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• Formulation of a novel physiologically-based model describing ectotherms.

• A system of ordinary differential equations describes the identifiable

life stages.

• The model can describe the life cycle of most of the insect species.

• Four models existing in literature can be obtained as a special case of

the novel model.

• Drosophila suzukii is considered as case study to validate the model

with three-year field data.
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Abstract

This paper introduces a novel general model based on Ordinary Differen-

tial Equations (ODEs) which is able to describe the population dynamics of

a large class of insect pests. The proposed model is a physiologically-inspired

generalization of a number of ad hoc models presented through the years in

the literature. Its main feature is that it allows the systematic generation of a

population model for a species by simply defining its key features, namely the

sex ratio and the development, fertility, and mortality rates. The first part of

the paper provides a detailed description of the model and shows that most

ODE-based models existing in literature can be obtained as a special case

of the proposed model. The second part of the paper shows an application

of the model to the spotted wing drosophila Drosophila suzukii, which is a

highly relevant pest in agriculture. The biological features of this species, i.e.,
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the sex ratio and the various rates, were retrieved from the existing scientific

literature. The obtained model was validated using data from a three-year

survey conducted in two experimental fields. Results show that the model

described faithfully the experimental populations, although the simulations

were performed completely in open-loop and without any adaptation of the

parameters extracted from the existing literature.

Keywords: Integrated Pest Management, Physiologically based models,

Linear time-varying systems, Alien species, Crop protection

1. Introduction1

In recent years, thanks to the growing availability of different technolo-2

gies, we are experiencing what is often defined as “the fourth agricultural3

revolution” [1]. The key concept of such revolution is the so-called “Preci-4

sion agriculture” [2]. “Precision agriculture” is a concept that incorporates5

a series of technological and philosophical changes in the way agriculture is6

conceived.7

The key feature of precision agriculture is that it aims at using the inputs8

(e.g., water and agrochemicals) only when and where they are actually needed9

[3]. The scientific community is investing a considerable amount of effort10

to make this vision become a reality. A large number of activities on the11

subject are currently ongoing at different levels [4]. To progress towards12

the precision agriculture paradigm, particular attention must be focused on13

plant protection against pests and diseases. In fact, a large portion of the14

agrochemicals is used to control insect pests and pathogens such as bacteria,15

fungi, or nematodes, and it is well-known that a indiscriminate use of these16
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substances is highly dangerous for the ecosystems [5]. Accordingly, to use17

them in a more selective way would dramatically reduce the environmental18

footprint of farming.19

Several authors [6, 7] pointed out that, to do so, the development of tech-20

nologies for the automated/semi-automated detection of pests and diseases21

is fundamental. However technology alone is not enough. This is due to22

at least two reasons: i) in agriculture measuring is economically expensive,23

and for many crops probably it will likely never be realistic to perform a24

continuous monitoring of all plants; ii) in order to plan effective treatments25

is important not only to measure the current status of the farm, but also26

to predict the future evolution of the infestations. Accordingly, in parallel27

with the technological research, it is fundamental to develop mathematical28

models able to describe and predict the evolution of the infestations [8].29

Many scientists around the world are currently working on the mathematical30

modelling of insect pests population dynamics [8, 9, 10, 11]. Pest popula-31

tion models are particularly important when pest management is performed32

through the release of natural enemies, the use of which is rapidly growing33

among farmers and is one of the core aspects of the so-called Integrated Pest34

Management (IPM) framework. In fact, the effectiveness of IPM control35

strategies is strongly related to the pest life cycles, and to when the peak36

of the individuals belonging to the most susceptible stages occurs, which, to37

be determined, requires the use of sufficiently reliable mathematical models38

[12].39

Insects, like most ectotherms, progress through their life stages with de-40

velopment speeds that are highly dependent on the environmental parame-41
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ters, temperature mainly [13]. This concept is well known by entomologists42

