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Abstract  

Previous studies have explored the potential of pomace valorization, with an 

emphasis on the transformation of polysaccharide biopolymers of pomace-cellulose 

and hemicellulose to produce high-value bioproducts such as microcrystalline 

cellulose. Notably, opportunities for the exploration of the biopolymer of pomace-

lignin for its employment in biomedical applications such as tissue engineering have 

not been comprehensively explored.  There is, therefore, a need for an intervention 

to highlight the potential of utilizing pomace-lignin as a high-value biomass 

resource. This review explores potential biomedical applications of pomace-lignin 

and highlights some of the factors that hinder the industrial utilization of pomace-

lignin. In addition, the present review covers lignin chemistry, extraction methods, 

depolymerization approaches, and prospects of lignin utilization in biomedical 

applications. It is anticipated that this review will aid future decisions regarding 

the preferred approaches for the valorization of pomace-lignin.  
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1 Introduction 

Agro/food industries generate significant masses of waste streams, which are 

largely untreated and underutilized (Aschemann-Witzel & Peschel, 2019; Okoro et 

al., 2017b) with the waste streams typically disposed of via burning/combustion and 

dumping in landfills. These approaches lead to several environmental issues due to 

greenhouse gas (GHG) emissions, waste combustion, uncontrolled degradation, and 

additional pollution challenges due to the generation of unpleasant odors and soil 

contamination via leachates (Ferronato & Torretta, 2019; Plazzotta et al., 2017).  

Additional consideration of the food and agro-industries shows that the fruit 

processing industry is the major culprit responsible for the generation of a 

significant amount of post-production waste, also referred to as pomace (Van Dyk et 

al., 2013). Waste pomace (WP) is generated as a consequence of the processing of 

fruits for juice extraction  (Kosseva, 2013; Kruczek et al., 2016). At the global scale, 

the overall mass of WP generation is quite substantial, with 25-50 wt. % of the mass 

of the whole-fruit is typically converted into WP (Carunchia et al., 2015; Kruczek et 



al., 2016).  For example, apple processing alone generates nearly 10 million tons of 

pomace each year from the apple juice industry (Alongi et al., 2019).  The associated 

waste pollution potential of the pomace generated from apple pomace will be 

exacerbated when other pomace generating fruits such as pear, cherry, etc., are 

considered. WP is generated as ‘press-cake’ after juicing the fruit, via a series of 

steps which may include milling; primary mash enzymation (liquefaction); primary 

juice extraction; leaching, heating, secondary liquefaction, and secondary juice 

extraction (Carunchia et al., 2015; Kennedy et al., 1999). The composition of the WP 

may, however, vary since its properties are largely a function of the morphology of 

the fruit and the juice extraction technique employed (Kennedy et al., 1999). The 

previously reported compositions of common waste pomaces are presented in Table 

1. Table 1 shows that the WPs from different fruits are characterized by high 

moisture content and are composed of mainly insoluble carbohydrates of cellulose, 

hemicellulose, and lignin, which is a polymer of phenyl propane derivatives. Briefly, 

the cellulose component exists as a linear syndiotactic (alternate spatial 

arrangement of side-chain) polymer of hexoses of glucose molecules that are linked 

via β-l,4-glycosidic bonds (Achyuthan et al., 2010; Tayyab et al., 2017). Cellulose has 

a three-dimensional matrix responsible for its favorable tensile properties and 

crystalline form (Curvello et al., 2019; Jovic et al., 2019; Ullah et al., 2018).  The 

macromolecule of hemicellulose, on the other hand, consists of the complex network 

of branched heteropolymers that form hydrogen interactions with cellulose and 

covalent bonds with lignin via mainly α-benzyl ether linkages (Bian et al., 2012). 

Hemicellulose can also form ester linkages with acetyl units and hydroxycinnamic 

acids (Bian et al., 2012). These linkages tend to restrict the liberation of 

hemicellulosic polymers from the cell wall matrix (Bian et al., 2012). Lignin is a 

highly cross-linked macromolecule that presents as a three-dimensional structure 

and is composed of the substituted phenols of coniferyl, sinapyl, and p-coumaryl 

alcohols or monolignols (Kakroodi & Sain, 2016; Kim & Choi, 2018). These phenols 

are typically substituted by enzymatic polymerization and are capable of generating 

a large number of linkages (Watkins et al., 2015). The monolignols are also capable 

of undergoing combinatorial oxidative coupling under varying degrees of 
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Table 1: Composition of common fruit pomaces 

Component Pear 

pomace 

(%) 

Carrot 

pomace 

(%) 

Tomato 

pomace  

(%) 

Apple 

pomace 

(%) 

 

Chokeberry 

pomace  

(%) 

Cherry 

pomace 

(%) 

Black 

current 

pomace 

(%)  

Olive 

pomace 

(%) 

Grape  

Pomace 

(%) 

References 

Dry matter - 13.10 6.03 17.84 54.9  30  40.18  35 27.8 (Azman et al.; Cequier et al., 

2019; Greiby et al., 2014; 

Moldes et al., 2007; Reißner 

et al., 2019; Szymańska-

Chargot et al., 2017)   

Pectin (dry mass 

basis) 

13.40 3.88  - 19.60 7.85 1.51 2.73 -  (Azman et al.; Nawirska & 

Kwaśniewska, 2005) 

Cellulose (dry 

mass basis) 

34.50 51.60 38.01 17.70  34.60 18.40 12.00 17.00 18.20 (Azman et al.; Kheiralla et 

al., 2018; Moldes et al., 2007; 

Nawirska & Kwaśniewska, 

2005) (Cequier et al., 2019) 

(Ma et al., 2019)   

 

 

 

Hemicellulose 

(dry mass basis) 

18.60 12.30 31.42 10.90 33.50 10.70 25.30 6.80 8.00 (Azman et al.; Cequier et al., 

2019; Kheiralla et al., 2018; 

Ma et al., 2019; Moldes et al., 

2007; Nawirska & 

Kwaśniewska, 2005) 

Extractives (i.e. 

triglycerides and 

waxes) 

- - - 24.5 - - - 17.00  (Cequier et al., 2019; Ma et 

al., 2019) 

Lignin (dry mass 

basis) 

  35.50 32.10 6.87 15.40 24.10 69.40 59.30 39.00 56.70 (Azman et al.; Cequier et al., 

2019; Kheiralla et al., 2018; 

Ma et al., 2019; Moldes et al., 

2007; Nawirska & 

Kwaśniewska, 2005) 

Protein - - 16.6 - - - - - -    (Kheiralla et al., 2018) 

Lipid   4.1 - - - - - - (Kheiralla et al., 2018) 

Ash (dry mass 

basis) 

- - 3.0 1.90 - - - 4.50 - (Cequier et al., 2019; 

Kheiralla et al., 2018; Ma et 

al., 2019) 
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Notably, for all pomace types considered in Table 1, polysaccharides were shown to 

constitute a dominant component, ranging from 23.8 wt. % (in olive pomace) to 69.4 

wt.% (in tomato pomace). Similarly, some pomaces were characterized by high 

lignin contents with as much as 69.4 wt. %, with residual lignin fraction shown to 

range from 6.87 wt. %  (in tomato pomace) to 69.4 wt.%  (in cherry pomace). Table 1 

also shows that pomaces of pear, apple, chokeberry, cherry, and blackcurrant also 

contain the important component of pectin with apple pomace having the highest 

pectin content of 19.6 wt.%. Pectin is a structural acidic heteropolysaccharide which 

is the methylated ester of polygalacturonic acid and is composed of methoxy 

esterified α, d-1,4-galacturonic acid units (Flutto, 2003; Lochhead, 2017). 

Interestingly, the availability of macromolecules (i.e. cellulose, hemicellulose, lignin, 

etc.) suggests that the WP may constitute a viable material for the production of 

bio-based value-added products (Tripathi et al., 2019; Weiss et al., 2012). This 

reclassification of WP as a possible raw material or natural resource will facilitate 

the circumvention of their associated negative impacts leading to improved 

environmental outcomes. These negative impacts associated with the improper 

management of WP are highlighted in the subsequent section, which also discusses 

the current WP management approaches reported in the literature. 

2 Current strategies for management of waste pomace 

The high moisture content and biodegradable organic load, demonstrated by high 

biochemical oxygen demand and chemical oxygen demand values, of WPs, are 

indicative of possible unwanted pollution consequences when improperly managed 

(Gassara et al., 2011; Okoro & Shavandi, 2021).  A review of the literature has 

identified several traditional approaches which have been employed in the 

management of pomace including its use as a low-cost animal feed, fertilizer, a 

substrate for enzyme production, and as a carbon source (i.e. solid fuel) in power 

stations (Cliffe & Patumsawad, 2001; Gassara et al., 2011; Haddadin et al., 2009). 

Several issues characterize the management of WP via the aforementioned 

utilization strategies. For instance, the considerations of WP as a cheap animal feed 

may constitute an impractical long-term strategy given that pomaces are 

characterized by low nutritional values due to their poor protein and 

vitamin/nutrient content, as well as low pH values (Okoro et al., 2021). 

Additionally, the presence of anti-nutritional factors like phenolic components will 

inhibit ruminal symbionts, thus further discouraging its use for feeding purposes 

(de Paula et al., 2016).  Alternatively, the disposal of waste pomace on agricultural 

lands cannot constitute a management approach for favorable environmental 

outcomes given that the low pH values of pomace (ranging from ~3-5) may hinder 

the functionality of its use as a soil additive (Dedenaro et al., 2016; Gouw et al., 



 7 

2017; Okoro & Shavandi, 2021; Shalini & Gupta, 2010). Furthermore, the 

alternative WP management approach of WP disposal in landfill are now well 

recognized as unsustainable and environmental unfavorable due to their associated 

impacts of global warming (Bjerg et al., 2003). This is due to the uncontrolled 

generation of GHG emissions (i.e CH4 generation) from the degradation of the WP 

in the landfill (Bjerg et al., 2003). There is also an enhanced risk of the pollution of 

underground waters from pomace leachates (Bjerg et al., 2003). Recognizing the 

significant risk posed by landfill disposal, current European Union (EU) legislation 

stipulates that no more than 10% of waste can be disposed of in landfills by the year 

2035 (EU, 2020). Furthermore, apart from pH concerns, the utilization of waste 

pomace as a soil additive to improve soil properties may be hindered by its possible 

phenolic content which may limit a plant’s access to nutrients and may inhibit the 

germination properties in fertilizers respectively (Kruczek et al., 2017; Okoro & 

Faloye, 2020). Notably, the introduction of WP characterized by such low pH values 

will also enhance the risk of aluminum toxicity since, under such acidic conditions, 

the phytotoxic form (Al3+) of aluminum predominates in the soil (Okoro & Sun, 

2020). Additionally, when WP is employed in agricultural soils, its high moisture 

content enhances its susceptibility to microbial decomposition, leading to 

uncontrolled fermentation and associated environmental pollution issues (Lyu et 

al., 2020). Other commonly employed organic waste management approaches such 

as incineration and composting, are limited by the emission of GHG and the 

preliminary requirement for high-energy moisture reduction operations (drying) 

due to the high moisture content of WP as shown in Table 1 (40–94 wt.%) (Gassara 

et al., 2011).   

