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Neurofeedback allows humans to self-regulate neural activity in specific brain regions and is considered a
promising tool for psychiatric interventions. Recently, methods have been developed to use neurofeedback
implicitly, prompting a theoretical debate on the role of awareness in neurofeedback learning. We offer a critical
review of the role of awareness in neurofeedback learning, with a special focus on recently developed neuro-
feedback paradigms. We detail differences in instructions and propose a fine-grained categorization of tasks
based on the degree of involvement of explicit and implicit processes. Finally, we review the methods used to
measure awareness in neurofeedback and propose new candidate measures. We conclude that explicit processes
cannot be eschewed in most current implicit tasks that have explicit goals, and suggest ways in which awareness
could be better measured in the future. Investigating awareness during learning will help understand the learning
mechanisms underlying neurofeedback learning and will help shape future tasks.

1. Introduction

Neurofeedback is a method by which a person receives information
from its own brain activity, thereby potentially producing lasting neural
and behavioral changes (Kamiya, 1962; Sitaram et al., 2017; Weiskopf
et al., 2003). Neurofeedback can be used with a wide range of neuro-
imaging tools (from components of the encephalogram to the more
recent development of functional magnetic resonance imaging (fMRI)
and functional near-infrared spectroscopy (fNIRS)-based neurofeedback
signals), different approaches to analyzing the signal (e.g., mean
amplitude, multivariate patterns, etc.), diverse feedback channels (e.g.,
visual representations such as thermometer scales (Krause et al., 2017),
but also other sensory modalities), and with different routines in the
instructions given to learners. Recently, methods have been developed
to use neurofeedback without the participant’s knowledge (implicitly),
prompting a theoretical debate on the learning mechanisms underlying
this type of learning and the necessary role of awareness.

In this article, we will seek to present a clarified understanding of the
role of awareness (the state of being conscious of something) in neuro-
feedback learning. Awareness is notoriously difficult to define for con-
sciousness is a mongrel (Zeman, 2005) concept that encompasses
different aspects of information processing, in particular (1) phenom-
enal experience (i.e., “what it is like” to find oneself in a given mental

state), (2) our ability to act upon information that we are conscious of,
and (3) our ability to report on decisions and to intentionally monitor,
control, and judge such decisions (i.e., metacognition). Because of the
underlying conceptual and epistemological issues, the measurement of
awareness constitutes a true challenge (see, e.g., Michel, 2017; Tim-
mermans and Cleeremans, 2015, for reviews).

It is important to note also that people may be aware of different
aspects of an experimental situation. As Nisbett & Wilson (1977) wrote,
“Subjects are sometimes (a) unaware of the existence of a stimulus that
importantly influenced a response, (b) unaware of the existence of the
response, and (c) unaware that the stimulus has affected the response”
(p. 231). Likewise, in the neurofeedback literature, awareness may be
used to refer to different aspects of information processing: awareness of
internal sensations (Brener, 1977; Frederick, 2016), awareness of being
trained (Ramot et al., 2016), awareness of intended action (Ramot et al.,
2016), or awareness of the relationship between a feedback signal and a
specific mental content (Shibata et al., 2019).

For the purposes of this article, we will operationally define aware-
ness as availability for report and voluntary control of action (Block,
2007). In other words, if people can talk about a particular state of af-
fairs or intentionally act based on it (i.e., answer questions about it or
make decisions about it that they can properly motivate), then we as-
sume they are aware of it, and that they are unaware otherwise.
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While cognitive processes themselves are typically not available for
report (e.g., we do not consciously experience the mechanisms through
which a memory is retrieved), their products and some of their char-
acteristics may or may not be available for report. For instance, memory
is deemed explicit when people report that they consciously experience
the fact that they have seen the retrieved item previously, as in recall,
and implicit otherwise, as when a retrieved memory can influence
behavior (e.g., through priming) despite people failing to consciously
recollect having seen the item previously. In such cases, however, people
may experience a feeling of familiarity that is not linked to a specific
episode. It is often the case that particular tasks, such as recognition, for
instance, may involve both explicit and implicit processes: I may
recognize an item because I know that I have seen it before, or merely
because it feels familiar and I guess it is likely that I have seen it
previously.