[8], at the point that several authors provided mathematical expressions to43

describe the development rate as a function of the temperature [14, 15, 16]44

(and references therein). The proliferation of mathematical expressions de-45

scribing the relationship between ectotherms and environmental parameters46

such as temperature laid the foundations for the so-called “physiologically-47

based models”. Conceptually a physiologically-based model can be defined as48

the union between “phenological models” and “population dynamics models”49

which means that they describe the development of ectotherm populations50

over time while considering the stage development driven by environmental51

factors. Most of the physiologically-based models are formulated using or-52

dinary [17, 18, 19, 9, 20] and partial [21, 22, 23, 24, 25, 26, 27] differential53

equations (ODEs and PDEs, respectively). Note that, although most exist-54

ing models present similarities, they are ad hoc models, each developed for55

specific insect species.56

The aim of this work is to propose a general model able to describe the57

life cycle of most insect species of agricultural interest. The proposed model58

is a generalization of several existing models presented in the literature such59

as [17, 18, 19, 9, 20]. This means that all these models can be seen as special60

embodiments of the general model presented in this paper.61

The proposed model formulation considers both a detailed description62

of the biological mechanisms of the ectotherms’ populations development63

and a description of their age structure in terms of “identifiable life stages”.64

Contrary to other species, such as mammals, insects have well defined and65

“identifiable” life stages. Accordingly, a natural way to represent their life66
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cycle in mathematical form is through a system of coupled ODEs where67

each equation describes a clear and well identifiable part of the life cycle.68

Although some PDE-based models have been presented in the literature,69

ODEs are a much more natural way to describe the development of insect70

populations, and moreover are much simpler to handle and simulate. In the71

model we propose in this work the transitions between the various stages are72

summarized in terms of development, fertility, and mortality rates which,73

as mentioned before, are commonly studied in the entomological literature74

[28, 14, 29] and that are typically a function of the temperature and, possibly,75

of other external phenomena such as food availability [30, 31, 32] and photo-76

period [33].77

We believe that the model proposed in this study provides a general78

framework that will allow the community to describe and simulate in a sys-79

tematic and standardized way many insect populations. Indeed, to develop80

a model for a given insect species, it is enough to recover the development,81

fertility, and mortality rate functions specific to a species and plug them in82

our framework to obtain a new model.83

To show the effectiveness and the flexibility of the proposed model, we84

will show that several models proposed in the literature for specific species85

can be actually seen as special cases for our model.86

Furthermore, we propose a new (and highly relevant by itself) case study87

concerning the modelling of an invasive insect pest, the spotted wing drosophila88

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). For this insect89

the general model presented in this paper has been particularized using the90

development, fertility, and mortality rate functions and parameters available91
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in the literature. The simulations are then compared with data coming from92

a three-years data collection campaign on two different fields. Part of the93

used data were already published in [34] and part is published here for the94

first time. Interestingly, the open-loop simulations of the obtained model95

faithfully predict the measured data without any adaptation of the parame-96

ters.97

2. Materials and methods98

2.1. Model overview and assumptions99

In order to describe the main mechanisms of insects’ development, the100

ectotherms’ life cycle is divided into discrete age classes, each representing101

an “identifiable” life stage. As shown in Fig. 1, we consider an egg stage, a102

variable number of larval instars, and up to two adult stages. Note that adult103

stages are divided by sex, which is a highly important feature to describe104

insects where the two sexes have different characteristics.105

To each stage it is associated a scalar state xi(t), i = e, L1, ..., Ln, Am, Af,1, Af,2106

which represents the number of individuals in the population that at time t107

are in the stage i. Similarly to what is presented in other studies in the lit-108

erature [22, 23], the flow of individuals entering and leaving each life stage is109

regulated by specific “rate functions” which are: i) specific for each species,110

and ii) relate the development, mortality and fertility rates to the environ-111

mental parameters (e.g., temperature, relative humidity, photo-period, food112

availability, etc.) and optionally to one or more states of the system.113

As we will detail in the next subsections, this naturally leads to model114

the population development as a system of ODEs.115
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Figure 1: Schematic representation of the life cycle

