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ABSTRACT
◥

Purpose: The heterogeneity of response to anti-HER2 agents
represents a major challenge in patients with HER2-positive breast
cancer. To better understand the sensitivity and resistance to
trastuzumab and lapatinib, we investigated the role of copy number
aberrations (CNA) in predicting pathologic complete response
(pCR) and survival outcomes in the NeoALTTO trial.

Experimental Design: The neoadjuvant phase III NeoALTTO
trial enrolled 455 patients with HER2-positive early-stage breast
cancer. DNA samples from 269 patients were assessed for genome-
wide copy number profiling. Recurrent CNAs were found with
GISTIC2.0.

Results: CNA estimates were obtained for 184 patients included
in NeoALTTO. Among those, matched transcriptome and whole-
exome data were available for 154 and 181 patients, respectively. A
significant association between gene copy number and pCR was

demonstrated for ERBB2 amplification. Nevertheless, ERBB2
amplification ceased to be predictive once ERBB2 expression level
was considered. GISTIC2.0 analysis revealed 159 recurrent CNA
regions. Lower copy number levels of the 6q23-24 locus predicted
absence of pCR in the whole cohort and in the estrogen receptor–
positive subgroup. 6q23-24 deletionwas significantlymore frequent
in TP53wild-type (WT) compared with TP53-mutated, resulting in
copy number levels significantly associated with lack of pCR only in
the TP53 WT subgroup. Interestingly, a gene-ontology analysis
highlighted several immune processes correlated to 6q23-24 copy
number.

Conclusions: Our analysis identified ERBB2 copy number as well
as 6q23-24 CNAs as predictors of response to anti–HER2-based
treatment. ERBB2 expression outperformed ERBB2 amplification.
The complexity of the 6q23-24 region warrants further investigation.

Introduction
During the last decade, treatment strategies combining chemother-

apy and trastuzumabwith either lapatinib, neratinib, or pertuzumab in
early-stage HER2-positive breast cancer have been extensively
studied (1–10). In particular, in neoadjuvant clinical trials, dual HER2
blockade with trastuzumab and lapatinib/pertuzumab improved rates
of pathologic complete response (pCR) compared with the single
HER2-targeting agents and chemotherapy (1, 2).

However, response to treatment is heterogeneous, with approxi-
mately 40% to 60% of the patients with HER2-positive breast cancer
presenting residual disease after neoadjuvant therapy. Beyond HER2
overexpression by IHCor amplification by ISH (11),multiple potential
predictive biomarkers have been identified, including PI3K pathway
activation (12–15), the truncated form of the HER2 receptor
p95HER2 (16), serum levels of HER2 (17), tumor-infiltrating lym-
phocyte (TIL) levels (18), ESR1 and ERBB2 gene expression, HER2-
enriched PAM50 subtype, immune signatures (6, 19), as well as
proliferation signatures (19), T-cell receptor (TCR) repertoire (20)
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and circulating tumor DNA (21). In addition, differences in pCR
rates according to hormone receptor status have been observed
across several clinical trials (22), further highlighting the biological
heterogeneity of these tumors. Nevertheless, HER2 positivity defined
by IHC overexpression/ISH amplification remains the sole validated
predictive biomarker (23).

To gain more insight into the mechanisms underlying resis-
tance to anti-HER2 treatment, we assessed the copy number
aberration (CNA) profiles of pretreatment tumor samples
obtained from patients enrolled in the NeoALTTO clinical tri-
al (1, 24, 25), aiming to identify biomarkers associated with pCR
and long-term outcomes.

Materials and Methods
Patients and samples

The Neoadjuvant Lapatinib and/or Trastuzumab Treatment
Optimization [NeoALTTO, Breast International Group (BIG 1-
06)] trial was a multicenter, phase III neoadjuvant clinical trial in
which 455 patients with HER2-positive early-stage breast cancer
were randomized to lapatinib 1,500 mg/day (Arm A), weekly tras-
tuzumab (4 mg/kg loading dose followed by 2 mg/kg; Arm B), or the
combination of lapatinib 1,000 mg/day and trastuzumab (Arm C)
for 6 weeks, followed by the addition of weekly paclitaxel (80 mg/m2)
for further 12 weeks before surgery (lapatinib dose was reduced
in combination with paclitaxel and trastuzumab). After surgery,
patients were treated with three cycles of adjuvant chemotherapy
(fluorouracil, epirubicin, and cyclophosphamide), followed by the
same anti-HER2 treatment administered in the neoadjuvant phase to
complete 1 year of treatment. The primary endpoint was the rate
of pCR, defined as the absence of invasive tumor cells in the
breast (ypT0/is). Event-free survival (EFS) and locoregional total
pCR, defined as the absence of invasive tumor cells in the breast and
the ipsilateral axillary lymph nodes (ypT0/is ypN0), were secondary
endpoints. Study design and trial results have been published pre-
viously (1, 24, 25). The trial was approved by relevant ethics
committees and health authorities at all participating sites. Written
informed consent, including the participation to future biomarker
research, was obtained from all participants. This study was
approved by the TransALTTO committee and was conducted in
accordance to the Declaration of Helsinki. Levels of TILs were