2.1  State of value extraction from waste pomace. 

Based on the WP management concerns presented above, several researchers have 

investigated enhanced value extraction opportunities by exploring the biorefinery  

concept (Ferreira, 2017; Okoro et al., 2019). Such an approach facilitates the 

integration of biomass conversion technologies to improve or enhance the 

production of valuable products (Ferreira, 2017). This is because the application of 

the biorefinery concept, not only enables an efficient waste management approach 

but also facilitates the achievement of a net-zero emission target which is now 

recognized as a corollary to a truly sustainable system (Okoro et al., 2017b). This 

enhanced interest in the application of the concept is also consistent with the 

current drive by the EU to promote resource recovery from renewable sources to 

attain sustainable growth based on bioeconomy (Kardung et al., 2021; Romaní et 

al., 2018). An example of the aforementioned approach for value extraction from WP 
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is highlighted in the work of Hijosa-Valsero et al. (2017) where the production of the 

valuable product of butanol was experimentally investigated.  In this study, WP 

obtained from apple fruit was subjected to several physicochemical pretreatments to 

facilitate the degradation of lignin for the release of a sugar liquor or hydrosylate. 

The hydrosylate was then subjected to a fermentation operation under the action of  

Clostridium beijerinckii, for butanol, acetone, and ethanol production with yields of  

9.11 g/L, 3.55 g/L, and  0.26 g/L achieved, respectively (Hijosa-Valsero et al., 2017). 

In another study, the valorization of apple pomace for lactic acid production was 

explored via the use of hydrolytic enzymes and lactic acid bacteria present in yogurt 

(Alonso et al., 2009). According to Alonso et al. (2009) the sugars present in apple 

pomace could be readily converted to lactic acid with a product yield of 0.693g LA/g 

of dry AP obtained after 30 h of fermentation time. Klavins et al. (2018) also 

explored the valorization of blueberry pomace (BP) such that lipid extraction of 

mainly C18 unsaturated fatty acids of ~ 102 µg/g and extraction of phytosterols of ~ 

86 µg/g,  was achieved. The valorization of the BP was facilitated via the use of 

supercritical carbon dioxide extraction as a suitable “green” approach. The study by 

Klavins et al. (2018) demonstrated that further valorization of the, now defatted 

BP, in the presence of aqueous ethanol (40–70%) and the presence of formic acid,  

could also facilitate the recovery of polyphenolics (~2 wt.%). Similarly, the 

extraction of polyphenolics from grape pomace was also explored in the study by 

Boussetta et al. (2011). In the study by Boussetta et al. (2011) the extraction of 

polyphenolics from grape pomace was assessed using an optimized electrically 

assisted extraction process while using high voltage electrical discharges (HVED) 

for process intensification. The study was able to show that the most efficient 

extraction of polyphenols generated a polyphenolic yield of ~2.8% (gallic acid 

equivalent). The conditions of other extraction variables of liquid-to-solid ratio, 

solvent concentration, temperature, and time were determined to be 5, 30% ethanol 

in water, 60°C and 30 min respectively. The optimally generated polyphenolics were 

shown to have an anti-oxidant activity of 66.8 g (trolox equivalent anti-oxidant 

capacity) per kg dry pomace with a positive correlation between the polyphenolic 

extraction rate and temperature observed. Martinez et al. (2016) proposed the 

development of a biorefinery system that facilitated the valorization of red grape 

pomace. The proposed biorefinery was composed of integrated steps for the 

extraction of polyphenols and volatile fatty acids via supercritical CO2 extraction 

and anaerobic acidogenic digestion respectively. The recovered volatile fatty acids 

(VFAs) were subsequently employed in the production of polyhydroxyalkanoates 

(PHAs) and biogas. The study was able to show that a total polyphenolic yield of  

~2.7 wt.%  was achievable from dry red grape pomace. Employing the recovered 

VFAs (20 g/L), fermentation volatile fatty acids under the action of Cupriavidus 
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necator strain facilitated the production of PHAs (yield 0.26 g/g-VFAs) with anaerobic 

digestion of the residual VFAs leading to the production of 113 mL of bioCH4 per 

gram of fed volatile solids. Another study focused on the valorization of 

polyphenolics from black carrot pomace (Kumar et al., 2019). In the study by Kumar 

et al. (2019) the methods of microwave-assisted extraction, ultrasonic-assisted 

extraction, and conventional solvent extraction for the recovery of polyphenolic 

compounds from black carrot pomace were comparatively assessed via the Box-

Behnken design method. According to Kumar et al. (2019), it is possible to facilitate 

the optimal recovery of ~ 0.265 g  gallic acid equivalents per 100 mL of sample. This 

optimal yield of polyphenolics was possible when conditions of 348.07 W, 9.8 min 

19.3 mL/g, and 19.8% for microwave power, extraction time, solvent–solid ratio, and 

ethanol concentration respectively were imposed. The study was able to 

demonstrate that microwave-assisted extraction constituted the preferred approach 

for polyphenol extraction from pomace, compared to other methods of ultrasonic-

assisted extraction and conventional solvent extraction (Kumar et al., 2019). More 

recently, another study explored the scaled-up production of succinic acid from 

waste apple pomace which was achieved via the fermentative action of 

Actinobacillus succinogenes microbes (Okoro & Shavandi, 2021). In this study, two 

scenarios for large-scale succinic acid production were assessed, namely succinic 

acid coupled with electricity generation and succinic acid coupled with biogas 

generation. The study established the preference for the biogas co-production 

scenario with a succinic acid minimum selling price (MSP) of US$ 0.33 per kg 

compared to the MSP of US$ 0.73 per kg that characterized the electricity 

generation pathway(Okoro & Shavandi, 2021). The viability of extracting valuable 

products of pectin, chlorogenic acid, and caffeic acid has also been demonstrated in 

the work of Yates et al. (2017).  Schievano et al. (2015) explored possible biorefinery 

strategies for value extraction from WP via the integration of supercritical 

treatments using solvents of carbon dioxide and polar ethanol and thermochemical 

treatments to extract value-added polyphenols and mono/poly-unsaturated fatty 

acids and energy, biofuels, and materials respectively. A similar biorefinery 

exploration of grape pomace was investigated by Jin et al. (2021). In the study, 

different configurations for the production of different combinations of grape seed 

oil, polyphenols, and biochar via the integration of seed grinding, solvent extraction, 

and pyrolysis technologies were assessed. The study was able to show that the 

valorization of grape pomace had the potential to present significant economic 

benefits with a scaled-up pomace valorization plant characterized by a net present 

value of US$ 111.7 ×106. Other studies have investigated WP conversion to valuable 

chemicals such as Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate), xylitol, 

polyhydroxyalkanoates, levulinic acid, and n-Butyl levulinate (Antonetti et al., 
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2020; Kovalcik et al., 2020; López-Linares et al., 2020; Martinez et al., 2016).  Based 

on the studies presented above, the valorization of WP has so far focused on the 

optimized recovery of carbohydrate forms before their conversion to bioproducts (i.e. 

succinic acid, VFAs, PHAs, etc.)  (Figure 1) or direct extraction of valuable extracts 

such pectic and polyphenols. Notably, the residual fraction of the waste pomace 

containing lignin is typically discarded, more so as it is considered as a low value 

fraction of biomass resources.  

 

Figure 1: Current value extraction from biomass with emphasis on carbohydrate 

recovery. Adapted with permission from (Doherty et al., 2011). (Copyright © (2011) 

Elsevier B.V.). 

Indeed, there is a historical misconception that lignin presents a subordinate 

opportunity for value extraction and is not the primary concern in valorization 

systems. This reduced exploration of value extraction opportunities from pomace 

sourced lignin is particularly noteworthy given that the WP is not only substantial 

but can contain as much as 69 wt. % lignin content (Table 1, cherry pomace), which 

constitutes a significant component of the WP that is currently not utilized. This 

poor valorization strategy for value extraction from lignin is largely due to the 

difficulty of executing lignin valorization, relative to the transformation of other 

pomace components of cellulose and hemicelluloses (Ayyachamy et al., 2013; Parsell 

et al., 2013). Further utilization of lignin is limited by the harsh operating 

conditions employed in biomass pretreatment steps that lead to modification of the 

lignin molecule, via its irreversible degradation and subsequent formation of 

recalcitrant condensed structures (Gillet et al., 2017; Renders et al., 2017). These 

recalcitrant structures are difficult to disassemble into chemicals. Due to the 

reduced value attributed to lignin, it is typically used as a solid fuel via combustion 

 

 

 

Optimized cellulose 

recovery 

Optimized hemicellulose 

recovery 

Conversion of carbohydrates to 

biochemicals such as succinic acid.   

Considered low value 

and is typically 

combusted   

  

Biomass 

such as 

pomace 

Pomace 

valorization  

 

 

Lignin 
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for heat and electricity generation using combined heat and power systems 

(Amezcua-Allieri & Aburto, 2018; Petersen et al., 2021; Petersen et al., 2020). 

However, lignin could constitute a versatile and low-cost by-product capable of 

presenting a broad range of applications, from biofuels to biomedical materials in 

wound healing due to its bioactivity, or could serve as a feedstock for the production 

of aromatics, supramolecular materials, and phenolic compounds that may be used 

in the biomedical industry (Renders et al., 2017). Pomace-lignin could sustainably 

meet the demand for aromatic rings in the medical industry in drug manufacturing 

(Polêto et al., 2018) due to the abundance of the WP resource as earlier discussed. 

The next section, therefore, extensively discusses the recent trends in lignin 

research, chemistry and structure of lignin, and extraction opportunities for 

biomedical applications.  

3    Pomace-Lignin as a ‘futuristic’ biopolymer 

3.1 Recent trends in Lignin research as a resource 

There is, an increasing acknowledgment of the potential of lignin as a useful 

biopolymer, leading to a significant increase in investigations into its valorization 

and the associated research publications as illustrated in Figure 2.  

 

 

 

Figure 2: Lignin based research trends in the past ten years (PubMed, 2020). 