As already mentioned, to capture the specifics of certain insects, the116

adult stages in Fig. 1 are divided by sex and, moreover, the possibility117

that females can be in two different states (representing e.g., non-mated and118

mated or younger and older females) is taken into account. Note that, in line119

of principle, even more adult stages could be considered. However, to the120

best of our knowledge, no models using more than two adult stages have been121

presented so far in the literature nor we are aware of species for which more122

than 2 stages are necessary to describe the life of adult females. We believe123

that this two sexes - two female stages modelling is particularly important124

to represent multivoltine species, i.e., species having multiple generations in125

a single year (or in a single growing season) and allows to model, as special126

cases, a number of specific situations including:127
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- thelytokous parthenogenetic species, where populations are composed128

only by females (in this case SR = 1 and no equations describing males129

are present);130

- species where it is convenient to use the two female substages to dis-131

tinguish between non-mated and mated females. In this case β2 = 0.132

Note that it is also possible to model: i) females that mate and lay133

eggs multiple times in their life cycle (G1→2 6= 0), or ii) females that134

mate only once in their life cycle (G1→2 = 0);135

- species where it is convenient to divide the life of a female in two136

different stages with different fertility and mortality rates (in this case137

β1 6= 0 , β2 6= 0, G1→2 = 0).138

In the rest of the text we will describe the ODEs for each stage of139

the proposed model. Note that in the literature the “rate” functions be-140

tween stages are often characterized as functions of the temperature only141

[35, 36, 12, 14, 28], but there are cases where corrections to take into ac-142

count other factors (e.g., relative humidity or rain) are used [18]. In this143

work we have chosen to write them as functions of the time to highlight that,144

in line of principle, they can be functions not only of the temperature but145

also of other environmental factors which, in turn, depend on time. For the146

sake of completeness we have also to mention that some of these rates (e.g.,147

mortality rates and fertility rates) may also depend on some of the states148

of the population (to model, for instance, that overpopulation increases the149

mortality rate, see e.g., [20]). For the sake of notation compactness the po-150

tential dependence of the rate functions on the population states will not be151

8



explicitly reported in the rest of the this paper, unless explicitly needed.152

2.2. Model formulation153

Following the assumptions summarized in the above general overview, we154

hereby introduce the general equations of our model. We wish to remind the155

reader that being a general model, not all possible development paths that156

the model is able to describe make sense for all insects, but that, depending157

on the species, some of the development/fertility rates must be put to zero.158

As usually done in the ecological literature, all over this paper we assume the159

time measurement unit to be days and the rate functions to be expressed in160

# of individuals/day.161

Egg stage. We denote by xe(t) the number of individuals in the egg stage at162

time t. The variation of xe(t) over time depends on: i) the number of new163

eggs produced by adult females, which is a function of the number of adult164

females in the two stages, denoted by xAfi (t), (i = 1, 2), of the fertility rates165

βi(t), (i = 1, 2) and the development rates GAfi
(t), (i = 1, 2), ii) the number166

of eggs which moves to the first larval instar stage, given by the current167

population and the development rate function Ge(t) at time t, and iii) the168

number of eggs which leaves the stage due to mortality, which is based on the169

mortality rate function Me(t). Accordingly, the egg stage can be expressed170

by the following ODE:171

d

dt
xe(t) = GAf1

(t)β1(t)xAf1 (t) +GAf2
(t)β2(t)xAf2 −Ge(t)xe(t)−Me(t)xe(t).

(1)
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Larval stages. Larval stages are usually composed by a series of identifiable172

instars, whose number varies from species to species. Although in many173

models all larval instars are mathematically represented by a single stage174

[37, 38, 18], the proposed model allow to generalize to an arbitrary number175

of instars. In general we believe that, if the larval instars are “identifiable”,176

each of them should be treated as a single stage. Thus, contrary to previous177

works, in this work the larval stage is described by n chained equations corre-178

sponding to the number of larval instars. We denote by xLi(t) the number of179

individuals belonging to the ith larval instar at time t. The variation of xLi(t)180

over time depends on: i) the number of individuals coming from the previous181

stage, which is a function of the populations of the stage xLi−1
(xe(t) for the182

first larval instar) and the development rate function GLi−1
(t) (Ge(t) for the183

first larval instar), ii) the number of individuals that after maturation moves184

