Ruin-based risk measures in discrete-time risk models

Hélène Cossettea, Etienne Marceaua,*, Julien Trufinb, Pierre Zuyderhoffb

a École d’actuariat, Université Laval, Québec, Canada
b Département de Mathématiques, Université Libre de Bruxelles (ULB), Bruxelles, Belgique, Belgium

\textbf{Abstract}

For an insurance company, effective risk management requires an appropriate measurement of the risk associated with an insurance portfolio. The objective of the present paper is to study properties of ruin-based risk measures defined within discrete-time risk models under a different perspective at the frontier of the theory of risk measures and ruin theory. Ruin theory is a convenient framework to assess the riskiness of an insurance business. We present and examine desirable properties of ruin-based risk measures. Applications within the classical discrete-time risk model and extensions allowing temporal dependence are investigated. The impact of the temporal dependence on ruin-based risk measures within those different risk models is also studied. We discuss capital allocation based on Euler’s principle for homogeneous and subadditive ruin-based risk measures.

*Correspondence to: École d’actuariat, Université Laval, Québec, Canada.
E-mail address: etienne.marceau@act.ulaval.ca (E. Marceau).

1. Introduction and motivation

For an insurance company, effective risk management requires an appropriate measurement of the risk associated with the insurance portfolio. In actuarial science, such assessment is traditionally done with tools developed in the context of ruin theory. One of the main objectives of ruin theory is to evaluate the risk of an insurance portfolio within long-term dynamic risk models. These risk models describe the evolution over several time periods of the surplus associated with an insurance portfolio, either on a discrete or a continuous time basis. In a ruin context, the risk of a portfolio is quantified in terms of ruin-based risk quantities, based on the possibility that the portfolio becomes insolvent. One important objective of ruin theory is the study of ruin probabilities over finite and infinite-time horizons. Standard references on ruin theory include Gerber (1979), Rolski et al. (1999), Asmussen and Albrecher (2010), Dickson (2016).

The risk of an insurance portfolio can also be assessed through risk measures. Risk measures are notably designed to determine minimum capital reserves that financial institutions, such as insurance companies, must maintain, in order to ensure their financial stability. Initially, risk measures were defined over a fixed (and short) period of time. A large body of literature has been devoted to an axiomatic theory of risk measures. Artzner et al. (1999) introduced the class of coherent risk measures. Subsequently, Föllmer and Schied (2002) and Frittelli and Giannin (2002) extended the class of coherent risk measures by defining convex risk measures. In the context of this axiomatic theory, risk measures are initially considered to be static. Except the predefined time horizon, they do not involve any temporal dimension when assessing risk. They are defined in terms of random variables (rvs) or random processes corresponding, for instance, to financial losses or dividend processes over a given time horizon. There also exist risk measures assessing the risk at different points in time. These risk measures are designated by the rather general expression “dynamic risk measures”, and the study of their time-consistency is abundant in the literature (see for instance Cheridito and Kupper, 2011).

Ruin-based risk measures considered in this paper are defined as a map from random processes to the set of non-negative real numbers. Given that they are static in the sense discussed above, investigating their time-consistency is not relevant here. However, according to the second of four approaches mentioned in Cherny (2009), the risk measures we investigate in this paper can also be qualified as being dynamic. This second approach was considered in different ways in the literature. In an application of the study of coherent risk measures for unbounded stochastic processes, Cheridito et al. (2005) briefly discuss (in Section 5.1) a VaR-type risk measure based on the infinite-time ruin probability itself. Frittelli and Scandolo (2006) propose a generalization of the concepts of convex and coherent risk measures to a multiperiod setting, with a careful examination of the axiom of translation invariance. Laeven and Stadje (2014) analyze, from the theoretical and the computational perspectives, dynamic convex risk measures for general semi-martingale models. Within the continuous-time compound Poisson risk model and consistent with Cheridito et al. (2005), Trufin et al. (2011) investigate, as a function of the claim severity rv, the smallest amount of capital that can ensure that the ultimate ruin probability is less than...
some acceptance level, Cossette and Marceau (2013) examine the capital assessment for an insurance portfolio within the classical discrete-time risk model and within two of its extensions: the classical discrete-time risk model with dependent lines of business and the classical discrete-time risk model with random income. They use finite-time ruin probabilities to define Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR) dynamic risk measures over a finite time horizon. They examine the riskiness of the portfolio via the dynamic TVaR.

Following Trufin et al. (2011), Gatto and Baumgartner (2014) focus on the computation of the so-called Value at Ruin and the Tail Value at Ruin, defined within the context of the continuous-time classical compound Poisson risk model perturbed by a Wiener process with infinite-time horizon, using the saddlepoint approximation. Note that Jiang (2015) presents a survey of recently proposed risk measures defined from continuous-time risk processes such as the ones analyzed by Trufin et al. (2011) and Mitric and Trufin (2016). Jiang (2015) also proposes four new measures based on continuous-time risk processes. Specifically, Jiang (2015) analyzes properties of a risk measure defined as the reciprocal of the adjustment coefficient within Euler’s principle. Capital allocation is useful in the analysis and subadditive ruin-based risk measure is capital allocation using Euler’s principle. Risk assessment of an insurance portfolio to a positive real number. Ruin-based risk measures have the nice advantage of being defined in a setting at the frontier of the theory of risk measures and ruin theory. A well-known example of ruin-based risk measures is the smallest initial capital that needs to be allocated to a portfolio such that the ruin probability does not exceed a pre-determined value, say 5%, 0.5%, or 0.1%. This procedure has been at the core of ruin theory initiated by the Scandinavian actuaries at the beginning of the twentieth century, in particular Lundberg (1903) and Cramér (1930). Risk assessment of an insurance portfolio based on ruin-based risk measures formalizes this rationale. It provides a rigorous approach that lies between the theory of risk measures and ruin theory. It also provides a springboard to the development of new results, and insights from ruin theory. Another interesting application of a positive homogeneous and subadditive ruin-based risk measure is capital allocation using Euler’s principle. Capital allocation is useful in the analysis and the computation of the contributions of the components (e.g., lines of business), represented by risk processes, to the riskiness of an insurance portfolio.

The paper is structured as follows. In Section 2, we present definitions and notations used throughout the present paper. In Section 3, we discuss desirable properties for a ruin-based risk measure. In Section 4, we consider examples of ruin-based risk measures and examine their properties. In Section 5, we examine the application of ruin-based risk measures within the classical discrete-time risk model, including special cases such as the compound binomial risk model. In Section 6, we study the application of ruin-based risk measures within discrete-time risk models with temporal dependence. In Section 7, we deal with capital allocation based on Euler’s principle for homogeneous and subadditive ruin-based risk measures.

2. Definitions and notations

We consider a discrete-time risk model for an insurance portfolio defined on the time index $\mathbb{N} = \{0, 1, 2, \ldots\}$. The discrete-time risk model is defined by the discrete-time risk process $X = \{X_k, k \in \mathbb{N}_+\}$, with $\mathbb{N}_+ = \{1, 2, \ldots\}$ and where X_k is the net losses \mathbb{R} of the portfolio occurring in period $k \in \mathbb{N}_+$ and has the same distribution as the rv X, i.e., $X_k \sim X, k \in \mathbb{N}_+$. The cumulative distribution function (cdf) of the rv X is denoted by F_X, and its quantile function is defined by $F_X^{-1}(u) = \inf\{x \in \mathbb{R}, F_X(x) \geq u\}, u \in (0, 1)$. When X forms a sequence of independent and identically distributed (iid) rvs, the corresponding risk model is the classical (De Finetti) discrete-time risk model (see, e.g., De Finetti, 1957, Bühlmann, 2007, and Dickson, 2016). A review of discrete-time risk models can be found in the study by Li et al. (2009).

The objective for an actuary or a quantitative risk manager is to assess the riskiness of a portfolio with a ruin-based risk measure ζ.

Definition 1

A ruin-based risk measure ζ is a functional mapping from a risk process X to \mathbb{R}_+.

From a quantitative risk management perspective, it can be relevant to determine the capital for an insurance portfolio at the initial time by assessing its stochastic behavior, not only for a fixed period of time, but also over a finite or an infinite number of subsequent periods. The common rationale behind Definition 1 of ζ is the evaluation of the capital derived from the ruin-based risk measure ζ, assuming that the structure of the portfolio remains unchanged over a finite number of periods. Note also that we assume that the risk-free interest rate is equal to zero, because we do not aim to assess the riskiness associated with stochastic interest rates. To motivate the definitions of these ruin-based risk measures, we first briefly review the specific ruin theory terminology. Second, in Section 3, we discuss the desirable properties for a ruin-based risk measure ζ. Examples of ruin-based risk measures ζ are presented and treated in detail in Section 4.

In ruin theory, $U = \{U_k, k \in \mathbb{N}\}$ is defined as the (cumulative) surplus (or capital) process of the portfolio, U_0 corresponding to the surplus level at period $k \in \mathbb{N}$. For $k = 0$, $U_0 = u \in \mathbb{R}_+$ is the initial amount of capital allocated to the portfolio. Then, in period $k \in \mathbb{N}_+$, the surplus level at time k is $U_k = U_{k-1} - X_k = u - \sum_{j=1}^{k} X_j$. The time of ruin τ is defined as $\inf\{k \in \mathbb{N}_+, U_k < 0\}$, if U goes below 0 at least once, or ∞, if U never goes below 0. The finite-time ruin probability over n periods is then given by

$$\psi(u, n) = Pr(\tau \leq n | U_0 = u),$$

for $u \in \mathbb{R}_+$. The infinite-time ruin probability is $\psi(u) = \lim_{n \to \infty} \psi(u, n), u \in \mathbb{R}_+$. Note that $\psi(u, n) = 1$ and $\psi(u) = 1$, for $u < 0$. Also, $\psi(u, n) \leq \psi(u)$, for $n \in \mathbb{N}_+$. To prevent ruin with certainty over an infinite-time horizon, the expectation of the net losses rv X has to be strictly negative, i.e., $E[X] < 0$, which is called the solvency condition.

The following alternative definition of $\psi(u, n)$ ($\psi(u)$) is more useful to define ruin-based risk measures. Let $Y = \{Y_k, k \in \mathbb{N}\}$ be a random walk with a negative drift and, eventually, with independent increments, where $Y_0 = 0$ and $Y_0 = \sum_{k=1}^{n} X_k$ corresponds to the cumulative sum of the net losses over the first k periods ($k \in \mathbb{N}_+$). The supremum process associated with the random walk Y is defined by $Z = \{Z_k, k \in \mathbb{N}\}$, where $Z_0 = 0$ and $Z_k = \max_{n=0, \ldots, k} Y_n$, with cdf F_{Z_k}, survival function F_{Z_k} (with $F_{Z_k}(x) = 1 - F_{Z_k}(x), x \in \mathbb{R}_+$), and quantile function $F_{Z_k}^{-1}$. An alternative definition of (1) of the finite-time ruin probability over n periods is then given by

$$\psi(u, n) = Pr(Z_n > u) = F_{Z_n}(u)$$

and can hence be studied through the behavior of the supremum Z_n of the random walk Y. Similarly, let $Z = \lim_{k \to \infty} Z_k = \max_{n=0} Y_n$, with cdf F_Z, survival function F_Z (with $F_Z(x) = 1 - F_Z(x), x \in \mathbb{R}_+$), and quantile function F_Z^{-1}. Consequently, the
Property 3 (Convexity). Let \(X \) and \(X' \) be two risk processes. A ruin-based risk measure \(\zeta \) is convex if \(\zeta(\alpha X + (1 - \alpha) X') \leq \alpha \zeta(X) + (1 - \alpha) \zeta(X') \), for all \(\alpha \in (0, 1) \).

Property 4 (Law Invariance). Let \(X \) and \(X' \) be two risk processes with the same distribution, i.e., \(X \sim X' \). A ruin-based risk measure \(\zeta \) is law invariant if \(\zeta(X) = \zeta(X') \).

By Definition 1, a ruin-based risk measure also needs to be consistent according to stochastic orders for stochastic processes. We briefly recall basic definitions of stochastic orders that will be useful in the following (see, e.g., Müller and Stoyan, 2002 and Shaked and Shanthikumar, 2007 for further details).

Definition 2 (Usual Stochastic Order).

1. **Usual univariate stochastic order.** Given two univariate rvs \(V \) and \(V' \), \(V \) precedes \(V' \) in the usual stochastic order, denoted \(V \preceq_{st} V' \), if
 \[
 F_{V}(x) \leq F_{V'}(x), \quad \text{for all } x \in \mathbb{R}. \tag{3}
 \]

2. **Usual multivariate stochastic order.** Given two vectors of \(n \) rvs \((V_1, \ldots, V_n) \) and \((V'_1, \ldots, V'_n) \), \((V_1, \ldots, V_n) \) precedes \((V'_1, \ldots, V'_n) \) in the usual multivariate stochastic order, denoted \((V_1, \ldots, V_n) \preceq_{st} (V'_1, \ldots, V'_n) \), if
 \[
 \mathbb{E}[\phi(V_1, \ldots, V_n)] \leq \mathbb{E}[\phi(V'_1, \ldots, V'_n)], \quad \text{for any non-decreasing function } \phi \text{ on } \mathbb{R}^n \tag{4}
 \]
 such that the expectations exist.