 

The data presented in Figure 2 have been sourced via a rigorous consideration of 

relevant journal papers and books available from the National Library of Medicine 
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(PubMed®) database (PubMed, 2020). Publications reported in the last ten years 

have been captured. Figure 2 also shows that publications related to the application 

of lignin in the areas of material engineering, biomedical applications, and energy 

applications have increased by ~325%, ~70%, and 333%, respectively from the year 

2012 to 2020. These numbers are substantial. Figure 2 also shows that over 6,500 

publications have been generated from 2012 to date (2021). The growing interest 

may be due to the enhancements in analytical methods that have revealed lignin as 

a natural source of high-value products  (Anwunobi & Emeje, 2011; Castro et al., 

2019). Figure 2 shows that the investigations related to the biomedical applications 

of lignin present a growing research interest.  Our interest in the WP-sourced lignin 

is further supported by its high productivity potential in most WP streams as shown 

in Table 1. Indeed, there are indications that lignin may be successfully employed in 

tissue engineering and drug delivery (Anwunobi & Emeje, 2011; Dai et al., 2017). In 

addition to enhancements in analytical methods, the increased interest in the 

exploration of lignin valorization is due to the development of multiple technologies 

for lignin extraction.  

 

3.2 Chemistry of lignin  

Lignin is composed of three 4-hydroxyphenylpropanoids of namely, p-coumaryl 

alcohol, coniferyl alcohol, and sinapyl alcohol with have their aromatic rings 

designated as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) 

respectively(Boerjan et al., 2003; Pereira, 2007) (Figure 3). 
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Figure 3: An illustration of the lignin structure. Adapted with permission from 

(Zakzeski et al., 2010).  (Copyright © (2010) American Chemical Society). 

 

The common linkages for lignin macromolecule are 4-O-5, β-O-4, β–β, and 5–5′. The 

chemical structure of lignin varies based on the biomass source. For instance, a high 

amount of H units with a trace amount of G and S units have been identified in 

monocot grasses, while lignin in dicots contains a lower amount of H units in its 

structure (Vanholme et al., 2012). Also, lignin extracted from gymnosperm was 

composed of a very high level of G units when compared to other sources (Timell, 

1986). The presence of OH functional groups in lignin structure (Figure 3) plays a 

major role in the lignin’s reactivity, functionality, and hydrophilicity (Evstigneyev & 

Shevchenko, 2019; Ge & Li, 2018; Lu et al., 2017).  The modification of polymeric 

material structure with bioengineering approaches is now widespread and well 

established within the tissue engineering and nanobiotechnology sciences (Kohane 

& Langer, 2008; Rinaldi et al., 2016). 

 

3.2.1 Lignification: The formation of lignin 

Lignin polymerization occurs as a result of monomer oxidization following their 

translocation into the plant cell wall (Boerjan et al., 2003), the development of inter-

unit linkages, and the combinatorial radical coupling process.  This process is 

mediated by a phenolic radical generation which produces a single-electron density 
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around the aromatic ring (del Río et al., 2020). The lignification includes the 

chemical bond between phenolic monolignol radicals, which results in β-O-4, β -5, 

and β-β dehydrodimers inter-unit linkages production. The most important chemical 

bond during lignification can be found at the lignin β position of the 4-O-phenolic 

(Ralph et al., 2004). In addition, 5-5- and 4-O-5-type linkages can be developed 

between two oligomeric phenolic end units (Ralph et al., 2004).  

 

3.2.2 Unconventional Monolignols 

Lignin biosynthesis has been attracting a lot of interest and a considerable amount 

of literature has been published on lignin owing to its recalcitrance properties. 

Previous research comparing lignin structure in several plants has detected the 

presence of unconventional units such as monolignol acetate, p-hydroxybenzoate 

(pBA), p-coumarate (pCA), monolignol ferulate conjugates, tricin, caffeyl alcohol, 

and 5-hydroxyconiferyl alcohol, as well as the newly characterized benzoate (BA) in 

this biopolymer (Kim et al., 2020; Ralph et al., 2004). Hydroxycinnamyl acetate was 

reported as a main element of lignin in kenaf and palms (del Río et al., 2020). The 

acetylation degree is up to 80% in these plants in comparison to other sources (del 

Río et al., 2020). It was also reported that willows, poplars, palms, and aspens have 

a considerable amount of Hydroxycinnamyl pBAs, but hydroxycinnamyl pCAs are 

recognized in all species(Chan et al., 2020). Overall, there seems to be some 

evidence to indicate that the malleability of lignification provides an opportunity to 

modify the structures of lignins for biomedical application. To date, various methods 

have been developed and introduced to engineer the structure of lignin. 

Unconventional units are also recognized in transgenic or mutant plants to be the 

most important in the monolignol biosynthetic pathway (Boerjan et al., 2003; Ralph 

et al., 2019). Recent findings regarding the bioengineering of lignin have led to a 

revolution in many fields such as the biomedical industry (Eudes et al., 2014; Liu et 

al., 2020; Terzioğlu et al., 2020). For instance, zip-lignin is bio-engineered lignin-

containing ester bonds in its structure (Wilkerson et al., 2014). Ester bonds enhance 

lignin mechanical properties and thus extend possible applications in 3D printing 

(Han et al., 2021; Shavandi et al., 2020). 

3.3 Lignin recovery techniques  

There have been many breakthrough technologies for the isolation of the aromatic 

biopolymer from the WP. These technologies may combine biological, chemical, or 

thermochemical conversion operations. Table 2 summarizes the existing major 

approaches for lignin solubilization from biomass and the limitation associated with 

each technique. For instance, the Kraft and Sulphite processes are characterized by 



 15 

the introduction of sulfur groups of sulfate and sulfite in the lignin structure, 

respectively. These groups may have some consequences on lignin properties such 

as enhanced solubility in aqueous solutions. The application of these techniques (i.e. 

Kraft and Sulphite) in the recovery of lignin from WP may lead to the generation of 

highly hydrophilic lignin that may not be suitable for some of the biomedical 

applications such as hydrophobic drug delivery and anti-microbial activity as 

discussed in section 4. The use of the alternative processes of organolsolv and 

alkaline also lead to low molecular masses of lignin products characterized by high 

levels of polydispersity, thus limiting biomedical applications such as in three-

dimensional (3D) scaffold fabrication. This is because lower molecular masses may 

translate to poorer mechanical properties. Apart from these four commercially 

employed techniques, lignin may also be recovered from WP using the two-step 

sulfur acid hydrolysis approach (Kalson method), for the production of the acid-

soluble and acid-insoluble lignin fractions (Sluiter et al., 2008). The use of these 

acids may, however, lead to similar issues associated with the introduction of sulfur 

to the lignin structure. Apart from the challenges highlighted in Table 2, the 

literature also indicates that the transformation of lignin obtained via Kraft, soda, 

and sulfite processes is at risk of undesirable char formation and low product yield 

(Rinaldi et al., 2019). The utilization of ionic liquid (IL) solvents has also been 

explored for lignin (Hasanov et al., 2020) extraction (Hossain & Aldous, 2012) 

(Yinghuai et al., 2013).  ILs can facilitate the production of high yields of lignin at 

low temperatures (i.e. 30 oC) (George et al., 2015; Hasanov et al., 2020). For 

instance the work of Hart, et al., (Hart et al., 2015) demonstrated that it was 

possible to achieve complete lignin extraction when ILs of [EMIM][CH3CO2], 

[EMIM][O2P(OCH2CH3)2], [EMIM][CH3SO3], [EMIM][NCS], [EMIM][CF3CO2], 

[EMIM][CF3SO3], [EMIM][BF4] and [EMIM][(SO2CF3)2N] were employed. Applying 

ILs in lignin extraction may enhance thermal stability and high recycling capacities 

of the product compared to the chemical methods (Hart et al., 2015). Recently 

solvolysis and catalytic hydrogenolysis using ethanol and hydrogen have been 

employed to achieve pure lignin oil from biomass (Van den Bosch et al., 2015) with 

yields as high as > 80 wt.%. Notably, the use of ILs and the integrated solvolysis - 

hydrogenolysis processes may facilitate the production of purer lignin than that 

generated via processes highlighted in Table 2. More work is required to investigate 

the possible effects of these techniques on the major lignin properties such as 

molecular mass and structure.  It should be stated that the yield and properties of 

isolated lignin depend on the method of extraction (Chung & Washburn, 2016; Sun, 

2020) with slight variations in the biopolymer chemistry depending on the lignin 

source.  
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                                                                           Table 2: Major lignin recovery technologies 

Process Some notes References 

Kraft 

process 

In the Kraft process, lignin solubilization is achieved via biomass treatment in a solution containing 

sodium hydroxide and sodium sulfide. This approach attacks the ether bonds in the lignin molecule 

leading to its fragmentized low molecular weight ranging from 2000–3000 Da, with a polydispersity 

index ranging from 2-4. The lignin product is also characterized by a sulfur content ranging from 1-2.5 

wt%. Apart from the issues associated with chemical cost, the Kraft process, there is an issue of 

unwanted gypsum formation when downstream neutralization reactions are undertaken.  

 

(Chen, 2015; Gordobil et al., 2014; 

Windeisen & Wegener, 2012) 

Alkaline 

Process 

This strategy served to facilitate interaction primarily with lignin thus particularly useful for efficient 

lignin recovery. Alkaline pretreatment is mainly achieved using NaOH and KOH although chemical 

cost constitutes a limitation. The lignin generated from this technique is referred to as Soda lignin and 

is characterized by the presence of p-hydroxyl groups in its structure with a molar mass ranging from 

5000–6000 Da. polydispersity index that ranges from 9-10. 

 

(Goñi, 2018; Jong & Gosselink, 

2014; Jönsson & Martín, 2016; 

Kim et al., 2016; Windeisen & 

Wegener, 2012) 

Sulfite 

process  

Lignin solubilization is achieved via biomass treatment in aqueous sulfur dioxide (SO2) and a base (i.e. 

NaOH, Ca(OH)2, etc). The solubilization of lignin involves the incorporation of sulfur into the lignin 

structure in form of sulfonate groups such that the recovered lignin are referred to as lignosulfonates 

with sulfur contents of up to 2.5 wt.%.  These lignosulfonates have higher molar masses (20 000–50000 

Da) than the lignin produced from the Kraft lignin. Polydispersity index ranges from 6-8.  

 

(Gordobil et al., 2014; Windeisen 

& Wegener, 2012) 

Organosolv The organosolv pretreatment is considered quite promising for lignin recovery, due to its capability to 

facilitate efficient isolation of high-quality lignin while also reducing the possibility of water pollution. 

This is because the lignin recovered is sulfur-free unlike the sulfite process and is also easier to recover 

from the organic solvent since most solvents have low boiling temperatures. It is also hypothesized 

that the cleavage of β-ether linkages is the most important step of lignin extraction. The sulfur-free 

lignin is characterized by molar masses ranging from 2000-5000 Da with a  polydispersity index 

ranging from 2.4-6.4.  Since the organosolv pretreatment may employ a variety of solvents such as 

methanol, ethanol, acetone, and triethylene glycol, this lignin solubilization strategy may be associated 

with higher operating costs.  

