doppler estimation RMSE
follows the same trends as the range estimation RMSE.
Furthermore, the range estimation RMSE can be compared to
the Cramer Rao Lower Bound (CRLB). It should be reminded
that the CRLB shows the accuracy for separately estimating the

F I GURE 7 The target detection output of the DFT‐based processing
is compared to the proposed algorithm. Blackman window is applied on
Doppler dimension to suppress target leakage

F I GURE 8 Pseudo range‐speed maps for the simulation scenarios

TABLE 4 Summary of the scenarios

Scenario Objects R0 ΔR ΔV

1 A1 & B1 10 m Varies 0

2 A1 & A2 10 m 0 Varies

3 A1 & B1 Varies Fixed 0

4 A1 & A2 Varies 0 Fixed

F I GURE 9 Each target is separated by 2 m distance, and all targets are
stationary
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two ranges, while the proposed algorithm estimates only one
range when ΔR < 60 cm.

In Figure 12, the numerical results are shown for the
second scenario. The range error is constant since there is only
one fixed range, R0, to be estimated. However, even though
the range estimation is highly accurate, the speed estimation
can still perform poorly due to the small number of available
measurements Mf. Furthermore, once ΔV > 0.5 m/s the al-
gorithm correctly estimates the speed of the two targets, in-
dependent from the MOS stage for speed. When ΔV ≤ 0.5 m/
s and if the MOS stage is not used, the speed estimation RMSE
is high since only the combined speed of the two targets can be
reliably estimated at low ΔV. On the other hand, when the
estimated speeds are refined, the RMSE shows similar per-
formance to scenario 1. In other words, when the two targets
are moving at similar speeds at the same range, the MOS stage
identifies only one target speed which can be reliably estimated.

In Figure 13, the numerical results for the scenario three
are plotted. The range estimation errors are very small due to
the reduced path loss and increased SNR at closer distances.
However, beyond 24 m, range and speed estimations are poor
due to the decreased SNR as well as the reduced reliability of
the metric. In Figure 14, the numerical results for the fourth
scenario are plotted. The range estimation does not fail for the
simulated object distances since there is only one range to
estimate, namely R0. However, due to the reduced SNR and
low number of available measurements, the speed estimation
accuracy is poor beyond 23‐24 m.

7 | EXPERIMENTAL SETUP AND
RESULTS

The Software Defined Radios (SDRs) are widely used in the
academy and industry to validate signal processing algorithms
without any dedicated hardware. Essentially, an SDR hands
over the received baseband samples to a host machine for
offline processing. One of the most widely used SDR is the
Universal Software Radio Peripheral (USRP) [24]. In order to
reach high sampling rates, such as 80‐160 Msps, overflows at

the receiver and underflows at the transmitter are the main
bottlenecks that brings latency. The main cause of these issues
is the so‐called context switching. It allows a single Central
Processing Unit (CPU), possibly with multiple cores, to be
shared by multiple processes which brings additional latencies.
The Data Plane Development Kit (DPDK) [25] is specifically
designed to accelerate data processing on the CPUs. In short,
DPDK allows us to dedicate multiple cores to specific pro-
cesses which enables us to stream at higher sampling rates. In
our recent work [17,26], we have shown that up‐to six USRPs
can be connected to one host machine equipped with a 12‐core
CPU, 64 GB RAM, and 6 � 10 Gbe Ethernet connections, and
the experiments can be done without any interruptions at 100
Msps sampling rate.

In Figure 15, the experimental setup is shown, which is
composed of two USRPs: one for the transmitter (TX) and

F I GURE 1 0 Upper graph, scenario 1: A1(1,10) and B1(1,10þΔR).
Lower graph, scenario 2: A1(0.5, 10) and A2(0.5þΔV, 10)

F I GURE 1 1 R0 ¼ 10m, A1(1,R0) and B1(1,R0þΔR)

F I GURE 1 2 R0 ¼ 10m, A1(0.5, R0) and A2(0.5þΔV, R0)
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the other for the receiver (RX). The same parameters given
in Table 3 are used in the experiments as well. The mea-
surements are obtained in a 4 � 8 m rectangular room
when two individuals are walking, emulating a typical
household scenario where SNR conditions are satisfied since
the TX/RX are inside the same room, and thanks to the
short ranges. In order to identify the number of targets with
the proposed MOS method, the thresholds given in Figure 5
are used with respect to the estimated target ranges. Finally,
a target on the RDM is denoted by its speed/range vector:
(speed [m/s], range[m]).