3. **Usual stochastic order for stochastic processes.** Given two stochastic processes \(\mathcal{V} = \{V_k, k \in \mathbb{N}_+\} \) and \(\mathcal{V}' = \{V'_k, k \in \mathbb{N}_+\} \), \(\mathcal{V} \) precedes \(\mathcal{V}' \) in the usual stochastic order for stochastic processes, denoted \(\mathcal{V} \preceq_{st} \mathcal{V}' \), if
 \[
 (V_1, \ldots, V_n) \preceq_{st} (V'_1, \ldots, V'_n), \quad \text{for any } n \in \{2, 3, \ldots\}. \tag{5}
 \]

Note that (3) is verified if, and only if, \(\mathbb{E}[\phi(V)] \leq \mathbb{E}[\phi(V')] \) for any non-decreasing function \(\phi \) on \(\mathbb{R} \) such that the expectations exist. Also if \(V \preceq_{st} V' \), then we clearly have \(\text{Var}_{\mathcal{V}}(V) \leq \text{Var}_{\mathcal{V}'}(V') \) for \(k \in (0, 1) \).

Property 5 (Consistency Under Usual Stochastic Order for Stochastic Processes). If the inequality \(\mathcal{X} \preceq_{st} \mathcal{X}' \) between two risk processes \(\mathcal{X} \) and \(\mathcal{X}' \) necessarily implies \(\zeta(\mathcal{X}) \leq \zeta(\mathcal{X}') \), then the ruin-based risk measure \(\zeta \) is said to be consistent under the usual stochastic order.

Remark 1. By Theorem 6.B.30 of Shaked and Shanthikumar (2007), Property 5 is equivalent to the monotonicity property: for two risk processes \(\mathcal{X} \) and \(\mathcal{X}' \), a ruin-based risk measure \(\zeta \) is monotonic if \(\text{Pr}\{X_k \leq X'_k, k \in \mathbb{N}_+\} = 1 \).

In the following proposition, we summarize several useful results.

Proposition 1. Let \(\mathcal{X} \) and \(\mathcal{X}' \) be two risk processes.

1. Assume that \(X_k \preceq_{st} X'_k \), for all \(k \in \mathbb{N}_+ \), and that \((X_1, \ldots, X_k) \) and \((X'_1, \ldots, X'_k) \) have the same copula for \(k \in \{2, 3, \ldots\} \). Then, \(\mathcal{X} \preceq_{st} \mathcal{X}' \).

2. Assume that \(X_k \preceq_{st} X'_k \). Then, \(Z_k \preceq_{st} Z'_k \), for all \(k \in \mathbb{N}_+ \), and \(Z \preceq_{st} Z' \).

Proof.

1. From Theorem 4.1 of Müller and Scarsini (2001), we have \((X_1, \ldots, X_k) \preceq_{st} (X'_1, \ldots, X'_k) \), \(k \in \{2, 3, \ldots\} \), which, given (5), implies \(\mathcal{X} \preceq_{st} \mathcal{X}' \).

2. For \(k \in \mathbb{N}_+ \), the function \(\phi : \mathbb{R}^k \rightarrow \mathbb{R}_+ \), defined by
 \[
 \phi(x_1, \ldots, x_k) = \max(0, x_1, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_k),
 \]
 is an increasing function on \(\mathbb{R}^k \) for \(k \in \mathbb{N}_+ \). Then, \(Z_k \preceq_{st} Z'_k \), for all \(k \in \mathbb{N}_+ \), and \(Z \preceq_{st} Z' \) follows from Theorem 6.B.16 (a)–(d) of Shaked and Shanthikumar (2007).

Below are the definitions of the increasing convex order for rvs, vectors of rvs and discrete-time risk processes.

Definition 3 (Increasing Convex Order).

1. **Univariate increasing convex order.** Given two univariate rvs \(V \) and \(V' \), \(V \) precedes \(V' \) in the univariate increasing convex order, denoted \(V \preceq_{inc} V' \), if \(\mathbb{E}[\phi(V)] \leq \mathbb{E}[\phi(V')] \) for any non-decreasing convex function \(\phi \) on \(\mathbb{R} \) such that the expectations exist.

2. **Multivariate increasing convex order.** Given two vectors of \(n \) rvs \((V_1, \ldots, V_n) \) and \((V'_1, \ldots, V'_n) \), \((V_1, \ldots, V_n) \) precedes \((V'_1, \ldots, V'_n) \) in the multivariate increasing convex order, denoted \((V_1, \ldots, V_n) \preceq_{inc} (V'_1, \ldots, V'_n) \), if \(\mathbb{E}[\phi(V_1, \ldots, V_n)] \leq \mathbb{E}[\phi(V'_1, \ldots, V'_n)] \), for any non-decreasing convex function \(\phi \) on \(\mathbb{R}^n \) such that the expectations exist.

3. **Increasing convex order for stochastic processes.** Given two stochastic processes \(\mathcal{V} = \{V_k, k \in \mathbb{N}_+\} \) and \(\mathcal{V}' = \{V'_k, k \in \mathbb{N}_+\} \), \(\mathcal{V} \) precedes \(\mathcal{V}' \) in the increasing convex order for stochastic processes, denoted \(\mathcal{V} \preceq_{inc} \mathcal{V}' \), if
 \[
 (V_1, \ldots, V_n) \preceq_{inc} (V'_1, \ldots, V'_n), \quad \text{for any } n \in \mathbb{N}_+. \tag{6}
 \]

Property 6 (Consistency Under the Increasing Convex Order for Stochastic Processes). If the inequality \(\mathcal{X} \preceq_{inc} \mathcal{X}' \) between two risk processes \(\mathcal{X} \) and \(\mathcal{X}' \) necessarily implies \(\zeta(\mathcal{X}) \leq \zeta(\mathcal{X}') \), then the ruin-based risk measure \(\zeta \) is said to be consistent under the increasing convex order.

Note that if \(\mathcal{X} \preceq_{inc} \mathcal{X}' \), then we necessarily have \(\mathcal{X} \preceq_{inc} \mathcal{X}' \), so that a ruin-based risk measure \(\zeta \) that is consistent under the increasing convex order is necessarily consistent under the usual stochastic order. In other words, if a ruin-based risk measure fulfills Property 6, then it necessarily fulfills Property 5.
Proposition 2. Let X and X' be two risk processes.

1. Assume that $X_k \preceq_{\text{inc}} X'_k$, for $k \in \mathbb{N}_+$, and that the components of X (and X') form a sequence of independent rvs. Then, $X \preceq_{\text{inc}} X'$.

2. Assume that $X \preceq_{\text{inc}} X'$. Then, $Z_k \preceq_{\text{inc}} Z'_k$, for $k \in \mathbb{N}_+$, and $Z \preceq_{\text{inc}} Z'$.

Proof.

1. By Theorem 7.A.4 of Shaked and Shanthikumar (2007), we have $(X_1, \ldots, X_k) \preceq_{\text{inc}} (X'_1, \ldots, X'_k)$ for $k \in \{2, 3, \ldots\}$ and $X \preceq_{\text{inc}} X'$ follows from (6).

2. The function $\phi : \mathbb{R}^k \to \mathbb{R}^+$, defined by

$$\phi(x_1, \ldots, x_k) = \max \{0, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_k\}$$

is an increasing continuous convex function for $k \in \mathbb{N}_+$. Then, by Theorem 7.A.5(a) of Shaked and Shanthikumar (2007), $Z_k \preceq_{\text{inc}} Z'_k$, for $k \in \mathbb{N}_+$, Applying the monotone convergence theorem, $E[Z_k]$ (resp. $E[Z'_k]$) tends to $E[Z]$ (resp. $E[Z']$) and $Z \preceq_{\text{inc}} Z'$ follows from Theorem 7.A.5(c) of Shaked and Shanthikumar (2007).

A ruin-based risk measure ζ needs to appropriately quantify the temporal dependence between the losses occurring over a discrete-time horizon. In other words, a ruin-based risk measure ζ needs to be consistent under a proper dependence stochastic order, the so-called supermodular order. The latter is defined in terms of supermodular functions. A function $\phi : \mathbb{R}^m \to \mathbb{R}$ is said to be supermodular if

$$\phi(x_1, \ldots, x_i + \epsilon, \ldots, x_j + \delta, \ldots, x_m)$$

$$\leq \phi(x_1, \ldots, x_i + \epsilon, \ldots, x_j, \ldots, x_m)$$

$$\geq \phi(x_1, \ldots, x_i, \ldots, x_j + \delta, \ldots, x_m)$$

$$- \phi(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_m)$$

holds for all $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, $1 \leq i \leq j \leq m$ and all ϵ, $\delta > 0$. See Marshall et al. (1979) for examples of supermodular functions.

Definition 4 (Supermodular Order). Let $V = (V_1, \ldots, V_m)$ and $V' = (V'_1, \ldots, V'_m)$ be two random vectors where, for each i, V_i and V'_i have the same marginal distribution (i.e., $V_i \sim V'$ for $i = 1, 2, \ldots, m$). Then, V_i is smaller than V'_i under the supermodular order, denoted $V \preceq_{\text{sm}} V'$, if $E[\phi(V)] \leq E[\phi(V')]$ for all supermodular functions ϕ, given that the expectations exist.

The supermodular order is used to compare random vectors V and V' with different levels of dependence. See, for example, Shaked and Shanthikumar (2007), Müller and Stoyan (2002) or Denuit et al. (2006) for details on supermodular ordering.

Property 7 (Consistency Under Supermodular Order). If the inequality $X \preceq_{\text{sm}} X'$ between two risk processes X and X' necessarily implies $\zeta(X) \leq \zeta(X')$, then the ruin-based risk measure ζ is said to be consistent under the supermodular order.

The following proposition will be useful in the next sections.

Proposition 3. Let X and X' be two risk processes such that $(X_1, \ldots, X_k) \preceq_{\text{sm}} (X'_1, \ldots, X'_k)$, for $k \in \{2, 3, \ldots\}$. Then, $Z_k \preceq_{\text{inc}} Z'_k$, for $k \in \{2, 3, \ldots\}$, and $Z \preceq_{\text{inc}} Z'$.

Proof. Let $\phi(x_1, \ldots, x_k) = \max \{0, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_k\}$, for $k \in \{2, 3, \ldots\}$. Since ϕ is a supermodular function, it follows from Theorem 9.A.16 of Shaked and Shanthikumar (2007) that $Z_k \preceq_{\text{inc}} Z'_k$, for $k \in \{2, 3, \ldots\}$. Letting $k \to \infty$, we also have $Z \preceq_{\text{inc}} Z'$.

4. **Examples of ruin-based risk measures**

4.1. **Preliminaries**

Before introducing specific ruin-based risk measures, we recall two of the most popular risk measures (over a fixed period of time). Let the rv X denote the net losses of an insurance portfolio over a fixed period of time. The Value-at-Risk of the rv X is defined by $\text{VaR}_\kappa(X) = F_{\kappa}^{-1}(\kappa)$, for $\kappa \in (0, 1)$. Assuming $E[|X|] < \infty$, the Tail Value-at-Risk of the rv X is defined as

$$\text{TVaR}_\kappa(X) = \frac{1}{1-\kappa} \int_0^{\kappa} \text{VaR}_\lambda(X) \, d\lambda,$$

for $\kappa \in (0, 1)$. \tag{7}

Two convenient representations of $\text{TVaR}_\kappa(X)$ can be derived from (7). First, with $(\kappa)_+ = \max \{\kappa; 0\}$ and using the probability integral transform, (7) can be written as

$$\text{TVaR}_\kappa(X) = \text{VaR}_\kappa(X) + \frac{1}{1-\kappa} E \{ (X - \text{VaR}_\kappa(X))_+ \},$$

for $\kappa \in (0, 1)$. \tag{8}

Then, defining $E[X 1_{\{X > 0\}}]$ as the truncated expectation of X, where 1_A is the indicator function such that $1_A(X) = 1$, if $X \in A$, and $1_A(X) = 0$, if $X \notin A$, (8) becomes

$$\text{TVaR}_\kappa(X) = \frac{1}{1-\kappa} \left\{ E \left[X 1_{\{X - \text{VaR}_\kappa(X) > 0\}} \right] - \text{VaR}_\kappa(X) (F_X (\text{VaR}_\kappa(X)) - \kappa) \right\},$$

for $\kappa \in (0, 1)$. \tag{9}

When the rv X is continuous, we have $F_X (\text{VaR}_\kappa(X)) - \kappa = 0$ such that (9) becomes

$$\text{TVaR}_\kappa(X) = \frac{1}{1-\kappa} E \left[X 1_{\{X - \text{VaR}_\kappa(X) > 0\}} \right],$$

for $\kappa \in (0, 1)$. \tag{10}

See, for example, McNeil et al. (2015) for details on the VaR and TVaR, and their properties.

In this section, we consider four ruin-based risk measures: the ruin-based VaR, the ruin-based TVaR, the Lundberg–Aumann–Serrano index of riskiness, and the risk measure derived from the expected negative part (ENP).

4.2. **Ruin-based VaR**

Definition 5. The finite-time ruin-based VaR, denoted $\zeta_{\kappa,n}^\text{VaR}(X)$, is defined by $\zeta_{\kappa,n}^\text{VaR}(X) = \text{VaR}_\kappa (Z_n)$, for $\kappa \in (0, 1)$. The infinite-time ruin-based VaR is given by $\zeta_{\kappa}^\text{VaR}(X) = \lim_{n \to \infty} \zeta_{\kappa,n}^\text{VaR}(X)$, for $\kappa \in (0, 1)$.

Proposition 4. The finite-time (infinite-time) ruin-based VaR satisfies Properties 1, 4, and 5 given in Section 3.