towards the next stage, which depends on the corresponding development185

rate function GLi(t) at time t, and iii) the number of individuals that leave186

the stage due to mortality, given by the current number of individuals xLi(t)187

and the mortality rate function MLi(t). Mathematically this is described by188

the ODE189

d

dt
xLi(t) = GLi−1

(t)xLi−1
(t)−GLi(t)xLi(t)−MLi(t)xLi(t), i = 1, ..., n, (2)

where L0 denotes the egg stage, i.e. L0 = e. Note that in this model the190

last larval stage (i.e., xLn(t)) typically refers either to pupa or to the last191

nymphal stage, depending on the species under study.192
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Adult males. Since the reproduction is a process that does not involve the193

preimaginal stages, for the sake of simplicity, the distinction between sexes194

is introduced only on the equations describing adults. Accordingly, when195

the individuals leave the last larval stage they are distributed between adult196

males and females in proportion to the sex ratio SR. In many species this197

parameter can be considered constant with good approximation, but in the198

case of species which change their sex ratio depending on the period of the199

year and of environmental and biological parameters (e.g., [39]), SR can be200

considered as a function of the time SR(t). As a convention, we will denote201

with SR(t) the proportion of females within the population. The proportion202

of males is the complement 1− SR(t).203

Accordingly to this discussion, let us introduce the variable xAm(t) which204

represents the number of adult males at time t. With a similar reasoning205

to equations (1) and (2), the variation on the number of adult males xAm(t)206

depends on: i) the number of individuals coming from the last larval instar,207

which is based on xLn(t), the current number of individuals at that stage, the208

corresponding development rate function GLn(t) and the sex ratio 1−SR(t),209

and ii) the number of adults males that leave the stage due to mortality which210

is based on the current number of individuals xAm(t) and the mortality rate211

function for this stage, i.e. MAm(t). Mathematically:212

d

dt
xAm(t) = (1− SR(t))GLn(t)xLn(t)−MAm(t)xAm(t). (3)

Females Stage 1. As already mentioned, in this model the adult females life-213

stage is described by up two substages. Depending on the species, these two214

substages can represent different things. For instance they can be used to215
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describe two classes of age with different reproduction/mortality rates, or can216

be used to distinguish between non-mated and mated females. The number217

of female individuals in the adult stage 1 is denoted by xAf1 . One of the218

inflows of individuals is the portion of the larvae that become females and219

enter the Female Stage 1 accordingly to the sex ratio SR(t). Another inflow220

of individuals is, for the species for which it makes sense (e.g. for species221

where females after oviposition are again fertile), the flow of individuals that222

from the Female Stage 2 moves back to the Female Stage 1. This flow is223

proportional to the transition rate G1←2(t). For species for which this is not224

the case, G1←2(t) = 0. The number of individuals leaving the class is the225

sum of the portion of individuals developing to the next stage accordingly to226

the transition rate function G1→2(t) and the ones that die accordingly to the227

mortality rate function MAf1
(t). Mathematically, the equation describing the228

Female Stage 1 is:229

d

dt
xAf1 (t) = SR(t)GLn(t)xLn(t)−G1→2(t)xAf1 (t)−MAf1

(t)xAf1 (t)+

+G1←2(t)xAf2 (t).
(4)

Female Stage 2. The variation on the number of individuals xAf2 (t) in this230

stage depends on: i) the inflow of females from Female Stage 1 accordingly231

to the transition rate function G1→2(t), ii) the number of females in Female232

Stage 2 that moves back to Female Stage 1 (where it makes sense) proportion-233

ally to the transition rate G1←2(t), iii) the number of females which leave the234

stage due to mortality, proportionally to the mortality rate function MAf2
(t).235

Mathematically:236
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d

dt
xAf2 (t) = G1→2(t)xAf1 (t)−MAf2

(t)xAf2 (t)−G1←2(t)xAf2 (t). (5)

In the case this stage is not needed for the description of a specific species,237

it is enough to set G1→2(t) = 0.238

Model summary.. The overall system can be written as the following system239

of ODEs:240



d

dt
xe(t) = GAf1

(t)β1(t)xAf1 (t) +GAf2
(t)β2(t)xAf2 (t)−Ge(t)xe(t)−Me(t)xe(t)

d

dt
xL1(t) = Ge(t)xe(t)−GL1(t)xL1(t)−ML1(t)xL1(t)

...
...