available from previously published results (18). Gene expressions
and PAM50 subtypes were obtained from RNA sequencing (RNA-
seq) as published previously (19). Mutation status of TP53 gene was
retrieved from available exome sequencing data (14) as published
previously (21).

Copy number analysis
DNA was extracted from baseline pretreatment core biopsies using

the Qiagen DNeasy Blood and Tissue Kit according to the manufac-
turer’s recommendations (Invitrogen). CNA profiling was performed
using Affymetrix genome wide CytoScanHD arrays containing 2.75M
probes covering 750,000 SNPs according to standard procedure. The
median of absolute pairwise differences and Median AutoCorrelation
across the log2 ratio intensities were used as quality control of the SNP
arrays. Only informative probes displaying heterozygous genotype
(AB) and copy neutral state were kept for analysis. The log2 ratio
intensities and B-allele frequency, grouped per patient, were segment-
ed jointly using the multitrack segmentation algorithm in the R
package copy number (ref. 26; version 1.6.0) to determine common
breakpoints. Integer level estimates of total copy number and major
allele were obtained using Genome Alteration Print (version 12/2012)
as described (27). Regions significantly amplified/deleted were found
with GISTIC2.0 (28). The genome instability index (GII) was defined
as the fraction of genome altered (by gains/amplifications or losses/
deep deletions). The human genome version GRCh37/hg19 was used
to reference cytoband and gene coordinates. Copy number levels
obtained with GISTIC2.0 were normalized to a ploidy of 2 for further
analyses. Copy number status was defined as “deep deletion” for CN
values ≤0.7, “loss” for CN values between 0.7 and 1.6, “neutral” when
>1.6 and ≤ 2.5, “gain” for CN values >2.5 and ≤ 5, and “amplification”
when >5.

Publicly available somatic mutation calls, HER2 and estrogen
receptor (ER) status, and ASCAT segment files from the METABRIC
study were retrieved from Pereira and colleagues (ref. 29; available at
http://github.com/cclab-brca). Publicly available somatic mutations
data, HER2/ER status information, and ASCAT segment files from the
TCGA study were downloaded from the GDC platform at https://
portal.gdc.cancer.gov. Copy number data were analyzed applying the
same procedure as for NeoALTTO data.

Statistical analysis
Logistic regressions on variance-normalized data, copy numbers

being first log transformed, were used for analyses on pCR, whereas
Cox regressions were used for survival analyses. In the univariate
setting, Mann–Whitney tests were used to assess the significant
association between a numerical data and a binary outcome,
whereas Fisher exact tests were used to evaluate the association
between categorical data. For survival analyses, P values were
derived from log rank tests. In the multivariate setting, P values
were obtained by using an ANOVA on nested logistic and Cox
models. Multivariate analyses were performed adjusting for clini-
copathological characteristics [age as continuous variable, ER sta-
tus, tumor size (T2 vs. T3-4), nodal status (N0/1 vs. N2/3/X), grade
(1/2/not available vs. 3), and treatment arm (combination vs.
single arms)]. FDR were obtained using Benjamini and Hochberg
method. Spearman rank test was used for correlation analyses. Gene
ontology (GO) analyses were performed using topGO (RRID:
SCR_014798; ref. 30). The R package ImSig (31) was used to
evaluate a set of immune-related signatures describing immune
cell subpopulations and biological processes. The study complies
with the REMARK guidelines.