Finally, during learning, people may be consciously attempting to
control their behavior so as to improve their performance, or they may
not. Compare for instance the activity of reading a novel with the ac-
tivity of attempting to memorize it when studying for an exam. The
latter is characterized by intentional attempts to memorize the text and
is a type of explicit, intentional learning that involves cognitive control
and the self-monitoring of learning success. The former, in contrast,
lacks intention (i.e., intention to commit the material to memory),
cognitive control and self-monitoring. While such implicit learning
might well result in declarative memory of certain elements of the ma-
terial, such learning is best described as incidental, that is, as a mere
side-effect of processing rather than as the core intentional goal of the
activity.

With these considerations in mind, different questions arise with
respect to neurofeedback paradigms. For instance, is learned control
dependent on participants being consciously and intentionally engaged
in self-regulation? To what extent are distinct learning mechanisms
targeted with different neurofeedback paradigms? We surmise that
answering these questions is important for several reasons: first, to
elucidate which mechanisms are at play in neurofeedback learning,
thereby advancing our basic understanding of the underlying mecha-
nism; second, to refine the paradigms that we use and potentially adapt
them to target or incentivize a type of learning, and lastly, to be able to
better segue the results of animal and human studies (Lovibond &
Shanks, 2002).

Several different theories from different backgrounds have been
proposed to explain the mechanisms underlying neurofeedback
learning, such as neural conditioning (Shibata et al., 2019), system
control theory (Ros et al., 2014), two-process theory (Gaume et al.,
2016) or motor skill learning (Birbaumer et al., 2013) (for more
comprehensive reviews, see Gaume et al., 2016; Sitaram et al., 2017;
Strehl, 2014). With regards to the involvement of conscious processes,
we believe most theories can be assigned to two main approaches. The
first approach consists of depicting neurofeedback learning as a form of
active learning in which the organism uses the information given to him
or her to perform voluntary mental actions towards a goal (e.g., using
some cognitive task to regulate his or her brain activity). Under this
view, cognitive aspects such as attention, awareness, and motivation
play a central role. The second approach eschews the role of high-level
cognitive processes and is instead focused on characterizing learning as
an outcome of repeated stimulus-response pairings, resulting in the
reinforcement-driven strengthening or weakening of associations be-
tween brain signals and feedback signals (Birbaumer et al., 2013; Shi-
bata et al., 2019).

This second perspective thus underpins the widespread idea that
learning through neurofeedback can take place independently of
awareness, thus functioning as a kind of implicit learning (Amano et al.,
2016; Birbaumer et al., 2013; Shibata et al., 2019). The debate sur-
rounding the role of awareness in neurofeedback learning has gained
major relevance with the recent development of so-called implicit
neurofeedback paradigms (deBettencourt et al., 2015; Ramot et al.,
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2016; Watanabe et al., 2017), and the criticism that learning in explicit
neurofeedback paradigms is contaminated by placebo, experimenter
bias and demand effects (Thibault et al., 2018, 2016, 2015).

The question has been explored in the larger literatures of associative
learning and motor learning. These literatures have explored the role of
awareness in the production of conditioned responses (Lovibond and
Shanks, 2002; Mitchell et al., 2009) or in the acquisition of motor skills
(Stanley and Krakauer, 2013). We will first briefly summarize views in
those literatures (section 2), before discussing awareness in biofeedback
and neurofeedback more specifically (sections 3 and 4).

2. Awareness in human associative and motor learning

Describing learning in terms of stimulus-response associations has a
long history in psychology. Traditional learning theories from the first
half of the twentieth century, developed by psychologists such as
Thorndike or Hull, described instrumental learning (the learning be-
tween actions and outcomes) in terms of stimulus-response bonds that
were strengthened or weakened by reinforcement (Hull, 1943; Thorn-
dike, 1911; Yin and Knowlton, 2006). This approach aimed at studying
learning by focusing on measurable inputs and outputs, free from con-
cepts such as goals, representations, and so on that its proponents
considered to be unscientific. In animal research, in particular, asso-
ciative learning is often assumed to be detached from higher-order
cognitive processes (Lovibond and Shanks, 2002).

