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Abstract

The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs 
molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations 
support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage 
to the intermembrane space, as its transport presents signiicant analogies with that used by other metabolites previously 
studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simula-
tions show that the speciic carrier of TPP has a single binding site that becomes accessible, through an alternating access 
mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding 
site that difer from those identiied in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. 
The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming 
from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of 
the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy 
contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be 
explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.

Keywords Membrane channels · Membrane Transporters · Metabolite transport · Thiamine pyrophophate · Molecular 
dynamics

Abbreviations

AAC   ADP/ATP carrier
c-state  Cytoplasmic-open state
fTK  Force ield tool kit
IMS  Intermembrane space
m-state  Matrix-open state
MIM  Mitochondrial inner membrane
MOM  Mitochondrial outer membrane
MCF  Mitochondrial carrier family
TM  Transmembrane
TPP  Thiamine pyrophosphate

TPPT  Thiamine pyrophosphate transporter
VDAC  Voltage dependent anion channel

Introduction

Thiamine pyrophosphate (TPP) serves as a cofactor for sev-
eral mitochondrial enzymes involved in essential metabolic 
reactions related to ATP production and oxidative energy 
metabolism [1–3]. Its deiciency has been linked to several 
human diseases such as Amish microencephaly, bilateral 
necrosis and progressive polyneuropathy [4–6].

To fulill its role as a mitochondrial enzyme cofactor, 
TPP must be imported from the cytosol and must therefore 
pass through the two mitochondrial membranes (Fig. 1A). 
For passage through the mitochondrial outer membrane 
(MOM), the voltage-dependent anion channel (VDAC) 
is the most likely pathway through which TPP should be 
imported (Fig. 1A). VDAC is a very abundant, large pore 
protein known to facilitate the exchange of many inorganic 
ions and metabolites from the cytosol to the intermembrane 
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space (IMS) and vice versa and as such to control much of 
the permeability of MOM [7–9]. All organisms with mito-
chondria share at least one VDAC isoform with similar elec-
trophysiological properties (such as conductance, voltage-
dependence and selectivity) [10–12]. The 3D structure of 
VDAC of diferent species (human, mouse and zebraish) 
has been determined using either NMR, X-ray crystallog-
raphy, or a combination of both methods [13–19]. These 
structures present a large open β-barrel made of 19 β-strands 
and one N-terminal helical segment folded inside the bar-
rel (Fig. 1B). Although the biological relevance of this fold 
has been debated [20, 21], most of the indings from struc-
tural and functional studies have conirmed the validity of 
these structures rationalizing important VDAC properties 
[9, 16, 22–29]. In contrast to the MOM, the mitochondrial 
inner membrane (MIM) is impermeable except through spe-
ciic transporters. Uptake of TPP by the MIM occurs via a 
speciic carrier, the TPP transporter (TPPT; Fig. 1), which 
belongs to the mitochondrial carrier family (MCF) [5, 6, 30]. 
Like many other transporters [31], MCF proteins operate 
via the alternating access mechanism [32] during which the 
protein undergoes a transition between two conformations, 
the irst open to the IMS (c-state) and the second open to 

the mitochondrial matrix (m-state). Those conformations 
open or close the binding site with the aid of speciic gating 
residues to keep the substrate exposed to only one side of 
the membrane at a time. No TPPT 3D structure has been 
determined so far and most of the structural information 
on the MCF comes from crystallographic studies of the 
ADP/ATP carrier (AAC). All but one of the resolved AAC 
structures adopt a c-state thanks to the use of an inhibitor 
(carboxyatractyloside) blocking the protein in this state 
[33–35]. Recently, the structure of the m-state was solved 
in complex with a speciic inhibitor (bongekric acid) and a 
nanobody [36]. All AAC structures feature three domains 
of about 100 amino acids each related by threefold pseudo-
symmetry and made of two transmembrane (TM) α-helices 
joined by a large hydrophilic segment (Fig. 1C) [37]. The 
gating mechanism of AAC involves a network of salt bridges 
on both the IMS and the matrix sides that need to break or 
form to allow alternate access to the central binding site dur-
ing the transport cycle [33, 36, 37]. MCF proteins mainly 
transport negatively charged substrates [38]. Most of them 
work as antiporters. However, a few function as uniporters or 
proton symporters or even a combination of these transport 
mechanisms [38]. Yeast TPPT has been shown to transport 

Fig. 1  TPP import into the mitochondrial matrix. A Schematic repre-
sentation of TPP import through the two mitochondrial membranes. 
The pathway followed by TPP (orange sphere) is illustrated by orange 
arrows. (1) TPP is translocated through VDAC, the main metabolite 
conduit of the MOM, from the cytosol to the IMS. (2) TPP binds to 
the c-state of TPPT. (3) TPPT undergoes a conformational change 
from an c- to an m-state. (4) Unbinding of TPP from TPPT m- state 

and release to the matrix. B/C Side view of the 3D structure of (B) 
mVDAC1 (PDB ID: 3EMN [15]; colored according to the secondary 
structure) and of (C) bAAC, homologous to TPPT (PDB ID: 1OKC 
[33]: colored orange—domain 1, blue—domain 2, green—domain 3) 
is shown as a cartoon, respectively. Both proteins are presented with 
their cytosolic side upwards

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10822 Article No : 414 Pages : 22 MS Code : 414 Dispatch : 11-8-2021

Journal of Computer-Aided Molecular Design 

1 3

TPP or TMP by both uniport and exchange [39] while both 
the human and D. melanogaster transporters only catalyze 
exchange of TPP and in addition for the human transporter 
exchange of TMP [6].

In this study, we have investigated, using diferent molec-
ular dynamics (MD) techniques, the mechanism by which 
TPP is imported from the cytosol into the mitochondrial 
matrix. Our simulation data show that TPP is likely to cross 
the MOM through VDAC. This crossing is favored by the 
formation of ionic interactions with basic residues, most of 
which are conserved from one species to another. The per-
meation path of TPP has marked similarities with that of 
other analog metabolites [9]. As for its transport through 
the MIM, TPP is attracted to a body of positively charged 
residues lining the binding site homologous to the site iden-
tiied for nucleotides in AAC [37]. As proposed for other 
MCF members, two salt bridge networks, one located on 
the IMS side and the other on the matrix side, serve as gates 
to regulate alternate access to TPP binding site [33, 36, 37].

Results

Parametrization of TPP

In order to carry out MD simulations of TPP import into the 
mitochondrial matrix, we have developed empirical force 
ield parameters compatible with the all-atom CHARMM 
force ield (version 36; [40]) for the doubly negative proto-
nation form of TPP resulting from the negatively charged 
pyrophosphate moiety (charge 3-) and the positively charged 
thiazolium ring (charge 1 +). This protonation state was cho-
sen on the basis of  pKa values of TPP phosphate groups 
predicted using the Epik software [41] (Fig. S1) calculated at 
the pH range value prevailing in the cytosol, IMS and mito-
chondrial matrix which are about 7.2, 6.8 and 7.6 respec-
tively [42, 43].

TPP contains several unusual features that complicate 
parameter development. These features are located mainly 
on the thiazolium ring, which contains a positively charged 
nitrogen and a sulphur atom in a substituted ive membered 
ring. This results in high dihedral coupling, charge complex-
ity, uncommon atom types and thus in a high number of new 
parameters to be optimized. In order to reduce the number 
of parameters per molecule to be developed so that param-
eter determination would become computationally tracta-
ble, a “divide-and-conquer “ strategy (M&M) was applied in 
which TPP was irst divided into small fragments (Fig. 2A, 
B, C) which were successively reassembled into larger ones 
(Fig. 2D–E) and inally in TPP (Fig. 2F). The parameters of 
one of these fragments,  methylpyrophosphate3− (fragment 
C) have been previously developed and are available in the 
CHARMM force ield [44].

The determination of the energy parameters consisted in 
the automatic assignment of atom types and generation of 
parameters by the program CGenFF followed by the opti-
mization of those with a high penalty score by fTK (see 
“Development of molecular parameters in CHARMM force 
ield” section) [45–48].