Translational Relevance

Despite the identification of several biomarkers associated with
treatment resistance in patients with HER2-positive breast cancer,
response to treatments is heterogenous, highlighting the complex-
ity of this disease. Here, we aim to identify novel biomarkers for
predicting pathologic complete response (pCR) by performing an
integrated analysis of copy number aberrations (CNA) and gene
expression data from pretreatment HER2-positive tumor samples
prospectively collected in the NeoALTTO trial. ERBB2 gene
expression better predicted pCR compared with ERBB2 amplifi-
cation, whereas lower copy number levels of 6q23-24 were asso-
ciated with resistance to neoadjuvant HER2-targeted therapy. Our
data suggest that 6q23-24 CNAs play a role in the response to anti-
HER2 therapy in the neoadjuvant setting, particularly in patients
with estrogen receptor–positive tumors and/or wild-type TP53,
warranting further exploration.
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Results
CNA profiles in the NeoALTTO cohort

We first characterized the CNA profiles of the pretreatment tumor
biopsies from patients enrolled in the NeoALTTO trial. As shown
in Fig. 1, samples from 269 out of the 455 patients enrolled in the trial
were assessed using Affymetrix CytoScan HD arrays for genome-wide
copy number profiling. High-quality profiles with detectable aberra-
tions were obtained for 68% of the patients (184 of the 269 samples).
No significant differences in patients’ clinicopathologic characteristics
were observed between the 184 cases with detectable CNAs and the
wholeNeoALTTO study (Supplementary Table S1). Of note, RNA-seq
data, TIL levels, and whole-exome sequencing data were available for
154, 164, and 181 patients out of the 184 patients, respectively. All
analyses were carried out using the whole CN cohort, except the
analyses evaluating associations with pCR which were performed in
the subgroup of 180 patients (97.8%) with available locoregional total
pCR status (ypT0/is ypN0).

The 85/269 (32%) samples with no discernable CNAs which were
excluded had a lower tumor content than the cohort with evaluable
CNAs andwere significantly enriched for stromal TILs compared with
the NeoALTTO cohort with available TIL data (P ¼ 0.022; Supple-
mentary Table S1), possibly explaining the lack of detectable CNAs. As
shown in Fig. 2A, 36% of the tumor samples were aneuploid, with 26%
being triploid and 9.8% being tetraploid or more. The aneuploidy level
was not significantly associated with pCR nor EFS.

We then evaluated the impact of copy number levels on gene
expression for the 154 patients with both CNA and gene expression
profiles available. As illustrated in Fig. 2B, 38.7% of the genes showed
at least a correlation of 30% between the copy number and gene
expression levels as witnessed by a Spearman r > 0.3, whereas 2.4%
showed a high correlation (r > 0.7) and ERBB2 gene being among the
most cis-regulated genes (r ¼ 0.75). FISH ratio values were available
for 114/184 patients with CN data, and presented a correlation of 0.3
with ERBB2 CN levels. This was in line with the correlation of 0.34
between ERBB2 gene expression levels and FISH ratio previously
reported in NeoALTTO (19).

Of note, the distribution of the CNAs from the NeoALTTO
samples was similar to those observed in HER2-positive patients
from TCGA (32) and METABRIC (Fig. 2C–E; refs. 29, 33). In

particular, the Spearman correlation of the frequency of CN gains in
NeoALTTO was 0.84 with TCGA and 0.86 with METABRIC. For
CN losses, those correlations were 0.89 with TCGA and 0.95 with
METABRIC.

Differences between ER positive and ER negative among
HER2-amplified tumors mirror those among HER2-negative
tumors

We next investigated whether the CNA profiles differed according
to ER status in the NeoALTTO cohort. As illustrated in Fig. 3A, the
frequencies of amplifications and deletions of many segments were
significantly different between ER-positive and ER-negative tumor
samples: for 8.8% of the genome, ER-positive and ER-negative tumors
had significantly different CNA profiles (FDR < 0.01). These results
were further validated using the HER2-positive samples from the
TCGA dataset (Fig. 3B). We then evaluated whether the differences in
CNA profiles observed between ER-positive and ER-negative tumors
were specific to HER2-positive tumors or could be mirrored in HER2-
negative tumors as well (Fig. 3C). As shown in Fig. 3D–K, the
difference of gains and deletions frequencies between ER-positive and
ER-negative tumors were similar in HER2-positive and HER2-nega-
tive tumor samples from the TCGA (correlations of excess gains/
deletions in ER-positive/ER-negative between 0.45 and 0.68; Fig. 3D,
E, H, and I) and the METABRIC (correlations between 0.47 and
0.67; Fig. 3F, G, J, and K) datasets. However, these differences were
about twice as much more frequent in the HER2-negative tumors as
compared with HER2-positive tumors (slopes between 0.4 and 0.73).
These data suggest that the CNA profiles are driven by ER rather than
HER2 status.

