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We investigate the destabilization mechanisms of dissipative solitons in inhomogeneous nonlinear res- 

onators subjected to injection and to time-delayed feedback. We consider the paradigmatic Lugiato- 

Lefever model describing inhomogeneous driven nonlinear optical resonator. We analyze the pinning- 

depinning transition of dissipative solitons by introducing a potential induced by the inhomogeneity. Fur- 

ther, we identify conditions under which these structures are destabilized and describe different bifurca- 

tion scenarios. We show that the combined influence of inhomogeneities and delayed feedback induces 

an Andronov-Hopf-bifurcation that leads to oscillations of the dissipative soliton around the inhomogene- 

ity. Finally, we show that for large values of the feedback strength, the dissipative solitons escapes from 

the potential well and starts to drift. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Kerr resonators are optical devices capable of generating, in the 

requency domain, combs with a spectrum that includes thousands 

f narrow lines precisely equidistant. These simple optical devices 

ave been studied extensively for numerous applications, ranging 

rom high-precision spectroscopy, metrology, and photonic analog- 

o-digital conversion (see a recent overview on this issue [1] ). In 

articular, dissipative soliton (DS) frequency comb generation has 

ttracted numerous research activities since their experimental ev- 

dence in micro-cavity resonators [2] . Dissipative soliton combs are 

he spectral content of the dissipative solitons or temporal cavity 

olitons. These combs are theoretically described in the mean-field 

imit by the well know Lugiato-Lefever equation (LLE, [3] ). The link 

etween frequency combs generated in optical Kerr resonators and 

table dissipative solitons occurring in the cavity has been dis- 

ussed in an excellent review by Lugiato and collaborators [4] in 

he theme issue [5] . The LLE constitutes a paradigm for the inves- 

igation of confinement of light in a driven high-Q cavity filled by 

 Kerr medium. Due to the richness of its spectrum of dynamical 

ehaviors, the LLE has attracted considerable theoretical and ex- 
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erimental investigations these last decades. Dissipative Kerr soli- 

on [6–8] , front dynamics [9,10] , spatio-temporal chaos [11] , rogue 

aves are among the phenomena that have been predicted (see 

ecent overview on the LLE, [12] ). 

When the Kerr resonators are driven by an inhomogeneous in- 

ected beam such as a modulated beam [13–15] or Gaussian [16] , 

issipative solitons can be stabilized through the front pinning 

echanism. When the cavity is operating close to the modula- 

ional instability, it has been shown that the inhomogeneity im- 

acts strongly the stability domains, as well as the homoclinic 

naking bifurcation associated with the formation of dissipative 

olitons [17] . In particular, the stability domain of a single peak 

issipative solitons is much larger than the pinning region where 

he system exhibits multistability between multiple peaks of dis- 

ipative solitons [17] . Dissipative soliton and localized pattern for- 

ation are an important issue not only in the context of nonlinear 

ptics and laser physics but constitute a multidisciplinary area of 

esearch in many far from equilibrium extended systems involving 

hysics, chemistry, biology, plant ecology, and mathematics (see 

verviews on this issue [18–24] ). 

Dissipative solitons are not always stationary, they can exhibit 

pontaneous motion induced by a regular delayed feedback [25–

9] , or a delayed Raman nonlocal response [30–32] . This regular 

otion occurs under a continuous wave injection. Other mecha- 

isms leading to the motion of DSs such as the third-order dis- 

https://doi.org/10.1016/j.chaos.2021.111317
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111317&domain=pdf
mailto:mtlidi@ulb.ac.be
https://doi.org/10.1016/j.chaos.2021.111317
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Fig. 1. Results of a fold continuation depicting the positions of the left and right folds delimiting the stability of a single DS as a function of A and E i . In between the two 

lines, single DS exists and is stable. The widening effect when increasing the amplitude of the inhomogeneity is again visible. The inset emphasizes, that a single DS pinned 

on the center also exists for a negative A , although it is unstable (compare with Fig. 3 ). At a value of A ≈ −0 . 05 , the two folds collide, i.e., for lower values of A , no DS pinned 

on the center of the inhomogeneity exists. 
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ersion effect have been reported [33–37] . Nonlinear gradient con- 

ection term in the cubic complex Ginzburg-Landau can lead to 

he drift of dissipative solitons [38,39] . The influence of inhomo- 

eneities and convection [40,41] , or delayed feedback have been 

lso investigated for the Swift-Hohenberg equation [42] . The com- 

ined influence of the delay feedback and the third order disper- 

ion has also been studied [43] . 