...
...

...

d

dt
xLn(t) = GLn−1(t)xLn−1(t)−GLn(t)xLn(t)−MLn(t)xLn(t)

d

dt
xAm(t) = (1− SR(t)) ·GLn(t) · xLn(t)−MAm(t)xAm(t)

d

dt
xAf1 (t) = SR(t)GLn(t)xLn(t)−G1→2(t)xAf1 (t)−MAf1

(t)xAf1 (t)+

+G1←2(t)xAf2 (t)

d

dt
xAf2 (t) = G1→2(t)xAf1 (t)−MAf2

(t)xAf2 (t)−G1←2(t)xAf2 (t)

(6)
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A list of the variables and functions with their description is reported in241

Table 1.242

243

Remark. As mentioned before, the development, mortality and fertility rates244

can be in general not only functions of environmental parameters (tempera-245

ture, humidity, food availability, etc.) but also of the system state. Common246

dependencies are: i) in the mortality and development rates to represent247

that overpopulation increases the mortality rate and slows down the devel-248

opment rates, see e.g. the logistic map [40], and ii) in the fertility rates (or249

equivalently in the rate G1→2(t) if the substage 2 describes mated females) to250

consider that the probability of a female to procreate depends in general on251

the adult males population density [41]. However it must be remarked that,252

for many species of agricultural interest, these dependencies on the state can253

be omitted. The reason is that, for what concerns the dependency of the rates254

on overpopulation, because of the abundance of food and because of control255

policies, in agriculture is extremely rare that insect populations reach “over-256

population” numbers [42]. Note that these kinds of phenomena are instead257

quite common in forestry [43, 44] and urban areas [42], where treatments are258

usually not allowed or not convenient. For what concerns the dependency259

of fertility/mating rates with the concentration of males, for most species260

this is a saturated function that above a certain male concentration becomes261

”practically” a constant [45]. Although important in line of principle, for262

most species this dependency is not well studied and is neglected as it has an263

effect only for very low population densities, or where the number of males264
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is much smaller with respect to the female population [45]. For most species265

of agricultural interest this situation does not occur frequently (usually it266

just happen at the very beginning of the growing season after overwintering)267

and is often neglected in the literature. Note that, in the case the rate func-268

tions do not depend on the state, model (6) becomes a Linear Time-Varying269

system.270

2.3. Connection with existing ODE-based physiologically-based models271

In this section we show, with no seek of completeness, how some relevant272

physiologically-based models in the existing literature can be seen as special273

cases of model (6).274

ODE model from Banks et al. [9]. This model was introduced by Banks275

et al. [9] to describe a population of Homalodisca vitripennis. The insect’s276

life cycle was divided in three macro stages, namely eggs xe, a combined277

nymphal stage xN and adults xA. The mathematical model, as presented in278

the original work, is the following:279



dxe
dt

= b(Tt−270)xA − (re(Tt−270) + de)xe

dxN
dt

= re(Tt−270)xe − (rN(Tt−270) + dN)xN

dxA
dt

= rN(Tt−270)xN − dA(Tt−270)xA

(7)

where Tt−270 is the temperature in ◦C at time t−270 days, de, dN and dA are280

the mortality rate functions, re and rN are the development rate functions,281
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and finally b(Tt−270) is the fertility rate function. Model (7) can be obtained282

as a particular case of model (6) making the following positions: i) the283

number of preimmaginal stages is n = 1, ii) there are no males represented284

by the model, namely the equation describing males in the model (6) is285

omitted, iii) the transition rates G1←2(t) and G1→2(t) are set to zero, and286

iv) the sex ratio SR(t) = 1, given that the males are not included within287

the model. In addition, only one female substage is considered (the substage288

1), accordingly the equation related to xAf2 (t) is omitted (6), β2(t) = 0 and289

β1(t) = b(Tt−270). For a summary please refer to Table 2.290

ODE model from Nance et al. [18]. The model was introduced by Nance291

et al. [18] with the aim to represent Aedes albopictus population dynamics.292

Also in this case the population was divided in three macro stages: eggs293

E, larval stages I and adult females. The latter, contrary to the model of294

Banks et al. (7) is divided in two substages: the non-mated females Ah and295

the mated females Ag. The resulting system of four ODEs is written in the296

original paper as297
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

dE

dt
=

(
1− E

kE(1 + αP )