As regards the atomic partial charges of the molecules, 
these were determined by the fTK module (fragment B) 
with the exception of molecules resulting either from the 
addition of functional groups to a parent molecule (fragment 
A, E) or from the combination of two cyclic molecular sys-
tems (fragment D from fragment A and B) on which a pre-
viously established CGenFF protocol was applied (M&M) 
(Tables S1-S5 A). In particular, the atomic partial charges 
for 4-amino-2-methylpyrimidine (fragment A) were devel-
oped starting from the pyrimidine charges [44] and taking 
in account the addition of a methyl and an amino group 
(Table S1A). All newly emerging bonded parameters with 
a high penalty were optimized using fTK (Tables S1–S4). 
The low penalty assigned by CGenFF to the only new 
improper parameter indicates that it does not require opti-
mization (Tables S1, S3 and S5 F). No parameters required 
to be optimized in  TPP2− (Fragment F) (Table S5).

Validation of the newly developed parameters for the 
fragments and TPP were performed in two steps. First, a 
visual inspection of the 5-ns long MD trajectories of each 
fragment and of TPP in water did not reveal signiicant 
deviation from the planarity of both aromatic rings, bond 
lengths and valence angles. Second, for TPP, the accuracy 
of the parameters was also assessed by comparing the IR 
spectrum calculated from MD simulations with the experi-
mental FTIR spectrum (M&M). The calculated and experi-
mental spectra are in good agreement for wavenumbers 
lower than 2000  cm−1 which are attributed mainly to ring 
breathing, stretching modes between heavy atoms and  CHn 
bending modes (Fig. 3, Table S6). For wavenumbers higher 
than 2800  cm−1; in the C–H, N–H and O–H bond stretch-
ing region, the peaks in the calculated IR spectrum present 
diferences in wavenumbers up to 30  cm−1 (Table S6). This 
diference could be due to the harmonic potential approxi-
mation in the force ield bonded term that breakdowns at 
higher frequencies. However, these vibrations are thought 
not to have a signiicant inluence on the essential dynamics 
of biomolecules. For this reason, the length of hydrogen-
carrying bonds is often ixed in MD simulations, as in the 
VDAC and TPPT simulations carried out in this study.

The calculated peak for symmetric stretching  NH2 
(3096  cm−1) presents a large diference with the experi-
mental one which could be due to the high sensitivity of 
O–H or N–H stretching modes to solvent interactions. The 
broad peak located around 3300  cm−1 in the experimental 
spectrum characteristic of O–H stretching could arise from 
water molecules that are not accounted for in the theoretical 
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spectrum or from a small amount of protonated phosphate in 
TPP as the pH of the sample was 6.4. Overall, our set of opti-
mized parameters predicts the vibrational phenomena quite 
well in particular in regions relevant to our MD simulations. 
This validates our optimized parameters for  TPP2− and these 
values were therefore used in the following simulations.

TPP import into the mitochondrion

Using the validated force ield parameters of  TPP2−, we 
investigated its import into the mitochondrial matrix using 
MD simulations. First, we simulated the translocation of a 
TPP molecule through VDAC, the major pore for the per-
meation of metabolites through the MOM. In a second step, 
we simulated the transport of TPP through the MIM by its 
speciic carrier TPPT.

Apart from the possibility that TPP may be bound to 
 Mg2+ in solution [49], nothing is known about the chelation 

status of TPP in the diferent compartments of the cell or 
during its transport across the mitochondrial membranes. 
More data is available for the chelated forms of ATP, analo-
gous to TPP. In particular, it has been shown that the per-
meation of ATP by VDAC through the MOM is not afected 
by the presence of magnesium [9] and that ATP is known 
to be transported through the MIM by its speciic trans-
porter, AAC, in the  Mg2+-free form [50, 51] although it is 
complexed by  Mg2+ in the cytosol and the mitochondrial 
matrix [52]. Therefore, in view of the limited data available, 
we have simulated the transport of TPP across VDAC and 
TPPT both in its magnesium free  (Mg2+-free) and bound 
form  (Mg2+-bound).

TPP permeation through VDAC

By analogy with ATP it can be assumed that TPP low 
through VDAC is rather low [53]. Therefore, to speed up 

Fig. 2  "Divide-and-conquer approach" for TPP parametrization. TPP 
was fragmented into three model compounds (A–C). Only fragment 
A (4-amino-2-methylpyrimidine) and B  (trimethylthiazolium1+) 
required new bonded parameters to be determined. Fragments 
A/B and B/C were assembled into  thiamine+ (fragment D) and 
 dimethylthiazoliumpyrophosphate2− (fragment E) respectively. New 

bonded parameters were also determined for these two fragments. 
Finally, fragments D and E were merged to form  TPP2− (fragment 
F). This step did not require any further parameter optimization. The 
molecular structure of the compounds is shown as sticks colored by 
atom type (nitrogen—blue, oxygen—red, phosphorus—gold, sulfur—
yellow, carbon—cyan and hydrogen—white)
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transport, MD simulations of TPP translocation were per-
formed with a TM voltage of 500 mV, as a previous study 
showed that applying such a value allowed the observa-
tion of ATP permeation through the VDAC [9]. This rela-
tively high value of 500 mV may raise the question of 
maintaining the integrity of the lipid membrane. However, 
MD studies have reported that the electroporation process 
starts to occur in a POPC bilayer at values above 2 V [54, 
55] and thus beyond the potential value imposed here. Fur-
thermore, in our simulations, the transmembrane potential 
is applied by adding a force to all atoms carrying a charge 
proportional to the constant electric ield perpendicular 
to the membrane plane. We therefore ensured that the 
integrity of VDAC structure is maintained throughout the 
simulations by calculating the root mean square deviation 
(RMSD), which measures the distance between conforma-
tions generated along the trajectories. The RMSD calcu-
lated along 100 ns trajectories obtained under a 500 mV 
potential reaches at most 2.5 Å, a value considered very 
close to the reference structure [56]. Of the 10  Mg2+-free 
and 10  Mg2+-bound MD simulations of TPP permeation, 
three and two complete permeation events were observed, 
respectively (Fig. 4A). All other simulations show a par-
tial translocation of TPP. In all simulations TPP primarily 
visits, independently of the presence of magnesium, two 
regions of the pore (Fig. 4B and Fig. S2A-B), which cor-
respond to areas above and below the N-terminal α-helix, 
located approximately halfway up the channel. In compari-
son, ATP has been shown to occupy mainly one of these 
two regions, the one just below the α-helix (Fig. S2C). In 

 Mg2+-bound simulations TPP appears more evenly dis-
tributed along the pore compared to the  Mg2+-free TPP 
simulations (Fig. 4B).

During its migration through the channel, TPP mainly 
forms ionic interactions via its phosphate group with several 
basic residues: K12, R15, K20, K115 and R139 (Fig. 5A–B). 
Three of these residues (K12, R15 and K20) located on the 
N-terminal α-helix were reported in previous studies as key 
residues for translocating metabolites through VDAC [9, 57, 
58]. The other residues (K115 and R139) are approximately 
aligned on one side of the barrel facing the helix (Fig. 5C) 
accompanying TPP through its translocation. The positions 
of all these basic residues along the pore (Fig. 5C) as well 
as their lexibility given by their relatively long side chains 
were found to act so as to facilitate the migration of TPP 
across VDAC. This sweeping mechanism is illustrated, as an 
example, for R15, (Fig. 5D). No other types of interactions 
(hydrogen bonds, cation-π, π-π) formed by TPP with VDAC 
residues occur signiicantly, consistent with the previously 
obtained data on ATP [9]. The permeation of TPP through 
VDAC is thus mainly promoted by electrostatic interactions 
between the phosphate groups and protein basic residues. 
Most of these basic residues are highly conserved or only 
exchanged with similar amino acids (Table S7), suggesting 
their possible involvement in the permeation of TPP through 
VDAC in all kingdoms.