(Acosta et al., 2014; Badiei et al., 

2013; Salapa et al., 2017; 

Windeisen & Wegener, 2012) 
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4 Pomace-lignin and the biomedical industry 

4.1 Direct uses of pomace-lignin in the biomedical industry 

Until recently, the utilization of lignin in the biomedical industry has been 

relatively limited. However, because of the microbiological, properties, and 

bioactivity of lignin, it has recently been directly employed in several biomedical 

applications such as the development of hydrogels, nanomaterials, anti-oxidants, 

anti-microbials, tablets, 3D printed materials, ultra violet light (UV) blockers, 

etc.(Domínguez-Robles, Cárcamo-Martínez, Stewart, Donnelly, Larrañeta, Borrega, 

et al., 2020; Liu et al., 2020). Notably, lignin sourced from pomace may provide 

enhanced biomedical applications due to the reduced possibility of such ‘food grade’ 

pomace-lignin containing toxic components that may be harmful to tissues and 

cells.  The possible biomedical applications are therefore discussed in the following 

subsections.  

4.1.1 Development of hydrogels 

Hydrogels are cross-linked polymers that mimic human tissues in their ability to 

absorb and retain large masses of biological fluids within their structure (Larrañeta 

et al., 2019). Due to the presence of a polymeric network, hydrogels can absorb 

fluids such as water to achieve a mass of approximately one thousand times their 

dry mass without dissolving (Thakur & Thakur, 2015). In recent times there has 

been an enhanced interest in the utilization of natural polymers rather than 

synthetic (fossil-based) ones for hydrogels production, due to the renewed drive to 

explore fossil alternatives (Deng et al., 2021; Safarzadeh Kozani et al., 2021; 

Samadian et al., 2020). In line with this interest, the potential of utilizing lignin as 

a sustainable feedstock in hydrogel development has been investigated (Fernandes 

et al., 2013).  

Recognising the capability of lignin to potentially introduce favourable properties to 

hydrogels, several investigations have focused on the impact of lignin on the 

hydrophilicity, thermal stability, biodegradability, and biocompatibility of hydrogels 

(Bajwa et al., 2019; Feng et al., 2011; Meng et al., 2019; Witzler et al., 2018) (Al-

Rudainy et al., 2019). Additionally, Lignin-based hydrogels have been shown to 

demonstrate  self-healing (Figure 4)  capabilities (Huang et al., 2019). In the study a 

lignin-based ink composed of  lignin (0.5 wt%-3 wt%) as plasticizer,  1 wt% of 

hydroxyethyl cellulose, 0.8 % borax  (cross-linker) and 3 % polyvinyl alcohol 

(framework) was developed. The study was able to show that positive correlations 

existed  between  increasing lignin contents and storage modulus and viscoelasticity 
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of the resulting lignin-based hydrogel. Higher lignin contents also translated to 

improved thermosensitivity. The lignin-based hydrogel also demonstrated ionic 

conductivity property (Figure 4). The possibility of employing lignin in producing 

self healing hydrogels reinforces its utility in biomedical applications.  It can also be 

employed as a bioink for 3D printing via  reversible sol-gel transitions and as a 

vehicle for drug or cell delivery (Liu & Hsu, 2018) .   

 

 

 

Figure 4: Highlighting the self-healing property of the lignin-based hydrogel. 

Adapted with permission from (Huang et al., 2019).  (Copyright © (2019) Elsevier 

B.V.). 

Larrañeta et al. (2018) developed lignin-based hydrogels that facilitated the 

controlled delivery of curcumin (hydrophobic) and recorded up to 4 days of delivery 

of this hydrophobic compound. Additionally, the produced hydrogel showed distinct 

anti-microbial activity against Staphylococcus aureus and Proteus mirabilis. 

Witzler et al. (2018)  also reported that for the case of controlled drug release, the 

surface morphology, drug loading, and release were dependent on the type of lignin 

used in preparing the hydrogel. This observation reinforced our view that the 

properties of lignin were impacted by its source and origin. In another study 

Borisenkov et al. (2016) investigated the development of supramolecular hydrogel 

from lignin while also incorporating hemicellulose and pectin into the hydrogel 

structure. The authors demonstrated that the lignin-based hydrogel could facilitate 

the controlled release of estrogen and β-glucuronidase. Furthermore, the 
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introduction of lignin to cellulose-based hydrogels improved the controlled release of 

lysozyme and metronidazole from the hydrogels (Dong et al., 2018). Zmejkoski et al. 

(2018) also showed that the incorporation of lignin enhanced the performance of 

hydrogel produced from bacteria cellulose for wound healing applications. The 

highest drug release was observed within the first 24 h while the wound healing 

ability of the hydrogel was linked to its improved swelling ability. Lignin-derived 

hydrogels have also been mentioned as possible ‘vehicles’ for human hepatocyte cell 

cultures. Indeed, it was shown that the porous nature of the hydrogel facilitated the 

adsorption of the cells to the pores which resulted in increased metabolic activity 

and cell proliferation (Zhao et al., 2017). Additional studies have also shown that for 

lignin-based hydrogel systems characterized by the immobilization of lipase, the 

presence of lignin enhances the activity and stability of the enzymes compared to 

systems without this biopolymer (Park, Kim, Kim, et al., 2015; Park, Kim, Won, et 

al., 2015). It was also established that the activity and stability of the enzyme were 

dependent on the lignin content. These observations were indicative of lignin’s 

potential application in biocatalysis and biomedicine (Sun et al., 2016). 

Furthermore, the anti-microbial, anti-oxidant, and biocompatibility properties of 

lignin, may be combined with other polymers such as poly(vinyl alcohol), chitosan, 

xanthan, cellulose, and alginate to produce hydrogels for a variety of uses.  For 

instance, Răschip et al. (2015) developed hydrogels from lignin and xanthan for the 

controlled release of bisoprolol. From the results obtained, between 14.4 % and 

19.2% efficiency in drug delivery was recorded thus demonstrating a potential for 

pharmaceutical and medical applications. In another work, Shen et al. (2016) 

investigated the preparation of hydrogels from Kraft lignin and IL-produced lignin 

via chemical cross-linking. They found that hydrogels were only produced when 

epoxide-terminated polyethylene glycol was used as a cross linker. Properties of the 

prepared hydrogel such as anti-microbial and anti-oxidant activity as well as water 

vapor transmission suggested potential application as wound dressings. 

Ravishankar et al. (2019) also developed biocompatible hydrogels from Soda lignin 

and chitosan for wound healing purposes. It was found that the introduction of 

lignin improved the viscosity and shear strength of the chitosan and this was 

attributed to the electrostatic interactions that were presented between the 

ammonium ions in the chitosan and the phenolic units in the lignin. In another 

study, El-Zawawy (2005) produced renewable hydrogels from kraft and Soda lignin 

via graft copolymerization in the presence of acrylamide and poly(vinyl alcohol). The 

findings revealed that the hydrogel prepared from the Soda lignin performed better 

than that prepared from the Kraft lignin in terms of swelling ratio, water uptake, 

and de-swelling rate.  
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4.1.2 Lignin based 3D printed products 

3D printing, otherwise known as additive manufacturing, involves the creation of 

3D shapes and parts on a layer-by-layer basis using digital models (Han et al., 

2021). In recent times, the combination of lignin with other polymeric materials to 

form composite products for 3D printing has been receiving a lot of attention 

(Domínguez-Robles, Martin, et al., 2019; Roman et al., 2020; Yang et al., 2020; Yu & 

Kim, 2020). The properties that qualify a material as an excellent candidate for 3D 

printing include extrudability, mechanical strength, and stability since these 

properties enable the resultant printed material to retain its shape and 

structure(Mirzaei et al., 2021; Yu & Kim, 2020). In this regard, pomace lignin may 

be given significant consideration as a material that may be employed in 3D 

printing as a result of its anticipated properties of non-cytotoxicity, 

biocompatibility, and biodegradability (Domínguez-Robles, Cárcamo-Martínez, 

Stewart, Donnelly, Larrañeta, & Borrega, 2020). In particular, the unique 

structural configuration and composition of lignin with its aliphatic ether and 

oxygenated aromatic groups make it an excellent candidate for 3D printing 

applications (Nguyen, Barnes, et al., 2018). Thus, there are many potential benefits 

to be gained by combining lignin with other polymers for use in 3D printing. This 

has raised the interest in using 3D printing technology in developing biomedical 

solutions within the past few years (Liu et al., 2019; Mimini et al., 2019; Sutton et 

al., 2018; Tanase-Opedal et al., 2019; Yang et al., 2020). For example, Jiang et al. 

(2020) demonstrated the possibility of employing lignin-based ink in fabricating 3D 

structures for biomedical applications. In the study a low temperature (25 oC) and 

low-cost direct ink printing strategy was employed with  a soft triblock copolymer 

F127 used as the crosslinking agent. The study was able to demonstrate that the 

utilization of lignin-based ink facilitated the production of constructs with improved 

mechanical properties (i.e.  tensile strength of ~30 MPa) compared to the 

mechanical properties of constructs based on another biopolymer of cellulose (i.e.  

tensile strength of ~30 MPa) (Figure 5). The lignin-based  constructs were also 

shown to demonstrate high stability  in water.  
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Figure 5: a) Illustrating biomass components of hemicellulose, cellulose, and lignin. 

b)  3D-structure developed using lignin-based ink c) Image showing the direct ink 

printing strategy using lignin particles in formulation. d) A chart highlighting the 

properties of 3D printed lignin-based structure printed by fused deposition modeling 

(FDM) and direct ink printing. e) A chart highlighting differences in properties of 

3D constructs using lignin and cellulose inks. Adapted with permission from Jiang 

et al. (2020) (Copyright © (2020) John Wiley and Sons).  

 

In another study the introduction of lignin (20 wt.%) improved the surface quality 

and shrinkage property during polyhydroxybutyrate (PHB) composite filament 

printing (Vaidya et al., 2019).  Also, Nguyen, Barnes, et al. (2018) incorporated 

lignin into acrylonitrile butadiene styrene rubber to produce 3D products and 

reported that the presence of lignin enhanced the tensile strength of the resulting 

material due to cross-linking and enhanced hydrogen bond formation within the 

composite. In a further work by Nguyen, Bowland, et al. (2018) lignin obtained from 

organosolv hardwood was combined with nylon. The incorporation of lignin 

enhanced 3D printability as a result of reduced melt viscosity and increased 

stiffness of the thermoplastic structure. Although polylactic acid is one of the most 

commonly used base-polymeric materials for 3D printing because of its low melting 
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point, biodegradability, and biocompatibility (Liu et al., 2020), it is limited by its 

brittleness and propensity for degradation during processing. Several works have, 

therefore, focused on combining lignin with polylactic acid to enhance its 

printability. As an example Domínguez-Robles, Martin, et al. (2019) successfully 

printed meshes of different sizes for wound healing via fused deposition modeling of 

lignin-incorporated polylactic acid filament (Figure 6). Composites containing 

different concentrations  of  lignin content (0-3 wt.%) were investigated, with higher 

lignin contents shown to facilitate improved composite wettability and also enhance 

antioxidant capabilities of the composite. 