ERBB2 copy number level and gene expression predict pCR
We then evaluated whether copy number amplifications and/or

deletions in specific cancer-related genes predicted response to
neoadjuvant treatment. As ER status was shown to be a driver of
CNAs, and is known to be a predictor of pCR, we corrected for ER
status for this analysis. We first used a supervised approach
investigating the association between CNAs located in specific
breast cancer genes and pCR rate. Our analyses revealed that among
the 49 genes known to harbor CNA in breast cancer from the
COSMIC Cancer Gene Census database (Supplementary Table S2),
ERBB2 remained the only gene with CN levels significantly asso-
ciated with pCR after multiple testing (P < 0.001; FDR ¼ 0.02). As
shown in Fig. 4A, ERBB2 CN was significantly associated to pCR in
the whole population [OR ¼ 2.1; 95% confidence interval (CI), 1.4–
3.3; P < 0.001, Mann–Whitney test] as well as in ER-positive (OR ¼
3.5; 95% CI, 1.4–8.8; P ¼ 0.004) and, to a lesser extent, in ER-
negative tumors (OR ¼ 1.6; 95% CI, 1–2.6; P ¼ 0.023). Moreover,
ERBB2 CN levels were significantly higher in ER-negative tumors as
compared with ER-positive ones (P ¼ 0.016). Of interest, we also
observed an association between pCR and FISH ratio (OR ¼ 1.7;
95% CI, 1.1–2.6; P ¼ 0.03), although less pronounced than the one
with ERBB2 CN levels (OR ¼ 2; 95% CI, 1.2–3.5; P ¼ 0.0028;
analysis limited to the 114 patients with both FISH and CN data
available). After correcting for clinicopathologic characteristics and
treatment arm (Fig. 5A), the association of ERBB2 CN levels with
pCR remained significant in the whole population (OR ¼ 1.9; 95%
CI, 1.2–3; P ¼ 0.003) as well as in ER-positive tumors (OR ¼ 4.6;
95% CI, 1.3–16; P ¼ 0.0025). However, when ERBB2 gene expres-
sion level was taken into consideration in a multivariate analysis,
ERBB2 amplification was no longer predictive of pCR (P ¼ 0.263).
In contrast, ERBB2 gene expression level still predicted pCR after

Figure 1.

CONSORT diagram of patient selection for secondary analysis in the NeoALTTO
trial. Starting with 455 patients, 271 samples were removed due to inadequate
DNA quality/quantity and absence of detectable CNA thus leaving 184 patients.
Both copy number and RNA-seq data were available for 154 patients.
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ERBB2 amplification correction (P ¼ 0.001), therefore suggesting
that ERBB2 gene expression predicted pCR better than ERBB2
amplification level. Furthermore, although no association was
found between ERBB2 CN levels and EFS (Fig. 4B and 5B), we
observed a significant association with overall survival (OS) in the
ER-negative group at the univariate (HR ¼ 0.58; 95% CI, 0.39–0.86;
P ¼ 0.011) and multivariate (HR ¼ 0.53; 95% CI, 0.33–0.83; P ¼
0.008) analyses, as depicted in Figs. 4C and 5C.

GII and association with clinical outcomes
Similarly, we evaluated whether GII as defined by the fraction of

genome altered could predict pCR. We found no significant associ-
ation between GII and pCR neither in the whole cohort nor according
to ER status (Figs. 4A and 5A). With regards to survival outcomes,
there was no significant association between the GII and EFS (Figs. 4B
and 5B), although a significant association was found with OS in the
whole population (HR¼ 0.61; 95%CI, 0.4–0.93;P¼ 0.019) aswell as in

the ER-positive subgroup (HR ¼ 0.47; 95% CI, 0.21–1; P ¼ 0.04) as
depicted in Fig. 4C. These associations remained significant adjusting
for clinicopathologic parameters (Fig. 5C). In addition, GII levels did
not differ significantly when comparing ER-positive and ER-negative
tumors (P¼ 0.086). Of note, a GO analysis of the genes correlated with
the GII (r > 0.3) highlighted an enrichment in genes involved in cell
proliferation (Supplementary Table S3), whereas a GO analysis on
genes anticorrelated with GII (r < �0.3) showed a prevalence of GO
terms related to cellular processes (Supplementary Table S4).

Chromosome 6q23-24 copy number levels are predictive of
pCR

We then investigated the regions of the genome that are significantly
amplified or deleted across the tumor samples using GISTIC2.0 tool.
We identified 159 recurrent regions with CNAs including 90 amplified
and 69 deleted genomic regions totaling 1,093 Mbases (Mb). Of
interest, many common oncogenes were included in these regions,

Figure 2.