In the  Mg2+-free TPP simulations, TPP is observed to 
migrate through VDAC bound to one or two sodium ions 
except in one area just above the N-terminal helix Fig. 
S3A). In this region of the pore, TPP is observed to form, 

Fig. 3  Comparison of theoreti-
cal and experimental spectrum 
of TPP. Experimental FTIR 
spectra (red) and theoretical IR 
(black) spectral density. The 
ordinate axis represents the rela-
tive absorption; the magnitude 
of the peaks has no physical 
meaning. Rather, the existence 
of a peak at an appropriate 
wavenumber, representative of 
a vibrational phenomenon, is 
the main point of comparison. 
The spectra were obtained as 
described in M&M
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in average, a high number of interactions with the basic 
residues (K115 and R139, Fig. 5A). In the simulations with 
 Mg2+, TPP crosses the whole barrel chelated to either  Mg2+ 
or  Na+ with a nearly constant global charge of the bound 
cations (Fig. S3B). Interestingly, as TPP loses its  Mg2+ its 
interactions with basic residues, namely K12, R15, and K20 
of the helix and sodium ions simultaneously increase (Fig. 
S3B and Fig. 5B). Overall, TPP is found to be almost always 
bound to at least one cation when it passes through the pore.

Transport of TPP by TPPT

Process of binding and of unbinding of TPP to and from the 
speciic carrier TPPT in MIM were investigated using MD 
simulations. In the absence of 3D data, the TPPT structure 
in the c- or m-state was modelled using structures of bAAC, 
yAAC or mtAAC respectively [33–36] (M&M).

Modelling of the TPPT structure in the c- and m-state

The construction of reliable structural models is highly 
dependent on the quality of sequence alignments. Those 
used in this study show the conservation in TPPT of sev-
eral residues involved in AAC activity [59, 60] (Fig. S4, 
Table S8). The sequence identity values (about 25%) are 
below the 30% “twilight zone” for high accuracy template-
based three-dimensional modelling. Such a low level of 
sequence identity value is not unusual for membrane pro-
teins, as biological membranes ofer a high-contrast envi-
ronment with a hydrophobic inner region and hydrophilic 

edges that requires only the conservation of apolar and polar 
segments rather than strict conservation of residues [61]. In 
support of this, the alignments obtained show that the posi-
tions of the predicted 6 TM regions of TPPT showed good 
correspondence with the helical segments identiied in the 
bAAC, yAAC and mtAAC structures (Fig. S4). They also 
feature the conservation of two motifs in MCF members, 
the PX[DE]XX[KR] motif located in the odd-numbered TM 
helices on the matrix side and the [YF][DE]XX[KR] motif 
located in the even-numbered TM helices on the IMS side 
(Fig. S4) [39]. Structural data on AAC and sequence con-
servation analysis on MCF members have shown that each 
charged residue contained in each of these motifs can form 
up to two salt bridges between the diferent "repeats", thus 
creating a network of up to three salt bridges each between 
the motifs of diferent repeats [35, 36]. The matrix and 
cytosolic salt bridge networks have been proposed to play 
an essential role in the conformational change required for 
transport by being alternately formed and ruptured on the 
matrix and cytoplasmic side [62]. In addition, each of the 
matrix network salt bridges is susceptible to stabilization by 
braces in the form of hydrogen bonds formed by a glutamine 
residue located four residues away from the basic residue of 
the motif (PX[DE]XX[KR]XXXQ) [35]. These glutamine 
braces would help hold the salt bridge residues in place, to 
contribute to the stability of the c-state and to participate in 
the prevention of the c-state to m- state conversion in the 
absence of substrate binding [36]. Two of the three repeat 
motifs of TPPT contain a glutamine: Q44 (TM1) and Q245 
(TM5) (Fig. S4). Our 3D modelled structures of TPPT in 

Fig. 4  Permeation of TPP through VDAC. A Translocation path fol-
lowed by one TPP molecule during one permeation event (2.5  ns) 
through VDAC in a  Mg2+-bound MD simulation. Conformations 
spaced at a time interval of 0.04  ns are depicted as sticks colored 
from the starting position (red) to the end position (blue). The protein 
is shown as a transparent white cartoon. B Time-averaged occurrence 
of TPP  (NTPP), deined by the position of its terminal phosphorus 

atom, along the main axis in  Mg2+-free (orange) and in  Mg2+-bound 
(purple) simulations. The portion of VDAC embedded in the mem-
brane is illustrated by a grey colored background. The cytosolic and 
IMS sides are at the top and bottom of VDAC respectively. The posi-
tive side of the potential is located on the opposite side of the mem-
brane compared to the TPP starting position
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the c-state feature thus three salt bridges shaping the matrix 
network: D37-R143 (TM1-TM3), K40-D238 (TM1-TM5) 
and D140-K241 (TM3-TM5) (Fig. 6A, B) as well as two 
hydrogen bonds formed by the glutamine residues, Q44 
(TM1) and Q245 (TM5) acting as braces for the residues 
of the matrix salt bridge network (Fig. 6A). In hTPPT the 
charged residues of the [YF][DE]XX[KR] motif forming 
the cytoplasmic network are less conserved (Fig. S4) than 
those of the matrix network. Only one of the two charged 
residues is present in two of the three repeats (K200 in TM4 
and E304 in TM6) capable of forming a single salt bridge 
(Fig. 6C, D). The tyrosine residue contained in the [YF][DE]
XX[KR] motif has also been reported to serve as props for 
the cytoplasmic salt bridge network [36] in the same way 

that the glutamines act as braces for the matrix network. 
In hTPPT, two of the three repeats show the conservation 
of the tyrosine (Y196, and Y303; Fig. S4). Consistent with 
the conservation of the charged residues in the [YF][DE]
XX[KR] motifs, the 3D TPPT model of the m-state features 
a cytoplasmic network consisting of one single salt bridge 
formed between K200 (TM4) and E304 (TM6) (Fig. 6C, D). 
Y303 of the second repeat (TM6) forms a hydrogen bond 
with E101 (TM2) acting, in hTPPT, not as a brace but as a 
substitute partner for a missing salt bridge. Therefore, of 
the two tyrosine residues conserved in the TPPT [YF][DE]
XX[KR] motif, Y196 (TM4) and Y303 (TM6), only Y196, 
in the m-state model, may acts as a brace for the K200-E304 

Fig. 5  Interactions of TPP with VDAC residues. Time-averaged num-
ber of interactions  (Nint) of TPP phosphate groups with basic residues 
(K12-black, R15-cyan, K20-red, K115-blue and R139-orange) along 
VDAC main axis in (A)  Mg2+-free or in (B)  Mg2+-bound simulations. 
The position of TPP is deined by the position of the terminal TPP 
phosphorus atom. The portion of VDAC embedded in the membrane 
is illustrated by a grey colored background. C Basic residues form-
ing interactions with TPP (as identiied in A and B) are depicted as 
sticks and colored according to the atom-type. The protein is shown 
as a transparent white cartoon. D The sweeping mechanism of basic 

residue side chains by which migration of TPP through VDAC is 
facilitated is shown here by way of example for R15 and two of its 
diferent side chain orientations together with the corresponding posi-
tions of TPP. Residues and TPP are represented as sticks and colored 
according to the atom-type. Grey beads indicate the position along 
the main axis. The cytosolic and IMS facing sides are at the top and 
bottom of VDAC respectively. The positive side of the potential was 
located on the opposite side of the membrane compared to the TPP 
starting position
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salt bridge by forming a hydrogen bond with E304 and K200 
(Fig. 6).

Overall, the features of our alignments as well as the for-
mation of networks salt bridges and hydrogen bond braces 
contribute to the validation of our TPPT structural models.

