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On the Finite-Sample Performance of
Measure Transportation-Based

Multivariate Rank Tests

Marc Hallin and Gilles Mordant

Abstract Extending to dimension 2 and higher the dual univariate concepts of
ranks and quantiles has remained an open problem for more than half a century.
Based on measure transportation results, a solution has been proposed recently
under the name center-outward ranks and quantiles which, contrary to previous
proposals, enjoys all the properties that make univariate ranks a successful tool for
statistical inference. Just as their univariate counterparts (to which they reduce in
dimension one), center-outward ranks allow for the construction of distribution-free
and asymptotically efficient tests for a variety of problems where the density of some
noise or innovation remains unspecified. The actual implementation of these tests
involves the somewhat arbitrary choice of a grid. While the asymptotic impact of
that choice is nil, its finite-sample consequences are not. In this note, we investigate
the finite-sample impact of that choice in the typical context of the multivariate
two-sample location problem.

1 Introduction

1.1 David Tyler, beyond affine equivariance and elliptical symmetry

The closely related concepts of affine equivariance and elliptical symmetry played
a central role in the development of robust multivariate statistics over the past 60

Marc Hallin
ECARES and Département de Mathématique, Université libre de Bruxelles, Avenue F.D. Roo-
sevelt 50, 1050 Brussels, Belgium
e-mail: mhallin@ulb.ac.be

Gilles Mordant
IMS, Universität Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
e-mail: mordantgilles@gmail.com

1



2 Marc Hallin and Gilles Mordant

years.1 A critical attitude towards this dominant role of elliptical densities constitutes
a red thread running throughall of David’s contributions to multivariate anlysis2—an
attitude that actually takes place in a broader debate on the ordering of the real space
in dimension d ≥ 2. Such ordering is an essential issue if the univariate concepts
of distribution and quantile functions, ranks, and signs, all heavily depending on the
canonical ordering of the real line, are to be extended to a multivariate context.

1.2 Ordering the real space in dimension d ≥ 2

The problem of ordering Rd for d ≥ 2, hence ranking multivariate observations,
has a long history in statistics. Many attempts have been made to define adequate
multivariate concepts of ranks.

The notion of ranks, however, is not an isolated one, as it is inseparable from that
of empirical quantiles, quantile regions (collections of points with ranks less than or
equal to some given value), and quantile contours (collections of points with ranks
equal to some given value). A sound definition thus should include all these con-
cepts, along with their population versions—the population distribution and quantile
functions F and Q—and their mutual relations (a quantile function is the inverse of a
distribution function (Q = F−1); a population distribution function and its empirical
version are asymptotically related via a Glivenko-Cantelli result, etc.). Among the key
properties of any successful concept are the distribution-freeness (within the class of
absolutely continuous distributions P, say) of the ranks and the distribution-freeness
of the push-forward3 of a distribution P by its distribution function F . Without these
distribution-freeness properties, the level of a quantile Q(τ) = F−1(τ) depends on
the distribution P characterized by F and can be anything larger or smaller than τ:
as a quantile of order τ, thus, Q(τ) is totally meaningless.

Appealing as they are, none of the attempts that had been made until recently—
marginal ranks, spatial ranks, elliptical (or Mahalanobis) ranks, ... —is satisfying the
desired properties; actually, none of them is even enjoying distribution-freeness!4
Nor do the various depth concepts: the probability content of a depth contour of
given depth strongly depends on the underlying P, which hinders its interpretation
as a quantile contour.

Based on measure transportation results (mainly, a theorem by McCann (1995))
Chernozhukov et al. (2017), Hallin (2017), and Hallin et al. (2021) recently intro-

1 Tukey (1960), Huber (1964), and Hampel (1968) generally are considered as laying the foundations
of modern robust statistics; see Ronchetti (2006) for a historical perspective and Stigler (1973) for
an account of the pre-Tukey era.

2 Significantly, “Robust Multivariate Statistics: Beyond Ellipticity and Affine Equivariance” is the
title of one of David’s NSF grants.

3 We adopt here the convenient terminology and notation of measure transportation: the push-
forward F#P of P by F is the distribution of F (Z) where Z ∼ P, i.e., F (Z) ∼ F#P if Z ∼ P.

4 The Mahalanobis ranks and signs (Hallin & Paindaveine, 2002) are enjoying distribution-freeness
over the class of elliptically symmetric distributions only.
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duced the concepts of center-outward ranks and signs, distribution and quantile

functions which, for the first time, satisfy all the desired properties (see Hallin et al.
(2021) and the review by Hallin (2022) for details) and further triggered the de-
velopment of several appealing multivariate, distribution-free statistical procedures,
among which Faugeras & Rüschendorf (2017), Shi et al. (2021a,b), Ghosal & Sen
(2019), Deb & Sen (2021), Deb et al. (2020, 2021), Masud & Aeron (2021), Hallin
et al. (2020a,b,c). These are the concepts we are considering in this paper and now
describe under their various versions.

2 Center-outward ranks and signs

For the simplicity of exposition, we throughout consider distributions P on Rd in the
family Pd of Lebesgue-absolutely continuous distributions with nonvanishing den-

sities, that is, with a density f such that for all B > 0 there exist 0 < m−
B
≤ m+

B
< ∞

such that m−
B
≤ f (z) ≤ m+

B
for all z such that ‖z‖ ≤ B. That assumption can be

relaxed, though: see del Barrio et al. (2020).