In this paper, we investigate the combined influence of inho- 

ogeneities in a Kerr resonator and the time-delayed feedback on 

he stability of dissipative solitons. We consider an inhomogeneous 

err resonator with a delayed feedback loop. This simple device is 

escribed by the delayed LLE. We show that for a moderate feed- 

ack strength, inhomogeneity in the injected field can arrest the 

rift of the dissipative solitons, and allow for regular time oscilla- 

ions around the defect. We attribute this regular oscillation to the 

alance between two opposite effects: an attractive, pinning effect 

y the inhomogeneity and the drift induced by the time-delayed 

eedback. From a dynamical point of view, we show that for a 

oderate feedback strength, a single DS undergoes an Andronov- 

opf bifurcation leading to oscillations around the inhomogeneity. 

owever, for larger feedback strengths, the dissipative soliton can 

scape from the potential well and start to drift. 

The paper is organized as follows, after a brief introduction, 

e discuss in Section 2 , the formation of dissipative solitons in 

he presence of inhomogeneities. This effect has been discussed in 

17] for a small and positive defect, here we investigate more sys- 

ematically the effect of inhomogeneities including the case when 

he amplitude of the defect is negative. We analyze this effect by 

sing the tools of bifurcation theory, showing that depending on 

he system parameters, the inhomogeneity can attract or repeal 

issipative solitons. The associated homoclinic snaking bifurcation 

iagram is constructed using continuation algorithms provided by 

he Matlab continuation package pde2path [44] . In Section 3 , we 

nvestigate the combined action of inhomogeneities and the time- 

elayed feedback on the stability of dissipative solitons in the LLE. 

e conclude in Section 4 . 

. The inhomogeneous Lugiato–Lefever model 

We consider a Kerr resonator subjected to an inhomogeneous 

njected field and delayed feedback. In the mean-field limit, the 

imensionless Lugiato-Lefever equation reads [3] 

∂E(t, ξ ) 

∂t 
= S(ξ ) + 

[
−(1 + iθ ) + i | E(t, ξ ) | 2 + i 

∂ 2 

∂ξ 2 

]
E( t, ξ ) . (1) 
2 
ere, the intracavity field envelope is denoted by E(t, ξ ) , θ is the 

etuning parameter and S(ξ ) is the inhomogeneous injected field 

(ξ ) = E i + A exp (−ξ 2 /B ) , 

here E i is the homogeneous value of the injection, A and B cor- 

espond to the amplitude and the width of the Gaussian shape in 

omogeneity, respectively. Depending on the context in which the 

LE is derived, ξ is the transverse coordinate or the fast time in the 

eference frame moving with the group velocity of the light within 

he cavity while t is the slow time proportional to the round-trip 

ime. The LLE (1) model is valid under the assumptions of high 

esonator finesse, small nonlinearity, and a dispersion length much 

arger than the cavity length. The LLE Eq. (1) has broad applicabil- 

ty than passive optical cavities (see recent a overview [45] ). 

We examine the case of a monostable system where the mod- 

lational instability appears subcritical, i.e., θ > 41 / 30 , where the 

omogeneous steady state coexists with a periodic structure that 

merges from the modulational instability. In addition, the system 

xhibits a high degree of multistability in a finite range of S val- 

es often called the pinning region [6,7] . Eq. (1) supports an in- 

nite set of odd and even number of peaks forming a stationary 

Ss. The influence of inhomogeneities on the stability of dissipa- 

ive solitons has been studied for small positive inhomogeneities 

 > 0 . Two or more peak DS are bounded together by their de-

aying oscillatory tails, and therefore, their bifurcation diagram has 

omoclinic snaking structure [8] . The stability, bifurcation proper- 

ies, and the position of DSs are strongly affected by the inhomo- 

eneity. A small positive inhomogeneity A > 0 acts attracting on 

he DS [17] . In what follows we investigate the effect of the inho-

ogeneity more systematically by exploring positive and negative 

alues of the parameter A that controls the amplitude of the defect. 