Global statistics on the copy number
profiles. A, Histogram of the ploidy
estimated as themedian copynumber.
B, Histogram of the correlation
between gene copy number (CN) and
associated mRNA gene expression.
C–E, Comparison of the pattern of
CNAs obtained on NeoALTTO, TCGA,
and METABRIC. CN losses are shown
in red and gains in blue (darker colors
are used for deep deletions and ampli-
fications, respectively).

Venet et al.
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Figure 3.

Differences in copy number profiles according to estrogen receptor (ER) status. A–C, Comparison of the frequencies of amplifications (top) and deletions (bottom)
in ERþ (red) and ER� (blue) tumors in NeoALTTO, HER2þ patients in TCGA, as well as HER2� patients in TCGA. D–K, Differences in the frequencies of
amplification (D, F, H, J) or deletions (E, G, I, K) detected in ERþ and ER� tumors between the HER2þ and HER2� groups. Comparisons of HER2� tumors in
TCGA with HER2þ tumors in NeoALTTO (D and E) or TCGA (H and I). Comparisons of HER2� tumors in METABRIC with HER2þ tumors in NeoALTTO (F and G)
or METABRIC (J and K). Slopes are from orthogonal residuals fits.
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Figure 4.

Association of single geneexpression levels
(ESR1 mRNA, ERBB2 mRNA), the HER2-
enriched PAM50 subtype, GII, and selected
CNAs with clinical outcomes in the whole
cohort and by estrogen receptor (ER) sta-
tus. A, Forest plot for pCR (ypT0/is ypN0).
P values are from Mann–Whitney tests for
numerical data (gene expression and copy
number levels) and Fisher exact test for
categorical data (HER2 enriched vs. other
PAM50 subtypes). B, Forest plot for EFS.
C, Forest plot for OS. P values for EFS and
OS are from log-rank tests.

Venet et al.
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Figure 5.

Association of single gene expression levels (ESR1
mRNA, ERBB2mRNA), the HER2-enriched PAM50 sub-
type, GII, and selected CNAs with clinical outcomes in
the whole cohort and by estrogen receptor (ER) status,
correcting for clinicopathologic parameters (age, ER
status, tumor size, nodal status, grade, and treatment
arm). A, Forest plot for pCR (ypT0/is ypN0). B, Forest
plot for EFS. C, Forest plot for OS. P values were
obtained with an ANOVA on nested logistic and Cox
models.
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such as amplifications of ERBB2, PIK3CA, MYC, GATA3, and CCND1
genes and deletions of PTEN, ARID1A, RB1, and BRCA2 genes
(Fig. 6A).

We next assessed whether specific regions pinpointed byGISTIC2.0
were associated with pCR (ypT0/is ypN0), again correcting for ER
status. We identified two recurrent CNAs associated with pCR after
correction for multiple testing: one region on chromosome 6q23-24
(134172479–140617503; P < 0.001; FDR ¼ 0.038), and the region on
17q12 which includes the ERBB2 gene (P < 0.001; FDR ¼ 0.038).

Overall, we found one case with 6q23-24 deep deletion out of 184
patients with CN data (0.5%), 33 cases with CN loss (17.9%), 32 with
CNgain (17.4%), and 6withCNamplification (3.3%). The distribution
of the 6q23-24 CNAs in the whole cohort and by ER status is shown
in Fig. 6B.

Of interest, 6q23-24 CN levels were associated with the probability
of achieving pCR in the whole population (OR¼ 2; 95% CI, 1.4–3; P <
0.001; Fig. 4A), with lower CN levels being associated to lower pCR
rates (Fig. 6C). This association remained significant in the ER-

Figure 6.