However, even if simple contiguity can result in learning and is
perhaps at the source of a primitive form of associative learning already
present in many vertebrates and mammals (Bekinschtein et al., 2011;
Heyes, 2012; Macphail, 1982), it is often considered neither sufficient
nor necessary for conditioning. Associative learning can instead be
viewed as a more complex process, mainly driven by the acquisition and
maintenance of internal representations of events that lead to pre-
dictions about the state of the world (Rescorla, 1988). In humans, the
bulk of the evidence indeed supports the view that learning is often
accompanied by contingency awareness (knowledge of the relationship
between events) (Lovibond and Shanks, 2002; Mitchell et al., 2009), as
evidenced by a recent meta-analysis and systematic review that found
no evidence for fear conditioning without contingency awareness in
humans (Mertens et al., 2020). Our aim here is to reiterate that delin-
eating implicit from explicit components of learning is not trivial and
requires careful theoretical and methodological discussion before one
type of learning is dismissed. Current views of behavior have reestab-
lished the importance of outcome expectancy, and inference-based
neural learning systems that encode causal relationships between sen-
sory events: anticipation and intentionality are now seen as dimensions
that can be measured and manipulated (Yin and Knowlton, 2006).

Describing neurofeedback learning as implicit learning perhaps arises
from espousing two assumptions: that neurofeedback learning is a form
of motor skill learning (Birbaumer et al., 2013), and that motor
learning is an implicit process. It is indeed clear that motor movements
can be executed without awareness, and that we sometimes act without
previous conscious intention (e.g., habits) (Dienes and Perner, 2007).
But as Krakauer and colleagues point out, it is important to distinguish
between motor execution and motor learning (Krakauer et al., 2019;
Stanley and Krakauer, 2013). Motor learning research in humans has
evidenced an involvement of both implicit and explicit processes:
explicit processes in motor skill learning occur at a faster time-scale,
require more time to unfold, and are sensitive to instruction and
changes in reward contingencies. Implicit processes are considered to be
error-driven, to act in parallel at a slower timescale, and to unfold faster
(Huberdeau et al., 2015). Experimental manipulations, such as using
verbal instructions or delaying feedback, allow to disentangle the con-
tributions of explicit and implicit processes at different time points of
learning (Schween et al., 2014; Taylor and Ivry, 2011), and have shown
that explicit processes dominate during the initial learning phases
(Taylor et al., 2014). Here also, our main argument is that considering
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neurofeedback as a form of motor skill learning should not lead to
automatically dismiss the involvement of explicit processes.

3. Awareness in biofeedback learning

Neurofeedback can be considered in the context of the biofeedback
literature, which treated the feedback-mediated acquired control of
diverse physiological responses, such as galvanic skin conductance, skin
temperature, breathing or cardiovascular responses. Research in this
field was already interested in the link between awareness and control,
in particular by identifying which physiological responses could
potentially be controlled, by analyzing the relationship between
discrimination ability and control performance, and by employing ma-
nipulations of knowledge of contingencies during learning. Two main
theories of biofeedback learning have directly addressed the role of
awareness: Awareness theory and Dual-Process Theory.

3.1. Awareness Theory

Awareness theory (also referred to as Discrimination theory),
postulated that awareness of a physiological response was necessary for
its voluntary control (Brener, 1977; Brown, 1971; Plotkin, 1981). Brener
& Jones (1974) suggested that by repeated exposure to external
biofeedback signals participants learned to identify and discriminate
components of their experience, such as subtle physiological sensations,
and to map them to changes in the external feedback signal, thus
allowing them to improve their self-regulatory control. Here, by
providing externalized information of internal states that do not usually
surpass the threshold for awareness, biofeedback is seen as enabling the
identification of those subtle sensations and as serving as a “tool for
self-investigation” (Zolten, 1989). It is therefore seen as form of sensory
substitution, similar to how deaf person would use tactile and visual
feedback to learn to speak (Frederick et al., 2016). The theory predicts
that regulation is correlated with discrimination ability, that discrimi-
nation is sufficient for control, and that regulatory actions become, with
training, increasingly refined to physiological subsystems. However, in
contradiction with the theory, control is not always associated with
discrimination ability (Lacroix and Gowen, 1981), as further discussed
in section 4.