Binding of TPP to the c-state of TPPT

Using a combination of diferent MD techniques, we inves-
tigated the process of binding of TPP to the c-state of TPPT. 
The structure of TPPT in its unbound c-state remains stable 
as shown by the funnel radius proile computed along MD 
simulations which indicates a large opening on the IMS side 
and an occlusion on the opposite matrix side (Fig. S5). As 
in the initial models (Fig. 6), the three salt bridges of the 
matrix network, unlike those of the cytoplasmic network, 
are formed, thus contributing to the stability of the c-state 
(Table 1A). In addition, only one of the glutamine braces 

(Q44) forms, in the simulations, a hydrogen bond with K40, 
which is intrahelical as both residues are located on the same 
TM, reinforcing one of the two charged residues of the salt 
bridge (Table 1A). As expected for the c-state, no "brace" 
tyrosine (for hTPPT, Y196) is observed with the exception 
of that formed with K200 (~ 40%) which has the particular-
ity of being an intrahelical hydrogen bond (Table 1B).

TPP binding was irst simulated in the absence of an 
external force. These simulations, performed in absence of 
 Mg2+, did not however show any entry of TPP (Table 2B). 
Simulations were then carried out with a TM potential dif-
ference of 500 mV as simulations with a lower potential 
value did not lead to binding events. Half of these simula-
tions highlight binding of TPP which is positioned length-
wise with its phosphate group located at the bottom of the 
funnel and the pyrimidine and thiazolium rings oriented 
towards the cytoplasmic side (Fig. 7A, 8A). In the other 
half, TPP remains mainly hooked to an IMS loop where 

Fig. 6  Salt bridge networks and hydrogen bond braces in TPPT. The 
residues involved in the A, B matrix and C, D cytoplasmic salt bridge 
network, stabilized by their respective glutamine or tyrosine braces 
are shown. Salt bridges and hydrogen bonds identiied in the 3D mod-

els are represented by red and green lines, respectively. The TM seg-
ments are represented as large circle and numbered. View of TPPT 
from the cytoplasmic side in the B c- and D m-state
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it forms privileged interactions with two basic residues 
(R116 and K200) located at the end of two TMs (Fig. S6). 
One of these, K200, is a conserved residue involved in the 
cytoplasmic salt bridge network expected to be formed in 
the m-state. The same protocol (an applied TM potential 
of 500 mV) with  Mg2+-bound TPP produced no binding 

events, even in longer simulations (Table 2B) suggesting 
that only the magnesium free form of TPP is transported 
by TPPT in the same way as ADP/ATP is translocated by 
AAC [50, 63].

Along its migration process down to the binding site, the 
only persistent interactions formed between TPP and the 

Table 1  Formation of the matrix and cytosolic salt bridge network

The percentage of the diferent interactions (Table S11) identiied for the (A) matrix and (B) cytoplasmic salt bridge networks and hydrogen 
bonds formed by glutamine and tyrosine braces in the c- and m-state simulations was calculated for the unbound c-state, bound c-state, bound 
m-state, and unbound m-state. This percentage was calculated by dividing the number of conformations featuring the type of interactions con-
sidered by the total number of conformations in the last ns of the trajectory. of the " unbound c-state of TPPT", "TPP binding to the c-state", 
"c-state to m-state transition", and "Release of TPP from the m-state" simulations respectively (M&M)

A

Observed interac-
tion s Molecular context 
t

Matrix network Glutamine braces

Q44 Q245

K40-D238 R143-D37 K241-D140 Q44-K40 Q44-D238 Q245-K241 Q245-D140

Unbound c-state 100 99.4 76.3 99.8 0 2.9 20.6
Bound c-state 98.4 95.3 51.8 28.8 0.03 0.2 64.2
Bound m-state 0 0 0 0 0 32.3 0
Unbound m-state 25.4 21.2 0 14.7 0 19.3 4.5

B

Observed interaction s Molecular 
context t

Cytoplasmic network Tyrosine braces

Y196

K200-E304 E101-Y303 Y196-K200 Y196-E304

Unbound c-state 0 0 42.4 0
Bound c-state 0 0 31.5 0
Bound m-state 30.5 55.4 26.5 7.6

Unbound m-state 58.1 78.2 54.8 42

Table 2  Overview of the performed MD simulations

A. VDAC and B. TPPT system. The length and type (classical: c, applied transmembrane potential: v, or targeted: t, of simulation and the num-
ber of trajectories (in brackets) are given. The studied process is also indicated

A Simulated system s studied process t VDAC  (Mg2+ free) VDAC  (Mg2+-bound)

Total simulation time 1000-ns 1000-ns
TPP permeation 100-ns with 500 mV (vMD: 10) 100-ns with 500 mV (vMD: 10)

B Simulated system s studied process t TPPT  (Mg2+ free) TPPT  (Mg2+-bound)

Total simulation time 975-ns 190-ns
unbound c-state of TPPT 20-ns (cMD: 2)
TPP binding to the c-state 20-ns (cMD: 4) 20-ns with 500 mV (vMD: 7)

50-ns with 500 mV (vMD: 1)15-ns with 500 mV (vMD: 1)
20-ns with 500 mV (vMD: 9)
30-ns with 500 mV (vMD: 2)
50-ns with 500 mV (vMD: 2)

Release of TPP from the m-state 20-ns with 500 mV (vMD: 4)
20-ns (tMD:14)

unbound m-state of TPPT 20-ns (cMD: 1)
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carrier are mainly ionic, with the exception of a hydrogen 
bond, and are formed between the phosphate groups and 
several protein residues (R30, R143, Y188, K231, K242 and 
K291: Fig. 8A, C, Table S10). These residues show a high 
conservation across diferent species (Table S8). Most of 
their corresponding residues in homologous AAC, with the 
exception of K231, were found to be important for nucleo-
tide transport (Table S9).

In the binding site TPP is mainly anchored by ionic 
interactions formed between its phosphate groups and basic 
protein residues R30, K231, K291 and to a lesser extent 
K40, R143 and K242 (Fig. 8A, C, Table S10), two of which 
(K40 and R143) are part of the matrix salt bridge network 
(Fig. 6A, B).

Other interactions are also formed with R30, Y92 and 
Y188 to varying degrees: a hydrogen bond with its phos-
phate group, an interaction π-π with its pyrimidine ring and 
a cation-π interaction with the thiazolium ring (Fig. 7A, C, 
Table S10). Most of the corresponding residues in homolo-
gous AAC have also been shown to be functionally impor-
tant (Table S9), with the exception of Y92 and K231. These 
two residues are not conserved in MCF members (Table S8); 

on the other hand, they are strongly conserved in TPPT car-
riers (Fig. S7, Table S8).

Furthermore, the transition from the unbound to the 
bound c-state leads to a rather strong destabilization of one 
(K241-D140) of the three salt bridges of the matrix net-
work and a rather weak one of the other two (K40-D238 and 
R143-D37). Thus, at this stage of transport, TPP ixation 
does not seem to lead to a clear break in the matrix network, 
even if it is destabilized. The observation that three residues 
that form a signiicant part of the interactions with TPP in 
the binding site do not belong to the salt bridge network is a 
possible explanation for this non-complete destabilization.

Unbinding of TPP from the TPPT m-state

Unbinding of TPP from its TPPT binding pocket was simu-
lated in a modelled TPP-bound m-state (M&M). A irst set 
of simulations carried out with an applied 500 mV voltage 
did not allow the release of TPP from the binding site to 
be observed (Table 2B). Therefore, tMD simulations were 
performed in which the bound TPP was targeted to difer-
ent locations in the matrix side of the membrane (Fig. 8B). 

