
PANTHEON: SCADA for Precision Agriculture

L. Giustarini et al.

Abstract In this chapter, we introduce the vision of the H2020 project “Precision
Farming of Hazelnut Orchards” (PANTHEON), which is to develop the agricultural
equivalent of an industrial Supervisory Control And Data Acquisition (SCADA)
system to be used for precision farming of orchards. PANTHEONs objective is to
design an integrated system where a relatively limited number of heterogeneous un-
manned robotic components (including terrestrial and aerial robots) move within
the orchard to collect data and perform typical farming operations. In addition, an
Internet-of-Things (IoT) agrometeorological solar-powered network is deployed to
continuously monitor the environmental conditions of the orchard. The informa-
tion so collected is then stored in a central operative unit that integrates the data to
perform automatic feedback actions (e.g. to regulate the irrigation system) and to
support the decisions of the agronomists and farmers in charge of the orchard. The
proposed SCADA system will acquire information at the resolution of the individ-
ual plant, to drastically increase, compared to current best-practice, the detection of
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2 PANTHEON: SCADA for Precision Agriculture

possible limiting factors at the level of the individual plant, and to react accordingly.
Differently the current state-of-the-art in precision farming for large-scale orchards,
the capability of monitoring the state and the evolution of each single tree will be the
enabling-technology to allow more focused interventions. This will lead to a better
average health of the orchard, and to an increased effectiveness of Integrated Pest
Management (IPM) activities. In conclusion, the ongoing implemented architecture
has the potential to increase production while, at the same time, being more cost-
effective and environmentally-friendly. To summarize, we believe that the proposed
SCADA paradigm for Precision Agriculture may represent an attractive opportunity
for the design of a novel real-time software architecture. In other words, by allowing
the processing of massive amounts of datasets derived from the SCADA architec-
ture, it will be possible to step-up the current effectiveness of Precision Agriculture
(PA) methodologies by providing real time answers to the questions posed by farm
managers, when in need of timely decisions.
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1 Precision Agriculture at Large

PA is a farming management concept based on observing, measuring and respond-
ing to inter and intra-field variability in crops [36]. Such variability may result from
a number of factors. These include weather variables (temperature, precipitation,
relative humidity, etc. ), soil characteristics (texture, depth, nitrogen levels), crop-
ping practices (till/no-till farming), weeds and diseases, among others. The goal of
PA is to apply the right amount at the right time and in the right place, optimizing
returns on inputs, while preserving resources and reducing production costs. In the
broadest sense, PA is the application of management decisions in space and time,
based on identifying, quantifying, and responding to variability. Even though farm-
ers have always been aware of variability, the problem is that so far they lacked the
tools to measure, map and manage it precisely.

The practice of PA has been enabled by technological developments: from gath-
ering and analyzing data, to the subsequent decision-making process, including the
application of different agricultural inputs in the field. The advent of GNSS has
greatly contributed to the spread of PA. The farmer’s and researcher’s ability to lo-
cate their precise position in a field allows for the creation of maps of the spatial
variability for as many variables as can be measured (e.g. crop yield, terrain fea-
ture, topography, soil characteristics, moisture levels, nutrients levels, and others)
and computed or derived (e.g. chlorophyll index, Normalized Difference Vegetation
Index (NDVI), water stress). Geolocating a field enables the farmer to overlay in-
formation gathered from different analyses and various sensors. Sensor arrays can
be mounted on GPS-equipped vehicles, such as Unmanned Aerial Vehicles (UAVs)
and Unmanned Ground Vehicles (UGVs). The sensor arrays consist of instruments
like laser scanners and different types of cameras, such as RGB, multispectal, hyper-
spectral and thermal cameras. These instruments measure several different variables,
from which information such as 3D reconstruction of the field and trees, and veg-
etation indices (VIs) can be computed [51] [35] [45] [52]. Two of the earliest and
most widely used VIs are the NIR/Red ratio [34] and the NDVI [47]. In general,
datasets collected from sensors onboard UGVs and UAVs can be used in conjunc-
tion with information derived from airborne remote sensing and from Earth Obser-
vation (EO), with several satellites now providing imagery at centimetric resolution.
Additionally, more variables can be measured with instruments such as field-based
electronic sensors and spectroradiometers. Overall, it should be remarked that sens-
ing techniques for biomass detection, weed detection, soil properties and nutrients
are most advanced. On the other hand, sensing techniques for disease detection and
water stress are more difficult to design and implement in the field.