2.1 A measure transportation-based concept of distribution and

quantile functions

The basic idea behind the definition of the center-outward distribution and quantile
functions of a probability measure P ∈ Pd is quite simple. For d = 1, the distribution
function F of P is the unique monotone increasing function pushing P forward to
the uniform U[0,1] over [0, 1]—namely, F#P = U[0,1]. Rather than F , however, which
is based on a left-to-right ordering of R that does not extend to Rd for d ≥ 2, we
consider the center-outward distribution function F± := 2F − 1, which contains the
same information as F and is the unique monotone increasing function pushing P
forward to the uniform U[−1,1] over [−1, 1]. A monotone increasing function is
the gradient (the derivative) of a convex function: the center-outward distribution
function F± this is the unique gradient of a convex function such that F±#P = U[−1,1].
The interval [−1, 1] is, for d = 1, the closed unit ball S̄d, where Sd :=

{

u|‖u‖ ≤ 1
}

and, denoting by Ud the spherical uniform5 over S̄d, the spherical uniform over S̄1

coincides with the uniform over [−1, 1]: namely, U1 = U[−1,1].
A celebrated theorem by McCann (1995) tells us that, for arbitrary dimen-

sion d ∈ N and arbitrary P ∈ Pd, there exist a (P-a.s., here Lebesgue-a.e.) unique
gradient of a convex function F± such that F±#P = Ud. Obviously, for d = 1, F±
coincides with the univariate F±, whence the notation. Call F± the center-outward dis-

tribution function of P. It follows from Figalli (2018) that—except perhaps at F−1
± (0)

5 The spherical uniform Ud over S̄d is the spherical distribution with center 0 and radial density
the uniform over [0, 1]: it is thus the product of a uniform over [0, 1] for the distances to the origin
and a uniform over the unit (hyper)sphere for the directions.
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(a set of points with Lebesgue measure zero)—F±#P is a homeomorphism, hence
admits a continuous (except perhaps at F−1

± (0)) inverse Q± := F−1
± : call Q± the

center-outward quantile function of P. Clearly, Q±#Ud = P.
This, with the spherical uniform Ud as a reference distribution (extending U[−1,1])

is the concept proposed in Hallin (2017) and Hallin et al. (2021), where we refer to
for further properties of F± and Q± justifying their qualification as distribution and
quantile functions.

Other choices are possible for the reference U, though. Replacing Ud with an
arbitrary compactly supported absolutely continuous reference distribution U, Cher-
nozhukov et al. (2017), in a very general approach, propose, under the name of
Monge-Kantorovich vector rank and Monge-Kantorovich quantile functions, mea-
sure transportation-based definitions of a broad class of analogues, FMK and QMK,
say, of F± and Q±. For nonspherical U’s, however, the Monge-Kantorovich quantile
functions do not enjoy all the features expected from a quantile function;6 Cher-
nozhukov et al. (2017) therefore also introduce a concept of Monge-Kantorovich

depth DMK—a transformation-retransformation version (based on the Monge-
Kantorovich vector rank function) of classical Tukey depth DTukey. For spherical U’s,
Monge-Kantorovich depth and quantile contours coincide. More precisely, defin-
ing δ(τ) := DTukey(uτ ) where uτ is such that U

({

u �� ‖u‖ ≤ ‖uτ ‖
})

= τ, one

has
{
z �� ‖FMK‖ = τ

}
= D−1

MK(δ(τ)). Recurring to depth in order to construct quan-
tile regions and contours, thus, is not necessary in the case of a spherical reference U

which, in that respect, offers a better conceptual coherence between the resulting
notions of vector ranks and quantiles. As far as rank tests are concerned, however,
this can be considered a minor concern.

The choice for U of the nonspherical Lebesgue uniform U[0,1]d over the unit (in
the canonical basis) hypercube [0, 1]d—call it the cubic uniform—yields a vector
rank function FMK that reduces, for d = 1, to the classical distribution function F

just as F± reduces to F±. Despite poor equivariance properties7 its use has been
advocated by several authors: see, e.g., Faugeras & Rüschendorf (2017), Carlier
et al. (2016), Deb et al. (2020, 2021), Deb & Sen (2021).

2.2 Multivariate ranks and signs

Denote by Z(n) := (Z
(n)

1 , . . . ,Z
(n)
n ) an i.i.d. sample with distribution P ∈ Pd. The

empirical counterpart F
(n)
± of F± is obtained as the solution of an optimal pairing

problem between the sample values Z
(n)

1 , . . . ,Z
(n)
n and a “regular” grid G(n) with

gridpoints G(n)

1 , . . . ,G
(n)
n . Precisely,

(

F
(n)
± (Z

(n)

1 ), . . . , F
(n)
± (Z

(n)
n )

)

is defined as the

minimizer
(

G
(n)

π∗(1)
, . . . ,G

(n)

π∗(n)

)

, over the n! possible permutations π ∈ Πn of the

integers {1, . . . , n}, of
∑n

i=1
Z(n)

i
− G

(n)

π (i)
)2.

6 On this point, see Section 3.4 in Hallin (2022).

7 Contrary to F±, which is nicely equivariant, the rank vector function FMK associated with the
cubic uniform U[0,1]d is highly non-equivariant under orthogonal transformations.
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The choice of the grid G(n) , of course, depends on the reference distribution U

adopted in the definitions of Section 2.1: in particular, the uniform discrete distri-
bution over the n gridpoints G(n)

1 , . . . ,G
(n)
n should converge weakly to U as n → ∞.

Our objective is to investigate the finite-sample performance of two-sample location
tests based on

(Ti) the empirical center-outward distribution function F
(n)
± associated with the

spherical uniform reference distribution U = Ud;
(Tii) the empirical Monge-Kantorovich vector ranks F

(n)

�
associated with the cubic

uniform reference distribution U = U[0,1]d ;

(Tiii) the empirical Monge-Kantorovichvector ranks F
(n)

±N
associated with the Gaus-

sian N (0, Id ) reference considered as a spherical distribution;
(Tiv) the empirical Monge-Kantorovichvector ranks F

(n)

�N
associated with the Gaus-

sian N (0, Id) reference considered as a product of univariate standard normal
distributions.

The grids we are using for these four cases are constructed as follows (see Section 3.1
for details on Halton sequences and the choice of nR and nS):

(Gi) U = Ud: (a) factorize n into n = nRnS+n0 with n0 < min(nR, nS ); (b) generate
a Halton sequence S(nS ) := (u1, . . . unS ) over the unit (hyper)sphere Sd−1;
(c) the gridG(n) consists of the intersections of these nS unit vectors with the nR

hyperspheres centered at 0, with radii j/(nR + 1), j = 1, . . . , nR—along with n0

copies of the origin;
(Gii) U = U[0,1]d : the gridG(n) is a Halton sequence over [0, 1]d;
(Giii) U = N (0, Id), spherical grid: the gridG(n) is the image, by the radial trans-

formation z 7→
√

F−1
χ2
d

(‖z‖)z, of the spherical grid constructed in (i), where Fχ2
d

denotes the chi-square distribution function with d degrees of freedom;
(Giv) U = N (0, Id), cubic grid: the grid G(n) is the image, by componentwise

application of the standard normal quantile transformation zi 7→ Φ
−1(zi),8 of a

Halton sequence over [0, 1]d.