Results from GISTIC analysis and association of the CNAs of 6q23-24 with pCR, estrogen receptor (ER) status, and TP53 mutation status. A gene ontology (GO)
analysis highlighted several immune-related processes (anti-)correlated to chr6q23-24 copy number (CN) levels.A,Recurrent amplifications and deletions detected
by GISTIC in relevant cancer-related genes (amplifications in red, deletions in blue). B, Frequency of the chr6q23-24 CN aberrations in the NeoALTTO cohort.
C–F, Relationship between region chr6q23-24 CN and either pCR, ER status, or pCR by ER status (CN gain/amplification in red, CN loss/deep deletion in blue).
G, Comparison between chr6q23-24 CN levels in TP53wild-type (WT) and TP53-mutated tumors in NeoALTTO. H and I, pCR in function of chr6q23-24 CN and TP53
status. J and K, Comparisons of chr6q23-24 CN levels in TP53 WT and TP53-mutated tumors from TCGA and METABRIC. L, GO on genes correlated (r > 0.3) to
chr6q23-24 CN levels. M, GO on genes anticorrelated (r < �0.3) to chr6q23-24 CN levels. The top five GO terms are shown.
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positive subgroup (OR ¼ 3.3; 95% CI, 1.5–7.2; P ¼ 0.001; Figs. 4A
and 6D), but not in ER-negative tumors, although the same trend was
noted (Figs. 4A and 6E). Similar results were found after adjusting for
clinicopathologic variables (Fig. 5A). Mutations in PIK3CA have been
previously associated with lack of pCR in the NeoALTTO trial (14). In
our cohort, PIK3CA was mutated in 48/181 (26.5%) tumors with
mutational data available. Of note, 6q23-24 CN levels remained
significantly associated with pCR after controlling for PIK3CA muta-
tional status (OR¼ 2.2; 95%CI, 1.4–3.3; P < 0.001), as well as adjusting
for clinicopathologic characteristics in addition to PIK3CAmutational
status (OR ¼ 2.1; 95% CI, 1.3–3.3; P < 0.001). When evaluated as
categorical variable, the pCR rate was lower in patients with tumors
carrying 6q23-24 loss/deep deletion (N¼ 4/32 with pCR information,
12.5%) as compared with cases without the deletion (i.e., CN neutral/
gain/amplification; N ¼ 51/148 with pCR information, 34.5%; P ¼
0.019, Fisher exact test), whereas tumors characterized by 6q23-
24 gain/amplification presented higher pCR rates (19/38, 50%) when
compared with those with 6q23-24 neutral/loss/deep deletion (36/142,
25.4%; P ¼ 0.005, Fisher exact test).

With regards to survival outcomes, 6q23-24 CN levels were signif-
icantly associated with EFS only in the ER-negative subgroup (HR ¼
0.59; 95% CI, 0.38–0.91; P ¼ 0.015; Fig. 4B). This association did not
remain significant after adjusting for clinicopathologic parameters
(Fig. 5B). We did not observe any significant associations with OS
(Figs. 4C and 5C).

The results related to pCR suggest that 6q23-24 CN levels have an
impact on the tumor phenotype and on the response to neoadjuvant
treatment following a gene dosage effect, with an effect at either low or
highCN levels for at least some of the genes in this region. The 6q23-24
region was 6.4Mb long and contained 41 annotated genes, listed in
Supplementary Table S5 together with their correlation in ciswith CN
levels and their association with pCR. Indeed, the expression level of
some of those genes also predicted pCR, in particular MAP3K5 gene
(P < 0.001). Because several genes contained in this region may
function as tumor-suppressor genes and/or encode proteins previously
reported to interact with p53, such as PERP (34, 35), BCLAF1 (36, 37),
HECA (38, 39), MAP3K5 (40), TBPL1 (41), and TNFAIP3 (42), we
explored the association between 6q23-24 CN levels and TP53 muta-
tional status. In the 181 patients with both CN and mutation data
available, mutations in TP53 were present in 41.2% (40/97) and 31%
(26/84) of ER-negative and ER-positive cases, respectively. This
numerical difference was not statistically significant (P ¼ 0.17). Of
note, 6q23-24 deletions (either CN loss or deep deletion) were
significantly enriched in TP53 wild-type (WT) tumors (28/115 for
TP53 WT vs. 6/66 for TP53 mutated; P ¼ 0.01, Fisher exact test).
Indeed, 6q23-24 CN levels were significantly higher in patients with
tumors carrying TP53mutations compared with those with TP53WT
(P ¼ 0.019; Fig. 6G). This finding was confirmed in the METABRIC
dataset (P ¼ 0.002; Fig. 6K), whereas the same trend was observed in
the TCGA cohort (P ¼ 0.06; Fig. 6J).

Interestingly, lower 6q23-24 CN levels were significantly associated
with lack of pCR only for TP53 WT tumors (Fig. 6H; P ¼ 0.004,
interaction test), whereas no significant association was noted in the
presence of TP53 mutations (Fig. 6I).

We also observed a trend for higher pCR rate in patients with
mutations in TP53, although not statistically significant. Indeed, in the
cohort with CN, mutation, and pCR information available (N¼ 177),
pCR rates were 28.6% (32/112) and 33.8% (22/65) forWT andmutated
TP53, respectively (P ¼ 0.5, Fisher exact test).