 visualization of this fold continuation is shown in Fig. 1 , where 

he positions of the left and right folds are depicted in an A − E i 
iagram. As can be seen, the widening of the region of stability 

s rather consistent for small to moderate values of the inhomo- 

eneity, as a notable shift of the right fold sets in only at A ≈ 1 . 0 .

he inset illustrates that, although positive values of A act attract- 

ng on DS in this parameter regime, the DS pinned on the center 

f the inhomogeneity also persist for small negative values of the 

nhomogeneity before both folds collide at A ≈ −0 . 05 and the DS 

anishes for values of A < −0 . 05 . However, as will be shown in the

ollowing, the DS on the center of the inhomogeneity only exists 

s unstable solution in this rather narrow regime of negative A . 

This observation brings up the question, which kind of DS, if 

ny, exists for negative values of A . We therefore perform a sim- 
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Fig. 2. Bifurcation diagram of DSs. The norm L 1 as a function of the injected field amplitude E i undergoes a homoclinic snaking type of bifurcation in the presence of an 

inhomogeneity with a negative amplitude of A = −0 . 1 . Other parameters are θ = 1 . 7 and B = 0 . 4 . The quasi-homogeneous solution (lowest branch, solution profile depicted 

on the lower left) evolves into a solution with a peak on each side of the inhomogeneity. This branch (blue line) undergoes the classical homoclinic snaking, with additional 

peaks growing on each side throughout the snaking. Solution profiles at the positions marked by circles are depicted on the left. Shortly before the first fold of the even 

branch, a single peak solution (solution profile on the lower right) bifurcates in a subcritical pitchfork bifurcation. This solution undergoes a symmetry broken snaking where 

with each turn only one peak is added to the solution profile. Peaks are only added on the far side of the inhomogeneity. Solution profiles at the positions marked by the 

crosses are depicted on the right. Both the green and the blue branch overlap substantially, since e.g., a two-peak solution possesses essentially the same L 1 -norm, regardless 

of the position of the peaks. It should be noted, that none of the branches connects to a periodic or a quasi-periodic solution. If one continues to follow the branch they 

wind down again towards lower peak solutions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lar analysis by means of numerical continuation, starting now 

ith the quasi-homogeneous solution for a small negative value 

f A = −0 . 1 . Since the amplitudes of DSs having different numbers

f peaks are close to one another, it is convenient to plot the di- 

ensionless “L 1 norm,”

 1 = 

∫ 
dξ | E − E m 

| 2 (2) 

s a function of the injected field amplitude, where E m 

denotes the 

ean value of the electrical field E(ξ ) averaged over the domain 

ize. The results are summarized in Fig. 2 , showing the bifurcation 

iagram in the center of the figure and the quasi-homogeneous 

olution on the bottom left. When the “L 1 norm” is increased, 

t each turning point (fold) where the slope becomes infinite, a 

air of additional peaks appears in the cluster showing a close re- 

emblance to the case without inhomogeneities. In contrast to the 

ase of homogeneous injection, the snaking diagram does not con- 

ect to a homogeneous solution but starts to wind down again, 

nce the domain is filled with peaks. With increasing A , the quasi- 

omogeneous solution (lowest blue branch) becomes destabilized 
3 
n a subcritical pitchfork bifurcation immediately followed by a 

old. Following the blue branch, a pair of peaks forms at either side 

f the inhomogeneity. 