3.2. Dual-Process theory

The Dual-Process theory (Dunn et al., 1986; Lacroix, 1986, 1981)
posited that biofeedback learning is governed by both efferent and
afferent (feedback-driven) processes. It claimed that neurofeedback
learning consisted mostly of the former, occurring at the “central”,
conscious, level. During learning, the learner starts actively applies
potential strategies to reach a goal, and the biofeedback signal allows
the learner to identify, and confirm, the appropriate cognitive strategies
that regulate the feedback signal. In some cases, when candidate stra-
tegies for self-regulation appear ineffective, then the above-described
efferent processes might be put aside in favor of a feedback-driven
process, similar to Awareness Theory, described above (see 3.1). In
this case, the learner will switch to the monitoring of internal intero-
ceptive processes and will aim to identify a correlation with the
biofeedback signal. If an association can be established, then the learner
will try to guess what system it corresponds to, and will again switch
back to an efferent strategy by selecting a verbal library to control said
response. This theory best fits to paradigms in which the participant is
engaged in active self-regulation and is given a goal. However, studies
have shown that self-regulation can occur implicitly, without
consciously applied self-regulatory strategies (see Section 4).
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4, Current views on the role of awareness in neurofeedback
learning

With neurofeedback, there are several reasons why one might
dismiss the role of awareness during learning. First, verbal reports of
cognitive strategies during neurofeedback performance show no con-
sistency between participants (Kiibler et al., 2001; Neumann et al., 2003;
Shibata et al., 2019), and one study found no consistent relation be-
tween verbal reports of strategies and improvements in neurofeedback
performance (Kober et al., 2013). Second, the instructions given to
participants for the purpose of self-regulation are not always useful for
learning, and participants sometimes show better performance when not
using the instructed strategies (Lacroix and Roberts, 1978; Sepulveda
et al., 2016; see Paret et al., 2019 for a recent review and discussion on
use of instructions). Third, learning seems to be possible without
awareness of neurofeedback, that is, in paradigms where the participant
has no explicit knowledge of the relation between his or her neural ac-
tivity and the feedback, while still being able produce neural changes
with neural location specificity (Amano et al., 2016; Shibata et al.,
2011). In addition, learning seems to be possible with passive neuro-
feedback setups, where there is no apparent goal (e.g., passive settings,
as opposed to aiming to maximize a reward), suggesting that
goal-directedness is also not necessary for learning (Ramot et al., 2016).
Finally, learning is possible in other non-human animals (rodents, rab-
bits, cats, etc.), which for some authors is indicative that the learning
process at play is implicit (Birbaumer et al., 2013).

These views are explicitly expressed in recent reviews of neuro-
feedback. For instance, Birbaumer and colleagues claimed that even
though participants were using “imagery and other abstract cognitive
activities” and were motivated by instruction, the “brain responses are
learned, stored, and retained in a manner that is comparable to motor
skill, following the rules of implicit learning” (Birbaumer et al., 2013, p.
298). They suggest that complex cognitive activities allow for the neural
activity to reach a certain pattern, which then becomes reinforced by an
implicit learning mechanism. The authors point to the involvement of
cortical-basal ganglia loops (Birbaumer et al., 2013), which are also
involved in implicit learning, and infer from there that learning is im-
plicit. Other authors also argued in favor of learning processes that do
not require awareness in the context of tasks that do not provide initial
instructions (Shibata et al., 2019; Watanabe et al., 2017). In this type of
task, which the authors call implicit neurofeedback, crucially, the signal
itself is explicit, participants have explicit knowledge about the con-
tingency relationship between feedback and their brain activity, and are
instructed to self-regulate (as described by the authors: “participants are
merely asked to make an effort to achieve better scores” (Shibata et al.,
2019, p. 540)). However, the authors explain, the participants do not
know “the purpose of the experiment, how the criterion has been
determined or how to match induced fMRI signals to the criterion."
(Shibata et al., 2019, p. 540). In addition, with these so-called implicit
tasks, exit questionnaires seem to indicate that participants report not
having used any particular strategy, leading authors to suggest the
involvement of mechanisms of implicit learning. But, as we will note
later, participants are still asked explicitly to “make an effort” to
self-regulate a signal, so the role of explicit processes should not be
simply discarded.