Fig. 7  Binding of TPP in the 
c- and m-states. View of TPP 
and its neighboring residues 
in the binding site of TPPT in 
the c-state (A) and the m-state 
(B). The protein is represented 
as a transparent grey cartoon 
and its residues represented as 
sticks, TPP is illustrated using 
the CPK representation. Both 
c- and m-state conformations 
of TPPT are oriented with the 
cytosolic side of the protein 
upwards. A histogram based on 
data from Table S10 represents 
the percentage of the difer-
ent interactions formed by the 
residues of the binding site (C). 
Ionic, cation-π (protein-TPP), 
H-bond, π-π and cation-π (TPP-
protein) interactions are colored 
in red, black, blue, green and 
orange respectively with those 
representing the m-state being 
hatched
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Fig. 8  Binding and release of TPP. A–B Path followed by a TPP 
molecule during a binding event to the c-state (A purple protein) 
and during an exit event from the m-state (B pink protein). TPP is 
depicted as sticks and colored according to a color gradient from the 
starting position (red) to the end position (blue) along the path in 
conformations spaced by 0.04-ns and important residues are shown. 
C–D Time-average number of interactions  (Nint) formed between TPP 
phosphate groups and protein residues, ionic (R30-magenta, K40-red, 
R143-blue, K231-black, K242-orange and K291-cyan) and hydrogen 
bond (Y188-yellow) interactions, as a function of the position of the 

terminal phosphorus atom of TPP along the main protein axis, dur-
ing simulations featuring a binding of TPP to C TPPT c-state and 
D during unbinding events of TPP from TPPT m-state. The portion 
of TPPT embedded in the membrane is illustrated by a grey colored 
background. The cytosolic and IMS sides are at the top and bottom 
of TPPT respectively. The negative side of the potential was located 
on IMS side of the membrane and the positive side on the matrix side 
of the membrane. The percentage of interaction is given by all snap-
shots (extracted each 2 ps) of the simulations in which the interaction 
is formed divided by all snapshots
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Upon the exit of TPP, no persistent interactions formed by 
the transporter with TPP were found except for interactions 
in the binding site (R30, R143 and K291) that are lost upon 
disengagement of TPP (Fig. 8B, D).

After TPP is released into the matrix, a slight closure of 
TPPT structure is observed in some but not all simulations 
as shown by the calculated radius proile of the funnel (Fig. 
S5). This contrasts with the stability of the unbound and 
bound c-states as well as the bound m-state (Fig. S5). The 
closing of the funnel is concomitant to a partial re-formation 
of the matrix salt bridges as well as of the hydrogen bonds 
with the glutamine braces (Table 1). These observations 
point to a less stable unbound m-state relative to the other 
three states.

Discussion

In this study, the mitochondrial import of TPP through 
VDAC, the main channel of MOM, and TPPT, a speciic 
transporter of the MIM, was explored using a combination 
of simulations at atomic level. For this purpose, CHARMM 
force ield parameters have been developed for TPP using the 
CGenFF parameter database as a starting point in a "divide 
and conquer" strategy (Fig. 2). Comparison of the computed 
and experimental IR spectra as well as water phase simula-
tions indicate that the optimized parameters are capable of 
reproducing the structure and dynamics of TPP (Fig. 3).

Permeation of TPP through MOM

Our simulation results support the conjecture that TPP 
crosses the MOM by permeating through VDAC (Fig. 1A). 
TPP permeation through VDAC is indeed observed in the 
simulations but moreover, it shows strong mechanistic analo-
gies with that of other metabolites such as ATP [9]. Among 
those, permeation of TPP through VDAC is mainly pro-
moted by several ionic interactions formed by its terminal 
phosphate group with basic protein residues (Fig. 5). Most 
of these residues are conserved in the diferent kingdoms 
(Table S7), suggesting that the transport mechanism of TPP 
occurs in a similar way in all VDAC species. The basic resi-
dues that form the most persistent interactions, K12, R15 
and K20, are also those that have been reported in previous 
studies to be involved in the transport of other metabolites 
by VDAC [7–9]. Our simulations highlight that two other 
residues, K115 and R139, help the permeation of TPP from 
the opposite side of the pore relative to the central α-helix. In 
addition, the simulations show a system in which these basic 
amino acids, through a sweeping movement of their long 
lexible side chains, facilitate the permeation of TPP. Such 
a mechanism had already been previously demonstrated in 
the study of the transport of other metabolites such as ATP 

[9]. Based on these data, our simulations support the hypoth-
esis that VDAC is the channel that transports TPP through 
the outer membrane. These results on TPP also suggest the 
existence of weak binding sites, reinforcing the long-stand-
ing hypothesis that VDAC may play a role in the regulation 
of metabolite transport into and out of mitochondria [64].

Permeation of TPP through the MIM

After TPP has passed through the MOM into the IMS, it 
is taken over by a speciic carrier, TPPT, to cross the MIM 
(Fig. 1A). Our overall 2 µs long MD simulations reveal that 
TPPT operates by an alternating-access mechanism with a 
single binding site. In the c-state, the negatively charged 
TPP is attracted to the binding site likely to be due to the 
electrostatic forces resulting from the excess positive protein 
residues there (Fig. S8).

At the binding site, TPP non-covalently binds primarily to 
positively charged residues by establishing ionic interactions 
with its phosphate groups (Fig. 7, Table S10). In addition, 
two aromatic residues also play a role in the binding of TPP 
by interacting through either hydrogen bond, cation-π or a 
π-π interactions.

The interactions formed by TPP are relatively as numer-
ous in the c-state as in the m-state although distributed dif-
ferently according to the type of interactions (Table S10 and 
Fig. 7). In the m state, there are fewer ionic interactions and, 
in contrast, more H-bonds, π-π and cation-π interactions. In 
the c-state, the negatively charged TPP is attracted to the 
binding site, probably due to electrostatic forces resulting 
from the excess of positive residues of the protein there, 
as shown in the isopotential contour map (Fig. S8) which 
suggests that a positive electrical potential is conducive to 
the attraction of TPP to the binding site. In the m-state, this 
electrostatic potential remains but is less pronounced. The 
reduction in the number of ionic interactions in the m-state 
compared to the c-state can be explained by the fact that 
the TPP has to be detached from TPPT to be released into 
the mitochondrial matrix. These observations can also be 
rationalized by considering that TPPT could function as a 
uniporter or antiporter, f.i. with thiamine monophosphate, in 
that the energy input required to counterbalance that of the 
salt bridge matrix network should be less than that required 
for the cytoplasmic network.

Based on the idea that, to relect the diversity of MCF 
substrates which are asymmetric, the binding site of the 
pseudosymmetric MCF carriers should themselves be 
asymmetric, binding site residues were predicted from the 
analysis of the three repeat sequences [65]. Although this 
analysis identiied relatively few highly conserved asym-
metric residues in the cavity of TPPT it pointed to R30 
(TM1), K291 (TM6) and possibly K231 (human TPPT 
numbering) as likely to be involved in binding with TPP 
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[65]. I41, T44 and K242 are also cited as asymmetric resi-
dues located in the binding cavity [65, 66]. After review-
ing data from [65], Y92 appears also as an asymmetric 
residue (triplet 83 in Fig. S4 of [65]). Of these seven resi-
dues ive are identiied in our simulations to be involved in 
the binding of TPP (Table S10, Figs. 7 and 8).

Most of the residues (R30, R143, Y188, K242 and 
K291) forming persistent interactions with TPP in the 
binding site are either strictly conserved or similar in 
AACs (Table S9). Experiments have indeed shown that 
mutation of their corresponding residues in yAAC (K38, 
R152, Y203, R253 and R292 respectively) led to a severe 
impairment of nucleotide transport across the mitochon-
drial membrane in AAC [60]. The close similarity between 
the binding site of TPPT and AAC is not surprising in that 
human TPPT was initially identiied as a deoxynucleo-
tide transporter [5], even though its main function was 
eventually shown as that of TPP transport [6]. Although 
all MCF members have a similar structure and transport 
mechanism, the recognition of their substrate is speciic 
to each transporter. In particular, TPPT substrate speci-
icity difers from that of the AAC, a very speciic ATP/
ADP carrier, in addition to transporting TPP with high 
eiciency [67], TPPT also transports mono-, di- and tri-
phosphate (deoxy)nucleotides with the order of efective-
ness: NMP > NDPs > NTPs with a slightly lower eiciency 
for the nucleobases other than adenine [39]. MD studies of 
the binding of ADP to bAAC revealed residues, K22, R79, 
R235 and R279 (bAAC numbering) as the binding part-
ners of the phosphate moiety at the bottom of the binding 
cavity [67–69]. Comparison of these residues with those 
involved in the binding of TPP phosphates to TPPT reveals 
three diferences. One is the leucine L88 which corre-
sponds to R79 involved in the bAAC substrate selectiv-
ity of bAAC (Table S9). The second is Y92 which aligns 
with a threonine in the AACs and is engaged in numerous 
interactions with TPP that are related to its aromaticity. 
The third, K231 of TPPT, coincides with a glycine (G224) 
in bAAC. The substitution of glycine for lysine promotes 
a reduction in the size of the bottom of the binding cavity 
that may afect the recognition of certain nucleotides. As 
regards the thiamine moiety, it occupies various positions 
in the simulations of the c-state, all oriented towards the 
IMS, which difers, in this respect, from the position of 
the nucleoside part of the ADP observed in AAC [67, 68]. 
These divergent observations could be related to the dif-
ference in polarity between the adenine nucleoside and 
the thiamine: the former being characterized by a rela-
tively low dipole moment in particular compared to other 
nucleobases [70] and the latter having a positive charge 
carried by the thiazolium moiety. Overall the diferences 
observed at the level of the phosphate and of the thiamine 

binding could provide a rational basis for the speciicity 
of TPPT for TPP.