Proof. Property 1 is obvious since, for $\alpha > 0$, we have

$$\zeta_{\kappa,n}^\text{VaR}(aX) = \alpha \text{VaR}_\kappa (aZ_n) = a \text{VaR}_\kappa (Z_n) = a \zeta_{\kappa,n}^\text{VaR}(X),$$

by the positive homogeneity of the VaR. The proof of Property 4 is direct. By Propositions 1 and 2, $\zeta_{\kappa,n}^\text{VaR}$ is clearly consistent with the usual stochastic order for stochastic processes.

However, the finite-time (infinite-time) ruin-based VaR is not subadditive, as discussed in Section 7, which implies that it also fails to satisfy the convexity property. The finite-time ruin-based VaR is not consistent under the increasing convex order and the supermodular order. Currently, we cannot neither prove nor find a counterexample showing that the infinite-time ruin-based VaR is consistent (or not) under the increasing convex order and that it is consistent (or not) under the supermodular order.

The finite-time (infinite-time) ruin-based VaR can be interpreted as the smallest amount of capital u needed such that finite-time (infinite-time) ruin probability $\psi(u, m)$ ($\psi(u)$) is at most equal to $1 - \kappa$. Historically, one of the key tasks of ruin theory was devoted to the derivation and the computation of ruin
probabilities within different risk models, with the purpose of computing the initial amount of capital u. The actuarial literature has focused on the study of properties of ruin probabilities (see, for example, Asmussen and Albrecher, 2010) and the surplus analysis (see, for example, Gerber and Shiu, 1998 and Willmot and Woo, 2017) rather than looking at the resulting capital obtained by inverting the cdf of Z_n or Z. We believe it is also very interesting to look at the properties of the resulting capital, which we call the finite-time (infinite-time) ruin-based VaR. This helps us to have a fresher look at the riskiness of a risk process describing the stochastic evolution of an insurance portfolio. It also allows us to define (introduce) more relevant ruin-based risk measures than the finite-time (infinite-time) ruin-based VaR in order to provide an appropriate appraisal of the riskiness of an insurance portfolio. An example of such ruin-based risk measures is the ruin-based TVaR.

4.3. Ruin-based TVaR

Definition 6. The finite-time ruin-based TVaR, denoted $\zeta_{\kappa,n}^{TVaR}$, is defined by

$$\zeta_{\kappa,n}^{TVaR}(X) = TVaR_{\kappa}(Z_n) = \frac{1}{1 - \kappa} \int_{\kappa}^{1} VaR_{\kappa}(Z_n) \, du$$

for $\kappa \in (0, 1)$. The infinite-time ruin-based TVaR is given by

$$\zeta_{\kappa,n}^{TVaR}(X) = \lim_{n \to \infty} \zeta_{\kappa,n}^{TVaR}(X) = TVaR_{\kappa}(Z) = \frac{1}{1 - \kappa} \int_{\kappa}^{1} VaR_{\kappa}(Z) \, du$$

for $\kappa \in (0, 1)$.

As mentioned by Gatto and Baumgartner (2014) and using (8), (11) becomes

$$\zeta_{\kappa,n}^{TVaR}(X) = VaR_{\kappa}(Z_n) + \frac{1}{1 - \kappa} E[Z_n - VaR_{\kappa}(Z_n)]$$

for $\kappa \in (0, 1)$. Now, for a positive rv V with $E[V] < \infty$, we have

$$E[V - d] = \int_{d}^{\infty} F_{V}(x) \, dx$$

for $d \geq 0$. Combining (13) and (14), we find

$$\zeta_{\kappa,n}^{TVaR}(X) = \zeta_{\kappa,n}^{VaR}(X) + \frac{1}{1 - \kappa} \int_{\kappa}^{1} F_{Z_n}(x) \, dx$$

for $\kappa \in (0, 1)$.

Similarly, letting $n \to \infty$ in (13) and (15), we have

$$\zeta_{\kappa,n}^{TVaR}(X) = \zeta_{\kappa,n}^{VaR}(X) + \frac{1}{1 - \kappa} \int_{\kappa}^{1} F_{X}(x, n) \, dx$$

for $\kappa \in (0, 1)$.

The representations of $\zeta_{\kappa,n}^{TVaR}(X)$ and $\zeta_{\kappa}^{TVaR}(X)$ given in (15) and (16) are very useful, since they can be applied in conjunction with expressions for ruin probabilities $\psi(x, n)$ and $\psi(x)$ to derive expressions for $\zeta_{\kappa,n}^{TVaR}(X)$ and $\zeta_{\kappa}^{TVaR}(X)$ and compute their values.

The finite-time ruin-based risk measure $\zeta_{\kappa,n}^{TVaR}(X)$ (infinite-time ruin-based risk measure $\zeta_{\kappa}^{TVaR}(X)$) can be interpreted as the “mean” of the values taken over the first n periods by the supremum Z_n (which exceeds the finite-time ruin-based risk measure $\zeta_{\kappa}^{VaR}(X)$ (infinite-time ruin-based risk measure $\zeta_{\kappa}^{VaR}(X)$)). Also, the finite-time ruin-based risk measure $\zeta_{\kappa,n}^{TVaR}(X)$ (infinite-time ruin-based risk measure $\zeta_{\kappa}^{TVaR}(X)$) has the advantage of being more sensitive to the stochastic behavior of Z_n (in the right tail of its distribution). Moreover, the finite-time ruin-based risk measure $\zeta_{\kappa,n}^{TVaR}(X)$ (infinite-time ruin-based risk measure $\zeta_{\kappa}^{TVaR}(X)$) satisfies the seven desirable properties presented in Section 3.

Proposition 5. The finite-time (infinite-time) ruin-based TVaR satisfies Properties 1 to 7.

Proof. Property 1 directly follows from the positive homogeneity of the TVaR. Now, for Property 3, since the function $\phi: \mathbb{R}^n \to \mathbb{R}_+$, defined by

$$\phi(x_1, \ldots, x_n) = \max(0, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_n)$$

is an increasing continuous convex function for $n \in \mathbb{N}_+$, we directly have

$$\phi(\alpha x_1 + (1 - \alpha) x_1', \ldots, \alpha x_n + (1 - \alpha) x_n') \leq \alpha \phi(x_1, \ldots, x_n) + (1 - \alpha) \phi(x_1', \ldots, x_n')$$

Hence, we have

$$\zeta_{\kappa,n}^{TVaR}(\alpha X + (1 - \alpha) X') = TVaR_{\kappa}(\alpha x_1 + (1 - \alpha) x_1', \ldots, \alpha x_n + (1 - \alpha) x_n') \leq TVaR_{\kappa}(\alpha x_1, \ldots, x_n) + (1 - \alpha) TVaR_{\kappa}(Z_n')$$

since the TVaR is a risk measure that is consistent with the univariate increasing convex order (see for example Proposition 3.4.8 in the paper by Denuit et al., 2006).

4.4. Lundberg–Aumann–Serrano index of riskiness

The Lundberg–Aumann–Serrano index of riskiness is defined in terms of the adjustment coefficient. In ruin theory (and more generally, in risk theory), the adjustment coefficient, also called Lundberg exponent, is considered a measure of dangerousness of an insurance portfolio. According to Gerber (1979) (p.118), it “plays an important role in ruin theory”. Also, Roski et al. (2009) stated on p. 18: “the adjustment coefficient is some sort of measure of risk”. It is crucial for the computation of ruin-related quantities (see, e.g., Gerber and Shiu, 1998, Cheung et al., 2010, Willmot and Woo, 2017, etc.). The adjustment coefficient is thus an index of dangerousness. As mentioned by Kaas (2014), “the name adjustment coefficient derives from the fact that” it “can be adjusted by taking measures such as reinsurance and raising premiums”. For that reason, the adjustment coefficient has been proven to be very useful in reinsurance (see, e.g., Hesselerger, 1990, and Schmidli, 2004, and Schmidli, 2017). Also, as we shall see later in this section and under mild conditions, it plays a central role in approximations and inequalities of infinite-time
ruin probabilities in a large number of risk models. Finally, it is also linked to the exponential premium principle (see, e.g. Kaas et al., 2008) and change of measure techniques (see, e.g. chapter 8 in Schmidli, 2017). Due to its importance in actuarial science, space is not available to summarize in a few lines all the applications of the adjustment coefficient. See, e.g. Asmussen and Albrecher (2010), Kaas (2014), Rolski et al. (2009), Schmidli (2017), and references therein for more details on this risk index.

We follow the large deviation approach (see Müller and Pflug, 2001 for details) to define just below the adjustment coefficient.

Definition 7 (Adjustment Coefficient). Let us define the convex function

\[c_n (r) = \frac{1}{n} \ln \left(E \left[e^{Y_n} \right] \right). \]

(17)

We make the two following assumptions:

1. **A1:** \(c (r) = \lim_{n \to \infty} c_n (r) \) exists for \(r \in (0, r_0) \), where \(r_0 \) is a strictly positive constant;

2. **A2:** There is a unique solution \(r \in (0, r_0) \) such that \(c (r) = \lim_{n \to \infty} c_n (r) = 0 \).

The expression of \(c_n (r) \) defined in (17) incorporates the information about the temporal dependence for the adjustment coefficient.

Below, we define Lundberg–Aumann–Serrano index as the multiplicative inverse of the adjustment coefficient.

Definition 8 (Lundberg–Aumann–Serrano Index of Riskiness). Consider a risk process \(X \) such that the adjustment coefficient \(r_{AC} (X) \) exists. The Lundberg–Aumann–Serrano index of riskiness is defined by

\[\zeta_{LAS} (X) = \frac{1}{r_{AC} (X)}. \]

(20)

The definition of \(\zeta_{LAS} (X) \) in (20) is inspired by the Aumann–Serrano index, recently proposed by Aumann and Serrano (2008) as a new economic index of riskiness. Homm and Pigorsch (2012) and Meilijson et al. (2009) establish the link between the adjustment coefficient and the Aumann–Serrano economic index of riskiness. The initial definition of the Aumann–Serrano Index (given by Homm and Pigorsch, 2012) implicitly assumes in the context of the classical discrete-time risk model with a sequence \(X \) of iid rvs. Homm and Pigorsch (2012) also provide an operational justification for the Aumann–Serrano Index. According to Definition 8, the Lundberg–Aumann–Serrano index of riskiness is an extension of the original Aumann–Serrano Index, in the sense that it is defined in a more general setting, allowing notably for temporal dependence.

In his Master’s thesis, Jiang (2015) proposed and studied a similar risk measure in the context of continuous-time risk models. The proposed risk measure is defined as a decreasing function of the adjustment coefficient, including the reciprocal of the adjustment coefficient. The risk measure is seen as a mapping from the underlying risk process to \(\mathbb{R}_+ \). No links are made with the Aumann–Serrano economic index of riskiness. Dhaene et al. (2003) derive from the classical risk model a risk measure related to the adjustment coefficient. However, it does not have the same properties as \(\zeta_{LAS} (X) \).

The following proposition provides the reason why we have chosen to introduce \(\zeta_{LAS} (X) \) as a multiplicative inverse of the adjustment coefficient \(r_{AC} (X) \).

Proposition 6. The Lundberg–Aumann–Serrano index of riskiness \(\zeta_{LAS} (X) \) satisfies Properties 1 to 7.

Proof. For \(a > 0 \), let \(\frac{1}{\zeta_{LAS} (X)} \) be the solution to

\[c (r) = \lim_{n \to \infty} \frac{1}{n} \ln \left(E \left[e^{\alpha Y_n} \right] \right) = 0. \]

(21)

Since \(r_{AC} (X) = \frac{1}{\zeta_{LAS} (X)} \) is also the solution to (21), it follows that \(\zeta_{LAS} (aX) = a \zeta_{LAS} (X) \), which proves Property 1. We have

\[\frac{1}{n} \ln \left(E \left[e^{\frac{Y_n}{\zeta_{LAS} (X)}} \right] \right) = \frac{1}{n} \ln \left(E \left[e^{\frac{Y_n}{\zeta_{LAS} (X)}} \right] \right) \leq \alpha \left(\frac{1}{n} \ln \left(E \left[e^{\frac{Y_n}{\zeta_{LAS} (X)}} \right] \right) \right) + (1 - \alpha) \left(\frac{1}{n} \ln \left(E \left[e^{\frac{Y_n}{\zeta_{LAS} (X)}} \right] \right) \right) = 0. \]

(21)

which proves Property 1. Letting \(n \to \infty \), we obtain

\[\lim_{n \to \infty} \frac{1}{n} \ln \left(E \left[e^{\frac{Y_n}{\zeta_{LAS} (X)}} \right] \right) \leq 1 \]

(22)

From (22), it follows that

\[\frac{1}{\zeta_{LAS} (X) + \zeta_{LAS} (X')} \leq \zeta_{LAS} (X + X'), \]

which is equivalent to \(\zeta_{LAS} (X + X') \leq \zeta_{LAS} (X) + \zeta_{LAS} (X') \), proving Property 2. Since \(\zeta_{LAS} (X) \) is both homogeneous and subadditive, it implies that it also satisfies Property 3. Clearly, \(\zeta_{LAS} (X) \) is law invariant, consistent under the usual stochastic order, and consistent under the increasing convex order. By Corollary 3.6 of Müller and Pflug (2001) and given (20), \(\zeta_{LAS} (X) \) is consistent under the supermodular order. ■