It is also worthwhile to take a closer look at the subcritical 

itchfork bifurcation close to the first fold in which an odd solution 

green) branch bifurcates from the quasi-homogeneous solution. 

n this branch a single peak solution with one peak pinned on the 

ide of the inhomogeneity is formed. This uneven branch resem- 

les in its origin and in its solution profile the so-called ladders 

46] . Following the green branch, solution profiles at the positions 

arked with a cross are depicted on the right-hand side of Fig. 2 ,

howing that in this symmetry-broken version of a homoclinic- 

naking diagram, peaks are not added in pairs to the solution but 

he solution gains additional peaks one by one. Since the depicted 

 1 -norm of an n-peak solution does not differ greatly for different 

eak positions, the green and the blue branch overlap when both 

ranches show an even number of peaks. One can note that sim- 

lar bifurcations to the one leading to the emergence of the green 

ranch can be found close to every fold of the blue branch as is 

he case with the so-called ladders [46] . The additional branches 
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Fig. 3. Continuation with A as the continuation parameter for θ = 1 . 7 , E i = 1 . 2 . As suggested by the previous results, the solution pinned on the center (blue line, right inset) 

is stable for positive A , while the solutions pinned on either side of the inhomogeneity (left inset, green line) are stable for negative A . The two solution types interchange 

stability in a transcritical bifurcation at A = 0 . The centered solution exists (although unstable) in a narrow parameter regime of negative A before turning in a fold. The 

same scenario is valid for the solution pinned on the side for positive A . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 4. Emergence of a single DS in the non-snaking regime of θ = 3 . 0 for an inhomogeneity with A = 0 . 1 , B = 4 . 0 . The continuation parameter is E i . On the vertical axis, we 

use the L 1 -norm (top) and the position (bottom) respectively. The stable DS pinned on the center arises from the quasi-homogeneous solution in a sequence of two folds 

(blue line). Unlike the case of lower θ , the solution pinned on the center (blue line, left inset) looses stability in a supercritical pitchfork bifurcation at E i ≈ 1 . 66 with respect 

to translational perturbations. Two new DS solutions positioned on either side of the inhomogeneity (green line, right inset) arise. The characteristic pitchfork shape of the 

bifurcation diagram is better visible in the lower representation, since the left and the right solution coincide when solely depicting the L 1 -norm. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

4 
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Fig. 5. Schematic representation of a ring nonlinear cavity with external feedback delayed loop. BS denotes the beam splitter. We assume that the dispersion in the external 

cavity of length L ext is compensated by periodic group velocity dispersion management with zero average value, i.e., half with β > 0 and the other half with β > 0 where β

is the second-order chromatic dispersion coefficient. 
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merging from these bifurcations are not depicted in Fig. 2 for 

he sake of clarity but these branches would also exhibit solutions 

hat show an uneven number of peaks on each side of the inho- 

ogeneity. Therefore, not only the completely symmetric and the 

ompletely asymmetric case as depicted in Fig. 2 are possible, but 

very configuration of peaks on either side of the inhomogene- 

ty. Fig. 3 shows the results of numerical continuation for fixed 

and fixed injection. The green line depicts the solutions pinned 

n the side, which are stable for A < 0 , while the blue line de-

icts the solutions pinned at the center of inhomogeneities, which 

re stable for A > 0 . Both solutions interchange their stability in a 

ranscritical bifurcation at $A = 0$. When the detuning parameter is 

igh small and starting with small inhomogeneity of A = 0 . 1 , we

rst deploy a parameter continuation in E i starting from the quasi- 

omogeneous solution. Fig. 4 on the top shows, that the emer- 

ence of single DSs from the quasi-homogeneous solution (blue 

ine). In two consecutive folds, the solution goes from the quasi- 

omogeneous solution to a DS pinned on the center of the inho- 

ogeneity (blue line). In contrast to the case of lower detuning, 

nother bifurcation sets in at E i ≈ 1 . 66 . In a supercritical pitch-

ork bifurcation, the DS pinned on the center of the inhomogeneity 

blue line) loses stability and two stable solutions emerge (green 

ine), which move away from the center with increasing E i until 

hey come to a halt at the side of the inhomogeneity. The depic- 

ion on the bottom half of Fig. 4 emphasizes this pitchfork bifurca- 

ion by using the center of mass position as a measure instead of 

he L 1 -norm. 