Of note, we did not observe significant differences in the levels of
6q23-24 CN according to ER status (Fig. 6F).

A GO analysis of the genes whose expression was correlated with
6q23-24 CN levels (r > 0.3) highlighted an enrichment of genes
involved in natural killer (NK) and leukocyte–mediated cytotoxicity
(Fig. 6L), whereas analysis of genes anticorrelated (r < �0.3) showed
an enrichment of genes involved in the response to type I IFN
(Fig. 6M). Of interest, the significant genes related to the GO terms
for NK and leukocyte–mediated cytotoxicity were RAET1E, RAET1G,
ULBP1, ULBP2, ULBP3, a group of ligands for the activating receptor
NK group 2 member D (NKG2D), and STX7. Despite these findings,
we did not observe significant associations between TIL levels and
6q23-24 CN levels. Moreover, an analysis performed with ImSig
showed a significant anticorrelation between the pathway “IFN
response” and 6q23-24 CN levels (r ¼ �0.225), in line with the GO
analysis, whereas no significant correlation was found for NK or other
immune cell subtypes.

Discussion
In this study we explored the potential role of CNAs in predicting

the response to neoadjuvant HER2-targeting treatments and their
association with survival outcomes in the context of the phase III
NeoALTTO trial.

Similarly to what was previously observed for gene expression (19),
ERBB2 amplification level was predictive of pCR in patients treated
with chemotherapy in combination with anti-HER2 agents, but not
EFS. However, ERBB2 gene expression was a better predictor of pCR
than ERBB2 amplification. This could be explained either because
obtaining an accurate estimate of CNAs for what are sometimes very
short amplifications can be challenging, or because gene expression is
the real driver of the response.

Despite not finding significant association with pCR for genomic
instability evaluated through copy number analysis, we highlighted an
enrichment in genes involved in cell-cycle correlated toGII, suggesting
an association between proliferation and accumulation of copy num-
ber changes in line with previous reports (43). Furthermore, GII was
associated with OS in the whole population and in the ER-positive
subgroup.

Of note, we have shown for the first time that lower 6q23-24 CN
levels were predictive of absence of pCR, with particular regards to ER-
positive and/or TP53 WT tumors. Interestingly, a tumor-suppressor
activity has been described for the 6q23-24 locus in sporadic endocrine
pancreatic tumors (44), as well as for the region 6q22-23 in primary
central nervous system lymphomas (45), whereas a prognostic role has
been shown for 6q23 in melanoma (46). Furthermore, the 6q23-27
deletion is among the most common deletions in salivary gland
carcinomas (47), whereas on the other hand, the amplification of
6q23-24 has been described in liposarcoma (48).

In particular, several genes included in the 6q23-24 locus have
shown a tumor-suppressor activity and/or an interplay with TP53 in
suppressing tumor growth, such as HECA (38, 39), PERP (34, 35),
TBPL1 (41), and TCF21 (49, 50), although genes promoting tumor
growth are encompassed in this region as well. Both a tumor sup-
pressive and an oncogenic role have been previously described for
MAP3K5 (40), BCLAF1 (36, 37), and TNFAIP3 (42). Among the
abovementioned genes, expression levels were significantly associated
with pCR for HECA, MAP3K5, TBPL1, TCF21, and TNFAIP3.

The relation between deletion at 6q23-24 and TP53 mutational
status in the NeoALTTO trial further hints at the importance of this
region as a tumor-suppressor locus. In particular, our findings indicate
that the deletion at 6q23-24 is more frequent in TP53WT tumors and
lower CN levels were significantly associated with lack of pCR only for

Copy Number Aberrations Predict pCR in HER2þ Breast Cancer

AACRJournals.org Clin Cancer Res; 27(20) October 15, 2021 5615

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/20/5607/2988651/5607.pdf by AM

S/IN
ST JU

LES BO
R

D
ET user on 24 February 2022



TP53 WT patients, hinting that the deletion of this locus may be
relevant only in tumors not harboring TP53mutations. However, the
complexity of this locus requires further evaluation.

Furthermore, TP53 was mutated in 41% of ER-negative and 31% of
ER-positive tumors. In this regard, it has to be noted that functional
mutations in TP53 have been previously reported to be more frequent
inHER2-positive/ER-negative tumors compared withHER2-positive/
ER-positive tumors (29). We also observed a trend toward higher
pCR rate in TP53-mutated tumors, although the difference was not
statistically significant.