Example of recent projects are here included to provide the reader with an idea
of the most recent developments in the field of integrated systems for PA. Within
the H2020 program, the most relevant projects in PA are SWEEPER, FLOURISH
and APOLLO. The ambition of the SWEEPER project [15] was to bring the first-
generation greenhouse harvesting robot onto the market. The idea was to apply the
technology developed in CROPS [4] to introduce, test and validate a robotic har-
vesting solution for sweet peppers in real-world conditions. The idea of FLOURISH
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[6] was to develop a setup composed of a small autonomous multi-copter UAV with
a multi-purpose UGV to survey a field from the air, perform targeted interventions
on the ground, and provide detailed information for decision support, all with mini-
mal user intervention. This framework could potentially be adapted to a wide range
of farm management activities and different crops, by choosing different sensors,
status indicators, and ground treatment packages. The objective of APOLLO [2]
was to develop and test affordable and user-friendly agricultural advisory services.
This was achieved by making an extensive use of free and open EO data, such as
those provided by the Sentinel satellites. These services monitor growth and health
of crops, provide advice on when to irrigate and till the fields, and estimate yield.
Other projects will be here briefly illustrated. The project FATIMA [5] aimed to
create an effective and efficient monitoring and management system of agricultural
resources to achieve optimal crop yield and quality, in a sustainable environment.
Their comprehensive strategy covers five interconnected levels: a modular technol-
ogy package (based on the integration of EO and wireless sensor networks into a
WebGIS), a field work package (with exploring options of improving soil and input
management), a toolset for multi-actor participatory processes, an integrated multi-
scale economic analysis framework, and an umbrella policy analysis set based on
indicators, accounting, and footprint approach. The TrimBot2020 [16] project has
researched the underlying robotics and vision technologies to prototype the next
generation of intelligent gardening consumer robots. The project focused on the de-
velopment of intelligent outdoor hedge, rose and bush trimming capabilities, allow-
ing the robot to navigate over varying garden terrain, approaching hedges to restore
them to their ideal tidy state, and restore bushes to their ideal shape.

Several other projects were funded in the previous Framework Program (FP7).
The objective of SAGA [12] was to demonstrate the applicability of swarm robotics
principles to the agricultural domain. Specifically, SAGA targeted a decentralized
monitoring/mapping scenario, and implemented a use case for the detection and
mapping of weeds in a field with a group of small UAVs. In AGROSENSE [1] two
different types of sensors were considered: i) static sensors distributed throughout
the field in a form of wireless sensor network to monitor soil conditions, crop growth
and other relevant bio-parameters and ii) remote sensing based on autonomous
UAVs to provide valuable information, otherwise challenging to obtain from the
ground. FUTUREFAM [7] aimed at the development of an integrated information
system to advise managers of formal instructions, recommended guidelines, and im-
plications resulting from different scenarios at the point of decision making during
the crop cycle. RHEA [10] focused on the design, development, and testing of a
new generation of automatic and robotic systems for both chemical and physical -
mechanical and thermal - effective weed management, with application in both agri-
culture and forestry. It investigated a large variety of European products, including
agriculture wide row crops (processing tomato, maize, strawberry, sunflower and
cotton), close row crops (winter wheat and winter barley) and forestry wood peren-
nials (walnut trees, almond trees, olive groves and multipurpose open woodland).
The project CLAFIS [3] developed and demonstrated a pre-commercial intelligent
solution prototype for communication between automation systems and IT systems
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in farms and forest related processes. It focused on the need for seamless data trans-
fer between complex field devices/automation systems and IT systems for several
stakeholders in the European agribusiness sector and in forestry production. Even-
tually, SODSAT [13] concentrated on increasing the competitiveness of turf grass
producers by providing a remote-based intelligent turf management system based on
Artificial Intelligence (AI) techniques and on satellite imagery. Its outcome was an
expert system able to provide agronomical recommendations by relying on historic
and current data, multispectral images, and on-site sensing.

Extending our analysis to outside Europe, several relevant initiatives have been
carried out. The University of Minnesota developed algorithms that allow off-the-
shelf robotics to work autonomously in complex environments, such as an apple
orchard [14]. A project [11] led by the University of Pennsylvania uses human-
operated drones to produce high-resolution, multi-dimensional maps to improve
efficiency and yield. The MIT Media Lab Open Agriculture Initiative [9] builds
open resources to enable the global community to accelerate digital agricultural in-
novation. Bringing together partners from industry, government, and academia in a
research collective, they create collaborative tools, such as ”food computers” to ex-
plore future agricultural systems. In Australia, a project that received public funding
[8] contributed to the development of multi-scale monitoring tools to manage Aus-
tralian tree crops.

A common trait to the majority of these research papers and projects is the fo-
cus on annual crops, i.e. corn, strawberries, cotton, with only some of them having
analyzed tree crops, such as almond trees. The reason behind this is the higher mar-
ket values of annual cultivation, like corn, that represent a commodity in the stock
exchange market. In the case of annual crops, PA has also been used for yield es-
timation of major crops, such as grain and cotton. However, only limited research
has been conducted on yield estimation for specialty crops such as fruit trees [53].
Additionally, in the specific case of hazelnut farming, it represents a minor crop in
the world scenario, which is not even part of the list of commodity products. As a
consequence, in the past this has resulted in poor attractiveness for what concerns
research projects and funds. Eventually, it should be remarked that real time com-
puting has still to be properly integrated in PA. Indeed, some of the sensors, like
weather stations, already provide near-real time data and also compute, in near-real
time several derived variables from the measured ones. However, future challenges
relate to the real time processing of the much larger volume of data collected by
sensors onboard UGVs, UAVs, aircrafts and satellites.

2 Precision Agriculture for Hazelnut Orchards: A Case Study

PA in hazelnut farming is a relatively recent concept. As anticipated, this peren-
nial crop, well adapted to temperate climatic conditions, has been considered un-
til recently a minor crop. PA applications have been described in major perennial
crops [56] such as as olive groves, vineyards, stones fruits orchards, to monitor and