Here, we argue that this ongoing debate about the role of awareness
in neurofeedback requires careful consideration of three dimensions: a)
how awareness is measured, b) how instructions are communicated to
participants and c) whether the learner is exposed to an active or to a
passive learning situation. Heeding these three dimensions might help
establish differences between different tasks and, at the same time, help
identify which type(s) of learning are involved in each. We therefore
propose a novel taxonomy of neurofeedback paradigms, as follows.
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5. A novel taxonomy for neurofeedback paradigms
5.1. Explicit vs. implicit paradigms

Neurofeedback protocols are commonly divided into the explicit or
implicit category (Gaume et al., 2016; Lubianiker et al., 2019). Ac-
cording to this taxonomy, in explicit paradigms, the participant has
conscious knowledge of the origin of the feedback and is instructed to
actively regulate it. In implicit paradigms, however, the participant is
not aware of the contingency between his or her brain activity and the
feedback, and may be asked to merely passively visualize a feedback
display. It has been suggested that the latter type of paradigm is not
influenced by the confounds of placebo, cognitive effort and other de-
mands (Lubianiker et al., 2019), and might instead involve a different
learning mechanism (Shibata et al., 2019).

However, we also argued that this binary categorization is often
insufficient to describe common neurofeedback paradigms and the
learning mechanisms they appeal to. One such example, already dis-
cussed in section 4, is the implicit neurofeedback commonly associated
with “Decoded Neurofeedback” (Shibata et al., 2019; Watanabe et al.,
2017). In this type of task, the feedback signal itself is explicit, and
participants have explicit knowledge about the contingency relationship
between feedback and their brain activity, and are asked to regulate it
actively. We can already notice that the description of this task does not
correspond to the use of “implicit” in the paragraph above (Lubianiker
et al., 2019), where implicit refers to being unaware of the contingency
and being in a passive learning situation.

Certainly, every task will inevitably involve conscious and uncon-
scious processes (Jacoby et al., 1992). However, a better dissociation of
the paradigms and their different aspects might allow to make better
inferences about the learning mechanisms that are involved. Thus, a
learning process could potentially rely on automatic and implicit
mechanisms while being driven by conscious, effortful explicit pro-
cesses. Given that it is not clear how attention and intention play a role
in different kinds of neurofeedback paradigms, we propose a new tax-
onomy of neurofeedback learning tasks.

5.2. A four-category taxonomy

We suggest that in practice, most implicit neurofeedback tasks still
involve explicit processes, and thus propose a different, more fine-
grained taxonomy of paradigms, based on the following three
dimensions:

1. Active control: being aware of the possibility to control or influence
the feedback, as opposed to passive settings where there is no aim or
goal: "I know that my behavior will influence the feedback".

. Awareness of neurofeedback: being aware of the neuro-feedback
contingency, as opposed to thinking there are other reasons why
the feedback is altered that are independent of the brain activity: "I
know that my brain activity influences the feedback".

. Awareness of strategy: use of a strategy or cognitive task, obtained
from verbal instruction or other contextual elements of the task, as
opposed to finding one’s own strategy: "I have an idea of what I should
do to influence the feedback".

In light of these three dimensions, we propose the following four-
category taxonomy:

1 Active overt cued tasks

2 Active overt uncued tasks
3 Active covert tasks

4 Passive covert tasks

We will now overview the common neurofeedback paradigms and
categorize them into the four new groups.
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In the active overt cued task, the three dimensions (active control,
awareness of neurofeedback, and awareness of strategy) are present.
This task corresponds to the most extensively used neurofeedback
paradigm. First, rewarding elements are present, either as primary re-
wards (monetary or appetitive incentives) or as secondary rewards (the
feedback signal itself coupled with instructions to reach a goal, e.g.,
"increase the level of a thermometer-like display"). Second, the partici-
pant is informed that the feedback depends on his brain activity. Third,
the participant is given, through verbal instructions or context, cues
relating to a cognitive strategy to self-regulate his or her neural activity.
The strategy can be more or less abstract (e.g., "think about movement"
vs "think about moving your right hand wrist"), can be given through
contextual cues (e.g., contextual affective induction in Zaehringer et al.,
2019), can be a single strategy or a list of suggestions, and can be more
or less flexible ("maintain it for the whole duration of the task" vs. "adapt
it based on the feedback").