By Proposition 6, \(\zeta_{LAS} (X) \) can be useful for decision making, notably for coverage’s choice in reinsurance. As explained by Albrecher et al. (2017) for example, reinsurance could be chosen by maximizing the adjustment coefficient. Now, it will make more
sense to find the proper reinsurance coverage by minimizing the Lundberg–Aumann–Serrano index of riskiness. In Section 7, we also examine how to compute contributions to $\zeta_{\text{LAS}}(X)$ based on Euler’s risk allocation rule. The Lundberg–Aumann–Serrano index of riskiness $\zeta_{\text{LAS}}(X)$ can also be used to derive approximations to $\psi_{\text{VaR}}(X)$ and $\psi_{\text{TVaR}}(X)$. Based on the asymptotic result in (19) and using (20), $\psi(u)$ can be approximated by

$$\psi(u) = \frac{1}{\sum_{k=1}^{\infty} E\{I_k \mid Y_k = u\}} = -\zeta_{\text{LAS}}(X) \ln(1 - \kappa),$$

for large values of u. The relation in (23) mainly means that the infinite ruin probability, or the survival function of the rv Z, roughly behaves as the survival function of a rv V, which follows an exponential distribution with mean $\zeta_{\text{LAS}}(X)$. Therefore, for values of κ close to 1 (e.g., $\kappa \in (0.95, 1)$), we can approximate the ruin-based VaR and ruin-based TVaR by the VaR and the TVaR of the exponentially distributed rv V (denoted by $\psi_{\text{VaR}}(X)$ and $\psi_{\text{TVaR}}(X)$, respectively) as follows:

$$\psi_{\text{VaR}}(X) \approx \psi_{\text{VaR}}(X) = -\zeta_{\text{LAS}}(X) \ln(1 - \kappa),$$

and

$$\psi_{\text{TVaR}}(X) \approx \psi_{\text{TVaR}}(X) = \zeta_{\text{LAS}}(X) + \psi_{\text{VaR}}(X).$$

The traditional version of the approximation in (24) (with adjustment coefficient $\psi_{\text{VaR}}(X)$ at the denominator) is well-known in ruin theory. Interestingly, Proposition 6 provides us with a new perspective on the approximations in (24) and (25). If one wants to determine the capital for an insurance portfolio using $\psi_{\text{VaR}}(X)$ (or $\psi_{\text{TVaR}}(X)$), it can be approximated by $\psi_{\text{VaR}}(X)$ (or $\psi_{\text{TVaR}}(X)$). Then, by (24) (or (25)), the capital amount will become larger as the Lundberg–Aumann–Serrano index of riskiness $\zeta_{\text{LAS}}(X)$ increases. One can also use Euler’s rule for risk allocation to find the contributions to $\psi_{\text{VaR}}(X)$ and $\psi_{\text{TVaR}}(X)$.

4.5. Risk measure derived from the expected negative part (ENP)

Inspired by Loisel and Trufin (2014), we introduce the last ruin-based risk measure in this section. It is derived from the expected negative part (ENP) of the surplus process over n periods, defined in terms of the random walk Y as

$$E\{L_n(u)\} = \sum_{k=1}^{n} E\{U_k \mid U_k \geq 0\} = \sum_{k=1}^{n} E\{Y_k - u\}. \quad (26)$$

Note that the expected negative part is a discrete version of the expected area in red defined in Loisel (2005) for continuous ruin processes. Below, to clarify when needed to make explicit the dependence on X, we will denote $L_n(u)$ as $L_n(u)$. Definition 9 (Risk Measure Derived from the ENP (RM-ENP)). For a fixed n, the risk measure derived from the ENP, denoted $\zeta^{\text{ENP}}_{\alpha, n}(X)$, is defined by $\zeta^{\text{ENP}}_{\alpha, n}(X) = \inf\{u \geq 0 \mid E\{L_n(u)\} \leq L\}$. For $A > 0$.

In words, $\zeta^{\text{ENP}}_{\alpha, n}(X)$ is the smallest amount of capital needed such that the expected negative part of the surplus process over n periods is at most equal to some specified level A.

The expected negative part provides an interesting risk indicator for quantifying the liquidity risk of an insurance portfolio over a given time horizon. When the surplus of a portfolio gets below a specific level, the insurer needs to finance some kind of debt and get supported by fresh money from the parent company or from another entity. Of course, this help cannot last for too long or involve a too high amount. Hence, if the negative part is too large, the insurer is likely to fail to pay its liabilities in the short term because it will not enable the insurer to obtain help for refinancing.

Proposition 7. The risk measure derived from the ENP (RM-ENP) satisfies Properties 3–7.

Proof. For Property 3, we note that

$$E\{\alpha Y_k + (1 - \alpha)Y_k' - u - u'\} \leq E\{\alpha Y_k - u\} + E\{(1 - \alpha)Y_k' - u'\},$$

for all $k \in \mathbb{N}_+$ and $u, u' \in \mathbb{R}_+$. Hence, by (26), we have

$$E\{\lambda_n^{\alpha X + (1 - \alpha)X'}(u + u') \leq E\{\lambda_n^{\alpha X}(u)\} + E\{\lambda_n^{\alpha X'}(u')\}.$$

Now, by taking $u = \zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X)$ and $u' = \zeta^{\text{ENP}}_{1 - \beta, n}(1 - \alpha)X'$, with $\beta \in (0, 1)$, we find

$$E\{\lambda_n^{\alpha X + (1 - \alpha)X'}(\zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X) + \zeta^{\text{ENP}}_{1 - \beta, n}(1 - \alpha)X') \leq A.$$

Consequently, we have

$$\zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X) + \zeta^{\text{ENP}}_{1 - \beta, n}(1 - \alpha)X' \leq \zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X) + \zeta^{\text{ENP}}_{1 - \beta, n}(1 - \alpha)X' \leq \zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X) + \zeta^{\text{ENP}}_{1 - \beta, n}(1 - \alpha)X' \leq A.$$

since $\zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X) \leq \zeta^{\text{ENP}}_{1 - \beta, n}(\alpha X)$ for all $c \in \mathbb{R}_+$ as shown in Proposition 8. Property 3 thus follows by taking $\beta = \alpha$. Property 4 is again obvious. Then, for Proposition 6, we have that $X \leq_{\text{ENP}} X'$ which implies $Y_k \leq_{\text{ENP}} Y_k'$ for all $k \in \mathbb{N}_+$ by Theorem 7.A.5 in Shaked and Shanthikumar (2007) with $W(X_1, \ldots, X_k) = X_1 + \cdots + X_k$. Hence, by definition of the increasing convex order, we have

$$E\{Y_k - u\} \leq E\{Y_k' - u\}.$$

Thus, from (26), we get

$$\zeta^{\text{ENP}}_{1 - \beta, n}(u) \leq \zeta^{\text{ENP}}_{1 - \beta, n}(u').$$

Property 5 directly follows from Proposition 6. Finally, for Property 7, it suffices to refer to Theorem 9.A.16 in the study by Shaked and Shanthikumar (2007), which tells us that $X \leq_{\text{ENP}} X'$ implies $Y_k \leq_{\text{ENP}} Y_k'$ for all $k \in \mathbb{N}_+$.

Note that (27) is actually more general than the convexity property obtained when $\beta = \alpha$.

Proposition 8. The risk measure derived from the ENP (RM-ENP) also fulfills modified versions of Properties 1 and 2.

1. **Modified homogeneity.** $\zeta^{\text{ENP}}_{\alpha, n}(cX) = c \zeta^{\text{ENP}}_{\alpha, n}(X)$ for all $c \in \mathbb{R}_+$.

2. **Modified subadditivity.** $\zeta^{\text{ENP}}_{\alpha, n}(X + X') \leq \zeta^{\text{ENP}}_{\alpha, n}(X) + \zeta^{\text{ENP}}_{\alpha, n}(X')$ for all $\beta \in (0, 1)$.

Proof. For the homogeneity property, we need to show that

$$E\{\lambda_n^{\alpha X}(u)\} = c E\{\lambda_n^{\alpha X}(u')\},$$

which, by (26), immediately follows since

$$E\{c(Y_k - u)\} = c E\{Y_k - u\}.$$

The subadditivity property is a direct consequence of the homogeneity property and (27) with $\alpha = \frac{1}{2}$.

This last proposition warrants for the two following comments. First, the notion of positive homogeneity can be interpreted as the independence with respect to the monetary unit used. When considering two different monetary units u_1 and u_2, say, with exchange rate c (i.e., with $u_1 = c u_2$), the risk limit A set in the first unit becomes logically A/c in the second one, as the risk process cX becomes X. Second, the subadditivity property reflects the idea that risk can be reduced by diversification. Therefore, for a fair comparison, the risk limit considered for the aggregate portfolio (i.e., with risk process $X + X'$) must be equal to the sum of the risk limits of the two components (with risk processes X and X').
5. Classical discrete-time risk model

In this section, we examine the computation of the ruin-based VaR ($\zeta_{k,n}^{VaR}(X)$), the ruin-based TVaR ($\zeta_{k,n}^{TVaR}(X)$), and the Lundberg–Aumann–Serrano index of riskiness ($\zeta_{k,n}^{LAS}(X)$) within the classical discrete-time risk model. As mentioned in Section 2, the classical (De Finetti) discrete-time risk model is defined by a risk process, denoted by $X = \{X_k, k \in \mathbb{N}_+\}$, which forms a sequence of iid rvs with $X_k \sim X$, for $k \in \mathbb{N}_+$. Within this model, the net loss rv at period k is defined by $X_k = W_k - \pi$, for $k \in \mathbb{N}_+$, where $W = \{W_k, k \in \mathbb{N}_+\}$ is a sequence of iid rvs with $W_i \sim W$, the loss rv for period $k \in \mathbb{N}_+$, and $\pi = (1 + \eta) \mathbb{E} [W]$ is the premium income per period with a strictly positive relative risk margin $\eta > 0$.

5.1. Numerical computation

First, we briefly discuss the numerical computation of the finite-time ruin-based VaR $\zeta_{k,n}^{VaR}(X)$ and the finite-time ruin-based TVaR $\zeta_{k,n}^{TVaR}(X)$. For most distributions assumed for W, no closed-form expressions can be derived for $\zeta_{k,n}^{VaR}(X)$ and $\zeta_{k,n}^{TVaR}(X)$. One needs to use numerical approximation approaches to compute $\psi (u, n)$, which allows one to evaluate $\zeta_{k,n}^{VaR}(X)$ and $\zeta_{k,n}^{TVaR}(X)$. We outline one of those methods, which is based on three discretization methods (denoted by “m”): upper ($m = 1$), lower ($m = 2$), and mean-preserving ($m = 3$) methods. See, e.g., Bargès et al. (2009) and Müller and Stoyan (2002) for a description of these three discretization methods. Let $W_{(m)}^k = \{W_{k,m}, k \in \mathbb{N}_+\}$ be the sequence of iid rvs defined using the discretization method $m \in \{1, 2, 3\}$ with a discretization span $h > 0$, where $W_{k,m} \sim W_{(m)}^k \in \{0, 1h, 2h, \ldots\}$, for $k \in \mathbb{N}_+$, and with the discretization method. Note that h is fixed such that the inequality $\mathbb{E} [W_{(m)}^k] - \pi < 0$ is satisfied for $m = 1, 2, 3$. To simplify the presentation, $\pi \in \{0, 1h, 2h, \ldots\}$. Then, define the corresponding sequences $X_{(m)}^k = \{X_k, k \in \mathbb{N}_+\}$, where $X_{k,m} = W_{k,m} - \pi \in \{0, 1h, 2h, \ldots\}$, for $k \in \mathbb{N}_+$ and $m = 1, 2, 3$.

For $n \in \mathbb{N}_+$, the cdf of Z_n is given by $F_{Z_n}(hj) = 1 - \phi^{(m)}(hj, n)$, for $j \in \mathbb{N}$. The probability mass function (pmf) of $W_{(m)}^k$ is denoted by $f_{W_{(m)}^k}(hj) = \Pr (W_{(m)}^k = hj)$, $j \in \mathbb{N}$. Finite-time non-ruin probabilities are recursively computed with

$$\phi (jh, n) = \sum_{l=0}^{j} f_{W_{(m)}^k}(lh) \phi^{(m)}((j - l) h + \pi, n - 1),$$

for $k \in \mathbb{N}_+$, with $\phi^{(m)}(jh, 0) = 1$, for $j \in \mathbb{N}$ (see, e.g., Dickson and Waters, 1991 for details). The pmf of Z_n^k is given by $f_{Z_n^k}(hj) = \phi^{(m)}(hj, n) - \phi^{(m)}((j - 1) h, n)$, $j \in \mathbb{N}_+$, with $f_{Z_n^k}(0) = \phi^{(m)}(0, n)$. Let $\zeta_{k,n}^{VaR}(X_{(m)}^k) = \text{VaR}_{k,n}(X_{(m)}^k) = \min\{X_{(m)}^k \geq hj, j \in \mathbb{N}\}$. Then, the expression in (16) for $\zeta_{k,n}^{VaR}(X_{(m)}^k)$ becomes

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) = \min\{X_{(m)}^k \geq hj, j \in \mathbb{N}\} = \sum_{j=0}^{\infty} \left(1 - \frac{1}{1 - K} E \left[\max\{Z_n^k - hj; 0\} \right] \right),$$

where $E \left[\max\{Z_n^k - hj; 0\} \right] = \sum_{j=0}^{\infty} (1 - \psi^m(hj, 0))$, $j \in \mathbb{N}$. Details and illustrations are provided in Cossette and Marceau (2013).