 

Figure 6. (a) Polylactic acid (PLA)/ lignin composites (1 cm × 1 cm) prepared using 

3D printing for healthcare fused filament fabrication (FFF) applications, (b) Lignin 

and tetracycline containing PLA filaments, (c) capsule shape lignin and tetracycline 

containing PLA filaments prepared using 3D printing, and (d) 3D printed meshes 

made of PLA and 2% (w/w) lignin (Domínguez-Robles, Martin, et al., 2019). Open 

access  

 

Tanase-Opedal et al. (2019) showed that polylactic acid filament containing between 

20 to 40% lignin can be printed using fused deposition modeling. The researchers 

observed that the printed materials performed poorly in terms of interlayer 

adhesion due to the high lignin content. However, the poor performance was 

corrected by undertaking the printing at temperatures higher than 215 oC(Tanase-

Opedal et al., 2019).  Gkartzou et al. (2017)  reported contrary observations to those 

of Tanase-Opedal et al. (2019). The study by Gkartzou et al. (2017) showed that 

printing at temperatures above 215 oC resulted in undesirable surface roughness 

which was attributed to the thermal degradation of lignin at that temperature. 

They also reported that the material printed at low temperatures was characterized 

by high viscosity, which caused lignin agglomeration and ultimately difficulty in 
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printing. Another study, however, reported that the thermal stability of polylactic 

acid-lignin composite for 3D printing was enhanced (Gordobil et al., 2014). Aside 

from the studies reported already, several other researchers have investigated the 

potential of combining lignin with other polymeric materials for 3D printing 

applications and they have all reported beneficial effects of lignin (Grigsby et al., 

2020; Lee et al., 2021) (Spiridon & Tanase, 2018). 

4.1.3 Lignin as a natural anti-oxidant 

Lignin has strong anti-oxidant properties that are closely linked to the hydroxyl and 

methoxy functional groups in the lignin structure, which can scavenge free radicals 

(Ugartondo et al., 2008).  According to Dizhbite et al. (2004), its structural 

constituents such as the hydroxyl and aromatic groups, and substituted side chains 

significantly determine the anti-oxidant properties of lignin. Again, extraction 

conditions such as temperature, reaction time, catalyst, extraction solvent influence 

the anti-oxidant properties of lignin. For example, higher temperatures, longer 

reaction residence times, high catalyst dosage, and dilute solvents enhance the anti-

oxidant properties of lignin by increasing the number of phenolic groups while 

reducing the number of aliphatic hydroxyl groups, the molecular weight and the 

polydispersity (Pan et al., 2006). Lignin extracted using milder conditions (i.e. 

enzyme and microwave-facilitated lignin extraction) may present higher anti-

oxidant activity thus enhancing their applicability in the biomedical sector (Li et al., 

2018; Monteil-Rivera et al., 2012; Sun et al., 2019). 

For instance, the work of  Li et al. (2018) reported the enzymatic treatment of lignin 

using laccase in sodium acetate buffer under mild environmental conditions. The 

enzyme-treated lignin had low molecular weight and high phenol content due to the 

depolymerization and demethylation reactions. The high phenol content bequeathed 

the treated lignin with higher anti-oxidant properties. An et al., (An et al., 2017) 

were able to further improve the anti-oxidant properties of lignin by combining 

enzymatic treatment with fractionation via sequential extraction to reduce the 

polydispersity of lignin. According to Gong et al. (2016) taking lignin through post-

extraction purification steps also enhances its anti-oxidant activity. In particular, 

they found that reducing the concentration of associated structural carbohydrates 

could significantly improve the anti-oxidant activity of lignin. Research has also 

shown that the addition of small amounts of lignin to biomedically formulated 

hydrogels improved the anti-oxidant and anti-microbial activities. For example, 

Yang et al. (2018) incorporated lignin (1-3 wt%) in chitosan/polyvinyl alcohol 

hydrogels and reported enhanced anti-oxidant and anti-microbial activities. The 

presence of lignin inhibits the oxidative degradation of oxygen-sensitive materials 
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for the production of hydrogen peroxide for use in biomedical applications (Domenek 

et al., 2013; Yang et al., 2020; Yang et al., 2016). Highly effective oxidation-stable 

biomaterials used for regenerative tissue engineering have been developed using 

lignin. These materials are very useful alternatives to polycaprolactone (PCL) and 

also reduce the unfavorable associated effects of PCL such as the introduction of 

oxidative stress in tissues (Mondal et al., 2016). In a similar effort, lignin 

copolymerized with polymers (poly (ε-caprolactone-co-lactide)) was found to have 

excellent anti-oxidant activities with 99 % inhibition of free radicals recorded (Kai 

et al., 2017). 

4.1.4 Lignin as an anti-microbial agent 

A significant characteristic of lignin that has attracted the interest of researchers in 

recent times is its anti-microbial activity which is linked to its phenolic content(Liao 

et al., 2020). Previous studies have established that lignin’s ethylenic double bond 

and orthomethoxy groups also contribute to its anti-microbial activity (Aadil et al., 

2016; Espinoza-Acosta et al., 2016; Kai et al., 2016).  According to Yun et al. (2021) 

the anti-microbial activity of lignin is mainly due to its anti-oxidation properties 

which arise due to the hydroxyl groups in lignin. These hydroxyl groups facilitate 

lignin’s capacity to scavenge reactive oxygen species  and free radicals under 

oxidative stress. The anti-microbial activity of lignin was demonstrated by  via in 

vivo studies using mice models (Figure 7a). The study showed that the ingestion of 

lignin by mice was able to ameliorate E. coli diarrhea issues of intestinal swelling 

and hyperemia  (Figure 7b) associated with E. coli-induced diarrhea. Further 

investigations via histopathological analyses  (Figure 7c) showed that lignin 

ingestion had the capability to reduce pathological inflammations associated with  

E. coli compared to the diarrhea group.  
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Figure 7: (a) denotes the infection of the mice model treated and the treatment with 

lignin, (b) denotes the pictorial illustration of the intestinal contents of the  mice 

model, (c) denotes the histopathological colons of the mice models. CoEp, InCr, and 

GoCe  denote the columnar epithelium, intestinal crypt and goblet cell respectively 

(Yun et al., 2021). Open access  

Additionally, the lignin extraction conditions (biomass source, solvent-solid ratio, 

solvent polarity, etc), post-extraction processes, and type of microorganism have 

also been reported to influence the anti-microbial activity of the biopolymer (Dong 

et al., 2011; Ndaba et al., 2020).  For example, Kai et al. (2016) showed that Kraft 

lignin was able to inhibit the growth of Erwinia carotovora and Xanthomonas 

vesicatoria although it was ineffective against Pseudomonas syringae. Also, Nada et 

al. (1989) observed that lignin extracted from cotton stalks and bagasse showed 

anti-microbial activity against gram-positive bacteria (Bacillus mycoids and 

Bacillus subtilis), but not against gram-negative bacteria (e.g Escherichia coli) or 

the fungus (Aspergillus niger). They also found that the biocidal efficacy of lignin 

was strongly temperature-dependent, and decreased to zero at temperatures 

greater than 160 oC. A lot of research interest has been recently focused on 

combining lignin with other polymer materials to enhance the anti-microbial 

property of the resulting composite material. For example, Liu et al. (2019)  

developed a novel hydrogel with unique anti-microbial activity by blending lignin, 

poly(vinyl alcohol), and silver nanoparticles. The hydrogel showed good potential for 

biomedical applications. Sunthornvarabhas et al. (2017) also used lignin from food-

grade biomass to produce fabric with an anti-microbial activity which was 

subsequently used to produce face masks. Their findings revealed that the lignin 

coating on the fabric posed resistance to the growth of Staphylococcus epidermidis 

for 24 h. Alzagameem et al. (2019) developed a cellulose and lignin-based film that 

exhibitted anti-microbial activity against Staphylococcus aureus, Listeria 

monocytogenes, Bacillus thermosphacta, and Pseudomonas fluorescens. The 

biocidal properties were attributed to the aliphatic hydroxyl groups in lignin. The 

effect of lignin type on anti-microbial activity was ranked in the order softwood 

lignin>kraft softwood lignin>grass lignin. In another work, Rai et al. (2017) also 

developed a film by blending lignin with chitosan. The resulting film showed anti-

microbial activity against gram-positive bacteria like Bacillus subtilis and gram-

negative bacteria like Pseudomonas aeruginosa, thus reinforcing its applicability in 

biomedical applications. Similarly, Soda lignin was used to prepare alginate films 

with improved mechanical, anti-microbial, cytotoxicity, and drug release properties 

(Aadil et al., 2016). produced nontoxic alginate hydrogel from a lignin-polymer 

blend for wound healing purposes. The material showed very fast epithelial 
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regeneration indicating huge potential for wound treatment therapy. Some studies 

have also reported that the anti-microbial and anti-oxidant properties of lignin are 

linked. In a study by Sunthornvarabhas et al. (2020) it was observed that the 

relative ratio of the syringyl and the 4-hydroxyl phenyl units played an important 

role in the anti-microbial activity of lignin when used on Staphylococcus aureus and 

Staphylococcus epidermidis (gram positive bacteria) as well as Escherichia coli and 

Pseudomonas aeruginosa (gram negative bacteria). 

4.1.5 Development of nanomaterials 

Lignin has also been applied in the preparation of nanomaterials. Nano-sized lignin, 

although not chemically different from macromolecular equivalent, exhibits some 

unique properties due to its higher surface area per volume  (Beisl et al., 2017). 

Recently, lignin nanomaterials have been receiving attention in terms of wide usage 

for producing biomaterials for drug delivery solutions, anti-oxidant and anti-

microbial agents, UV blocking, nanocomposites, etc. Figueiredo et al. (2017) 

investigated different formulations of lignin nanoparticles for use in controlled drug 

release. They found that the formulations improved the drug release profile and 

also inhibited proliferation when compared to the pure drug agent. Alqahtani et al. 