Remark 1 The gridG(n) in (Gi) reduces, for d = 1, to

{±1/(⌈n/2⌉ + 1), . . . ,±⌈n/2⌉/(⌈n/2⌉ + 1)}

along with the origin in case n is odd; that grid is of the form

{2 (1/(n + 1)) − 1, . . . , 2 (n/(n + 1)) − 1}

where {(1/(n + 1)) , . . . , (n/(n + 1))} is the grid producing traditional univariate
ranks to which the gridG(n) in (Gii) also reduces for d = 1.

Remark 2 In (Gi) and (Giii), the gridG(n) is spherical; as a consequence, F
(n)
± (Z

(n)

i
)

and F
(n)

±N
(Z

(n)

i
) in (Ti) and (Tiii) naturally factorize as

8 As usual, we denote by Φ the standard normal distribution function, by Φ−1 the standard normal
quantile function.
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F
(n)
± (Z

(n)

i
) = ‖F

(n)
± (Z

(n)

i
)‖

F
(n)
± (Z

(n)

i
)

‖F
(n)
± (Z

(n)

i
)‖
=:

R
(n)

i±

nR + 1
S

(n)

i±

where R
(n)

i±
= (nR + 1)‖F

(n)
± (Z

(n)

i
)‖, ranging from 0 or 1 (according as n0 , 0

or n0 = 0) to nR , is the center-outward rank of Z
(n)

i
and S

(n)

i±
(a unit vector) has the

interpretation of a (multivariate) center-outward sign and

F
(n)

±N
(Z

(n)

i
) = ‖F

(n)

±N
(Z

(n)

i
)‖

F
(n)

±N
(Z

(n)

i
)

‖F
(n)

±N
(Z

(n)

i
)‖
=: JvdW

*
,

R
(n)

i±N

nR + 1
+
-S

(n)

i±N
(1)

where JvdW =
√

F−1
χ2
d

is the univariate normal or van der Waerden score func-

tion, R
(n)

i±N
the rank of ‖F(n)

±N
(Z

(n)

i
)‖ among the nR distinct values of ‖F(n)

±N
(Z

(n)

i
)‖

for i = 1, . . . , n and S
(n)

i±N
similarly has the interpretation of a multivariate sign.

Being based on different transport maps, however, neither R
(n)

i±
and R

(n)

i±N
nor S

(n)

i±

and S
(n)

i±N
need coincide.

Remark 3 No similar factorization into ranks and signs occurs with the vector
ranks F

(n)

�
and F

(n)

�N
in (Tii) and (Tiv).

2.3 Distribution-free tests based on center-outward ranks and signs

Hallin et al. (2020a) propose, for multiple-output regression models with unspec-
ified noise distribution P ∈ Pd, fully distribution-free yet, for adequate choice of
scores, parametrically efficient center-outward rank tests of the null hypothesis of
no-treatment effect based on the empirical center-outward distribution functions F

(n)
±

(hence, the center-outward ranks and signs).
The particular case of two-sample location is treated by Deb et al. (2021) who

also consider tests based on the empirical Monge-Kantorovich vector ranks F
(n)

MK
associated with various reference distributions.

2.3.1 Score functions

In line with the classical theory developed, e.g., by Hájek & Šidák (1967), rank-based
statistics, irrespective of the reference distribution, involve score functions or scores.

Depending on the context, a score function is a mapping J from the unit ball Sd or
the unit cube [0, 1]d to Rd satisfying some mild regularity assumptions (continuity,
square integrability, etc.: see, e.g. Hallin et al. (2020a), Assumption 3.1). The only
score functions we are considering here are the Wilcoxon, the spherical van der

Waerden, and the marginal van der Waerden score functions

JW(u) :=u, J±vdW(u) :=

√

F−1
χ2
d

(‖u‖)
u

‖u‖
, and J�

vdW(u) :=
(

Φ
−1(u1), . . . ,Φ−1(ud)

)

,
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where Fχ2
d

and Φ stand for the (univariate) chi-square (d degrees of freedom) and

standard normal distribution functions, respectively.

2.3.2 Test statistics

For simplicity, our investigation here is limited to that particular case of two-sample
location models, where the n observations are i.i.d. under the null and consist of
two samples, Z

(n)

1 , . . . ,Z
(n)
n1 and Z

(n)

n1+1, . . . ,Z
(n)
n1+n2

, with n1 + n2 = n. The classical
procedure for this problem is Hotelling’s test, based on a quadratic statistic of the form

(

T
(n)

Hot

)2
= ∆

(n)′

Hot

(

Σ
(n)

Hot

)−1
∆

(n)

Hot

where Σ(n)

Hot is the estimated (under the null) covariance matrix of

∆
(n)

Hot :=
1

n1

n1
∑

i=1

Z
(n)

i
−

1

n2

n
∑

i=n1+1

Z
(n)

i
.

The Hotelling test is parametrically efficient under Gaussian assumptions; it remains
asymptotically valid,9 however, under mild moment assumptions and therefore qual-
ifies as a pseudo-Gaussian procedure.

For score functions J, the center-outward rank-based test statistics in Section 5.3.1
of Hallin et al. (2020a) are of the form

(

T
∼

(n)

J±

)2
= ∆
∼

(n)′

J±

(

Σ∆
∼J±

)−1
∆
∼

(n)

J±
(2)

where Σ∆
∼J

is the exact or asymptotic covariance of

∆
∼

(n)

J±
:=

1

n1

n1
∑

i=1

J(F
(n)
± (Z

(n)

i
)) −

1

n2

n
∑

i=n1+1

J(F
(n)
± (Z

(n)

i
)). (3)

Since the quadratic form (2) is invariant under affine transformations of ∆
∼

(n)

J±
and

since the sum
∑n

i=1 J(F
(n)
± (Z

(n)

i
)) is a deterministic constant that only depends on J

and the grid used in the definition of F
(n)
± , the same test statistic can be based on

∆
∼

(n)

J
=

1

n1

n1
∑

i=1

J(F
(n)
± (Z

(n)

i
)) −

1

n

n
∑

i=1

J(F
(n)
± (Z

(n)

i
)),

yielding the test statistic described in Section 5.3.1 of Hallin et al. (2020a) which, in
the particular case of Wilcoxon and van der Waerden scores JW and J±vdW, we denote

as
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

vdW±

)2
, respectively.