. Interplay between spatial inhomogeneities and time-delay 

We consider a Kerr resonator subjected to an inhomogeneous 

njected field and to delayed feedback governed by the Lugiato- 
5 
efever equation. We implement the time delayed feedback con- 

rol scheme as the difference between the system variables at the 

urrent moment of time and their values at a fixed time in the 

ast which is also referred to as Pyragas control [47] . This cavity 

an be a fiber resonator [9,10] or whispering-gallery disk microres- 

nators [48] with of radius L/ 2 π . The schematic representation of 

he setup of a ring nonlinear cavity with an external feedback de- 

ayed loop is shown in Fig. 5 . We assume that the ring cavity oper-

tes in an anomalous dispersion regime ( β > 0 ). The delayed feed- 

ack is introduced by an external loop with a large radius L ext / 2 π ,

s shown schematically in Fig. 5 . The delay time τ = L ext n/c cor- 

esponds to the light travel-time in the external loop with c and n 

re respectively the speed of light and the effective refractive index 

f the fiber. The LLE with delayed feedback reads [27,28] 

∂E 

∂t 
= S(ξ ) + 

[
−(1 + iθ ) + i | E| 2 + i 

∂ 2 

∂ξ 2 

]
E 

+ ηe iφ[ E(t, ξ ) − E(t − τ, ξ ) ] . (3) 

he delayed feedback is characterized by the feedback strength η, 

he phase φ, and the delay time τ . To analyze instabilities of sta- 

ionary solutions of Eq. (3) , we perform a linear stability analysis 

n the presence of delayed feedback. In the case of a Pyragas con- 

rol scheme, the eigenmodes of the system keep their spatial form. 

or a fixed feedback phase ( φ = π or φ = 0 ), the eigenvalues λ can 

e calculated by evaluating [26] 

m 

= μ + η + 

1 

τ
W m 

[
−ητ e −τ (μ+ η) 

]
, (4) 

here m ∈ Z and W m 

is the m th branch of the Lambert W function

49] and μ is the eigenvalue in the absence of delayed feedback. 

ote that for every eigenvalue μ of the undelayed system, there 
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Fig. 6. Dynamics of DS in a homogeneous Kerr cavity. (a): Real parts of the eigenvalues Re( λ) as a function of η. The green line corresponds to the eigenvalue of the neutral 

mode leading to the drift bifurcation at ητ = 1 . The bifurcation point of the growth mode inducing the AH bifurcation depends on the parameters S and θ . The blue and red 

curves indicate a case when the AH bifurcation occurs before ( S = 2 . 6 ) and after ( S = 2 . 0 ) the drift bifurcation, respectively. (b),(c): Space-time maps showing the evolution 

of the intracavity intensity obtained by numerical integration of Eq. (3) . (b) Drifting DS obtained for S = 2 . 0 and η = 0 . 13 ; (c) Self-pulsating and drifting DS obtained for 

S = 2 . 0 and η = 0 . 19 . Other parameters are τ = 10 and θ = 3 . 5 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 7. Left: Potential induced by an inhomogeneity in the injection field with A = −0 . 3 , B = 4 . 0 in the LLE Eq. (3) with E i = 2 . 3 , θ = 3 . 5 . The potential acts attracting and 

pulls the DS towards its center. However, at the border of the potential well, the potential shows narrow regions where it acts repelling on the DS. Right: Real (green) and 

imaginary (red) part of the eigenvalue of the drift inducing mode as well as the real part of the eigenvalue of the growth inducing mode for different values of η and 

fixed τ = 10 . 0 . In contrast to the homogeneous case A = 0 described in Fig. 6 , the eigenvalue λ of the drift inducing mode becomes complex around the onset of instability, 

suggesting an oscillatory behavior. The growth inducing mode becomes unstable in a second AH bifurcation at larger values of η. Inset: First three eigenvalues μ without 

delay, with (red) and without (green) inhomogeneity. The pinning effect of the inhomogeneity is clearly visible, lowering the eigenvalues of both the drift inducing mode 