(2019) reported significantly improved bioavailability of the low water-soluble drug 

curcumin when delivered using lignin nanoparticles. Additionally  Dai et al. (2017) 

demonstrated the possibility of employing nanoparticles based on lignin in drug 

delivery of the  bioactive molecule, resveratrol, when mice models were employed 

(Figure 8). The study showed that nanoparticles based on  lignin, resveratrol and 

Fe3O4 (AL/RSV/Fe3O4)  could lead to improvements in the in vitro release of 

resveratrol for tumor reduction compared to other anti-cancer agents (i.e. 

phosphate-buffered saline (PBS), resveratrol, lignin nanoparticles, RSV-loaded 

lignin nanoparticles, and magnetic RSV-loaded lignin nanoparticles). AL/RSV/Fe3O4 

was also shown to promote drug stability and  drug accumulation.  
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Figure 8: Tumor of mice treated with phosphate-buffered saline (PBS) (control), 

resveratrol (RSV), lignin nanoparticles (AL NPs), RSV-loaded lignin nanoparticles, 

and magnetic RSV-loaded lignin nanoparticles. Adapted with permission from Dai 

et al. (2017). Copyright © (2017) American Chemical Society. 

 

Zhang et al. (2019) showed that lignin nanoparticles possessed better UV blocking 

and anti-oxidant properties compared with macromolecular lignin. The anti-

microbial activity of lignin was utilized in the formulation of composite chitosan-

lignosulphonate nanoparticles by Kim et al. (2013). The composite material 

developed showed better anti-microbial properties compared to standalone chitosan 

nanoparticles. In another study, Lee et al. (2018)  prepared lignin-coated thin multi-

walled carbon nanotubes to produce mechanically stable anti-microbial poly(vinyl 

alcohol) nanofibers. The performance of the formulation was linked to the enhanced 

dispersion of the poly (vinyl alcohol) matrix.  

Nanoparticles of lignin have also been shown to have applications in peripheral 

nerve treatment (Amini et al., 2020). In the study by Amini et al. (2020), lignin 

nanoparticles were fabricated with polycaprolactone (PCL) fibers using the 

electrospinning method. The study was able to demonstrate the favorable effect of 

lignin nanoparticles on  nerve regeneration via in vivo studies (Figure 9). The study 

was able to show that neurite length extension,  cell viability, and cell 

differentiation increased with lignin content. Indeed the study demonstrated that 

the introduction of  ~15 wt% lignin nanoparticles led to good nerve regeneration.  
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Figure 9: (a-d) Polycaprolactone (PCL)-lignin nanocomposite fiber-based nerve 

conduit in microscopic and macroscopic view, (e) intraoperative image of nerve 

conduit in the left sciatic nerve, implantation of (f) PCL fibers containing 10% lignin 

nanoparticle and (g) PCL fibers containing 15% lignin nanoparticle conduits in a 10 

mm rat sciatic nerve gap, and (h) 3 months after surgery. Adapted with permission 

from Amini et al. (2020). (Copyright © 2020 Elsevier). 

 

Hydroxyapatite coating for titanium material with enhanced anti-microbial activity 

against Staphylococcus aureus was produced from organosolv lignin (Erakovic et 

al., 2014). Lu et al. (2012) produced lignin nanoparticles via supercritical carbon 

dioxide and acetone. The produced nanoparticles displayed enhanced anti-oxidant 

activity and this was attributed to the increased water solubility. In a different 

study, Yang et al. (2016) also prepared lignin nanoparticles via acid precipitation 

into a blend of chitosan and poly(vinyl alcohol). The results showed that the 

nanoparticles produced displayed enhanced anti-oxidant capabilities that were 

linked to the improved synergy between the lignin and chitosan. Several studies 

have also reported improved performances of lignin-based composites compared to 

the natural macromolecular lignin in drug delivery (Chen et al., 2018; Mishra & 

Wimmer, 2017), UV blocking (Ju et al., 2019; Wang et al., 2019), anti-oxidants, and 

anti-microbials  (Ge et al., 2014; He et al., 2019; Yearla & Padmasree, 2016) . 

4.1.6 Lignin application in pills and tablets 

Tablets have emerged as the most common solid dosage form for drugs. 

Pharmaceutical excipients play a significant role in the final form of a drug. Some 

examples of pharmaceutical excipients commonly used include starch, 
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microcrystalline cellulose, natural cellulose, xylitol, etc. All of these are necessary 

for the production of tablets and disintegration in the gastrointestinal tract and 

improving drug bioavailability (Gil-Chávez et al., 2021). Some researchers have 

explored the use of lignin as a pharmaceutical excipient to enhance drug 

bioavailability. For instance, Pishnamazi, Hafizi, et al. (2019)  combined Alcell 

lignin with other pharmaceutical excipients (microcrystalline cellulose and lactose 

monohydrate) to assess the impact on the release rate of aspirin from tablets. They 

found that the incorporation of lignin in the formulation increased the aspirin 

release rate and reduced the disintegration time of the tablets. These favorable 

properties were attributed to the amorphous nature of lignin and the synergistic 

interaction between lignin and aspirin (Pishnamazi, Hafizi, et al., 2019). 

Domínguez-Robles, Stewart, et al. (2019) showed in their work that the introduction 

of low levels of lignin to the excipient formulation modified the drug dissolution 

pattern. In addition, they reported that the excellent anti-oxidant properties of 

lignin could help prevent oxidation of the active pharmaceutical ingredients in the 

drug. (Pishnamazi, Iqbal, et al., 2019) reported that including carboxylated lignin in 

the excipient formulation resulted in reduced drug hardness and thus, enabled 

faster disintegration of paracetamol tables. The performance of this formulation 

was explained by the fact that the release of hydrogen ions from the carboxylic 

group caused a reduction in the interaction between paracetamol and lignin. The 

reports presented thus have shown the important application of lignin as an 

excellent ingredient in excipient formulation for solid oral drug delivery. 

4.1.7 Ultra violet (UV) absorbing agent 

Lignin can absorb UV radiation because of the chromophore functional groups it 

contains like methoxy substituted groups and quinones which can have the 

capability to conjugate with carbonyl groups, aromatic rings, and double bonds (Lou 

et al., 2013). These UV-absorbing groups give lignin its distinct brownish to black 

color when exposed to UV radiation. Even though this is an undesirable property for 

mechanical pulps, it has a desirable use in terms of its application as a UV blocker 

due to this property, lignin can be used in the production of sun blockers or 

sunscreens. These sun blockers can shield the skin from the deleterious effect of UV 

radiation. Introducing lignin into commercially available sunscreens creams and 

lotions could potentially enhance the performance of these creams and lotions (Lee 

et al., 2019). For instance, Qian et al. (2015) incorporated lignin into commercially 

available sunscreen products and reported enhancement of the UV absorption 

performance. Specifically, the addition of 2 wt. % of lignin doubled the sun 

protection factor of the sunscreen from 15 to 30 while the sun protection factor 

was increased to 50 with the addition of 10 wt% lignin. Notably,  the alternative 
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use of lignin is particularly welcome due to the adverse effects of inorganic agents 

such as titanium dioxide and zinc oxide which are currently used as UV absorbing 

agents in sunscreen lotions (Qian, Qiu, Zhu, et al., 2016). 

In the work of Qian, Qiu and Zhu (2016), both low Kraft lignin and Soda lignin 

were incorporated into a commercially procured sunscreen lotion and hand cream. 

Their findings showed that the addition of lignin enhanced their capability to 

perform as a sunscreen. Kaur et al. (2020) also assessed the potential of using a 

combination of alkaline and Kraft lignin and several zinc compounds as a UV screen 

in a hand lotion cream. Their findings showed that hand cream containing ~20 wt. 

% was able to facilitate ~ 93% blocking of UV compared to  ~75-90% UV blocking 

recorded when only the zinc compounds were used. The study further showed that 

combining the zinc compounds with lignin resulted in 100% UV blocking due to the 

synergy between the lignin and the zinc compounds. Significant increase in the sun 

protection factor of pure hand cream was recorded when it was blended with 5 

wt.% lignin particles. The UV blocking performance of this blend was attributed 

to the excellent anti-oxidant properties of the lignin particles (Li et al., 2019).  Yu 

et al. (2018) also explored the use of lignin-coated titanium dioxide as an inorganic 

sunscreen. They reported improved dispensability of the titanium dioxide particles 

because of the esterification reaction between the titanium dioxide hydroxyl groups 

and the lignin carboxylic acid groups. Their study also demonstrated a direct 

correlation between the UV blocking ability of the sunscreen and the lignin 

concentration of the sunscreen. Furthermore, enhanced UV blocking performance of 

sunscreen lotions have also been reported for the case of lignin-nano zinc oxide 

blend (Gutiérrez-Hernández et al., 2016), kraft lignin (Wu et al., 2019), and rice 

husk lignin (Lee et al., 2020). 

4.2 Potential of pomace-lignin in the production of biomedical derivatives  

It has been established that lignin constitutes the only natural polymeric source of 

aromatic compounds which are used in drug manufacturing (Li et al., 2015b). 

However, the conversion of lignin to aromatic compounds is not a straightforward 

process because of the complex nature of lignin, which significantly limits the 

efficiency of the conversion process. Several approaches have however been explored 

for the conversion of lignin to high-value products such as phenolic, lignan, 

neolignans, and aliphatic hydroxyl compounds which have notable biomedical 

applications (Liu et al., 2020). Four different approaches for the conversion of lignin 

to valuable precursors for biomedical applications namely depolymerization, 

creation of new chemically active sites, modification of the hydroxyl groups, and 
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grafting with other polymers (Figueiredo et al., 2017) have been reported in the 

literature and are discussed in the subsequent sections.   

4.2.1 Thermal depolymerization of lignin 

One of the most commonly deployed strategies for the depolymerization of lignin is 

thermal depolymerization via pyrolysis. Pyrolysis of lignin facilitates lignin 

depolymerization in an oxygen-deprived environment (Okoro et al., 2017b). The 

products obtained from this process are mostly gases and liquids with the liquid 

containing significant masses of simple aromatic compounds which can then be 

converted to other value-added products (Chio et al., 2019). The depolymerization of 

lignin begins with the cleavage of the weaker bonds (ether linkages) at lower 

temperatures and this process progresses to the much stronger bonds at the high 

temperature of ~450 oC (Figure 10). The products from this process include syringol, 

4-methylguaiacol, coniferyl alcohol, isoeugenol, and vanillin which are useful in 

biomedical applications (Gerbin et al., 2020; Kawamoto, 2017; Lee et al., 2012; Siva 

et al., 2019).  

 

 

Figure 10: Mechanism for the cleavage of the ether bonds. Adapted with permission 

from (Chio et al., 2019). Copyright © (2021) Elsevier B.V. 

At higher temperatures ranging from ~800 oC most linkages in lignin are cleaved. 