9 Asymptotically valid, here, means pointwise (with respect to the actual density of the observations)
asymptotically correct nominal probability levels, not uniformly asymptotically correct nominal
probability levels.
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For the same testing problem, Deb et al. (2021) consider statistics of the form (2),
but also
(a) based on the empirical Monge-Kantorovich vector ranks F

(n)

�
associated with

the cubic uniform reference U = U[0,1]d , statistics T
∼

(n)

J�
and ∆

∼

(n)

J�
of the same form

as T
∼

(n)

J±
and ∆

∼

(n)

J±
in (2) and (3) but with J(F

(n)

�
(Z

(n)

i
)) substituting J(F

(n)
± (Z

(n)

i
));

denote by
(

T
∼

(n)

W�

)2
and

(

T
∼

(n)

vdW�

)2
the particular cases of the Wilcoxon and cubic

van der Waerden statistics obtained for the scores JW and J�

vdW, respectively;

(b) based on the empirical Monge-Kantorovich vector ranks F
(n)

±N
and F

(n)

�N
associ-

ated with the spherical Gaussian reference N (0, Id) considered as spherical or
as a product of independent uniforms, statistics T

∼

(n)

J±N
and T

∼

(n)

J�N
of the same

form as T
∼

(n)

J±
and ∆

∼

(n)

J±
in (2) and (3) but with J(F

(n)

±N
(Z

(n)

i
)) and J(F

(n)

�N
(Z

(n)

i
)),

respectively, substituting J(F
(n)
± (Z

(n)

i
)); this, for Wilcoxon scores J(u) = u,

yields the van der Waerden statistics
(

T
∼

(n)

vdW±N

)2
and

(

T
∼

(n)

vdW�N

)2
.

Remark 4 Although they are based on Wilcoxon (identity) scores, the terminology
“van der Waerden statistic” for T

∼

(n)

vdW±N and T
∼

(n)

vdW�N
seems more appropriate than

the terminology “Wilcoxon statistic” used by Deb et al. (2021), and is in line with
the traditional terminology of rank-based inference. Both T

∼

(n)

vdW± and T
∼

(n)

vdW±N indeed

result from a transport from the sample values to a grid of Gaussian quantiles of the
form (Giii). For T

∼

(n)

vdW±, the transport is J◦F
(n)
± , which, as a rule, is not an optimal one

(not the gradient of a convex function) while, for T
∼

(n)

vdW±N , the transport is the optimal

one F
(n)

�N
; the difference between T

∼

(n)

vdW± and T
∼

(n)

vdW±N thus essentially consists in the

way the transport to the spherical Gaussian grid is performed. A similar remark can
be made for T

∼

(n)

vdW�
and T

∼

(n)

vdW�N
.

3 Finite-sample performance: two-sample location simulations

It clearly appears that choices are to be made before performing a rank test based on
the concepts of multivariate ranks developed on the previous sections: center-outward
ranks? vector ranks? which ones? with which scores? The analysis of asymptotic
performance does not help much, as the same local powers can be achieved by
several alternatives. The objective of this paper is to determine whether finite-sample
performance can help us with these choices. We restrict ourselves to the two-sample
location problem, Wilcoxon and van der Waerden scores, but the conclusions are
quite likely to hold for the general case of multiple-output linear models considered
in Hallin et al. (2020a).

Before explaining how simulations were conducted, let us provide some details
on the way the grids described in Section 2.2 were constructed. Recall that the aim of
these grids is to provide a discrete approximation of the chosen continuous reference
distribution.



Multivariate rank tests 9

3.1 Halton sequences on the cube and the sphere ((Gii) and (Giv) grids)

The grid constructions (Gii) and (Giv) involve Halton sequences on the hyper-
cube [0, 1]d. Halton sequences are pseudo-random numbers with low discrepancy
of classical use in methods such as Monte Carlo simulations. We used the imple-
mentation available in the package SDraw by McDonald & McDonald (2020). The
grid construction in (Gi), hence also in (Giii), requires a nS-point “Halton sequence”
over the hypersphereSd−1. To obtain such a grid, we first generate a nS-point Halton
sequence over [0, 1]d−1 then componentwise perform the standard normal quantile
transformation uj 7→ z j := Φ−1(uj ). This yields nS points z1, . . . , znS , with

zj := (Φ−1(uj1), . . . ,Φ−1(ujd)).

The resulting unit vectors zj/‖zj ‖, j = 1, . . . , nS constitute the desired sequence
over Sd−1.10

3.2 Factorization of n ((Gi) and (Giii) grids)

As for the grid constructions (Gi) and (Giii), they require a factorization of n

into nRnS + n0 with n0 < min(nR, nS ). Intuition suggests choosing nR and nS
of order n1/d and n(d−1)/d , respectively. This, however, is of little help for finite n.
Since the grid is supposed to provide an approximation of the spherical uniform,
we rather proceed by minimizing the Wasserstein distance to the spherical uniform
as proposed in Mordant (2021). More precisely, considering the grid with nR radial
points described in (Gi), denote by G

(n)
nR the discrete measure placing a probability

mass 1/n on each of the n gridpoints except for the origin which receives probability
mass n0/n. We adopt here the strategy suggested in Mordant (2021) by selecting the
grid with n∗

R
radial points, where

n∗R := arg min
1≤nR ≤n

W2(G(n)
nR
,Ud) (4)

(W2, as usual, stands for the Wasserstein distance of order two). For d ≥ 3, that
distance W2(G

(n)
nR ,Ud) does not only depend on nR (hence on nS) but also on

the nS points chosen (as explained in Section 3.1) on the hypersphere Sd−1. The
minimization in (4) is feasible, as n, nR, nS, and n0 all are integers. A similar strategy
is adopted for the construction of the spherical Gaussian grids (Giii).