The active overt uncued task is similar to the one described above,
except that no cues for a strategy are provided to the participant. He or
she is informed that the feedback (e.g., the size of a circle) will change
depending on his brain activity, and that he or she needs to find ways to
change it (Cortese et al., 2017, 2016). Exit questionnaires are often used
to find out what cognitive strategy (if any) the participant was using to
reach the target. These questionnaires usually point to an important
variability between subjects in the content of their strategies, and even
in their degree of active control (trying different strategies vs. being
more passive towards the feedback — examples of responses are provided
in Cortese et al. (2017)), leaving the question open as to what extent
active strategy use is necessary, if conscious strategies are perhaps
employed but not reported, or even the possibility that strategies are
used unconsciously (Shibata et al., 2019). The active control dimension
is therefore debatable. However, one thing that is clear is that the par-
ticipants explicitly know that the feedback is associated with their brain
activity, as opposed to the category developed below.

Active covert tasks are characterized by the presence of active
control, but the absence of awareness of neurofeedback and awareness
of strategy. In these covert tasks, the neurofeedback is usually disguised
as changes in parameters of the task, for example the contrast of an
image (Gantner et al.,, 2010), the visibility of a composite image
(deBettencourt et al., 2015), or as the degree of completion of an image
puzzle (Ramot et al., 2017). The participant is not asked to remain
passive: there is a goal given through instructions, for example, “attempt
to reveal the puzzle” (Ramot et al., 2017) or "attend to one image
category" (deBettencourt et al., 2015). Thus, participants are engaged in
a goal-directed manner, but as opposed to active overt uncued tasks, they
are not asked to actively regulate their brain activity and are not told
that the feedback is guided by it. While the instructions do not inform
about the presence of neurofeedback, it is possible that the association
could be guessed or deduced from the context (e.g., presence of brain
recording devices coupled with vague instructions). This possibility is
also usually addressed by post-experiment interviews to ensure that
participants have no knowledge of the neural - feedback contingency.

In passive covert tasks, the three dimensions are absent, as par-
ticipants are not even aware that there is a presentation of feedback
(Ramot et al., 2016). In this situation, there are still elements that are
inherently rewarding (e.g., positive or negative sounds), but their degree
of controllability is hidden. To our knowledge, there is only one study
with neurofeedback in humans corresponding to these criteria. In that
study, Ramot and colleagues (2016) used positive or negative sounds
that were associated with specific patterns of activation in two different
brain regions. Crucially, this information was hidden from participants,
who were simply told that the goal of the study was to investigate their
reactions to positive or negative sounds. Therefore, participants had no
goal or aim for the task, and thus no conscious incentive to actively
influence the feedback.

The new proposed taxonomy is summarized in Table 1. As laid out
above, three different dimensions are proposed: active control,
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Table 1
Fine-grained taxonomy of awareness in neurofeedback paradigms. The a symbol indicates presence, [] indicates absence.
Presence of a feedback signal Active Awareness of Awareness of Example
from the brain control neurofeedback strategy
Active Overt Cued A A A A Most neurofeedback tasks
Neurofeedback
Active Overt Uncued A A A O Cortese et al., 2017, 2016;
Neurofeedback Taschereau-Dumouchel et al., 2018
Active Covert A A O O deBettencourt et al., 2015; Ramot et al., 2017
Neurofeedback
Passive covert A O O O Ramot et al., 2016
Neurofeedback

awareness of neurofeedback, and awareness of strategy, in order to
disentangle differences in the context in which brain activity is rein-
forced in each respective neurofeedback paradigm.