In particular, the methoxyl, hydroxyl, and methylated groups attached to the 

aromatic units are cleaved. Furthermore, initial products like syringol which are 

obtained when the temperature is ~ 450 oC are also further depolymerized to 

generate products such as guaiacol, o-quinone methide, and o-vanillin (Chio et al., 

2019). Recently, catalytic pyrolysis has been investigated for improving the yield of 
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pyrolysis products. According to Mullen and Boateng (2010) the introduction of 

catalysts has the potential of improving the yield of pyrolysis products through the 

production of proton donors or oxidants that facilitate the demethoxylation 

reactions. A common catalyst used for lignin pyrolysis is zeolite and it has been 

shown to produce an increased yield of aromatic monomers by facilitating the 

depolymerization process (Gundekari & Kumar Karmee, 2021; Rezaei et al., 2016). 

Zeolites are also able to enhance the conversion of phenolic compounds derived from 

lignin to simpler aromatic compounds for use specifically in the biomedical industry 

(Junior et al., 2018). 

4.2.2 Chemical depolymerization of lignin 

Chemical depolymerization of lignin is reportedly the most effective of all 

depolymerization strategies for recovering phenol monomeric aromatics from lignin. 

These phenol monomers can be used in the production of compounds such as (Qiu et 

al., 2019) aniline which is used in the production of paracetamol (Thomas Paisley & 

Serpell, 2020). Specifically, catalytic depolymerization has numerous advantages 

such as high product selectivity and efficiency, easy reaction control, and moderate 

reaction conditions (Xu et al., 2014) . Wang et al. (2013) classified the chemical 

depolymerization of lignin based on the catalysts used. They include acid-, base-, 

metal-, ionic liquid- and supercritical fluids-catalyzed depolymerization. These 

catalysts can be used individually or in combination to improve process efficiency 

and selectivity for desired products. Acid-catalyzed depolymerization of lignin 

involves the use of acids either as standalone solvents or in combination with 

alcohols. The process has been in existence for almost eight decades and the 

mechanism involves the cleavage of the ether linkages as presented in Figure 11.  

Forchheim et al. (2012)  combined formic acid (10 wt. %) and ethanol (77 wt. %) for 

the acid-catalyzed depolymerization of lignin from a wheat straw while in a similar 

study, Forchheim et al. (2012) used formic acid and ethanol in proportions of 10 wt. 

% and 81 wt. % respectively. In both cases, the reaction occurred in the temperature 

range of 360-400 oC and the major products were phenol, catechol, and 

methoxyphenol, which also have biomedical applications. Although acid-catalyzed 

depolymerization of lignin is commonly adopted, depolymerization is limited by 

several problems such as the requirement for severe reaction conditions such as 

corrosive solvent, high pressure, temperature, and long reaction times. 

Furthermore, the waste products from the process are usually categorized as toxic 

to the environment. There are also reported cases of repolymerization occurring 

where the simple monomeric compounds bind together to form macromolecules, a 

situation that reduces the yield of the desired product (Güvenatam et al., 2016). 
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Figure 11: Mechanism for the cleavage of the ether bonds in lignin using acid 

catalyst. Adapted with permission from  (Jia et al., 2010) Copyright © (2010) John 

Wiley and Sons.  

Base(or alkaline)-catalyzed depolymerization of lignin involves the use of suitable 

alkalis to deconstruct lignin leading to the generation of low molecular weight 

products. Sodium hydroxide is the most commonly used base because of its low cost. 

The mechanism for lignin depolymerisation is presented in Figure 12.  
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Figure 12: Depolymerisation of lignin using base (or alkaline) catalyst. Adapted 

with permission from Mahmood et al. (2016) Copyright © (2016) Elsevier. 

Lavoie et al. (2011) applied sequential steam explosion and treatment with 5 wt.% 

NaOH for lignin obtained from softwood and hemp using a temperature range of 

300-330 oC. They identified 26 compounds at the end of the process with the most 

abundant of them being catechol, guaiacol, and vanillin. In a similar work, 

organosolv lignin was subjected to base-catalyzed depolymerization at a 

temperature and pressure of 300 oC and 25 MPa respectively. The major products 

obtained were catechol, syringol, and hydroxyacetophenone (Roberts et al., 2011). 

Other researchers  (Long et al., 2015; Roberts et al., 2011; Toledano et al., 2012; 

Toledano et al., 2014) reported the positive impact of base catalysis on lignin 

depolymerization. Although other bases like calcium hydroxide, potassium 

hydroxide, and cesium hydroxide can be used, Evans et al. (1999) however 

suggested that stronger bases like sodium hydroxide and potassium hydroxide are 

preferred as they result in stronger hydrolysis and production of depolymerized 

products.  Metals have also been investigated as potential catalysts for lignin 

depolymerization. Metals are specifically used to overcome the limitations of acid- 

and base-catalyzed lignin depolymerization. For instance, Song et al. (2012) 

reported the potential of nickel to successfully catalyze lignin depolymerization to 

produce phenolic compounds. Some other reports have shown that nickel can be 

combined with other metals in the form of a bimetal alloy to yield positive outcomes 

(Molinari et al., 2014; Zhai et al., 2017; Zhang et al., 2016). Ionic liquids (Das et al., 

2017; Dutta et al., 2017) and supercritical fluids  (Gosselink et al., 2012; Hidajat et 
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al., 2017; Pérez et al., 2018) have also been investigated for lignin depolymerization. 

Ionic liquids are usually utilized as solvents and establish a synergistic effect with 

other catalysts during lignin depolymerization and this gives it the ability to 

facilitate the oxidation level. Yang et al. (2017) reported that 1-octyl-3-

methylimidazolium acetate successfully catalyzed the conversion of over 96% of 

lignin macromolecules to simple phenolic compounds under moderate reaction 

conditions. Supercritical fluids are usually employed because of their excellent 

solubility properties (Rad et al., 2019). Sasaki and Goto (2008) undertook the 

treatment of alkaline lignin with supercritical water at a temperature of 300 oC 

within a pressure range of 25 to 40 MPa. They identified major products which 

included phenol, catechol, and cresol. Takami et al. (2012) also used supercritical 

water treatment for organosolv lignin. Despite the positive attributes of 

supercritical fluids, their use in lignin depolymerization is limited by high cost and 

harsh reaction conditions. 

4.2.3 Biological depolymerization of lignin 

The use of biological catalysts for lignin depolymerization has been touted as a 

sustainable alternative to chemically catalyzed depolymerization. The advantage of 

this option is the environmental friendliness and the specificity with which the 

biocatalysts catalyze the reactions which help to improve the selectivity of the 

desired products (Chio et al., 2019). In addition, the reactions are carried out under 

mild conditions. Rhodococcus jostii RHA1 is one of the most commonly used 

microorganisms for lignin conversion to other compounds. It was reported by 

Sainsbury et al. (2015) that Rhodococcus jostii RHA1 can cleave the ether bonds 

with the help of dye-decolorizing peroxidase to produce vanillin. Apart from 

Rhodococcus jostii RHA1, the bacteria species Pseudomonas putida KT2440 has 

been reported to be very efficient in degrading lignin and researchers have 

established the fact that Pseudomonas putida KT2440 can degrade lignin to low 

molecular weight compounds. It can also produce polyhydroxyalkanoates which is 

an important precursor for producing bioplastics (Xu et al., 2018). Despite the 

potential usefulness of different bacteria strains for lignin conversion, fungi perform 

better than the bacteria comparatively and as such, white-rot fungi have been the 

favored fungi for lignin depolymerization because of their excellent ability to 

deconstruct lignin (Salvachúa et al., 2015). The performance of white-rot fungi is 

closely linked to their ability to extracellularly produce different oxidases like 

laccases, phenol oxidase, etc. Koncsag et al. (2012) reported that Pleurotus 

ostreatus was able to successfully depolymerize lignin with the corresponding 

production of useful chemicals such as syringyl alcohol and ferulic acid. Baltierra-

Trejo et al. (2015) used Aspergillus fumigatus to ferment lignin extracted from 
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wheat straw and detected the production of several useful chemicals like vanillic 

acid, syringic acid, butyric acid, and acetic acid. 

4.3 Derivatives of lignin depolymerization  

Derivatives of lignin depolymerization such as vanillin, catechol, phenol, guaiacol, 

cresol, syringol, p-coumarate, eugenol, benzene, etc. are very essential precursor 

materials in the biomedical industry (Li et al., 2015a). In terms of valorization and 

economic potential, lignin-derived aromatic compounds offer the most promise in 

terms of further value-chain gains. Thus, there is a lot of focus on phenolics and 

phenol aldehydes derived from lignin depolymerization. In particular, phenolic 

aldehydes such as syringaldehyde, vanillin, and 4-hydroxybenzaldehyde can be 

obtained via oxidative depolymerization and are useful in the biomedical industry 

(Banerjee & Chattopadhyay, 2019). For instance, syringaldehyde has excellent 

bioactivity which makes it very useful in the manufacture of pharmaceuticals 

(Ibrahim et al., 2012). On the other hand, vanillin can be employed as a masking 

agent in pharmaceutical formulations (Banerjee & Chattopadhyay, 2019; Ibrahim et 

al., 2012). Furthermore, guaiacol has anti-microbial activity, which has seen it used 

in the production of disinfectants. It also has anti-oxidant activity giving it the 

capacity to scavenge for reactive oxygen radicals in living systems. Catechol may be 

used as a precursor material in the pharmaceutical industry for the production of 

drugs. Some recent research has also seen catechol being combined with polymers 

to prepare other useful products for biomedical applications (Kim et al., 2021; Ryu 

et al., 2015; Zhang et al., 2018; Zhang et al., 2020). Eugenol is a very important 

chemical in dental hygiene formulations (Mohammadi Nejad et al., 2017). It can 

also be used as a sensitizing and anesthetic agent (Chung & Oh, 2013; Raja et al., 

2015). Beyond that, it also has anti-oxidant, anti-inflammatory, antiviral, and 

antibacterial activity (Pavithra & Research, 2014). Syringol is useful in the 

pharmaceutical industry as an anti-dermatophyte and for platelet aggregation 

(Murwanashyaka et al., 2001). 

5 Current challenges for the exploration of pomace-lignin and its aromatic 

derivatives in the medical industry 

Initial consideration of the WP as a sustainable source of lignin for biomedical 

applications suggests that the high moisture content of up to 80 wt. % (Okoro & 

Shavandi, 2021), which characterizes typical pomaces may present some associated 

problems. This is because the high moisture content of pomace may translate to 

higher transportation costs and pomace acquisition costs (Woo et al., 2018). These 

transportation costs may be quite substantial. Initial logistic issues from the 
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microbial decomposition of the pomace may lead to handling difficulties, thus 

limiting the viability of exploring pomace-lignin utilization opportunities. 

Furthermore, the risk of rapid deterioration of the WP during storage may also 

limit enthusiasm for its valorization for enhanced lignin extraction and may 

introduce some health and safety concerns from microbial effects and exposure. 