and the growth inducing mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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xists an infinite number of corresponding eigenvalues λm 

with 

elay. However, when considering destabilization scenarios for a 

iven eigenvalue μ, one usually only has to take into account the 

igenvalue λ0 generated by the main branch W 0 of the Lambert W 

unction. In any spatially homogeneous system ( A = 0 ), the neutral 

ode corresponding to μ = 0 , induces a pitchfork bifurcation at 

τ = 1 leading to a drift of the DS [25,26] . In the case of the LLE

q. (3) two additional critical complex eigenvalues exist (cf. Fig. 7 , 

nset), corresponding to an even mode that leads to a change of the 

ize of the DS when it is destabilized by the delayed feedback. We 

herefore refer to this mode as growth mode. Depending on the 

arameter values of E i and θ , this Andronov-Hopf instability (AH) 

ay occur either before or after the drift instability when increas- 

ng the feedback strength η for a fixed value of τ (see Fig. 6 (a)). 

n example of a drifting DS in a homogeneous system is shown in 

 Fig. 6 (b)) for the case where only the drift mode is destabilized.

 self-pulsating and drifting DS is shown in ( Fig. 6 ) where both

he drift and the growth mode are destabilized. In the next sec- 

ion, we investigate the effect of an inhomogeneous injected beam 

n the dynamics of the DS induced by delayed feedback. 

By introducing a spatial inhomogeneity to the injection S, the 

ranslational symmetry of the system is broken. The effect of the 

nhomogeneity in the injection field depends on the sign of the 

arameter A . If A < 0 ( A > 0 ), the inhomogeneity attracts (repells)

he DS. In the following we focus on attractive inhomogeneities, 

.e., A < 0 . By using the approach described in [17] , one can esti-
6 
ate the attracting potential induced by the inhomogeneity acting 

n a single DS. This potential is plotted as a function of the rel- 

tive position R between the maximum of the DS and the mini- 

um of the inhomogeneity of the injected beam in Fig. 7 (left). 

n the bistable regime θ > 

√ 

3 we are interested in, the oscillating 

ails of the DS in the LL-model Eq. (3) are less pronounced than 

n the Swift-Hohenberg model discussed in [42] , therefore, there 

re only very narrow regions on the side of the potential, where 

he DS gets repelled. A DS positioned between those regions gets 

ulled to the center of the inhomogeneity, corresponding to the 

inimum of the potential. As the DS gets pinned by the inhomo- 

eneity, both the eigenvalue of the drift mode and the real parts 

f the eigenvalues corresponding to the growth mode are lowered 

 Fig 7 , inset). Note that the pinning of the DS is obtained in the

ase when the delayed feedback control is absent and is only a 

esult of the attracting inhomogeneity. In the following we are dis- 

ussing the destabilization of a such pinned DS by time-delayed 

eedback. 

Since the eigenvalue of the drift mode in the absence of time- 

elayed feedback is μ � = 0 , evaluating Eq. (4) leads to complex 

igenvalues λ ∈ C . For fixed τ , the real and the imaginary parts 

f the eigenvalue λ of the drift mode are shown in Fig. 7 (right) 

s a function of the delay strength η. At the bifurcation point, i.e., 

e (λ) = 0 , the imaginary part is non-vanishing. This means that 

n this case an AH bifurcation takes place allowing oscillatory be- 

avior. Note, however, that without delayed feedback, the inhomo- 
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Fig. 8. (a-c): Space-time maps in ( ξ , t) plane showing the intensity field obtained by direct numerical simulations of Eq. (3) with an inhomogeneity in the injected field 

for E i = 2 . 3 , θ = 3 . 5 , A = −0 . 3 , τ = 10 . 0 and increasing values of η. (a) η = 0 . 13 : The destabilization of the drift inducing mode in a Andronov-Hopf bifurcation leads to an 

oscillatory motion of the DS. (b) η = 0 . 15 : The unstable growth modes leads to an additional oscillation in size of the LS. (c) η = 0 . 16 : The increased feedback strength leads 

to the depinning of the DS from the inhomogeneity. 
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eneity has an even stronger stabilizing effect on the eigenvalues 

orresponding to the growth mode than on the eigenvalue of the 

rift mode (cf. Fig. 7 , inset). Therefore, the destabilization of the 

rowth mode occurs after the drift bifurcation when increasing the 

trength of the delayed feedback in the inhomogeneous case (see 

ig. 7 , right). 