Permeation of TPP through the MIM: the importance 
of two salt bridge networks

MCF members feature a network of matrix and cytoplasmic 
salt bridges located, respectively, on either side of the bind-
ing site that alternately form and break during transport to 
allow the conformational change to take place [65, 66, 71, 
72]. The 1.1-µs long MD simulations of TPPT corroborate 
that the matrix and cytoplasmic network of salt bridges act 
as key elements in the stabilization of the c- and m-states 
(Table  1). The matrix network consisting of three salt 
bridges, each connecting a pair of odd-numbered helices, 
are formed persistently in our trajectories of the c-state, fea-
turing however a slight destabilization upon binding of TPP, 
and breaks in the m-state. The "bracing" glutamine residues 
that would support this network are formed in a non-persis-
tent manner. The only persistent hydrogen bond is formed 
within the same TM between I − i + 4 residues (Table 1A). 
As far as the cytoplasmic network is concerned, the one of 
TPPT is distinctly weaker than the matrix network, on the 
one hand because it consists of only a single salt bridge 
(K200-E304) and of a hydrogen bond (E101-Y303, replaces 
a salt-bridge; Fig. 6C) relative to the three salt bridges of 
the matrix network (Fig. 6A) and on the other hand because 
the only cytosolic salt bridge stabilizes at most 60% of the 
m-state conformations (Table 1B). The tyrosine system brac-
ing the cytoplasmic network is also more fragile because it 
consists of only one tyrosine brace formed by Y196 which 
is only supporting the K200-E304 salt bridge to at most 40% 
(only in the unbound m-state, Table 1B).

An energy proile of TPP transport by TPPT has been 
elaborated using the data from our simulations following 
a semi-quantitative approach [65] (Figs. 7, 9, Table S12). 
It relies on two contributions: one comes from the ener-
gies of the matrix and cytoplasmic salt bridge networks 
reinforced by hydrogen bonds formed by the glutamine or 
tyrosine braces, respectively, as these elements appear to be 
those retained among the MCF members [35, 37]. The other 
comes from the energy provided by the substrate binding as 
it should lower the activation barrier of the transition state 
and which should be optimal in the occluded state [73].

Regarding the salt bridge network contribution 
(Table S12), our data show that the matrix network is sig-
niicantly stronger in the c-state simulations than the cyto-
plasmic salt bridge network is in the m-state simulations. In 
the bound states, several interactions (mainly ionic, cation-π, 
and π-π, and H-bonds) between TPP and protein residues 
(Fig. 7, Tables S10 and S12) result into an energy input 
that may lower the energy barrier required to facilitate the 
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transition from the c-state to the m-state and thus induce the 
transport of TPP into the mitochondrial matrix.

The low energy level of the cytoplasmic network could 
facilitate the transition from the m- state to the c-state in 
the absence of substrate resulting in a net import of TPP to 
the mitochondrial matrix as suggested elsewhere [37, 65]. 
Also in support of the uniporter function of TPPT is the 
slight closure of the TPPT structure in the m-state with a 
concomitant partial reformation of the matrix salt bridges 
as well as glutamine hydrogen bonds, which is in contrast 
to the stability of the c-state (Table 1).

To date, however, uniporter activity has only been 
clearly demonstrated for yeast TPPT [39]. Another reason 
for this energy weakness could have its origin in the TPP/
TMP exchange activity of TPPT [6]. Although the export 
of TMP was not examined in this study, our simulation 
data shed light on the energetic mechanism of TPPT as 
an antiporter. Indeed, the binding of TPP in the m-state is 
mainly determined by the exploitation of its full negative 
charges. It can therefore be assumed that the energy input 
provided by TMP binding will be less than that provided 

by TPP. This input should nevertheless be suicient for 
the transition from the TMP-bound m-state to the c-states 
in view of the lower energy required for the rupture of the 
cytoplasmic salt bridge network.

Mg co-transport

Although magnesium is a requirement for mitochondrial 
TPP utilizing enzymes, it is not known whether  Mg2+-TPP 
complexes are transported across mitochondrial mem-
branes. Regarding the transport through VDAC, our simu-
lation data suggest that even if TPP complexed with  Mg2+ 
penetrates the channel, magnesium detaches during perme-
ation, mainly where the channel is marked by a shrinkage 
due to the presence of the helix in which several basic resi-
dues are present with which TPP establishes many interac-
tions (Fig. 4). This contrasts with our previous study on 
ATP permeation, where no signiicant diference could be 
found between the transport of the nucleotide complexed 
or not to the cation [9]. This diferent behavior could be 
due to the diference in the full charge carried by each of 
the translocated species.

The observations made for translocation through VDAC 
contrast with those of the transport of TPP by TPPT. In the 
latter, the complex  Mg2+-TPPT is not transported. The data 
show that the interactions of TPPT with TPP mainly take 
advantage of the full charges carried by TPP phosphates 
without the intervention of  Mg2+, as previously observed for 
ATP [50, 63]. In this, the pattern of interactions observed for 
TPP in TPPT binding site difers from that established by 
cytosolic or mitochondrial enzymes using TPP.

In summary, the import of TPP from the cytosol to the 
matrix is an essential event required for certain mitochon-
drial functions to take place that involves its transport across 
both mitochondrial membranes. This MD simulation study 
explored irst the mechanism of TPP permeation by VDAC, 
the main conduit of the mitochondrial outer membrane, 
and highlighted the role of clusters of basic residues in the 
selectivity mechanism. A particular group of these residues 
located in the N-terminal helix represents a major selectivity 
ilter for TPP. In this, similar to what has been suggested for 
ATP in previous studies, this group could provide a bind-
ing site and contribute to the limiting step of metabolite 
transport.

During the passage through the MIM stage, TPP binding 
at the main TPPT site is promoted by interactions formed 
by several basic residues that are observed to be conserved 
in the clade of adenine nucleotide-like transporters belong-
ing to the MCF members. The speciicity of TPPT, which 
diferentiates it from the other transporters of this group, is 
ensured by two residues in particular which are conserved 
in the family of thiamine transporters. The opening and 
closing of the transporter are coupled with the alternating 

Fig. 9  Energy diagram of the diferent TPPT states. The semi-quan-
titative energetic scores, represented as straight lines, were computed 
for each TPPT state by assigning the value of 1 to each salt bridge 
and of 0.5 to each other type of interactions weighed by its occur-
rence (Table 1, S10) along the trajectories and summing over those 
formed by the ligand in the binding site (Table S10) or between the 
residues participating in the salt-bridge network and the correspond-
ing braces (Table 1, Table S12). The unbound c-state, bound c-state, 
bound m-state and unbound m-state are shown as ribbon colored in 
blue, green, red and orange, respectively, above the energy diagram. 
The low of the transport cycle is indicated by a dashed arrow. The 
cytosolic and IMS sides are at the top and bottom of TPPT respec-
tively
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formation and rupture of two networks of salt bridges 
located on the matrix and on the cytoplasmic sides. The 
energy of these networks combined with the binding energy 
input allows TPPT to be classiied either as an exchanger or 
as a uniporter.