Our observation of lack of pCR associated to lower 6q23-24 CN
levels in the whole cohort and in particular in the ER-positive
population, may contribute to explaining the mechanisms underlying
the lower pCR rates observed in patients with hormone receptor–
positive tumors compared to hormone receptor–negative breast can-
cers in the NeoALTTO trial (1) and across other clinical trials (22).

Of particular interest, a GO analysis highlighted the correlation of
several biological processes correlated to immune response with the
amplification of chr6q23-24. These data suggest that tumors harboring
6q23-24 deletions may have an impairment of NK- and T-cell–
mediated cytotoxicity, thus possibly contributing to the observed
lower pCR rates in this group of patients. Indeed, the role of the
immune system, and in particular of T and NK cells, in mediating
the response to anti-HER2 treatments through several mechanisms
[e.g., antibody-dependent cellular cytotoxicity (ADCC)], is well
described (51). In this regard, the GO results point toward a possible
role of the ligands of the activating receptor NKG2D, which is
expressed on the surface of several types of immune cells including
NK cells (52), rather than the presence of specific subtypes of immune
cells in the tumor samples. TheNKG2D ligands can be induced in cells
by proliferation, malignant transformation, and other conditions
related to cellular “stress” (52). In the presence of low 6q23-24 CN
levels, the interaction between NKG2D and its ligands may be less
effective due to their low expression levels, potentially impairing
ADCC driven by HER2-targeting agents. NKG2D ligands can be
regulated by transcriptional, translational, and posttranslational
mechanisms as well, potentially leading to immune-escape mechan-
isms with complex interactions (52). In this regard, our results have to
be considered hypothesis generating and need further validation. In
our study, among the biomarkers tested we found an association with
EFS only for 6q23-24 CN levels in ER-negative patients. This finding,
however, does not remain significant after adjusting for clinicopath-
ologic variables. The NeoALTTO trial was not originally powered to
evaluate the difference between the treatment arms in terms of EFS,
and therefore some of our findings could be weakened by the low
statistical power, also considering that our study was conducted in a
subset of the original sample size.

An integrated analysis of copy number and gene expressionwas also
performed in theMETABRIC (33) study.However, none of theHER2-
positive patients received trastuzumab, therefore no information
regarding response to anti-HER2 treatment could be extrapolated.
More recently, Tanioka and colleagues performed an integrated
analysis of CNAs, somatic mutations, gene signatures, and clinical
variables of 137 pretreatment tumor samples from the neoadjuvant
CALGB 40601 trial, aimed at developing models to predict pCR (53).
In this study, the authors evaluated on 536 predetermined cancer-
specific segments frequently altered, as well as on 48 segments derived
from chromosome arm-based values. Interestingly, in their cohort
TP53mutations and the gain of another region of chromosome 6, that
is chr6p12-21, were associatedwith higher pCR rates, whereas other 6p
regions were frequently selected in Elastic Net models to predict pCR.

In their analysis, the region 6q23.3 (included in the 6q23-24 segment
identified in NeoALTTO) was not significantly associated with pCR,
whereas in our study we did not find a significant association with pCR
for the chr6p12-21 region, nor the three 6p regions most frequently
selected in the models. The differences in the findings observed in the
two studiesmay be related to the differentmethodologies used to assess
relevant CNAs and their association with pCR, or possible differences
in the study populations.

Our study has various strengths. It is an analysis performed on
frozen tissue samples prospectively collected in the context of a
randomized phase III trial. This strengthens the reliability of the
obtained results. The distributions of CNAs in HER2-positive tumors
from our cohort were similar to those of HER2-positive tumors in
TCGA and METABRIC datasets, confirming the comparability of the
data, also in regard to our finding of lower 6q23-24 CN levels in TP53
WT tumors.

On the other hand, CNAswere obtained for only 40%of the patients
enrolled in the trial (184/455), mostly due to low cellularity, which is
always a challenge when evaluating tumor biopsies rather than whole
surgical specimens. As low cellularity is correlated with higher TIL
levels, this may induce a form of selection bias. This has further
resulted in reducing the statistical power of our analysis when testing
the association with long-term outcome but has not prevented us from
finding valuable pCR-associated biomarkers.

In conclusion, our analysis of the CNAs in the NeoALTTO trial
allowed us to identify two determinants of sensitivity to treatment:
ERBB2 copy number as well as recurrent CNAs of 6q23-24. ERBB2
expression was however found to outperform ERBB2 amplification.
Interestingly, CNAs at the 6q23-24 locus were found to impact pCR
mainly in ER-positive and/orTP53WT tumors. The complexity of this
region warrants further investigation.
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