5.3. Intentionality in the brain-computer interface literature

In the field of brain-computer interfaces, a similar classification has
been used to differentiate between active, passive and reactive setups
(Zander and Kothe, 2011). According to this classification, in active BCIs,
control depends upon intended actions and their direct correlates, e.g.
neural activity associated with motor imagery in a motor imagery-based
BCIs (Pfurtscheller and Neuper, 2001). In reactive BCIs, control is indi-
rectly achieved through intended actions, but is actually driven by
automatic responses to external stimulation, e.g. changes in neural ac-
tivity driven by the active selection of flashing letters in a P300 speller,
(Farwell and Donchin, 1988). Lastly, in passive BCIs, control originates
from reactive responses that originate automatically from the interac-
tion with the environment, but which do not follow intended actions (e.
g. neural or other physiological responses that occur while interacting
with a machine) (Zander et al., 2009; Zander and Jatzev, 2009). Our
proposed taxonomy here borrows aspects of the aforementioned classi-
fication, in particular the importance of the user’s intention that de-
lineates between active and passive paradigms in our taxonomy.
However, we extend this classification to also take into account the
possibility for awareness of the neurofeedback signal and awareness of a
mental strategy.

5.4. Conclusion of the taxonomy proposal

This categorization we propose adds more nuance to the explicit vs.
implicit distinction, in which the "explicit" or "implicit" label could be
referring to different aspects of the design. While in some implicit tasks
participants are not aware of the area or pattern of activation that is
rewarded and what it represents, and exit questionnaires do not
consistently indicate the use of a strategy, we think it is useful to point
out the differences in the learning context and knowledge of contin-
gencies with respect to covert and passive neurofeedback tasks.

6. Measures of awareness in neurofeedback

What options are there to measure awareness in neurofeedback
tasks? What is the validity of these measures? Here, we will explore
measures of participants’ discrimination of brain states. Traditionally,
discrimination measures and paradigms have been used to find out
whether the ability to discriminate between brain states (or other
physiological states, as in the case of biofeedback) is related to the
ability to regulate said states, thereby informing theories of how the two
relate. Measures of discrimination can therefore be useful metrics to
uncover the role of awareness of brain and body states in neurofeedback
learning. But the measurement of awareness is famously difficult and
can be subject to many pitfalls (for a review, see Timmermans &
Cleeremans, 2015). In the following, we briefly review these subjective,
objective and metacognitive measures.
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Following the nomenclature in the consciousness literature, we
categorize these measures as being either subjective (i.e., first-person
data, from questionnaires or verbal reports), objective (i.e., third-
person data obtained from forced-choices of carefully selected alterna-
tives, such as detection or categorization tasks), or metacognitive (i.e.,
indices of the relation between objective and subjective performance).

6.1. Subjective measures

The most straightforward way to find out what participants are
experiencing is to ask them directly. Verbal reports have indeed been
used in neurofeedback studies to measure what participants are expe-
riencing during self-regulation, and in particular, whether there is a
relation between their experience (often resulting from the use of
cognitive tasks or strategies) and their performance. For instance,
Wolpaw and colleagues (1991) noted that: “Subjects reported that they
adopted various strategies, such as thinking about a certain activity (e.
g., lifting weights) to move the cursor down, and thinking about relaxing
to move it up. As training progressed, several reported that such imagery
was no longer needed.” (Kiibler et al., 2001; Neumann et al., 2003).
Beyond verbal reports, other subjective measures can be used to capture
different aspects of subjective experience. For example, a subjective
measure can consist of asking for ratings of vividness of visual imagery
(ranging from trial-by-trial ratings to questionnaires at the end of the
experiment, such as the VVIQ) (Cui et al., 2007; Marks, 1973). These
measures resemble others that have been used for visual perception and
memory, such as the Perceptual Awareness Scale (Ramsgy and Over-
gaard, 2004), a scale where participants rate their visual experience
from “nothing” to “clear experience”, or the Feeling of warmth (Met-
calfe, 1986), similarly a subjective measure where participants report a
“feeling of warmth” for words in a memory task.

But verbal reports and other subjective measures don’t always tell
the full story, as illustrated by studies showing the limits of human
introspection (Nisbett and Wilson, 1977). One of the main limitations of
verbal reports is that they are often obtained retrospectively, usually at
the end of the experiment (Newell and Shanks, 2014), instead of on a
trial-by-trial basis. In addition, participants are not always incentivized
to give the full details of their experience, or might not think the in-
formation they have is relevant (Timmermans and Cleeremans, 2015)
for the question. All these factors could lead to incomplete measures of
awareness and to the conclusion that awareness is not present or unre-
lated to the performance. But absence of evidence is not necessarily
evidence of absence. An alternative goal is to aim for measures that are
exhaustive, which would capture awareness if and when it is present.