Material and methods

Development of molecular parameters in CHARMM 
force ield

The parameters of TPP have been determined in the 
CHARMM36 force ield [40]. This force ield uses the fol-
lowing potential energy function that is a sum of bonded 
and nonbonded terms (Eq. 1):

The irst ive terms describe bonded energy contribu-
tions with Kr, Kθ, KU-B, Kφ and Kω being the force con-
stants for bond stretching, angle bending, Urey–Bradley 
interactions, dihedral and improper dihedral rotation, 
respectively. The term r and θ represent the values of the 
bond length and bond angle, S, the Urey–Bradley distance, 
φ, the dihedral angle, n, the multiplicity, δ, the phase angle 
and ω, the improper dihedral angle. r0, θ0, S0 and ω0 are 
the equilibrium values. The last term contains two difer-
ent nonbonded energy contributions in which rij represents 
the distance between two atoms i and j. In the Len-
nard–Jones energy term, �min

ij
 is the depth of the Len-

nard–Jones energy well and rmin
ij

 the distance at which the 
energy value reaches its minimum. In the electrostatic part 
of the nonbonded term, qi and qj represent the respective 
charge of the atoms i and j, ε and ε0 correspond to the 
dielectric constant of the medium and to the value of the 
vacuum permittivity, respectively.

Calculations to derive the parameters to be optimized 
were performed as follows (Fig. 10). Atom types were 
assigned using the CGenFF program [45, 46] via the 
Parachem web server (https:// cgenff. umary land. edu/). 
Initial guesses for parameters (charges, bonds, angles, 
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and dihedral terms parameters) were generated by anal-
ogy with the CGENFF program. An exception was made 
for the partial charges of molecules resulting from the 
addition of simple functional groups on compounds with 
optimized parameters as they usually require minimal or 
no optimization. In that case, guidelines in the CHARMM 
force ield protocol were applied [44]. The partial charges, 
bond, angle, and dihedral parameter values obtained by 
analogy via CGENFF with a penalty score higher than 10, 
indicating that analogy is poor, were brought to an opti-
mization process using the fTK plugin of VMD [47, 48].

Lennard–Jones parameters (Eq. 1) for which direct trans-
fer from available parameters is generally adequate, were 
taken directly from CGenFF for all molecules. The same 
procedure was followed for Urey-Bradley and improper 
angles parameters (Eq. 1) as fTK does not currently provide 

support for their optimization.
For molecule parameters requiring optimization via fTK 

(Fig. 10), the irst step was to optimize the geometry of the 
molecule using quantum mechanics (QM) calculations at the 
MP2/6-31G* level. In a second step, for molecules for which 
no reliable parameters could be derived by analogy, the 
partial atomic charges were optimized by QM calculations 
performed at HF/6-31G* level of theory to reproduce inter-
actions of each molecule with water molecules. In the third 
step, bond and angle parameters were optimized against the 
QM Hessian matrix of second derivatives of energy with 
respect to coordinates calculated at the MP2/6-31G* level 
of theory. From this matrix, a QM potential energy surface 
(PES) was determined for comparison with the molecular 
mechanics (MM)-derived PES. QM and MM PES were 
matched and upon itting, the bond and angles parameters 
were determined. In the last step, parameters for dihedral 
angles were optimized to reproduce QM (MP2/6-31G*) PES 
generated by scanning diferent ixed values of the dihedral 
of interest while allowing the remainder of the molecule to 
relax. The Gaussian09 program was used for all QM calcu-
lations [74].

Validation of the new optimized parameters was carried 
out using MD simulations and infrared (IR) spectroscopy.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

A
u

th
o

r
 P

r
o

o
f

https://cgenff.umaryland.edu/


U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10822 Article No : 414 Pages : 22 MS Code : 414 Dispatch : 11-8-2021

 Journal of Computer-Aided Molecular Design

1 3

Validation of optimized parameters

MD simulations

In order to assess the validity of the newly developed param-
eters we performed a visual inspection of the dynamical 
behavior of the solvated parametrized molecules in MD 
simulations. The MD trajectories were generated with the 
NAMD2.9 software [75] in the NPT ensemble at 300 K with 
a time step of 2 fs using the optimized force ield. Each 
molecule was solvated in a cubic periodic cell (50 by 50 by 
50 Å3) of TIP3P water molecules using the Solvate plugin 
of VMD [47]. The cell contained about 3900 water mol-
ecules and was neutralized using chloride or potassium ions 
depending of the parametrized molecule full charge. The 
energy of each system with a ixed solute molecule was 
minimized for 1000 steps and the system equilibrated for 
5 ns at 300 K. For the analysis a 5-ns long production run 
was then performed.

Calculated and experimental infrared spectra

The infrared (IR) spectrum was calculated using the IR spec-
tra Density calculator in VMD from the last 100 ps of a 5-ns 
long MD trajectory of the doubly negative protonation form 
of TPP (most probable protonated form on the basis of  pKa 
calculations; see Results) carried out in explicit water. The 
MD setup parameters are identical to those of the simula-
tions performed for the validation step (Validation of opti-

mized parameters; a) MD simulations) except that the bonds 
involving a hydrogen were not constrained so as to observe 
vibrational motions related to these covalent bonds and that 
a time step of 1 fs was used. The default parameters of IR 
spectra Density calculator were used except for the time step 
and the maximum frequency, which were set to 1 fs and 
4000  cm−1, respectively.

The IR experimental spectrum of TPP was obtained using 
3 mg/mL solution of resuspended TPP, with the pH adjusted 
to 6.4. TPP spectrum was obtained with “Attenuated Total 
Relectance” (ATR) Fourier Transform IR using a Bruker 

Fig. 10  Worklow illustrating the diferent steps followed in the para-
metrization of each molecule (adapted from [48]). For molecules 
requiring parameter optimization, the fTK procedure was used fol-
lowing four steps (shown in the black frame) requiring successive 
calculations: geometry optimization (purple), charge optimization 
(blue) based on the QM calculation of the interactions of water with 
the molecule, optimization of bond and angle parameters (green) and 

dihedral angle optimization calculations (red). The output iles result-
ing from these diferent steps are framed with the corresponding 
colors. The colored arrows indicate the origin of the optimized data. 
Molecules resulting from parameterized analogous molecule modii-
cations were assigned according to a special CHARMM force ield 
protocol (blue frame on the right)
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Equinox 55 infrared spectrophotometer equipped with a 
MCT Detector cooled with liquid nitrogen. 2 µL of sample 
was placed on the diamond ATR crystal, dried under  N2 lux 
and the spectrum was collected at a resolution of 2  cm−1 
from 600 to 4000  cm−1 and averaged over 128 scans.

Molecular modelling of TPPT

Templates homologous to human TPPT (hTPPT) were 
identiied by a BLASTp search [76] using the Protein Data 
Bank (PDB) database and the hTPPT sequence (UniProtKB 
accession entry: Q9HC21). The best hit structures were Bos 

taurus AAC (bAAC, [33]; PDB code: 1OKC) and Saccha-

romyces cerevisiae AAC structure (yAAC, [35]; PDB code: 
4C9G), both adopting an c-state, and Myceliophthora ther-

mophila AAC structure (mtAAC, [36]; PDB code: 6GCI) 
trapped in an m-state. Pairwise sequence alignments of each 
protein template with hTPPT were obtained with HHpred 
[77] and ClustalΩ [78]. The hTPPT transmembrane (TM) 
segments were predicted by HMMTOP [79] and TMPRED 
[80] based on the hTPPT sequence (Fig. S4).