Now, we can use the results of Section 3 to compare the approximated values and the exact values of $\zeta_{k,n}^{VaR}(X)$ and $\zeta_{k,n}^{TVaR}(X)$. For example, Müller and Stoyan (2002) showed that

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

and

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

for $k \in \mathbb{N}_+$ and $0 < h < h'$. Using Proposition 1 with (30) leads to

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

while, from Proposition 2 and (31), we have

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

for $n \in \mathbb{N}_+$. From Proposition 4 and (32), it follows that

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

and, similarly, with Proposition 5 and (33), we have

$$\zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k) \leq \zeta_{k,n}^{VaR}(X_{(m)}^k),$$

for $n \in \mathbb{N}_+$ and $\kappa \in (0, 1)$, respectively.

5.2. Lundberg–Aumann–Serrano index of riskiness

Now, briefly discuss the computation of the Lundberg–Aumann–Serrano index of riskiness. As mentioned at, e.g., Müller and Pflug (2001), (18) becomes

$$\kappa (r) = \ln (\mathcal{M}_X (r)) = \ln (\mathcal{M}_W (r)) - \pi, \quad \text{(34)}$$

when the moment generating function (mgf) $\mathcal{M}_W (r) = \mathbb{E} [e^{rW}]$ exists for some $r > 0$. Usually, one needs to use a numerical optimization method to compute the value of $\zeta_{k,n}^{LAS}(X)$ from (34).

We recall the following well known special case (see, e.g., Dickson, 2016): if W follows a compound Poisson distribution where $\mathcal{M}_W (r) = \exp (\lambda (e^r - 1))$, then $r\kappa (X) = \beta \frac{\beta}{1 + \beta}$, which implies that the Lundberg–Aumann–Serrano index of riskiness is given by

$$\zeta_{k,n}^{LAS}(X) = \frac{1}{1 + \eta}

\text{(35)}$$

In Section 6, we need the expression in (35) for comparison purposes.

5.3. Compound binomial risk model

In this subsection, we focus on the computation of $\zeta_{k,n}^{VaR}(X)$ and $\zeta_{k,n}^{TVaR}(X)$. For that reason, we consider a special case of the classical discrete-time risk model, the well-known compound binomial risk model, introduced by Gerber (1988). Here, we adopt the definition of ruin used by Shiu (1985) and by Willmot (1993). For this specific classical discrete-time risk model, the net losses rX are defined by $X = W - 1$ with premium income $\pi = 1$ and $W = \{B, I = 1; 0, I = 0\}$, where I follows a Bernoulli distribution with parameter $q \in (0, 1)$ and B is a discrete rv defined on \mathbb{N}_+, with $\mathbb{E} [B] < \infty$. The rvs I and B are independent. The parameters of the distributions of I and B are fixed such that the solvency condition

$$\mathbb{E} [X] = \mathbb{E} [W] - 1 = \mathbb{E} [I] \mathbb{E} [B] - 1 < 0 \quad \text{(36)}$$

is satisfied, which implies $\mathbb{E} [B] < 1$. Define the finite-time and infinite-time non-ruin probabilities $\phi (u, n) = 1 - \psi (u, n) = F_{Z_n}(u)$ and $\phi (u) = 1 - \psi (u) = F_2(u)$, for an initial capital $u \in \mathbb{N}$. The finite-time and the infinite-time non-ruin probabilities can
be computed recursively. In Shiu (1989) and Willmot (1993), it is shown that
\[\phi (u) = \phi (u - 1) - q \sum_{j=1}^{n} \phi (u - j) f (j), \]
(37)
for \(u \in \mathbb{N}_+ \) with initial value
\[\phi (0) = \frac{1 - q \mathbb{E} [B]}{1 - q}. \]
(38)
Note, that in the compound binomial risk model, (28) becomes
\[\phi (u, n) = (1 - q) \phi (u + 1, n - 1) + q \sum_{j=1}^{u+1} \phi (u + 1 - j, n - 1) f (j), \]
(39)
for \(u \in \mathbb{N} \) and \(n \in \mathbb{N}_+ \), where \(\phi (u, 0) = 1 \), for \(u \in \mathbb{N} \). Using (37) (or (39)), one can easily compute the values of \(\xi^\text{VaR}_k (X) \) and \(\xi^\text{TVaR}_k (X) \)
(or, \(\xi^\text{VaR}_{kn} (X) \) and \(\xi^\text{TVaR}_{kn} (X) \)).

Example 1. Assume that the rv \(B \) follows a zero-truncated geometric distribution with \(\Pr (B = k) = (1 - \nu) \nu^{k-1} \), for \(k \in \mathbb{N}_+ \), and \(E [B] = \frac{1}{1 - \nu} \), with \(\nu \in (0, 1) \). Due to (36), the parameters \(q \) and \(\nu \) are fixed such that \(\frac{1}{1 - \nu} < 1 \). Willmot (1993) has shown that
\[\psi (u) = \mathbb{P} (Z = u) = 1 - F_Z (u) = \psi (0) \left(\frac{\nu}{1 - q} \right)^u, \]
(40)
for \(u \in \mathbb{N} \) and with \(\psi (0) = \frac{1 - \nu}{1 - q} \). From (40), we find that the expression of \(\xi^\text{VaR}_k (X) \) is given by
\[\xi^\text{VaR}_k (X) = F_Z^{-1} (1 - \psi (0)), \]
(41)
where \([x] \) is the smallest integer greater than \(x \in \mathbb{R}_+ \). Also, we have
\[\pi_Z (u) = E \left[\max (Z - u; 0) \right] = \sum_{k=u}^{\infty} \psi (k) \frac{1 - q}{1 - q - \nu} \left(\frac{\nu}{1 - q} \right)^u, \]
(42)
for \(u \in \mathbb{N} \). Replacing (41) and (42) in (16), we obtain the following expression for \(\xi^\text{TVaR}_k (X) \):
\[\xi^\text{TVaR}_k (X) = \left\{ \begin{array}{ll}
\psi (0) \frac{1 - q}{1 - q - \nu} & , \quad 0 < k \leq 1 - \psi (0) \\
\ln \left(\frac{\nu}{1 - q} \right) + \psi (0) \frac{1 - q}{1 - q - \nu} \left(\frac{\nu}{1 - q} \right)^u & , \quad 1 - \psi (0) < k < 1 \end{array} \right., \]
(43)
Note that, in the present example, \(\xi^\text{LIS} (X) = \ln \left(\frac{1 - \nu}{1 - q} \right) \). Therefore, (41) and (43) can be rewritten in terms of \(\xi^\text{LIS} (X) \) as follows
\[\xi^\text{VaR}_k (X) = F_Z^{-1} (1 - \psi (0)) = \left\{ \begin{array}{ll}
0 & , \quad 0 < k \leq 1 - \psi (0) \\
\ln \left(\frac{1 - \nu}{1 - \psi (0)} \right) \xi^\text{LIS} (X) & , \quad 1 - \psi (0) < k < 1 \end{array} \right., \]
(44)
and
\[\xi^\text{TVaR}_k (X) = \xi^\text{VaR}_k (X) + \psi (0) \left(1 - \frac{\nu}{1 - q} \right) e^{\xi^\text{VaR}_k (X)} , \quad 0 < k \leq 1 - \psi (0) \] \[\xi^\text{VaR}_k (X) + \psi (0) \left(1 - \frac{\nu}{1 - q} \right) e^{\xi^\text{VaR}_k (X)} , \quad 1 - \psi (0) < k < 1 \]
In (44) and (45), one clearly sees the role plays by \(\xi^\text{LIS} (X) \) in the expressions of \(\xi^\text{VaR}_k (X) \) and \(\xi^\text{TVaR}_k (X) \).

6. Discrete-time risk models with temporal dependence

In this section, we examine the computation of the ruin-based VaR (\(\xi^\text{VaR}_{kn} (X) \)), the ruin-based TVaR (\(\xi^\text{TVaR}_{kn} (X) \)), and the Lundberg–Aumann–Serrano index of riskiness (\(\xi^\text{LIS} (X) \)) within four discrete-time risk models with temporal dependence. Also, we will pay special attention to the impact of the temporal dependence on those ruin-based risk measures.

Generally, in the actuarial literature, authors have examined the impact of dependence on the ruin probabilities or on the adjustment coefficient. However, the inequality \(X \preceq_s X' \) between two risk processes \(X \) and \(X' \) does not necessarily imply that the corresponding ruin probabilities \(\psi (u, n) \) and \(\psi' (u, n) \) on a finite-time horizon \(n \) fulfill the inequality \(\psi (u, n) \leq \psi' (u, n) \). Ruin-based risk measures, which are consistent under the supermodular order, are suitable tools to characterize the impact of dependence on the amount of additional capital to be allocated to the portfolio of the insurance company and, more generally, to capture the increase in its riskiness.

Within discrete-time risk models with temporal dependence, the risk process \(X = \{ X_k, k \in \mathbb{N}_+ \} \) is constructed as follows. We define a sequence of identically distributed but not necessarily independent rvs \(W_k = \{ W_k, k \in \mathbb{N}_+ \} \) where \(W_k \) represents the aggregate claim amount in period \(k, k \in \mathbb{N}_+ \). Let \(\mathcal{N} = \{ N_k, k \in \mathbb{N}_+ \} \) be a discrete-time claim number process where \(N_k \) corresponds to the number of claims in period \(k, k \in \mathbb{N}_+ \). The aggregate claim amount \(\text{rv} W_k \) is defined as
\[W_k = \sum_{j=1}^{N_k} B_{k,j}, \]
(46)
assuming that \(\sum_{j=1}^{N_k} q_j = 0 \). The claim amounts in period \(k \), denoted \(B_{k,1}, B_{k,2}, \ldots \), form a sequence of iid strictly positive rvs with cdf \(F_B \) and independent of \(N_k \). Given (46), it implies that \(W_k \) follows a compound distribution. The rv \(W_k (N_k) \) is distributed as \(W (N) \) with cdf \(F_W (F_B) \). Assuming \(E [N] < \infty \) and \(E [B] < \infty \), the expectation of the rv \(W \) is \(E [W] = E [N] E [B] \). The premium income per period is designated by \(\pi \) and satisfies the usual solvency condition \(\pi > E [W] \). The strictly positive relative risk margin is \(\eta = \frac{\pi}{E [W]} - 1 \). Then, the \(k \)-th component of the risk process \(X = \{ X_k, k \in \mathbb{N}_+ \} \) is defined by
\[X_k = W_k - \pi, \]
(47)
for \(k \in \mathbb{N}_+ \). See, e.g., Cossette et al. (2010) for details on these classes of discrete-time risk models.

In the next proposition, we qualify the impact of the temporal dependence induced by the dependence relation between the components of \(N \) on a ruin-based risk measure consistent under the supermodular order.

Proposition 9. Let \(X \) and \(X' \) be two risk processes such that
\[(N_1, \ldots, N_k) \leq_s (N'_1, \ldots, N'_k), \]
(48)
for \(k \in \{ 2, 3, \ldots \} \). Consider a ruin-based risk measure consistent under the supermodular order. Then, \(\xi (X) \leq \xi (X') \). In particular, \(\xi^\text{VaR}_{kn} (X) \leq \xi^\text{VaR}_{kn} (X'), \) for \(n \in \mathbb{N}_+ \) and \(k \in (0, 1) \); \(\xi^\text{TVaR}_{kn} (X) \leq \xi^\text{TVaR}_{kn} (X'), \) for \(k \in (0, 1) \); and \(\xi^\text{LIS} (X) \leq \xi^\text{LIS} (X') \).

Proof. By Proposition 2 in Denuit et al. (2002), (48) implies that
\[(W_1, \ldots, W_k) \leq_m (W'_1, \ldots, W'_k), \]
(49)
for \(k \in \{ 2, 3, \ldots \} \). From (49), we also have \((X_1, \ldots, X_k) \leq_m (X'_1, \ldots, X'_k) \), for \(k \in \{ 2, 3, \ldots \} \), and the result follows from Proposition 3.
Below, we consider risk models based on compound distributions assuming for N a Poisson MA(1) process, Poisson AR(1) process, Markov Bernoulli process, and a Markov switching regime process, into which we apply Proposition 9.

6.1. Risk model based on Poisson MA(1)

6.1.1. Definitions and result

We introduce the operator “o” used to define the dynamics of the Poisson MA(1) and Poisson AR(1) processes. Let M be a non-negative integer-valued rv and $\alpha \in [0, 1)$. The o-operation of α on M is referred to as the binomial thinning of M and is defined as $\alpha \circ M = \sum_{i=1}^{M_i} D_i$, where $\{D_i, i \in N_+\}$ is a sequence of iid Bernoulli distributed rvs with mean α and independent of M. The dynamic of a Poisson MA(1) process $N = \{N_k, k \in N_+\}$ is defined as

$$N_k = \alpha \circ N_{k-1} + \varepsilon_k, \quad k \in N_+, \tag{50}$$

where $\varepsilon = \{\varepsilon_k, k \in N_+\}$ is a sequence of iid rvs following a Poisson distribution with mean α and independent of α. The rv $\alpha \circ \varepsilon_{k-1}$ in (50) is

$$\alpha \circ \varepsilon_{k-1} = \sum_{j=1}^{\varepsilon_{k-1}} \delta_{k-1,j}, \quad k \in N_+, \tag{51}$$

where $\{\delta_{k-1,j}\}$ is a sequence of iid Bernoulli distributed rvs with mean α. The sequences $\{\delta_{k,j}, j \in N_+\}$ are assumed independent for different periods $k \in N_+$. Given these distribution assumptions, the rv $\alpha \circ \varepsilon_{k-1}$ is Poisson distributed with mean α. The dynamic in (50) generates a stationary discrete-time process where the marginal distribution of N_k is Poisson with mean λ for $k \in N_+$. The autocorrelation function of N is $\rho_N(h) = \left\{\begin{array}{ll} \frac{\alpha^h}{1 - \alpha}, & h = 1 \\
\rho_N(1) = \frac{\alpha^h}{1 - \alpha}, & h > 1 \end{array}\right.$, which implies that $\rho_N(1) \in [0, 0.5]$. If $\alpha = 0$, N becomes a sequence of iid rvs and hence we are in the presence of the classical discrete-time risk model presented in Section 5.2 and based on the risk process denoted by X in the present section.