6.2. Objective measures

Due to the limitations of verbal reports, many researchers focused on
developing more objective measures of awareness. In third-person
objective measures, awareness is measured by making participants
choose between two alternatives that have been carefully selected, in a
way that performance above chance is taken as indicating that the
participant possesses relevant information regarding their current
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mental state. For example, in the studies of Kamiya (Kamiya, 2011,
1968, 1962) participants were asked to answer ‘A’ or ‘B’ if they esti-
mated the alpha power activity measured in their brain to be low or
high, and received feedback for their discrimination accuracy.
Above-chance accuracy in this case is taken as an indication that the
participant is aware of his mental state (or has some relevant informa-
tion) allowing him or her to indicate if alpha was low or high. Several
studies have used such measures in neurofeedback, such as for slow
cortical potential discrimination (Kotchoubey et al., 2002) or alpha level
discrimination (Frederick et al., 2019, 2016; Frederick, 2012). Beyond
dichotomous choices, Schurger and colleagues (2017) used continuous
ratings for evaluating mental actions: participants rated the position of a
cursor that was driven by their sensorimotor activity on a 1-10 point
scale, before seeing their feedback, which allows to verify whether
participant’s continuous guesses correlate with trial-to-trial
performance.

But this approach can also be limited, because it assumes that
awareness is related to objective behavior, which is not always the case
(Timmermans and Cleeremans, 2015). The dissociation between
objective performance and consciousness is famously illustrated by the
“blindsight” condition, where people with V1-cortical damage show no
conscious awareness of the stimuli presented to them, despite being
capable of above-chance performance in detecting or discriminating the
same stimuli (Ko and Lau, 2012). Another limitation is that objective
measures can be influenced both by conscious and unconscious contents
(“the contamination problem”). Thus, without empirical evidence of the
association between performance and awareness, objective measures
are also limited measures of awareness.

6.3. Metacognitive measures as candidate measures for awareness in
neurofeedback

There are some measures that have not been used in neurofeedback
tasks and would be useful for determining awareness. One such
approach would be to focus on measuring the association between
objective and subjective reports. A now widespread measure is to use
ratings of confidence, based on the assumption that when one is
conscious of something (seeing a stimulus), one has a sense of confi-
dence about it (Rosenthal, 2019). Typically, metacognitive measures are
directed to the participant’s behavior (e.g., confidence about a choice).
For instance, a stimulus is shown to a participant who is asked to make a
choice (e.g., indicating its presence or discriminating its category). A
confidence rating is then asked to record how sure the participant is
about having made the right choice.

The goal of metacognitive measures is primarily to dissociate be-
tween bias and sensitivity (Eriksen, 1960). Bias is the overall level of
confidence (low or high), whereas sensitivity is the metacognitive ac-
curacy, or the confidence-accuracy correlation: such as when one is
more confident for correct trials, and less so for incorrect trials (Fleming
and Lau, 2014). These views define awareness as the correlation be-
tween objective and subjective measures, thereby reflecting the ability
to monitor one’s own performance. From a statistical point of view, the
association can be computed in several ways: as an actual correlation (e.
g., Pearson’s r) between performance scores and confidence scores, or
with more advanced metrics (meta-d’ and Receiver Operant Charac-
teristic (ROC) curves) (Harvey, 1997; Maniscalco and Lau, 2014), etc.

To conclude, measuring awareness can be subject to many pitfalls,
and the exclusive use of retrospective verbal reports could be prob-
lematic. Using trial-by-trial simultaneous measures of confidence and
simpler behavioral choices can shed light into the role of awareness in
neurofeedback learning.

7. Conclusions

We conclude that explicit processes cannot be eschewed in most
current “implicit” tasks, since participants are most often still aware of
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the contingency between their brain activity and the neurofeedback
signal and they do receive explicit goals. We have thus proposed a novel
fine-grained distinction based on knowledge of contingencies and the
goal-directedness of learning. We have in addition reviewed and the
methods to measure awareness in neurofeedback tasks, and have sug-
gested new potential candidates. We suggest that researchers interested
in elucidating the mechanism underlying neurofeedback learning use
this taxonomy to identify the potential role of explicit and implicit
processes.
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