)
γAgβAg − (µE + fE(t))E

dI

dt
= fE(t)E − (mI(t) + fI(t)) I

dAh
dt

= fI(t)I − (mA(t) + µr + fAh(t))Ah + γAgAg

dAg
dt

= fAh(t)Ah −
(
mA(t) + µr + γAg

)
Ag

(8)

Model (8) can be derived from our model (6) making the following po-298

sitions (see also Table 2): i) the equation describing egg populations in the299

model (8) can be obtained by the equation (1) considering β1(t) = 0 and300

β2(t) =
(

1− E
kE(1+αP )

)
β, since Nance et al indicate with fE(t) and µE the301

egg’s development and mortality rates, respectively; ii) the number of lar-302

val instars is n = 1; iii) there are no males in the model, hence the adult303

male state and the associated equation is omitted; iv) the transition rate304

G1←2(t) = γAg , while G1→2(t) = fAh(t); v) the sex ratio SR(t) = 1, since305

males are not represented in the model; vi) the adult mortality rate is the306

sum of two terms, namely MAf1
(t) = MAf2

(t) = mA(t) + µr(t).307

ODE model from Manetsch [17] and Vansickle [19]. The model, known by308

the name of Distributed Delay Model, represents the ectotherms life cycle309

considering a series of h age classes not corresponding directly to the identi-310

fiable life stages. Mathematically, it is presented as follows:311
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

d

dt
Q1(t) = h ·G(t) ·

[
Q0(t)−Q1(t)

(
1 +

1

h ·G(t)
· AR(t)

)]

d

dt
Q2(t) = h ·G(t) ·

[
Q1(t)−Q2(t)

(
1 +

1

h ·G(t)
· AR(t)

)]
...

...
...

d

dt
Qh(t) = h ·G(t) ·

[
Qh−1(t)−Qh(t)

(
1 +

1

h ·G(t)
· AR(t)

)]
(9)

where Qi(t) indicates the number of individuals in the i-th age class, G(t)312

is the development rate function and AR(t) is the mortality rate function.313

Model (9) can be obtained from model (6) making the following positions314

(Table 2): i) there are no males represented by the model, accordingly the315

equation (3) is omitted, ii) only larval stages are considered, with a number316

n = h, accordingly the egg (1), females of substage 1 (4) and females of317

substage 2 (5) equations are not present, iii) development and mortality318

rates are the same in all the equations, namely MLi(t) = AR(t) and GLi(t) =319

h ·G(t), respectively.320

ODE model from Otero et al. [20]. This model was introduced by Otero et321

al. [20] with the aim to simulate populations of Aedes aegypti. The model322

divides the life cycle of the species in a total of five stages: eggs E, larvae L,323

pupae P , young adult females A1, and adult females A2. Also in this case the324

model does not consider the male population. Mathematically was presented325

in the original work [20] as follows:326
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dE

dt
= egn (ovr1 · A1 + ovr2 · A2)−me · E − elr (1− γ(L))E

dL

dt
= elr (1− γ(L))E −mL · L− α · L2 − lpr · L

dP

dt
= lpr · L−mP · P − par · P

dA1

dt
= par · ef · P

2
−ma · A1 − ovr1 · A1

dA2

dt
= ovr1 · A1 −ma · A2

(10)

The model (10) can be obtained from model (6) considering the follow-327

ing positions reported also inTable 2: i) the model does not describe male328

populations, accordingly the state and the equation describing males are329

omitted; ii) the number of preimmaginal stages is n = 2, namely larva,330

L, and pupa P ; iii) the adult females are divided in two gonotrophic cy-331

cles, A1 and A2, where reproduction is allowed. The development rates are332

GAf1
(t) = ovr1 and GAf2

(t) = ovr2, respectively; iv) the average number of333

eggs laid is provided by the same oviposition rate β1(t) = β2(t) = egn; v)334

the egg development rate depends also on the population density of larvae335

L, Ge(t) = elr (1− γ(L)); vi) larvae and pupae develop with respective rates336

GL1(t) = lpr and GL2(t) = par; vii) the sex ratio is SR(t) = 1
2
ef , while337

the transition rates are G1←2(t) = 0 and G1→2(t) = ovr1, respectively; viii)338

the mortality rates are: Me(t) = me, ML1(t) = mL − αL, ML2(t) = mP ,339
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MAf1
(t) = MAf2