The number of claims N_k in period k is therefore mainly due to the new arrivals between $k - 1$ and k and a proportion of the new arrivals between $k - 2$ and $k - 1$ defined by the thinning procedure. The expression for the joint mass probability function of (N_k, N_{k-1}) is given by

$$\Pr(N_k = n_k, N_{k-1} = n_{k-1}) = e^{\lambda (1 - \frac{\alpha}{1 + \alpha})} \times \sum_{j=0}^{\min(n_k, n_{k-1})} \frac{(\alpha \frac{n_{k-1}}{1 + \alpha})^j (1 - \frac{\alpha}{1 + \alpha})^{n_k - n_{k-1} - j}}{j! (n_{k-1} - j)! (n_k - j)!}, \tag{52}$$

for $n_k, n_{k-1} \in N$ and for $n \in N$. See e.g. McKenzie (1988, 2003) for other properties of the Poisson MA(1) discrete-time process. The risk model based on the Poisson MA(1) is examined in, e.g., Cossette et al. (2010) and applied in the context of reinsurance by Zhang et al. (2015). In the proof of the following proposition, we need the concordance order, also called correlation order by Denneit et al. (2006).

Definition 10 (Concordance Order). Let $X = (X_1, X_2)$ and $X' = (X'_1, X'_2)$ be two pairs of rvs, with the same marginals. Then, X is less concordant than X', written $X \leq_{sc} X'$, if $F_X(x) \leq F_{X'}(x)$ for $x \in \mathbb{R}^2$ (see Definition 3.8.1 in Müller and Stoyan, 2002).

Note that, for $m = 2$, the supermodular order coincides with the concordance order.

Proposition 10. Let X and X' be two risk processes, where $\lambda = \lambda'$, $B \sim B'$, and $0 \leq \alpha < \alpha' < 1$. Then,

$$\begin{align*}
(N_1, \ldots, N_k) \leq_{sc} (N'_1, \ldots, N'_{k}), \quad \text{(53)}
\end{align*}$$

and

$$\begin{align*}
(X_1, \ldots, X_k) \leq_{sc} (X'_1, \ldots, X'_{k}), \quad \text{(54)}
\end{align*}$$

for $k \in \{2, 3, \ldots\}$. Consider a ruin-based risk measure ζ consistent under the supermodular order. Then, by Proposition 9, $\zeta(X) \leq \zeta(X')$. In particular, $\zeta_{TVaR}^{\alpha} \leq \zeta_{TVaR}^{\alpha'}$, for $n \in N_+$ and $k \in (0, 1)$; $\zeta_{TVaR}^{\alpha} \leq \zeta_{TVaR}^{\alpha'}$, for $k \in (0, 1)$; and $\zeta^{\alpha} \leq \zeta^{\alpha'}(X)$.

Proof. First, for $0 \leq \alpha < \alpha' < 1$, we need to prove that $(N_1, N_2) \leq_{sc} (N'_1, N'_2)$. Let $G(x; \gamma), \gamma \geq 0$, and $G^{-1}(u; \gamma), u \in (0, 1)$, be the cdf and the quantile function, respectively, of the Poisson distribution with parameter $\gamma > 0$. We also define the independent rvs $U_1, U_2, U_1', U_2', V, W$, which follow a standard uniform distribution. Then, we represent the pairs of rvs (N_1, N_2) and (N'_1, N'_2) as follows:

$$\begin{align*}
N_1 & = G^{-1}(U_1; \frac{\lambda}{1 + \alpha}) + G^{-1}(W; \frac{\alpha}{1 + \alpha}) = \phi_1(U_1, W), \\
N_2 & = G^{-1}(U_2; \frac{\lambda}{1 + \alpha'}) + G^{-1}(W; \frac{\alpha}{1 + \alpha'}) = \phi_2(U_2, W), \\
N'_1 & = G^{-1}(U'_1; \frac{\lambda}{1 + \alpha'}) + G^{-1}(V; \frac{\alpha'}{1 + \alpha'} - \frac{\alpha}{1 + \alpha'}) = \phi'_1(U'_1, V), \\
N'_2 & = G^{-1}(U'_2; \frac{\lambda}{1 + \alpha'}) + G^{-1}(V; \frac{\alpha'}{1 + \alpha'} - \frac{\alpha}{1 + \alpha'}) = \phi'_2(U'_2, V),
\end{align*}$$

with $0 \leq \alpha < \alpha' < 1$. We observe that $\phi'_1(u, v, w)$ and $\phi'_2(u, v, w)$ are increasing in $v \in (0, 1)$. Also, $\phi_1(U_1, w)$ and $\phi_2(U_2, W)$ have the same distribution for $i = 1, 2$, and for $w \in (0, 1)$. Since $\phi_1(U_1, W)$ and $(\phi_1(U_1, W), \phi_2(U_2, W))$ have the same distribution and (N'_1, N'_2) and $(\phi'_1(U'_1, V), \phi'_2(U'_2, V, W))$ have the same distribution, it follows from Theorem 3.1 of Bäuerle (1997), that $(N_1, N_2) \leq_{sc} (N'_1, N'_2)$. Note that \mathcal{N} and \mathcal{N}' are two homogeneous Markov chains. Since N_1 (and N_2) is stochastically increasing in N_2 (in N_1), then, by Theorem 3.2 of Hu and Pan (2000), we obtain the result in (59) for $k \in \{2, 3, \ldots\}$. Finally, (54) follows from Proposition 2(4) of Denneit et al. (2002).

6.1.2. Numerical computation

The numerical computation of the ruin-based risk measures ζ_{TVaR}^{α} and $\zeta_{TVaR}^{\alpha'}$ in the context of the discrete-time risk model based on Poisson MA(1) and in the context of the discrete-time risk model based on Poisson AR(1) is very similar. For this reason, we treat it in detail within the second risk model in Section 6.2.2.

6.1.3. Lundberg-Aumann–Serrano index of riskiness

In Proposition 1 of Cossette et al. (2010), the expression for $c(r)$ defined in (18) is given by

$$c(r) = \frac{\lambda (1 - \alpha)}{1 + \alpha} \mathcal{M}_B(r) + \frac{\lambda \alpha}{1 + \alpha} \mathcal{M}_B(r) = \frac{\lambda}{1 + \alpha} - r \pi. \tag{55}$$

Cossette et al. (2010) also mention that “the impact of the dependence parameter α on the Lundberg coefficient could have been studied using the supermodular order. However, after investigation, the proof of this inequality based on supermodular ordering...”
remains an open problem”. Proposition 10 provides a solution to that problem and it allows us to conclude that \(\alpha \leq \alpha' \) implies that \(\zeta^{\text{LAS}}(X) \leq \zeta^{\text{LAS}}(X') \), assuming that both indices exist.

Example 2. We consider the discrete-time risk model based on the Poisson MA(1). The risk process \(X = \{ X_n, k \in \mathbb{N}_+ \} \) where \(X_k \) is defined in (47). The claim number process is a Poisson MA(1) process with parameter \(\lambda \). The claim amount rv \(B \) follows an exponential distribution with mean \(\frac{1}{\nu} \) and mgf \(M_B(r) = \frac{1}{1-\nu r} \).

Using Proposition 2 of Cossette et al. (2010) and (20), we find that the Lundberg–Aumann–Serrano index of riskiness is given by

\[
\zeta^{\text{LAS}}(X) = \frac{2(1 + \eta)}{\beta(2(1 + \eta) - \frac{4\alpha(1+\eta)}{1+\nu} + \frac{1}{(1+\nu)^2})}.
\] (56)

We denote by \(X^+ = \{ X^+_k, k \in \mathbb{N}_+ \} \) the risk process when \(\alpha = 0 \). Note that \(X^+ \) is the risk process associated with the classical discrete-time risk model where \(\zeta^{\text{LAS}}(X^+) = \frac{1}{\beta(1+\eta)} \) as provided in (35). Then, \(\zeta^{\text{LAS}}(X) \) can be represented in terms of \(\zeta^{\text{LAS}}(X^+) \) as follows:

\[
\zeta^{\text{LAS}}(X) = \zeta^{\text{LAS}}(X^+) \frac{2\eta(1+\alpha)}{1 + \frac{2\eta(1+\alpha)}{\sqrt{4\alpha(1+\eta)(1+\alpha)} + 1}}.
\]

where the coefficient \(\frac{2\eta(1+\alpha)}{1 + \frac{2\eta(1+\alpha)}{\sqrt{4\alpha(1+\eta)(1+\alpha)} + 1}} \geq 1 \) (see Cossette et al., 2010) aggregates the information about the degree of temporal dependence \(\alpha \). Note that \(\zeta^{\text{LAS}}(X^+) \) is 1 when \(\alpha = 0 \). The additional value of riskiness due to the temporal dependence is

\[
\zeta^{\text{LAS}}(X) - \zeta^{\text{LAS}}(X^+) = \frac{1-\frac{\sqrt{4\alpha(1+\eta)(1+\alpha)} + 1}{2\eta(1+\alpha)}}{1 + \frac{2\eta(1+\alpha)}{\sqrt{4\alpha(1+\eta)(1+\alpha)} + 1}} \geq 0.
\]

By Proposition 10, it is shown that \(\zeta^{\text{LAS}}(X) - \zeta^{\text{LAS}}(X^+) \) increases with \(\alpha \).

6.2. Risk model based on Poisson AR(1)

6.2.1. Definitions and result

In this risk model, \(N = \{ N_k, k \in \mathbb{N}_+ \} \) is a Poisson AR(1) process where the rv \(N_1 \) has a Poisson distribution with mean \(\lambda \), and the autoregressive dynamic is given by

\(N_k = e_k + \alpha \circ N_{k-1}, \)

(57)

for \(k \in \{2, 3, \ldots \} \). We assume that \(e_k = \{ e_k, k \in \mathbb{N}_+ \} \) is a sequence of iid rvs following a Poisson distribution with mean \((1 - \alpha)\lambda \), where \(\alpha \in [0, 1] \). The dynamic given in (57) yields a stationary sequence of Poisson rvs with mean \(\lambda \). The autocorrelation function for \(N \) is equal to \(\rho_N(h) = \alpha^h \), for \(h \geq 1 \) (see McKenzie, 1988) with \(\rho_N(1) \in [0, 1] \). Letting \(\alpha = 0 \), \(N \) becomes a sequence of iid rvs, which leads to the risk process, denoted here by \(X \), of the classical discrete-time risk model, presented in Section 5.2. The joint pmf of two successive components of the Poisson AR(1) process \(N_{k}, (N_{k-1}, N_{k-2}) \) is given by

\[
\Pr(N_k = n_k, N_{k-1} = n_{k-1}) = e^{-(2-\alpha)\lambda} \min(n_k, n_{k-1}) \sum_{j=0}^{n_k} \frac{(\alpha^n_k n_{k-1} - 2\lambda) n_k n_{k-1}^{-j}}{\beta(n_k - j)! (n_{k-1} - j)!},
\]

(58)

for \(n_{k-1}, n_k \in \mathbb{N} \) and \(k \in \mathbb{N}_+ \) (see, e.g. McKenzie, 1988).

Proposition 11. Let \(X \) and \(X' \) be two risk processes, where \(\lambda = \lambda' \), \(B \sim B' \), and \(0 \leq \alpha < \alpha' < 1 \). Then,

\[
(X_1, \ldots, X_k) \preceq_{\min} (X'_1, \ldots, X'_k),
\]

and

\[
(X_1, \ldots, X_k) \preceq_{\min} (X'_1, \ldots, X'_k),
\]

for \(k \in \{2, 3, \ldots \} \). Consider a ruin-based risk measure \(\zeta \) consistent under the supermodular order. Then, by Proposition 9, \(\zeta(X) \leq \zeta(X') \). In particular, \(\zeta^{\text{TVaR}}(X) \leq \zeta^{\text{TVaR}}(X') \), for \(n \in \mathbb{N}_+ \) and \(k \in (0, 1); \zeta^{\text{TVaR}}(X) \leq \zeta^{\text{TVaR}}(X'), \) for \(k \in (0, 1) \); and \(\zeta^{\text{TVaR}}(X) \leq \zeta^{\text{TVaR}}(X') \).

Proof. We omit the proof since it is very similar to the proof of Proposition 10.