Notably, there may be a need to explore energy-intensive and costly drying 

operations before lignin recovery from the pomace, thus further limiting the 

technical feasibility of large-scale lignin extractions. At this juncture, it should be 

stated that not ‘all lignin are equal’ since the source of the lignin influences not only 

the yield of the lignin but also influences properties of the lignin. Indeed, the study 

presented by Watkins et al. (2015) showed that lignin sourced from food-grade 

wheat presented the highest thermal stability relative to the thermal stabilities of 

flax fiber, alfalfa, and pine straw. According to Watkins et al. (2015) the higher 

thermal stability suggests that the lignin sourced from food-grade wheat could serve 

as a partial replacement of phenolics, in resin systems. Similarly, given the ‘food 

origin’ of the lignin similar improved properties are anticipated. Crucially, however, 

there is a possibility that the pomace-lignin may present a complex and disordered 

structure, leading to difficulties in executing the appropriate production craft 

approach and control of process parameters for nanofiber formation.  Such complex 

and disordered structures characterize lignin from all sources and negatively affect 

its mechanical properties, thus increasing the risk of defective fabrications.  The 

direct application of pomace-lignin application may also be limited by its thermal 

behavior. This is because the literature suggests that its melt-spinning and 

softening temperature characteristics provide only a narrow window for the 

formation of the nanofibers. Additionally, its thermal properties may lead to the 

formation of unwanted cross-linking during melt-spinning (Fang et al., 2017). 

Furthermore, although matrices in lignin can be used for the controlled release of 

bioactivities in biomedical applications, the utilization of lignin used in this manner 

is limited by variabilities in water uptake and swelling capacity of lignin due to its 

inherent structural heterogeneity (Klugman, 2015). According to Terzioğlu et al. 

(2020) the abundance of biomass such as waste pomace suggests that lignin-based 

applications may lead to improved economic outcomes compared to when synthetic 

polymer materials are used in biomedical applications. Notably, however, existing 

technologies are limited with respect to the use of lignin in 3D printing, melt-

electrospinning, lithography, 3D braiding, etc. (Terzioğlu et al., 2020).  

Furthermore, although the medical benefits of lignin, have been established in the 

literature, work is required to demonstrate the efficacy and long-term effects of 

such lignin-derived drugs. Indeed, possible issues associated with the 

accumulation and biodegradation of lignin and lignin-derived products as well as 
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possible long-term effects on the retention of lignin and lignin-derived are yet to be 

extensively explored (Liu et al., 2020) . For instance, it may be suggested that the 

application of lignin in the manufacture of pharmaceutical drugs may lead to 

unwanted effects on humans via the translation of some unwanted effects of lignin 

extracted to lignin-derived pharmaceuticals. For instance, previous work has 

demonstrated the polydispersity of lignin leads to unfavorable adsorption effects 

on cholesterols and the unfavorable digestion effects in the human small intestine 

(Iravani & Varma, 2020).  Additional issues that may limit the applicability of 

pomace-lignin in the biomedical industry may be due to concerns associated with 

the translation of bench-scale experimental outcomes to practical large-scale 

operations. This is because the heterogeneity and non-ordered structure of lignin is 

indicative of its complexity and varying molecular weight distributions making 

standardization and large-scale production difficult for lignin-derived products 

difficult (Ralph et al., 2008; Terzioğlu et al., 2020; Zhang et al., 2006). This 

limitation significantly hinders the feasibility of designing novel lignin-based 

products such as composites that are characterized by distinct properties 

(Terzioğlu et al., 2020). Furthermore, given that lignin modification processes 

typically require the utilization of significant masses of hydrogen as a reactant to 

facilitate lignin transformation (i.e. processes such as hydrocracking, 

hydrodealkylation and hydrodeoxygenation) (Strassberger et al., 2014), concerns 

related to the overall renewability of the lignin transformation processes may be 

raised. This is because since most hydrogen employed is currently sourced from 

fossil sources (i.e. natural gas) (EERE, 2021), associated unwanted GHG and 

natural resource depletion effects are unavoidable. In addition to the limitations 

associated use of lignin and its transformation to biomedical products, the lignin 

extraction process from pomace may also lead to associated unfavorable economic 

and environmental effects. For instance, the major approaches currently employed 

in large-scale lignin extraction of namely, the sulfite, Soda, kraft, and organosolv 

based processes (Carvajal et al., 2016) are characterized by several concerns as 

highlighted in Table 2. These concerns may limit the applicability of the lignin 

extracted in biomedical applications. Specifically, lignin extracted via the Kraft 

process is usually contaminated with polysaccharides. The Kraft lignin may also 

undergo several chemical changes due to the formation of covalent bonds sulfur in 

form of thiols, leading to the conversion of Kraft lignin into lower molecular weight 

fragments of thiolignin  (Fernández-Rodríguez et al., 2019). The sulfite process also 

leads to alterations in lignin chemistry via the introduction of an aliphatic sulfonic 

acid function to the lignin backbone (Lora & Glasser, 2002). Similarly, the Soda 

pulping and the organosolv approaches may induce hydrolytic cleavage of native 

lignin into smaller fragments and structural changes in lignin (Windeisen & 
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Wegener, 2012). Therefore, existing conventional lignin extraction approaches lead 

to structural changes in the native lignin structure which also lead to alterations in 

the lignin properties, such as solubility, thermal stability, thermoplastic properties, 

and chemical reactivity (Windeisen & Wegener, 2012). These changes in lignin 

chemistry and structure, however, may subsequently limit the safety and 

applicability of lignin in biomedical applications. In an attempt to reduce possible 

toxicity issues associated when lignin extraction is effected using mature 

technologies, some recent works have demonstrated the possibility of pure lignin 

recovery via new technologies such as the reductive lignocellulose fractionation, for 

a so-called lignin-first process that involves solvolytic lignin extraction, 

depolymerization and catalytic stabilization steps (Abu-Omar et al., 2021; Chen et 

al., 2021; Renders et al., 2019; Van den Bosch et al., 2015). Other lignin-first 

processes include hydrothermal treatments (Lourencon et al., 2020) and the use of 

ionic liquids (ILs) (Xu et al., 2020) to enable purer lignin recovery.  These 

technologies are however characterized by a low technology readiness level, with 

their applicability at the industrial scale, being currently unclear. More work is 

therefore required in this area. 

6 Prospects for the utilization of pomace-lignin and its aromatic derivatives in the 

biomedical industry 

The authors predict that over time, the interest in biopolymers such as pomace-

lignin will increase geometrically due to lignin’s biocompatibility, biodegradability, 

low toxicity, and low reactogenicity as well as their wide range of applications 

(Bernardini et al., 2018; Guo, 2017; Newman & Cragg, 2020) in the biomedical 

industry. This projection is based on the increasing demand for biomedical and 

pharmaceutical products. As an illustration, consider that in 2015 and 2016, the 

global market for cancer immunotherapy and wound care drugs was US$ 45.5 

billion  (Mikulic, 2018) and US$ 24.5 billion (Stewart, 2018). Notably, the market 

for cancer immunotherapy and wound care drugs is projected to reach US$ 117.1 

billion (Mikulic, 2018) and US$ 40 billion (Stewart, 2018) by the years 2021 and 

2022, respectively. There is also an increase in the demand for controlled-release 

drug formulations to extend the drug’s effective duration, enhance stability and 

bioavailability and minimize the negative effects related to spikes in drug 

concentrations (Dabholkar et al., 2021; Davoodi et al., 2018).  Apart from the 

enhanced demand for pharmaceutical drugs, the demand for naturally sourced 

materials in the production of 3D printing for scaffold fabrication is also expected to 

increase. This is because it is estimated that by 2050, approximately two billion 

people will require the use of assistive technology devices (WHO, 2018) with the 

global scaffold technology market projected to increase due to the escalating 



 40 

demand for regenerative treatments (Gurtner & Chapman, 2016) and medical 

reconstruction procedures (Brydone et al., 2010). Although synthetic-based 

prosthetics, orthotics, and scaffolds are well-known, there is a need to improve the 

properties of these materials by eliminating the possible unwanted effects of using 

synthetic fibers, plastics, ceramic materials, and metals which are sometimes 

incompatible in human cells and tissues (Evans et al., 1974; Shahar et al., 2021; 

Vallittu, 2018). Additionally, some of these synthetic prosthetics and orthotics 

implants and scaffolds are not biostable leading to the need for secondary surgeries 

over time (Doppalapudi et al., 2014). The use of biopolymers such as lignin, to 

facilitate the complete or partial replacement of these synthetics will eliminate or 

reduce these highlighted concerns due to its undisputed biocompatibility. 

Furthermore, concerns associated with the non-biodegradability and non-

renewability characteristics of the synthetics used in regenerative treatments can 

also be resolved using lignin as an alternative biopolymer. Pomace-lignin, therefore, 

presents an opportunity for the sustainable production of lignin, moreso since waste 

pomace constitutes an abundant waste stream that must be managed, sustainably. 

The use of this abundant waste stream will enable the resolution of the 

aforementioned demand issues since the large masses of the biomass waste will 

serve as an invaluable resource for lignin extraction. This lignin resource will 

provide benefits of enhanced immunomodulatory, anti-inflammatory, anti-oxidative 

and anti-bacterial effects, and may be employed in the fabrication of scaffolds, and 

wound dressings. It is acknowledged that economic considerations constitute a 

significant consideration in determining the viability of resources sourced from 

biomass, with the feedstock cost typically constituting the major determinant of the 

economics of valorization processes (Korányi et al., 2020; Okoro et al., 2017a; 

Zetterholm et al., 2020). The authors, however, anticipate that the availability of 

large masses freely available pomace (biomass), will translate to favorable lignin 

recovery, which may be transformed for biomedical applications, thus presenting 

the possibility of reducing costs the derived biomedical products.  Future 

investigation must therefore explore strategies for enhanced recovery of lignin from 

large waste resources such as waste pomace for its use as low cost biomaterials and 

its subsequent conversion to aromatic derivatives for manufacture of 

pharmaceutical  products (Mikulic, 2018). Looking ahead, biomedical products 

based on or containing lignin and/or its aromatic derivatives may be available in the 

market in no time.  

7 Conclusions 

This review has highlighted the waste management issues associated with fruit 

pomace while also elucidating the current management and valorization 

https://www.sciencedirect.com/science/article/pii/S2352554120305593#sec5
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approaches. The current challenges of the underutilization of pomace-lignin were 

discussed with the associated inadequacies of the existing waste pomace 

valorization frameworks, highlighted.  The potential of pomace-lignin use via direct 

utilization in biomedical applications such as 3D printing and wound healing as 

well as indirect utilization via its depolymerization for the production of 

pharmaceutical drugs, was extensively discussed. Issues due to lignin chemistry 

such as heterogeneity, and the high moisture content of pomace, which lead to 

associated logistical concerns, that are capable of constraining the future use of 

pomace-lignin, were also highlighted. 
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