(t) = ma.340

341

2.4. Case study: the spotted wing drosophila Drosophila suzukii342

In this section we show that the proposed model (6) can be used to de-343

fine a new model for a pest of high agricultural interest simply by using344

development, fertility, and mortality rates available in the literature. The345

effectiveness and the open-loop predictivity of the resulting model is demon-346

strated against data collected between 2017 and 2019 in different locations.347

2.4.1. Biology and development, fertility and mortality rate functions348

The spotted wing drosophila Drosophila suzukii is a harmful pest world-349

wide. In most countries it represents an invasive species of more or less recent350

introduction. It originates from Asia, more specifically from Japan [46], and351

given its capability to adapt to different territories and climates it is now352

present in North and South America [47] and in Europe [48], where it was353

firstly detected in Spain [49] and Italy [50] about one decade ago.354

D. suzukii is characterised by a high polyphagy and by a short generation355

time, which lead to up to 15 generations in a year [49]. Soft fruit plantations356

(cherry strawberry, blueberry, apples, peaches, grapes and more in general357

Prunus and Rubus spp.) [51, 52] are the most affected crops. Contrary to358

other fruit flies, the spotted wing drosophila can lay eggs on ripening fruits359

using its particular serrated ovipositor [53].360

The damages produced are mainly due to the oviposition and to the larval361

feeding, which makes the fruits unmarketable. Larvae, more specifically, de-362

velop on the ripening fruits feeding the endocarp tissue, and possibly opening363
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access points for secondary pathogens responsible of relevant diseases, such364

as fungi and bacteria.365

This insect is characterised by a sexual dimorphism, from where its com-366

mon name spotted wing drosophila derives: males have two black spots on367

the wings [47, 54]. This feature represents an important factor for the field368

monitoring as it allows to more rapidly distinguish them from other simi-369

lar species. Unlike males, females are, at first sight, closely similar to other370

Drosophila species [49], and the differentiation requires optical instruments371

such as microscopes to analyse the ovipositor [34]. Hence, to simplify the372

monitoring activities, the data collection for this species typically focuses373

only on males.374

In this work we propose a model for the life cycle of the spotted wing375

drosophila consisting of an egg stage, three larval instars, pupa stage, and376

adult stages. Accordingly, the total number of equations in the model (6)377

is 8: one for the egg stage, four for the larval stages (pupa is considered as378

the last larval instar), and one for the adult males, non-mated females, and379

mated females, respectively.380

Due to its harmfulness, the dependence of D. suzukii development, fer-381

tility and mortality rates on temperature has been studied by several au-382

thors [55, 56, 57, 58, 59]. An exhaustive overview about the main rate func-383

tions commonly used to represent the biological features of the spotted wing384

drosophila can be found in Winkler et al. [60]. Accordingly, the literature385

provides all the information needed to build a specific model using the pro-386

posed general model (6).387

The first expression introduced is the development rate function. Rossini388
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et al. [34] tested different functions using the data provided in Tochen et389

al. [55], assessing that the Briére [61] function (11) was a very good func-390

tion to describe the relationship between D. suzukii development rate and391

environmental temperature. Mathematically, the Briére function is defined392

as:393

G(t) = a · T (t) · (T (t)− TL) (TM − T (t))
1
m , (11)

where a and m are empirical parameters, TL and TM are the lower and394

upper temperature thresholds below and above which the development of the395

species theoretically does not occur. It is worth to remind the reader that the396