Table 1 provides, for dimensions d = 2 and d = 5, various sample sizes, and
reference distributions the spherical uniform ((Gi) grids) and the spherical Gaussian
((Giii) grids), the “optimal values" obtained via (4) for nR, nS , and n0. These values
are in line with the intuition that the “optimal” nR behaves like n1/d while the role
of distances to the center rapidly decreases as the dimension d increases.

10 The justification is the fact that if the distribution of Z is a product of independent univariate
standard normal marginals, then Z is spherical Gaussian N (0, I) and hence Z/‖Z‖ is uniform
over Sd−1.
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Reference distribution d n = 50 n = 100 n = 200 n = 300 n = 400

nR = 4 nR = 6 nR = 9 nR = 11 nR = 12

Ud , (Gi) grid 2 nS = 12 nS = 16 nS = 22 nS = 27 nS = 33

n0 = 2 n0 = 4 n0 = 2 n0 = 3 n0 = 4

nR = 4 nR = 7 nR = 11 nR = 14 nR = 18

N (0, Id ), (Giii) grid 2 nS = 12 nS = 14 nS = 18 nS = 21 nS = 22

n0 = 2 n0 = 2 n0 = 2 n0 = 6 n0 = 4

n1/d n1/2
= 7.071 n1/2

= 10.000 n1/2
= 14.142 n1/2

= 17.321 n1/2
= 20.000

nR = 2 nR = 2 nR = 2 nR = 3 nR = 3

Ud , (Gi) grid 5 nS = 25 nS = 50 nS = 100 nS = 100 nS = 133

n0 = 0 n0 = 0 n0 = 0 n0 = 0 n0 = 1

nR = 1 nR = 1 nR = 1 nR = 2 nR = 2

N (0, Id ), (Giii) grid 5 nS = 50 nS = 100 nS = 200 nS = 150 nS = 200

n0 = 0 n0 = 0 n0 = 0 n0 = 0 n0 = 0

n1/d n1/5
= 2.187 n1/5

= 2.512 n1/5
= 2.885 n1/5

= 3.129 n1/5
= 3.314

Table 1 Optimal (in the sense of (4)) values of nR , nS , and n0 as functions of the sample size n,
the dimension d, and the reference distributions ((Gi) or (Giii) grids).

3.3 Simulations

Based on the grids obtained along the lines described in Sections 3.1 and 3.2, the
distribution-free critical values of the various rank tests under study were computed
from 40 000 replications. Throughout, we chose n1 = n2 = n/2. The optimal maps
between the sample and the grids were obtained via an exact solver relying on the
so-called Hungarian method that is implemented in the R-package clue by Hornik
(2021). We now turn to the empirical evaluation of the performance of the various
rank-basedWilcoxon and van der Waerden tests for the two-sample location problem.

The objective of our simulations is, essentially, empirical answers to the following
two questions:
(a) should we use spherical grids ((Gi) or (Giii)) or cubic ((Gii) or (Giv)) ones?
(b) should we, in line with the Hájek tradition, privilege transports to the uniform

combined with scores (as in
(

T
∼

(n)

vdW±

)2
and

(

T
∼

(n)

vdW�

)2
), or, as recommended by

Deb et al. (2021), should we rather consider “direct transports” to the “scored
distribution,” that is, choose as reference distribution the push-forward of the

uniform by the score as in
(

T
∼

(n)

vdW±N

)2
and

(

T
∼

(n)

vdW�N

)2
?

4 Wilcoxon-type tests

The Wilcoxon tests are based on the identity score function J(u) = u and uniform
(either spherical or cubic) reference distributions, yielding (see Section 2.3.2) the

test statistics
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
.
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4.1 The bivariate case

In this section, we evaluate the performance of the Wilcoxon tests based on
(

T
∼

(n)

W±

)2

and
(

T
∼

(n)

W�

)2
for samples of size n1 = n2 = n/2 with n = 100, 200, and 400. The first

sample is drawn from a centered distribution, the second one from a shifted version
with shift (η, η)′, η > 0 of the same. The number of replications is N = 500.

4.1.1 Spherical Gaussian samples

The first sample is drawn from N ((0, 0)′, I2), the second one from N ((η, η)⊤, I2)

with η > 0. Rejection frequencies over N = 500 replications are shown (as functions
of η) in Figure 1. All three tests display, essentially, the same performance: although
Wilcoxon, in principle, is strictly less powerful than Hotelling (which in this case is
finite-sample optimal), no significant loss of efficiency is detected.
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(

T
∼

(n)

W±

)2 (

T
∼

(n)

W�

)2
T 2

Fig. 1 Rejection frequencies, for spherical Gaussian samples (see 4.4.1) and various sample sizes,

of Hotelling’s test based onT 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively,

as functions of the shift η; N = 500 replications.

4.1.2 Spherical Student samples

The first sample is drawn from a centered spherical Student with 2.1 degrees of
freedom t2.1((0, 0)′, I2), the second one from the shifted version t2.1 ((η, η)′, I2) of
the same distribution. Rejection frequencies over N = 500 replications are shown (as
functions of η) in Figure 2. The Wilcoxon tests substantially outperform Hotelling,
an advantage that does not disappear with increasing n. Although the underlying

distribution is spherical, very slight superiority of
(

T
∼

(n)

W�

)2
over

(

T
∼

(n)

W±

)2
.

4.1.3 “Banana-shaped” samples

The first sample is drawn from a centered “banana-shaped” mixture
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Fig. 2 Rejection frequencies, for Student samples (see 4.1.2) and various sample sizes, of

Hotelling’s test based on T 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively,

as functions of the shift η; N = 500 replications.

0.3N2

((

0

−0.7

)

,

(
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0 0.352

))

+ 0.35N2

((

−0.9

0.3

)

,

(

0.358 −0.55

−0.55 1.02

))

+ 0.35N2

((

0.9

0.3

)

,

(

0.358 0.55

0.55 1.02

))

.

of three Gaussian components. The second sample is drawn from a shifted version
(shift (η, η)′, η > 0) of the same mixture. Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 3. The conclusions are the same

as in the previous case, except that the (slight) advantage now belongs to
(

T
∼

(n)

W±

)2
,

despite the fact that the actual distribution is highly nonspherical.
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Fig. 3 Rejection frequencies, for “banana-shaped” samples (see 4.1.3) and various sample sizes,

of Hotelling’s test based onT 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively,

as functions of the shift η; N = 500 replications.
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4.1.4 Samples with independent Cauchy marginals

The first sample is drawn from a product of two independent Cauchy, the second one
from the shifted version of the same distribution.Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 4. With a rejection probability
uniformly less than the nominal 5% level, Hotelling, as expected, performs miserably.