By evaluating Eq. (4) in the inhomogeneous case, one can iden- 

ify different regions of stability and perform direct numerical sim- 

lations to analyze how the instability of the two different modes 

ffects the dynamical behavior of the DS. Due to the pinning effect 

f the inhomogeneity, the drift threshold is not at ητ = 1 anymore 

ut at larger values of the delay parameters. For a fixed value of 

he delay time τ = 10 . 0 , the threshold is η ≈ 0 . 107 . Numerical sim-

lations performed above this threshold at η = 0 . 13 show that the 

nstable drift mode with a complex eigenvalue leads to a drift of 

he DS, yet the attracting force of the potential pulls the structure 

ack to its center. The competition between destabilizing delay and 

n attracting inhomogeneity leads to an oscillation with constant 

mplitude. For larger delay strengths η = 0 . 16 , the effects of the 

rowth mode become visible by a slight oscillation in the shape 

f the structure as shown in Fig. 8 (b). This behavior can be ex- 

lained by the fact that the system just underwent the second AH 

ifurcation at η ≈ 0 . 1564 . Finally, for larger values of η = 0 . 165 , the

orce induced by the delayed feedback becomes strong enough to 

ush the DS out of the potential well induced by the inhomogene- 

ty and the structure starts to drift freely. This depinning process 

s depicted in Fig. 8 (c). 

. Conclusions 

We have considered the Lugiato-Lefever equation describing 

ight propagation in a driven Kerr resonator. In the first part, we 

ave investigated the stability properties of dissipative soliton un- 

er an inhomogeneous injection in the form of Gaussian beam. In 

he case where A is positive, the inhomogeneity acts attracting on 

issipative solitons [17] . This means that DS is pinned on the cen- 

er of the inhomogeneity. However, for negative A , the inhomo- 

eneity acts repelling on dissipative soliton. In this case, the dis- 

ipative soliton is pinned on the side of the inhomogeneity rather 

han on its center. We have constructed the homoclinic snaking di- 

gram associated with the formation of Kerr dissipative solitons. 

In the second part, we discuss the destabilization mechanisms 

f a single dissipative soliton under the combined influence of 

ime-delayed feedback and inhomogeneous injection. We first re- 

ort on two different bifurcations in the case of a continuous wave 

peration in the presence of delayed feedback. We then investi- 

ate the influence of an inhomogeneous injection field. In both 
7 
ases two modes can be destabilized, the drift-inducing mode and 

 size changing mode we referred to as growth mode. Whereas the 

rowth mode always becomes unstable in an Andronov-Hopf bifur- 

ation leading to oscillations of the dissipative solitons width, the 

rift mode becomes unstable in two different bifurcation scenar- 

os: In the homogeneous case, the DS undergoes a pitchfork bifur- 

ation leading to a drift of the DS. However, in the inhomogeneous 

ase discussed, the drift mode becomes unstable in an Andronov- 

opf bifurcation leading to oscillations of the dissipative soliton 

round the inhomogeneity. This behavior occurs for moderate val- 

es of the delay strength. When increasing the strength of the de- 

ay for a fixed delay time, the dissipative solitons escapes from the 

otential well and starts to drift freely. 

We have shown that even in the presence of small inhomo- 

eneities, the delay-induced dynamics change drastically due to 

he pinning effect of the inhomogeneity. Inhomogeneities are in- 

erent in any nonlinear optical cavity. They occur either naturally 

ue to impurities or are introduced intentionally by accordingly 

esigned experimental setups. Our results can then be applied to 

arious spatially extended systems subjected to delayed feedback 

nd inhomogeneities. Therefore it is necessary and promising to 

ake into account the effects of inhomogeneities when analyzing 

ynamics of dissipative solitons in these systems. 
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