The goal of the first experiment is to illustrate the detri-
mental effect caused by the static clutter when two individuals
are walking on a straight line in opposite directions. Figure 16
illustrates the range‐speed map obtained at the output of the
radar processing. The estimated amplitudes in (28),

corresponding to the detected targets are also shown. The
ground truth of the two targets are plotted with plus signs
while the dots correspond to the detected targets. The static
clutter is visible on the vertical axis around 0 m/s. Due to the
estimation errors and small vibrations, some of the clutter
components appear with non‐zero velocities. The person who
is moving away that is the plus sign at (� 0.75, 3.15), is detected
with speed and range errors of 0.1 m/s and 0.8 m, respectively.
The target detected at (� 0.9, 5.4) corresponds to a multipath
reflection of the target at (� 0.75, 3.15). However, the person
who is approaching towards the radar setup that is, the plus
sign at (1.1, 2), is not detected at all, while its multipath
component is detected at (1.2, 5.95). Since the signals reflected
from the static clutter have significantly higher magnitude than
the signals reflected from the individuals, some of the targets
are missed or removed during the MOS stage. In this particular
case, the target at (1.1, 2) is closer to the radar system. How-
ever, the static clutter around the same range of this target that
is, the target at (0.2, 2.1), has a stronger magnitude as well
which yields a miss detection. Therefore, the estimation ac-
curacy is significantly reduced due to the presence of the strong
static clutter.

As explained in Section 4, once a target with zero (or close‐
to‐zero) speed is detected during the speed estimation stages,
its contribution can be removed from the measured signal, and
the estimation stages can be repeated to increase the robust-
ness of the estimations. The second experiment, shown in
Figure 17, is identical to the first experiment, except that up-
per‐mentioned clutter removal is used to improve the esti-
mation accuracy. After the disturbance caused by the static
clutter is removed, the range and speed errors are now below
0.5 m and 0.5 m/s for both targets, respectively. Still the
experimental results do not achieve the performance expected
from the numerical results because i) the numerical analysis are
provided after multiple realisations; ii) when the numerical
analysis are performed, the non‐idealities caused by the hard-
ware are not considered. However, it is well‐known that non‐
idealities such as phase noise, have significant impact on
OFDM modulated signals and subspace‐based estimation
methods [27]. Moreover, since the static clutter is removed,
additional multipath components appear along the range pro-
file of the two targets, causing the so‐called ghost targets. We
remind that the ghost targets are high‐order reflections caused
by the real targets in the environment, which is common when
indoor scenarios are considered. However, the ghost targets
can be eliminated by using a tracking algorithm [28] or a multi‐
static radar configuration [29].

8 | CONCLUSION

This work aims at designing a new Passive Radar based on
802.11ax compliant preambles for indoor human movement
detection. A new method is proposed to determine the number
of resolvable targets based on which the robust range and
speed estimations can be performed with sub‐metre and sub‐
m/s accuracy, respectively.

F I GURE 1 3 ΔR ¼ 1m, R0 varies, A1(1, R0) and B1(1, R0þΔR)

F I GURE 1 4 ΔV ¼ 0.6 m/s, R0 varies, A1(1, R0) and A2(1þΔV, R0)
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The statistical consistency of the proposed MOS method
is shown to be reliable for correctly estimating the number
of targets. Moreover, when closely spaced targets are simu-
lated in typical indoor SNR conditions, the proposed algo-
rithm is shown to be accurate enough to detect human
movement.

Highest computational resources are required by the range‐
group due to large matrices involved in the processing. How-
ever, parallel computation can reduce the consumption time of
the related computations.

Finally, the algorithm is validated with a state‐of‐the‐art
SDR test‐bench. There are still open challenges that require
future work: the hardware non‐idealities that significantly
reduce the estimation accuracy and the multipath components
which cause ghost targets on a range‐speed map.
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