In this independent component situation,
(

T
∼

(n)

W�

)2
does outperform

(

T
∼

(n)

W±

)2
.
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Fig. 4 Rejection frequencies, for samples with independent Cauchy marginals (see 4.1.4) and

various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2

and
(

T
∼

(n)

W�

)2
, respectively, as functions of the shift η; N = 500 replications.

4.1.5 Nonspherical Gaussian samples

The first sample is drawn from a N ((0, 0)′,Σ) distribution, the second sample
is drawn from a N ((η, η)′,Σ) one; vech(Σ) = (1, 0.8, 1)′. Rejection frequencies
over N = 500 replications are shown (as functions of η) in Figure 5. The results are
essentially the same as in the spherical case (Section 4.1.1). Note the loss of power in
the three tests under study, due to the non-specification of the population covariance
matrix; that loss, however, is uniform over the three tests.

4.1.6 Spherical Cauchy samples

The first sample is drawn from a centered spherical Student with one degree of
freedom t1((0, 0)′, I2) (spherical Cauchy), the second one from the shifted ver-
sion t1((η, η)′, I2) of the same distribution. Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 6. The performance of Hotelling,

again, is a disaster; although the actual distribution is spherical,
(

T
∼

(n)

W�

)2
still outper-

forms
(

T
∼

(n)

W±

)2
.
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Fig. 5 Rejection frequencies, for samples with nonspherical Gaussian distributions (see 4.1.5)

and various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2

and
(

T
∼

(n)

W�

)2
, respectively, as functions of the shift η; N = 500 replications.
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Fig. 6 Rejection frequencies, for samples with spherical Cauchy distributions (see 4.1.6) and

various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests based on
(

T
∼

(n)

W±

)2

and
(

T
∼

(n)

W�

)2
, respectively, as functions of the shift η; N = 500 replications.

4.2 Wilcoxon-type statistics in dimension d = 5

We essentially adopted the same simulation settings as before, with n1 = n2 = n/2. A
sample size of n = 100 in dimension d = 5 is very small, though, and we considered
sample sizes n = 200, 400, and 800.

4.2.1 Spherical Gaussian samples

Here, the first sample is drawn from the N (0, I5) distribution, the second one from
the N (η1, I5) distribution, where 1 denotes a 5-variate vector of ones. Rejection
frequencies over N = 500 replications are shown (as functions of η) in Figure 7.
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In the “small sample” case (n = 200), the optimality of Hotelling over Wilcoxon is
perceptible (more so than in dimension d = 2); this superiority, however, fades away
with growing n: again, under Gaussian assumptions, abandoning the parametrically
optimal Hotelling test in favor of the rank-based Wilcoxon one has no visible cost in
terms of power.
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Fig. 7 Rejection frequencies, for samples with 5-dimensional spherical Gaussian distributions

(see 4.2.1) and various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests based

on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively, as functions of the shift η; N = 500 replications.

4.2.2 Spherical Student samples

The first sample is drawn from the centered spherical Student with 2.1 degrees of
freedom t2.1(0, I5), the second one from the shifted t2.1(η1, I5) distribution, where 1

denotes a 5-variate vector of ones. Rejection frequencies over N = 500 replications
are shown (as functions of η) in Figure 8. The conclusions are quite similar to those
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Fig. 8 Rejection frequencies, for samples with 5-dimensional spherical Student t2.1 distributions

(see 4.2.2) and various sample sizes, of the Wilcoxon tests based on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respec-

tively, as functions of the shift η; N = 500 replications.
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in dimension d = 2: although the moments of order two still are finite, the power of
Hotelling deteriorates with respect to the Gaussian case. Despite the spherical nature

of the actual distribution, slight advantage of
(

T
∼

(n)

W�

)2
over

(

T
∼

(n)

W±

)2
.

4.2.3 Nonspherical Gaussian samples

The first sample is drawn from the N (0,Σ) distribution, the second one from
the N (η1,Σ) distribution, where 1 denotes a 5-variate vector of ones and Σ is a
correlation matrix with all off-diagonal entries equal to 0.5. Rejection frequencies
over N = 500 replications are shown (as functions of η) in Figure 9. Here again,
the slight advantage of Hotelling over Wilcoxon very rapidly fades away with grow-
ing n, and the three tests yield very similar performances; in particular, no significant

difference can be detected between
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
.
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Fig. 9 Rejection frequencies, for nonspherical 5-dimensional Gaussian distributions (see 4.2.3)

and various sample sizes, of the Wilcoxon tests based on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively, as

functions of the shift η; N = 500 replications.
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Fig. 10 Rejection frequencies, for 5-dimensional distributions with independent Cauchy marginals

(see 4.2.4) and various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests based

on
(

T
∼

(n)

W±

)2
and

(

T
∼

(n)

W�

)2
, respectively, as functions of the shift η; N = 500 replications.
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4.2.4 Samples with independent Cauchy marginals

The first sample is drawn from a product of five independent Cauchy distributions,
the second one from the shifted version of the same. Rejection frequencies over 500

replications are shown (as functions of η) in Figure 10. The performance of Hotelling,
as in dimension d = 2, is terrible. The advantage (which is in line with the inde-

pendent component nature of the distribution) of
(

T
∼

(n)

W�

)2
over

(

T
∼

(n)

W±

)2
is even more

significant than in dimension d = 2.

5 van der Waerden-type tests

Below we are considering four distinct tests of the van der Waerden type,

based (see Section 2.3.2) on
(

T
∼

(n)

vdW±

)2
(spherical uniform reference density, (Gi)

grid),
(

T
∼

(n)

vdW�

)2
(cubic uniform reference density, (Gii) grid),

(

T
∼

(n)

vdW±N

)2
(spher-

ical Gaussian reference density, spherical grid (Giii)), and
(

T
∼

(n)

vdW�N

)2
(spherical

Gaussian reference density, cubic grid (Giv)).