3D models of hTPPT c-state were built by comparative 
modelling with the Modeller software [81] using either the 
bAAC or yAAC structure and the m-state was modelled 
using the mtAAC structure. The models were built based on 
the HHpred alignments because they have a higher sequence 
identity (21.97%, 25.74% and 24.75% for bAAC, yAAC 
and mtAAC respectively) and a better matching of the TM 
segments compared to the ClustalΩ ones. The unresolved 
sequence portion structures of the yAAC and mtAAC tem-
plates have been replaced by the corresponding structures in 
the bAAC template (Fig. S4). The structure of the sequence 
portions in hTPPT that do not have a match in the align-
ment with any of the three template structures was generated 
ab initio. A total of ten c-state 3D models (ive with each 
of the two c-state template structures) and ive m-state 3D 
models were built. Their stereochemistry was assessed with 
Procheck [82]. Two c-state models (one from each structure 
template) and one m-state model were selected as starting 
structure of the MD simulations based on examination of 
their Ramachandran plot computed with Procheck, visual 
inspection (elimination of structural models with knots) and 
the value of the objective function calculated by Modeller.

Molecular dynamics simulations

MD parameters

MD atomic trajectories were generated with the program 
NAMD2.9 [75] using the CHARMM36 force ield [40] with 
CMAP [83] corrections. For TPP the parameters determined 
in this study were used (“Development of TPP parameters 
in CHARMM force ield” section). All other MD parameter 

settings are as described elsewhere [23]. The types and 
length times of the MD simulations are summarized in 
Table 2. 

System setup

The VDAC system comprises in addition to the protein about 
150 POPC lipids and 9100 water molecules and contains a 
NaCl concentration of 0.1 M as in most experiments and 
theoretical studies [9, 24]. The structure of mouse VDAC 
(mVDAC; PDB code: 3EMN; [15]) was chosen for the 
simulations as it was determined at a fairly high resolution 
(2.3 Å). Furthermore, the sequence of mVDAC difers from 
the human VDAC by only four residues located in a loop of 
the protein. Furthermore, the mVDAC structure has been the 
subject of various studies that have shown agreement with 
numerous experimental data [9, 16, 22, 23]. The preparation 
of the VDAC system and the steps of equilibration preced-
ing the production runs have been previously detailed [25].

For TPPT, three modelled structures of the human trans-
porter, two in the c-state and one in the m-state, were pre-
pared for MD simulations (see “Molecular modelling of 
TPPT” section). The three systems contained in addition 
to the protein each about 170 lipids and 12,000 water mol-
ecules and a NaCl concentration of 0.1 M. The protein was 
embedded according to its OPM orientation [84] in a lipid 
bilayer using the CHARMM-GUI web interface [85]. Each 
TPPT system was carefully equilibrated in three steps: a irst 
20-ns long equilibration of the ixed minimized protein was 
carried out to remove possible clashes between the protein 
and its environment without altering the protein structure. 
Second, a 20-ns long equilibration with the protein backbone 
constrained only was performed to remove possible bad con-
tacts among the protein side chain atoms. The constrained 
potential was decreased from 1 to 0.5 kcal/mol/Å2 after 
10 ns. Third, a 20-ns long unrestrained equilibration was 
carried out. A 20-ns long production run followed to assess 
the stability of the c-state and them-state conformation(s).

Permeation of TPP through VDAC

Five diferent randomly chosen locations of  TPP2− (in its 
 Mg2+ free form; hereinafter referred to as  Mg2+-free simu-
lation) on the cytosolic (z > 0) and on the intermembrane 
space (z < 0) sides of the channel were selected as start-
ing points to simulate TPP translocation through VDAC 
(Fig. S9). The cytosolic and IMS sides of the protein were 
deined as in [86]. The conformation of TPP was taken 
from the simulation of TPP alone in water (see 4.2.1). In 
MD simulations featuring TPP bound to  Mg2+ (hereinafter 
referred to as  Mg2+-bound), three and two diferent posi-
tions of  TPP2− were chosen on the cytosolic or IMS side 
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respectively. Mg-TPP was considered as a non-covalent 
complex. The  Mg2+ ion was initially positioned at two loca-
tions close to the β-phosphate group of TPP in analogy to its 
position around ATP [87] and in agreement a NMR study of 
TPP [49]. A 5-ns long equilibration was performed in which 
TPP, the ions and the protein were ixed. For each setup, a 
100-ns long production run with all atoms unrestrained was 
generated in which a TM potential of 500 mV was imposed 
via an applied uniform electric ield directed normally to the 
lipid bilayer [88] (Table 2A).

TPP binding to and unbinding from TPPT

To simulate the binding process of TPP seven diferent 
random positions of  TPP2− (in the absence of  Mg2+) were 
generated at the mouth of the IMS side of the two c-state 
hTPPT models. A 5-ns long equilibration was performed 
in which TPP, the ions and the protein were ixed. Bind-
ing of TPP was investigated in 14 diferent setups with all 
atoms unrestrained and an applied TM voltage of 500 mV 
(Table 2B). Additional 20-ns long trajectories in the absence 
of a TM potential were performed for two setups of each 
c-state TPPT structure.

The  Mg2+-bound MD simulation were started from 
4 previous  Mg2+-free TPP setups generating a total of 8 
 Mg2+-bound setups. A 5-ns long equilibration was per-
formed in which TPP, the ions and the protein were 
ixed. Binding of  Mg2+-TPP was explored in all 8 setups 
(Table 2B).

To simulate the release of TPP from TPPT to the mito-
chondrial matrix the TPP-bound m-state was modelled. This 
was obtained by performing 20-ns long tMD simulations to 
model the transition from the substrate-bound c-state to the 
substrate-bound m-state for every successful TPP binding 
event (7 simulations; 3 for the yAAC model and 4 for the 
bAAC model) and using a conformation of the TPPT m-state 
as a target conformation. A weight of 1 kcal/mol/Å2 was 
applied to the backbone heavy atoms of TM1 (residues 14 to 
52), TM2 (residues 82 to 106), TM3 (residues 114 to 150), 
TM4 (residues 179 to 199), TM5 (217 to 243) and TM6 (286 
to 305). These protein portions were selected after examin-
ing a superimposition of the c-state model and the m-state 
model of TPPT.

To simulate the release of TPP two types of MD simula-
tions were performed (Table 2B) from the m-state: (i) simu-
lations with a TM voltage of 500 mV were carried out for 
20 ns for 4 out of the 7 diferent bound m-states produced in 
the c-to-m-state transition simulations. (ii) 20-ns long tMD 
were performed for all 8 diferent bound m-states in which 
TPP was released from the binding site to the mitochondria 
matrix using two diferent targeted random positions of TPP 
located in the matrix side. A weight of 1 kcal/mol/Å2 was 
applied to every TPP atom.

Analysis of the trajectories

Several types of interactions were monitored in the TPPT 
and VDAC MD trajectories using vmd [47] or eucb [89]. 
These interactions and their deinition criteria are listed 
in Table S11.

Ionic and hydrogen bond interaction occurrences between 
TPP and protein residues were calculated as the number of 
snapshots featuring a given interaction and having the phos-
phorus atom of the TPP β-phosphate group located in a 
given 1-Å-thick slice along the main axis divided by either 
the total number of snapshots or the number of snapshots in 
the same slice along the main axis. In the plots, the interac-
tions formed with an occurrence higher or equal to 4% over 
all MD trajectories in at least one slice along the main axis 
are shown (Figs. 5 and 8).

In the TPPT simulations, a TPP binding was considered 
as successful when at least one phosphorus atom of the 
phosphate groups was within a distance smaller or equal to 
4 Å of at least one of the side chain heavy nitrogen of the 
TPPT residues R30, K40, R143, K231, and K291. These 
residues were selected by analogy to the binding site deined 
in other MCF proteins [90–92].

To monitor the stability of the c-state and m-state as well 
as the c-state to m-state conformational transition of TPPT, 
the funnel radius of the carrier from the cytosolic to the 
matrix side was computed using the HOLE program [93] 
over the range of -20 to 20 Å along its main axis normal to 
the membrane (Fig. S5) and averaged over 100 conigura-
tions extracted from the last 0.1 ns of the MD trajectories.

All igures showing atomic details of proteins and mol-
ecules were generated with VMD [47].

Supplementary Information The online version contains supplemen-
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