6.2.2. Numerical computation

In this subsection, we examine the numerical computation of the ruin-based risk measures \(\zeta^{\text{TVaR}} \) and \(\zeta^{\text{TVaR}}_n \). We make the following additional assumptions: the premium income \(\pi \in \mathbb{N}_+ \), the initial surplus \(u \in \mathbb{N} \), and the rv \(B \) is defined on \(\mathbb{N}_+ \). All the formulas of the present section can be easily adapted to the case where the arithmetical support is \[0, 1h, 2h, \ldots \] with \(h > 0 \). For the computation of \(\zeta^{\text{TVaR}}_n \) and \(\zeta^{\text{TVaR}} \), we need the conditional probabilities

\[
\psi(u, n) = F_Z(u) = \sum_{k=0}^{\infty} p_k \psi(u, n|N_k = k),
\]

(61)

where \(\psi(u, n|N_k = k) = \Pr(\tau \leq n|N_k = k) \) is the conditional finite-time ruin probabilities, which are computed recursively. For \(n = 1 \), we have

\[
\psi(u, 1|N_1 = k) = \sum_{l=\alpha+1}^{\infty} f(l, k),
\]

where

\[
f(j; k_1) = \begin{cases}
\Pr(B_1 + \cdots + B_{k_1} = j), & \text{if } k_1 \in \mathbb{N}_+ \\
1, & \text{if } k_1 = 0 \text{ and } j = 0 \\
0, & \text{if } k_1 = 0 \text{ and } j \neq 0
\end{cases}
\]

For \(n \in \{2, 3, 4, \ldots \} \), we have

\[
\psi(u, n|N_k = k) = \sum_{l=\alpha+1}^{\infty} f(l, k) \sum_{k_2=0}^{\infty} \theta_{k_1} \sum_{j=0}^{u+\pi} \sum_{k_1=0}^{\infty} f(j, k_1)
\times \psi(u + \pi - j, n - 1|N_k = k_2),
\]

for \(u, k_1 \in \mathbb{N} \). Note that, within the discrete-time risk model defined with Poisson MA(1), the finite-time ruin probabilities \(\psi(u, n) \) can be computed using the same procedure, with (52) in (61) rather than (58).

Example 3. In the discrete-time risk model of this section, let the rv \(B \) follow a zero-truncated geometric distribution with \(\Pr(B = k) = (1 - \nu)\nu^k \), for \(k \in \mathbb{N}_+ \) and \(E[B] = \frac{1}{1-\nu} \), with \(\nu = \frac{1}{2} \). Also, the Poisson parameter is \(\lambda = 0.4 \) and the premium is \(\pi = 1 \). In Table 1, we provide the values of \(\zeta^{\text{TVaR}}_n, \zeta^{\text{TVaR}}_n(\mathbb{X}) \) for a dependence parameter \(\alpha \in [0, 0.2, 0.5, 0.8] \). We also indicate the values of the expectation and the variance of \(Z_{20} \).

The results obtained for \(E[Z_{20}] \) and \(\text{TVaR}_{0.95}(Z_{20}) \) increase with the dependence parameter \(\alpha \). By Proposition 11 and because the ruin-based TVaR is consistent under the supermodular order, it follows that when the dependence relation between the losses becomes positively stronger, the risk process is riskier and the required amount of capital to be allocated to the portfolio must increase.
6.3.3. Lundberg-Aumann–Serrano index of riskiness

The expression for $c(r)$ is provided in Proposition 5 of Cossette et al. (2010). Assuming that $M_B(r) < 1$, the expression for $c(r)$ defined in (18) is given by

$$c(r) = \left(\frac{(1-a)^2 \lambda M_B(r)}{1-(\alpha M_B(r))} \right) - (1-a) \lambda - r \pi = \left(\frac{(1-a)^2 \lambda M_B(r)}{1-(\alpha M_B(r))} \right) - (1-a) \lambda - r \pi. \tag{62}$$

Applying Proposition 11, $\alpha \leq \alpha'$ implies that $\zeta^{Las}(X) \leq \zeta^{Las}(X')$, assuming that both indices exist.

Example 4. The discrete-time risk model is defined with the risk process $X = \{X_k, k \in \mathbb{N}\}$ where X_k are given in (47) and (48), respectively. The claim number process is a Poisson AR(1) process with parameter λ, and the claim amount $r \sim B$ is exponentially distributed with mean $\frac{1}{\beta}$ and mgf $M_B(r) = \frac{\beta}{\beta+r}$. Combining Proposition 4 of Cossette et al. (2010) and (20), the Lundberg–Aumann–Serrano index of riskiness is given by the following nice and simple expression:

$$\zeta^{Las}(X) = \frac{1+\eta}{\beta} \left(\frac{1}{\gamma - 1} \right) = \zeta^{Las}(X') \frac{1}{1-\alpha}, \tag{63}$$

where $\zeta^{Las}(X')$, given in (35), is the Lundberg–Aumann–Serrano index of riskiness corresponding to the risk process associated with the classical discrete-time risk model, as presented in Section 5.2. The contribution of riskiness due to temporal dependence is

$$\zeta^{Las}(X') - \zeta^{Las}(X') \geq 0 \tag{64}$$

According to Proposition 11, $\zeta^{Las}(X) - \zeta^{Las}(X')$ becomes larger as α increases, which is obvious by (64).

6.3. Risk model defined with a Markov Bernoulli process

6.3.1. Definitions and result

We assume that the claim number process N is a Markov Bernoulli process, i.e., N is a Markov chain with state space $\{0, 1\}$ and with transition probability matrix

$$P = \begin{pmatrix} 1 - (1-a) q & (1-a) q \\ (1-a) (1-q) & \alpha + (1-a) q \end{pmatrix} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}, \tag{65}$$

where α can be seen as the dependence parameter, introducing a positive dependence relation between the claim number rvs. In this risk model, at most one claim can occur over a period. The initial probabilities associated with P are $Pr(N_0 = 1) = q = 1 - Pr(N_0 = 0)$, where $0 \leq a < 1$ and $0 < q < 1$. When α tends to 1, a period with a (no) claim is likely followed by a period with a (no) claim. The covariance between N_k and N_{k+1} is given by $Cov(N_k, N_{k+1}) = q(1-q)\lambda$, for $k \in \mathbb{N}_0$ and $j \in \mathbb{N}$. When $\alpha = 0$, the claim number process N becomes a sequence of iid rvs and the corresponding risk process, denoted by X^L, is the risk process of the classical discrete-time risk model, presented in Section 5.2. See, e.g., Cossette et al. (2010) for details on this risk model with temporal dependence.

6.3.2. Lundberg-Aumann–Serrano index of riskiness

Example 5. The compound Markov binomial risk model is defined as the risk process associated with the corresponding Markov chain with statespace $\{0, 1\}$. The compound Markov binomial risk model can be found in the studies by Cossette et al. (2003), Cossette et al. (2004), Yuen and Guo (2006), and Avellaneda and Fracke (2007).

Let X^L be the risk process associated with the corresponding compound binomial risk model defined in Section 5.3. Since the
ruin-based risk measure ζ^TVaR (or ζ^TVaR) is consistent under the supermodular order and by Proposition 12, we can now identify the extra amount of capital that needs to be allocated to the portfolio due to the positive temporal dependence between the components of X, which is given by $\zeta^\text{TVaR}(X) - \zeta^\text{TVaR}(X^-)$ (or $\zeta^\text{TVaR}(X^-) - \zeta^\text{TVaR}(X^+)$).

Example 6. We consider the compound Markov binomial risk model. Let the rv B follow a zero-truncated geometric distribution with $\Pr(B = k) = (1 - \nu) \nu^{k-1}$, for $k \in \mathbb{N}_+, \text{and } E[B] = \frac{1}{\nu}$, with $\nu \in (0, 1)$. The parameters q and v are fixed such that $\frac{q}{1 - \nu} < 1$.

\[\psi(u) = F_Z^{-1}(u) = 1 - F_Z(u) = \psi(0) \left(\frac{u}{p_{10} - \alpha (1 - \nu)} \right)^u, \quad (68) \]

for $u \in \mathbb{N}$ and with $\psi(0) \equiv q \frac{\nu^{(E[B] - 1 - w + (1 - \alpha) \cdot (E[B] - 1))}}{1 - \alpha (1 - \nu)}$. The following expression of $\zeta^\text{TVaR}(X)$ is derived from (68):

\[\zeta^\text{TVaR}(X) = F_Z^{-1}(\kappa) = \begin{cases} 0 & 0 < \kappa \leq 1 - \psi(0), \\ \frac{\ln(\frac{\nu}{\kappa - 1})}{\ln\left(\frac{p_{10}}{p_{10} - \alpha (1 - \nu)}\right)} & 1 - \psi(0) < \kappa < 1. \end{cases} \quad (69) \]

From (68), we find that

\[\pi_Z(u) = E[\max(Z - u; 0)] = \sum_{k=0}^{\infty} \psi(k) = \psi(0) \frac{p_{10} - \alpha (1 - \nu) - u}{p_{10} - \alpha (1 - \nu) - u} \left(\frac{u}{p_{10} - \alpha (1 - \nu)} \right)^u, \quad (70) \]

for $u \in \mathbb{N}$. Combining (69) and (70) into (16), we obtain $\zeta^\text{TVaR}(X)$ given in Box I.

6.4. Risk model defined in a Markovian environment

6.4.1. Definitions and result

We assume that the claim number process $\mathbf{N} = \{N_k, k \in \mathbb{N}_+\}$ is influenced by an underlying Markovian environment represented by the time-homogeneous Markov chain Θ defined over the 2-state space $\{\emptyset, \Theta\}$ with transition probabilities $p_{ij} = \Pr(\Theta_{k+1} = \emptyset | \Theta_k = \Theta_j)$, for $k \in \mathbb{N}_+$. Assume that the conditional pmf of $(N_k | \Theta_k = \emptyset)$ is a Poisson distribution and the conditional cdf of $(N_k | \Theta_k = \emptyset)$ is a Poisson distribution with mean λ_j, $j = 1, 2$, and $\lambda_1 \leq \lambda_2$. The transition probability matrix P of Θ is denoted by

\[P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 1 - (1 - \nu) X & (1 - \nu) X \\ (1 - \nu) (1 - X) & \nu + (1 - \nu) X \end{pmatrix}, \]

where $0 < \nu < 1$. To avoid negative transition probabilities, we assume $0 \leq \nu < 1$. The stationary probabilities associated with P are $\Pr(\emptyset = \emptyset) = p_{11}$ and $\Pr(\emptyset = \emptyset) = p_{22}$. The vector of parameters Θ follows a sequence of iid rvs, where the corresponding risk process X^- is the risk process of the classical discrete-time risk model, presented in Section 5.2.

Definition 11. Let $V(\psi)$ be a finite or infinite sequence of rvs $\{V_k(\psi), k \in \mathbb{N}_+\}$ where the vector of parameters ψ belongs to a subset of \mathbb{R}. Then X is stochastically increasing in ψ if $V_k(\psi_1) \leq_{st} V_k(\psi_2)$ whenever $\psi_1 \leq_{st} \psi_2$, for $k \in \mathbb{N}_+$.

Definition 12. Let $\Psi = \{\Psi_k, k \in \mathbb{N}_+\}$ be a sequence of rvs. Then, Ψ is sequentially stochastically increasing if, for all $n, \{\Psi_{k+1} - \Psi_k = y_1, \ldots, \Psi_1 = y_1\}$ is stochastically increasing in (y_1, \ldots, y_n).

Table 3: Results for Example 7.

<table>
<thead>
<tr>
<th>α</th>
<th>$\zeta^{\text{TVaR}}(X)$</th>
<th>$\zeta^{\text{TVaR}}_{0.9}(X)$</th>
<th>$\zeta^{\text{TVaR}}_{0.99}(X)$</th>
<th>$\zeta^{\text{TVaR}}_{0.999}(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60.7482</td>
<td>139.8778</td>
<td>279.7556</td>
<td>419.6334</td>
</tr>
<tr>
<td>0.1</td>
<td>60.9139</td>
<td>140.2595</td>
<td>280.5189</td>
<td>420.7784</td>
</tr>
<tr>
<td>0.5</td>
<td>62.2335</td>
<td>143.2980</td>
<td>286.5960</td>
<td>429.8939</td>
</tr>
</tbody>
</table>

Proposition 13. Let X and X' be two risk processes, where $\lambda_1 = \lambda_1'$, $\lambda_2 = \lambda_2'$, $\nu = \nu'$, and $0 \leq \nu < \nu' < 1$. Then,

\[(N_1, \ldots, N_k) \leq_{st} (N_1', \ldots, N_k'), \quad (71) \]

for $k \in \{2, 3, \ldots\}$. Consider a ruin-based risk measure ζ consistent under the supermodular order. Then, by Proposition 9, $\zeta^\text{TVaR}(X) \leq \zeta^\text{TVaR}(X')$. In particular, $\zeta^\text{TVaR}(X) \leq \zeta^\text{TVaR}(X')$, for $n \in \mathbb{N}_+$ and $\kappa \in (0, 1)$; $\zeta^\text{TVaR}(X) \leq \zeta^\text{TVaR}(X')$, for $\kappa \in (0, 1)$; and $\zeta^\text{TVaR}(X) \leq \zeta^\text{TVaR}(X')$. The proof follows from Theorem 3.1 of Lillo and Semeraro (2004).

Note that the claim amounts are assumed not to be affected by the Markovian process. The dependence parameter ν indicates the strength of the dependence relation between the claim number rvs. As the parameter ν increases, the risk process for the portfolio becomes riskier. Risk managers who use a ruin-based risk measure consistent under the supermodular order, such as ζ^TVaR, must allocate a larger amount of capital to the portfolio in order to hedge the riskiness of the insurance portfolio.