5.1 Bivariate case

5.1.1 Spherical Gaussian samples

Same Gaussian samples as in Section 4.1.1. Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 11. Indistinctiveness between the
performances of Hotelling and the various rank-based tests is even more pronounced
than for the Wilcoxon tests: definitely, performing rank-based van der Waerden tests
does not imply any loss of efficiency in the Gaussian case.
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Fig. 11 Rejection frequencies, for spherical Gaussian samples (see 5.1.1) and various sample

sizes, of Hotelling’s test based onT 2 and the van der Waerden tests based on
(

T
∼

(n)

vdW±

)2
,
(

T
∼

(n)

vdW�

)2
,

(

T
∼

(n)

vdW±N

)2
, and

(

T
∼

(n)

vdW�N

)2
, respectively, as functions of the shift η; N = 500 replications.
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5.1.2 Spherical Student samples

Same Student samples as in Section 4.1.2. Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 12. As in dimension d = 2,
powers are dropping (compared with the Gaussian case). The power of Hotelling,
however, deteriorates much more than that of the various versions of van der Waerden
tests. The latter all yield very similar performance.
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Fig. 12 Rejection frequencies, for spherical Student samples (2.1 degrees of freedom; see 5.1.2)

and various sample sizes, of Hotelling’s test based on T 2 and the van der Waerden tests based

on
(

T
∼

(n)

vdW±

)2
,
(

T
∼

(n)

vdW�

)2
,
(

T
∼

(n)

vdW±N

)2
, and

(

T
∼

(n)

vdW�N

)2
, respectively, as functions of the shift η;

N = 500 replications.
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Fig. 13 Rejection frequencies, for “banana-shaped” samples (see Section 5.1.3) and various

sample sizes, of Hotelling’s test based on T 2 and the van der Waerden tests based on
(

T
∼

(n)

vdW±

)2
,

(

T
∼

(n)

vdW�

)2
,

(

T
∼

(n)

vdW±N

)2
, and

(

T
∼

(n)

vdW�N

)2
, respectively, as functions of the shift η; N = 500

replications.
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5.1.3 “Banana-shaped” samples

Same “banana-shaped” mixtures as in Section 4.1.3. Rejection frequencies over 500

replications are shown (as functions of η) in Figure 13. The conclusions are quite
similar as in the previous case: the empirical power curves of the various van der
Waerden tests are essentially indistinguishable, while significantly outperforming
the Hotelling ones.

5.1.4 Samples with independent Cauchy marginals

Same samples with independent Cauchy marginals as in Section 4.1.4. Rejection
frequencies over N = 500 replications are shown (as functions of η) in Figure 14.
Again, all powers are much less than in the Gaussian case, but Hotelling is totally
inefficient.
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Fig. 14 Rejection frequencies, for samples with independent Cauchy marginals (see Section 5.1.4)

and various sample sizes, of Hotelling’s test based on T 2 and the van der Waerden tests based

on
(

T
∼
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vdW±

)2
,
(

T
∼

(n)

vdW�

)2
,
(

T
∼

(n)

vdW±N

)2
, and

(

T
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(n)

vdW�N

)2
, respectively, as functions of the shift η;

N = 500 replications.

5.1.5 Nonspherical Gaussian samples

Same correlated Gaussian samples as in Section 4.1.5. Rejection frequencies
over N = 500 replications are shown (as functions of η) in Figure 15. The non-
specification of the covariance matrix apparently has no impact on the comparative
performance of Hotelling and its rank-based van der Waerden competitors, which
all coincide.

5.1.6 Spherical Cauchy samples

Same spherical Cauchy samples as in Section 4.1.6. Rejection frequencies over 500

replications are shown (as functions of η) in Figure 16. All tests perform similarly
except, of course, for Hotelling, which fails completely.
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Fig. 15 Rejection frequencies, for nonspherical Gaussian samples (see Section 5.1.5) and various

sample sizes, of Hotelling’s test based on T 2 and the van der Waerden tests based on
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replications.
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Fig. 16 Rejection frequencies, for spherical Cauchy samples (see Section 5.1.6) and various sample

sizes, of Hotelling’s test based onT 2 and the van der Waerden tests based on
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5.2 van der Waerden-type statistics in dimension d = 5

5.2.1 Spherical Gaussian samples

Same spherical Gaussian samples as in Section 4.2.1. Rejection frequencies
over N = 500 replications are shown (as functions of η) in Figure 17. A “small
sample” superiority of Hotelling for n = 200 rapidly disappears as n increases; all
van der Waerden tests yield the same performance.
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Fig. 17 Rejection frequencies, for samples with 5-dimensional spherical Gaussian distributions

(see Section 5.2.1) and various sample sizes, of Hotelling’s test based onT 2 and the van der Waerden

tests based on
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5.2.2 Spherical Student samples

Same spherical Student samples as in Section 4.2.2. Rejection frequencies over 500

replications are shown (as functions of η) in Figure 18. All van der Waerden tests

roughly yield the same performance, with a slight adavantage in favor of
(

T
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)2

in “small samples.”
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Fig. 18 Rejection frequencies, for samples with 5-dimensional spherical Student distributions (2.1

degrees of freedom; see Section 5.2.2) and various sample sizes, of Hotelling’s test based on T 2

and the van der Waerden tests based on
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respectively, as functions of the shift η; N = 500 replications.
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5.2.3 Nonspherical Gaussian samples

Same spherical Gaussian samples as in Section 4.2.3. Rejection frequencies
over N = 500 replications are shown (as functions of η) in Figure 19. The slight ad-
vantage for n = 200 of Hotelling under spherical Gaussian has almost disappeared.
All van der Waerden tests yield similar performance.
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Fig. 19 Rejection frequencies, for nonspherical 5-dimensional Gaussian samples (see Sec-

tion 5.2.3) and various sample sizes, of Hotelling’s test based on T 2 and the van der Waerden

tests based on
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Fig. 20 Rejection frequencies, for 5-dimensional samples with independent Cauchy marginals,

(see Section 5.2.4) and various sample sizes, of Hotelling’s test based onT 2 and the van der Waerden

tests based on
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5.2.4 Samples with independent Cauchy marginals

Same Cauchy samples as in Section 4.2.4. Rejection frequencies over N = 500

replications are shown (as functions of η) in Figure 20. The conclusions drawn
for d = 2 still hold, with a very slight superiority of the “direct transportation”

test
(

T
∼

(n)

vdW±N

)2
over the Gaussian score ones

(
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∼

(n)

vdW±

)2
and

(

T
∼

(n)

vdW�

)2
.

6 Conclusions

While confirming the advantages and excellent performance of rank tests over their
daily practice pseudo-Gaussian counterparts, the simulations of the previous sections
provide empirical answers to several questions of great practical importance.

The choice of the grid (whether spherical (Gi), cubic (Gii), or Gaussian ((Giii)
and (Giv)) seems to have relatively little impact on the performance of the corre-
sponding Wilcoxon tests (the only significant case being the Cauchy one), and no
impact at all on the performance of van der Waerden tests. In particular, there is
no evidence that Wilcoxon tests based on spherical grids (Gi) are preferable under
spherical distributions while Wilcoxon tests based on cubic grids (Gii) are prefer-
able under distributions with independent components: see, e.g., the Cauchy case
(Sections 4.1.6 and 4.1.4).

References

Carlier, G., Chernozhukov, V., & Galichon, A. (2016). Vector quantile regression: an optimal
transport approach. Ann. Statist., 44, 1165–92.
URL https://doi.org/10.1214/15-AOS1401

Chernozhukov, V., Galichon, A., Hallin, M., & Henry, M. (2017). Monge-Kantorovich depth,
quantiles, ranks and signs. Ann. Statist., 45, 223–256.
URL https://doi.org/10.1214/16-AOS1450

Deb, N., Bhattacharya, B. B., & Sen, B. (2021). Efficiency lower bounds for distribution-free
Hotelling-type two-sample tests based on optimal transport. ArXiv:2104.01986.

Deb, N., Ghosal, P., & Sen, B. (2020). Measuring association on topological spaces using kernels
and geometric graphs. ArXiv:2010.01768.

Deb, N., & Sen, B. (2021). Multivariate rank-based distribution-free nonparametric testing using
measure transportation. Journal of the American Statistical Association, 0(0), 1–16.
URL https://doi.org/10.1080/01621459.2021.1923508

del Barrio, E., González-Sanz, A., & Hallin, M. (2020). A note on the regularity of optimal-
transport-based center-outward distribution and quantile functions. J. Multivariate Anal., 180,
104671, 13.
URL https://doi.org/10.1016/j.jmva.2020.104671

Faugeras, O., & Rüschendorf, L. (2017). Markov morphisms: a combined copula and mass trans-
portation approach to multivariate quantiles. Mathematica Applicanda, 45, 21–63.

Figalli, A. (2018). On the continuity of center-outward distribution and quantile functions. Non-

linear Anal., 177 , 413–21.
URL https://doi.org/10.1016/j.na.2018.05.008



24 Marc Hallin and Gilles Mordant

Ghosal, P., & Sen, B. (2019). Multivariate ranks and quantiles using optimal transportation and
applications to goodness-of-fit testing. ArXiv:1905.05340.

Hájek, J., & Šidák, Z. (1967). Theory of Rank Tests. Academic Press, New York.
Hallin, M. (2017). On distribution and quantile functions, ranks, and signs in Rd : a measure

transportation approach. ideas.repec.org/p/eca/wpaper/2013-258262.html.
Hallin, M. (2022). Measure transportation and statistical decision theory. Annual Review of

Statistics and its Applications, in press, 9.
URL https://doi.org/10.1146/annurev-statistics-040220-105948

Hallin, M., Del Barrio, E., Cuesta-Albertos, J., & Matrán, C. (2021). Distribution and quantile
functions, ranks and signs in dimension d: A measure transportation approach. The Annals of

Statistics, 49, 1139–1165.
Hallin, M., Hlubinka, D., & Hudecová, Š. (2020a). Fully distribution-free center-outward rank tests

for multiple-output regression and MANOVA. ArXiv:2007.15496.
Hallin, M., La Vecchia, D., & Liu, H. (2020b). Center-outward R-estimation for semiparametric

VARMA models. Journal of the American Statistical Association, in press.
URL https://doi.org/10.1080/01621459.2020.1832501

Hallin, M., La Vecchia, D., & Liu, H. (2020c). Rank-based testing for semiparametric var models:
a measure transportation approach. ArXiv:2011.06062.

Hallin, M., & Paindaveine, D. (2002). Optimal tests for multivariate location based on interdirections
and pseudo-Mahalanobis ranks. Ann. Statist., 30, 1103–33.

Hampel, F. R. (1968). Contributions to the Theory of Robust Estimation. Ph.D. thesis, University
of California, Berkeley.

Hornik, K. (2021). clue: Cluster ensembles. R package version 0.3-60.
URL https://CRAN.R-project.org/package=clue

Huber, P. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35,
73–101.

Masud, S. B., & Aeron, S. (2021). Soft and subspace robust multivariate rank tests based on entropy
regularized optimal transport. ArXiv:2103.08811.

McCann, R. J. (1995). Existence and uniqueness of monotone measure-preserving maps. Duke

Math. J., 80, 309–324.
McDonald, T., & McDonald, A. (2020). SDraw: Spatially balanced samples of spatial objects.

R package version 2.1.13.
URL https://CRAN.R-project.org/package=SDraw

Mordant, G. (2021). Transporting Probability Measures: some contributions to statistical inference.
Ph.D. thesis, Université catholique de Louvain.

Ronchetti, E. (2006). The historical development of robust statistics. In A. Rossman, & B. Chance
(Eds.) ICOTS-7 Proceedings. IASE.

Shi, H., Drton, M., & Han, F. (2021a). Distribution-free consistent independence tests via center-
outward ranks and signs. Journal of the American Statistical Association, in press.

Shi, H., Hallin, M., Drton, M., & Han, F. (2021b). On universally consistent and fully distribution-
free rank tests of vector independence. Annals of Statistics, to appear.

Stigler, S. M. (1973). Simon Newcomb, Percy Daniell, and the history of robust estimation 1885-
1920. Journal of the American Statistical Association, 68, 872–879.

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In I. Olkin (Ed.)
Contributions to Probability and Statistics, (pp. 448–485). Palo Alto: Stanford University Press.


	COVER24.pdf
	2021-24-HALLIN_MORDANT-on-the-finite.pdf