6.4.2. Lundberg-Aumann–Serrano index of riskiness

The expression for $c(r)$, provided in Proposition 10, is given by

\[c(r) = \ln \left[\gamma + \sqrt{\gamma^2 - 4 \lambda M_W^{(1)}(r) M_W^{(2)}(r)} \right] - \ln 2 - \pi r, \quad (72) \]

where $\gamma = \frac{p_{11} M_W^{(1)}(r) + p_{22} M_W^{(2)}(r)}{\alpha}$ and $M_W^{(j)}(r) = E[e^{rW} | \Theta = \emptyset] = e^{\rho(r)(M_W^{(j)} - 1)}$, $j = 1, 2$. Numerical optimization must be used to compute the solution of (72) and, afterwards, the value $\zeta^\text{TVaR}(X)$. In the following example, we illustrate the computation of $\zeta^\text{TVaR}(X)$ within the risk model defined in a Markovian environment.

Example 7.** Let $\nu = 0.5$, $\lambda_1 = 0.05$, and $\lambda_2 = 0.15$. We assume that B follows an exponential distribution with expectation $E[B] = 10$ and that the premium income is $\pi = 1.2$. In Table 3, we give the values of $\zeta^\text{TVaR}(X)$ for $\alpha = 0.0, 0.1, 0.5$, computed from (72) using numerical optimization. Note that $\alpha = 0$ corresponds to the classical risk model. The values of $\zeta^\text{TVaR}_{0.9}(X)$, for $\kappa = 0.9, 0.99, 0.999$, are also given in Table 3. The results illustrate the result of Proposition 13, i.e., $\zeta^\text{TVaR}(X) \leq \zeta^\text{TVaR}(X')$ for $0 \leq \nu < \nu' < 1$.\]
7. Classical discrete-time risk model with m lines of business and risk allocation based on Euler principle

In this section, we consider an insurance portfolio composed of m different lines of business within the context of the classical discrete-time risk model and we aim to compute the contribution of each line to global riskiness of the portfolio. Each contribution is computed under Euler’s allocation rule.

We first present the additional features of the classical discrete-time risk model with m lines of business. The risk process for the insurance portfolio is denoted \(X = (X_k, k \in \mathbb{N}_+) \), with \(X_k = \sum_{i=1}^{m} C_{i,k} \), where the rv \(C_{i,k} \) is the net losses in period \(k \) for the risk \(i \) \((i = 1, 2, \ldots, m, k \in \mathbb{N}_+) \). We assume that \(\{C_{1,k}, \ldots, C_{m,k}\} \) forms a sequence of identically distributed random vectors. Also, we have \(\{C_{1,k}, \ldots, C_{m,k}\} \sim \{\mathcal{C}_1, \ldots, \mathcal{C}_m\} \) and \(X_k \sim X = \sum_{i=1}^{m} C_i \).

In the following proposition, we characterize the impact of dependence within the components of \(\mathcal{C} \) on a ruin-based risk measure \(\zeta \) consistent under the increasing convex order.

Proposition 14. Consider the classical discrete-time risk model with \(m \) lines of business. Assume that

\[
(C_{1,k}, \ldots, C_{m,k}) \preceq_{sm}^\ast (C_{1,k}', \ldots, C_{m,k}'),
\]

for \(k \in \mathbb{N}_+ \). Then, for a ruin-based risk measure \(\zeta \) consistent under the increasing convex order, we have \(\zeta (X) \leq \zeta (X') \).

Proof. From (9.4.19) of Shaked and Shanthikumar (2007), (73) implies that \(X_k \preceq_{sc} X'_k \), and therefore,

\[
X_k \preceq_{sc} X'_k,
\]

for \(k \in \mathbb{N}_+ \). Combining (74) and Proposition 2.1, we have \(X \preceq_{sc} X' \). Since \(\zeta \) consistent under the increasing convex order, it follows that \(\zeta (X) \leq \zeta (X') \). ■

Example 13.2.4 in Cossette and Marceau (2013) provides an illustration of the result of Proposition 14 with \(\zeta_{\text{c},n} \) and \(\zeta, \text{tRv} \). It also contains a counterexample showing that the finite-time ruin-based VaR is not subadditive.

We choose a homogeneous and subadditive ruin-based risk measure \(\zeta \) to make a global risk assessment of the portfolio. By subadditivity property, we know that \(\zeta (X) = \zeta (\sum_{i=1}^{m} C_i) \leq \sum_{i=1}^{m} \zeta (C_i) \), where \(C_i = \{C_{i,k} \mid k \in \mathbb{N}_+ \} \) for \(i = 1, 2, \ldots, m \). We examine the computation of the contribution of each line of business to the overall risk of the portfolio. This is an important topic in actuarial science and quantitative risk management and this problem has received much attention over the last decade. In order to compute the contribution of each component, we apply Euler’s allocation principle (see e.g. Tasche (1999), McNeil et al. (2015), and Rosen and Saunders (2010) for details on risk allocation rules and Euler’s allocation principle).

To apply Euler’s allocation principle, let us define

\[
X (\bar{\rho}) = \{X_k (\bar{\rho}), k \in \mathbb{N}_+ \} = \left\{ \sum_{i=1}^{m} \beta_i C_{i,k}, k \in \mathbb{N}_+ \right\},
\]

where \(\bar{\rho} = (\rho_1, \ldots, \rho_m) \). For a given homogeneous ruin-based risk measure \(\zeta \), the contribution of the component \(i \) to \(\zeta (X) \) is given by

\[
\zeta (X, C_i) = \left. \frac{\partial}{\partial \rho_i} \zeta \left(X (\bar{\rho}) \right) \right|_{\rho_i=1},
\]

for \(i = 1, 2, \ldots, m \) and where \(1 = (1, \ldots, 1) \).

In the risk model of the following example, we find closed expressions of the Lundberg–Aumann–Serrano index and of the contributions to this ruin-based risk measure.

Example 8. We consider the classical discrete-time risk model with \(m = 2 \) lines of business, where \(X = C_1 + C_2 \) with \(C_1 = W_1 - \pi_1 \) and \(C_2 = W_2 - \pi_2 \). Also, \(W = (W_1, W_2) \) follows a bivariate compound Poisson distribution with parameters \(\lambda_1 > 0, \lambda_2 > 0, 0 \leq \gamma_0 \leq \min (\lambda_1, \lambda_2) \). Denote \(\gamma_1 = \lambda_1 - \gamma_0 \) and \(\gamma_2 = \lambda_2 - \gamma_0 \). For line \(i \), a claim amount is exponentially distributed with mgf \(M_{h_i} (r) = (1 + \mu_i r)^{-1} \), \(i \in \{1, 2\} \). The joint mgf of \(W \) is

\[
M_{W} (r_1, r_2) = e^{r_1 (M_{h_1} (r_1) - 1)} e^{r_2 (M_{h_2} (r_2) - 1)} \left(e^{\lambda_1 r_1} - 1 \right) \left(e^{\lambda_2 r_2} - 1 \right),
\]

and \(M_{\mathcal{C}} (r_1, r_2) = M_{W} (r, r) e^{-\pi_1 r_1 - \pi_2 r_2} \). Also, the mgf of \(X \) is \(M_{X} (r) = M_{W} (r, r) e^{\sum_{i=1}^{m} \pi_i \lambda_i} \), where the premium income is \(\pi_1 > \mu_1 \lambda_1, \pi_2 > \mu_2 \lambda_2 \), and \(\pi = \pi_1 + \pi_2 \). Using (17) and (18) with (76), the closed-form expression for the Lundberg–Aumann–Serrano index of riskiness is

\[
\zeta_{\text{LAS}} (X) = \frac{2 \mu_1 \mu_2}{\rfloor - \sqrt{\varphi^2 - \pi_1 \mu_2 (\pi - \lambda_1 \mu_1 - \lambda_2 \mu_2)}},
\]

with

\[
\varphi = (\mu_1 + \mu_2) - (\lambda_1 + \lambda_2 - \gamma_0).
\]

From Proposition 3 and Example 4 of Denuit et al. (2002), if \(0 \leq \gamma_0 \leq \gamma_0' \leq \min (\lambda_1, \lambda_2) \), then \((C_{1,k}, C_{2,k}) \preceq_{sm} (C_{1,k}', C_{2,k}') \) and, by Proposition 14, \(\zeta_{\text{c},n} (X) - \zeta_{\text{c},n} (X') \geq 0 \). Applying (75) to (77), we find the following closed-form expression of Euler’s contribution of line \(1 \) to \(\zeta_{\text{c},n} (X) \):

\[
\zeta_{\text{c},n} (X, C_1) = \frac{\partial}{\partial \rho_1} \zeta \left(X (\bar{\rho}) \right) \bigg|_{\rho_1=1}.
\]

where

\[
\vartheta = 4 \pi_1 \mu_1 \mu_2 + 2 \pi_1 \pi_2 \mu_2 - \zeta_{\text{c},n} (X) (2 \pi_1 \mu_1 + \pi_2 \mu_2 + \pi_2 \mu_1) - \zeta_{\text{c},n} (X) \frac{\partial}{\partial \xi}
\]

and

\[
\xi = \frac{2 (\pi_1 \mu_1 + \pi_2 \mu_2 + \pi_2 \mu_1)(\gamma_1 + \lambda_2 - \gamma_0)}{(2 \pi_1 \mu_1 + \pi_2 \mu_1 + \pi_2 \mu_2) (\pi_1 \lambda_1 \mu_1 + \pi_1 \lambda_2 \mu_2 - \pi_1 \gamma_0) - 2 \pi_1 \mu_1 (\gamma_1 + \lambda_2 - \gamma_0) - 2 \pi_1 \lambda_1 \mu_1 - 2 \pi_1 \lambda_2 \mu_2}.
\]

The expression of the closed-form expression for \(\zeta_{\text{c},n} (X, C_1) \) is similar to the one of \(\zeta_{\text{LA}} (X; C_1) \) in (78).
Generally, there is no closed-form expression for $\zeta (X; \zeta)$. Then, for a given $\varepsilon > 0$ (e.g., $\varepsilon = 10^{-3}$ or 10^{-4}), $(X; \zeta)$ can be approximated by $\zeta^\varepsilon (X; \zeta)$, i.e.,

$$
\zeta (X; \zeta) \approx \zeta^\varepsilon (X; \zeta) = \frac{1}{\varepsilon} \left(\sum_{i=1}^{m} \zeta^i \left(\sum_{j=1}^{n} \zeta^j \right) \right) - \zeta \left(\sum_{i=1}^{m} \zeta^i \right) \varepsilon
$$

(79)

In the following example, we apply the approximation (79) to compute the contributions to the finite-time ruin-based TVaR.

Example 9. We assume the classical discrete-time risk model with $m = 2$ lines of business, where $m = 2$, $C_i = W_i - \pi_i$, $W_i \sim \text{Gamma} (\alpha_i, \beta_i)$, $\pi_i = (1 + \eta_i) E [W_i]$ and $\eta_i \geq 0$, $i \in \{1, 2\}$. We first consider the case where W_1 and W_2 are independent.

<table>
<thead>
<tr>
<th>α_i</th>
<th>β_i</th>
<th>η_i</th>
<th>W_1</th>
<th>W_2</th>
<th>ζ^ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2, 1/200)$</td>
<td>$(2, 1/50)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α_i</th>
<th>β_i</th>
<th>η_i</th>
<th>W_1</th>
<th>W_2</th>
<th>ζ^ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2, 1/200)$</td>
<td>$(2, 1/50)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In this paper, we have considered four ruin-based risk measures within discrete-time risk models, each of which illustrates the risk covered by the insurance company from a different angle. We have discussed several properties fulfilled by these risk measures and, when possible, we have provided explicit forms within the classical discrete-time risk model and the discrete-time risk models with temporal dependence, and examined the impact of the temporal dependence throughout different risk models. Finally, we have discussed capital allocation issues based on the Euler principle and provided some numerical illustrations with different dependence structures between the subrisks considered.

References

Bae, Y., 2010. ruin probabilities and, when possible, we have provided explicit forms within the classical discrete-time risk model and the discrete-time risk models with temporal dependence, and examined the impact of the temporal dependence throughout different risk models. Finally, we have discussed capital allocation issues based on the Euler principle and provided some numerical illustrations with different dependence structures between the subrisks considered.

Acknowledgments

We thank the anonymous referees and the Editor for their suggestions and comments which led to significant improvements of the paper. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (Cossette: 054993; Marceau: 053934) and by the Chaire en actuarial de l’Université Laval (Cossette and Marceau: F0502320).

References

Bae, Y., 2010. ruin probabilities and, when possible, we have provided explicit forms within the classical discrete-time risk model and the discrete-time risk models with temporal dependence, and examined the impact of the temporal dependence throughout different risk models. Finally, we have discussed capital allocation issues based on the Euler principle and provided some numerical illustrations with different dependence structures between the subrisks considered.

Acknowledgments

We thank the anonymous referees and the Editor for their suggestions and comments which led to significant improvements of the paper. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (Cossette: 054993; Marceau: 053934) and by the Chaire en actuarial de l’Université Laval (Cossette and Marceau: F0502320).

References

Bae, Y., 2010. ruin probabilities and, when possible, we have provided explicit forms within the classical discrete-time risk model and the discrete-time risk models with temporal dependence, and examined the impact of the temporal dependence throughout different risk models. Finally, we have discussed capital allocation issues based on the Euler principle and provided some numerical illustrations with different dependence structures between the subrisks considered.

Acknowledgments

We thank the anonymous referees and the Editor for their suggestions and comments which led to significant improvements of the paper. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (Cossette: 054993; Marceau: 053934) and by the Chaire en actuarial de l’Université Laval (Cossette and Marceau: F0502320).

References