development rate is defined as the inverse of the development time [62, 63,397

64, 65]. Even though the spotted wing drosophila is one of the most studied398

pests, there is not sufficient information to estimate the parameters of the399

function (11) for each life stage. Accordingly, this leads to the unavoidable400

simplification of considering only one development rate function for all the401

stages.402

An estimation of the “accidental” mortality, dependent on the tempera-403

ture, was proposed by Asplen et al. [57], who interpolated the data provided404

by Dalton et al. [58], Kinjo et al. [59] and Tochen et al. [55] with a second405

order polynomial function. However, this approximation tends to overes-406

timate the mortality in temperature ranges where the development of the407

species can still be considered near the optimum. Hence, for the purpose of408

this work we decided to use a more detailed function. In particular in this409

work we considered the fourth order polynomial function410
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M [T (t)] = a1 [T (t)]4 + b1 [T (t)]3 + c1 [T (t)]2 + d1 [T (t)] + e1. (12)

Equation (12) is commonly known as the “bathtub” function and is widely411

used to represent the dependence of the mortality on temperature [66], since412

it is able to describe the low mortality rates in the optimal temperature ranges413

and the rapid increase as the thermal thresholds of the species are reached.414

The coefficients a1, b1, c1, d1 and e1 in (12) are empirical parameters which,415

in this study, are estimated based on the rates provided in a highly detailed416

study published by Ryan et al. [53]. The Python scripts used to compute417

the parameters of (12) are publicly available at the GitHub page https:418

//github.com/Niboros91/Ectotherms-ODE-based-model. The quality of419

this polynomial fitting in representing the data from Ryan et al. [53] has420

been assessed with a χ2-test and considering the coefficient of determination421

R2. The values of these measures, and of the parameters, are reported in422

Table 3.423

Similarly to what we did for the development rate function (11), the424

same mortality rate will be used for all the stages ranging from egg to pupa.425

However, an additional consideration is necessary for all the adult stages.426

Referring to the equations (3), (4) and (5), it is possible to notice that there is427

not an explicit reference to the development rate. Accordingly, the respective428

mortality rates should take into account of the mortality due to ageing (i.e.,429

the development rate), leading to the following modifications:430
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
MAm(t) = G(t) +M [T (t)]

MAf1
(t) = G(t) +M [T (t)]

MAf2
(t) = G(t) +M [T (t)]

(13)

where M [T (t)] and G(t) are expressed by the functions (12) and (11), respec-431

tively. In other words, we are considering the mortality rate in the “terminal432

life stages” as the sum of the “natural” mortality (ageing) and the “acciden-433

tal” mortality (due, for the sake of simplicity, to temperature).434

For the temperature-dependent birth rate function β2 we consider the435

equation provided by Ryan et al. [53], who fitted their experimental data436

with the following Gaussian-like function:437

β2 [T (t)] =


α

[
γ + 1

πλ2γ+2

(
λ2 −

(
[T (t)− τ ]2 + δ2

))γ]
if Tmin < T (t) < Tmax

0 otherwise.

(14)

This birth rate function (14) expresses the number of eggs produced per438

day by the adult mated females as a function of the temperature. Tmin439

and Tmax represent the lower and upper temperature thresholds where the440

oviposition occurs, while α, γ, λ, δ and τ are empirical parameters. Since for441

the case under study the adult females substages are defined as non-mated442

and mated, we set β1 = 0.443

To the best of our knowledge, D.suzukii females can mate only once in444

their life cycle. Accordingly, the transition rate G1←2(t) = 0. For the rate445

G1→2(t) the function G1→2(t) = 1 −M [T (t)] was selected. The reason why446
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this is not a function of the number of males in the population is that, as447

already stated in the Section 2.2, in average conditions the probability that448

a female meets a male is considered constant.449

The last parameter to be defined is the sex ratio SR(t). This value has450

been reported by Emiljanowicz et al. [56] as SR = 0.5 (i.e., males:females451

= 1:1), and for the purposes of this work can be considered in first approxi-452

mation constant, even though it is known that it might in theory change in453

particular environmental conditions [67].454

For the sake of completeness, this section is concluded reporting, in Table455

3, all the numerical values of the parameters that have been included in the456

model (6) to simulate D. suzukii.457

458

2.5. Numerical scheme for equation solutions459

Since all the rate functions for the developed model depend only on the460

environmental factors and not on the states, (6) is a Linear Time-Varying461

system that can be rewritten as462

ẋ(t) = A(t)x(t) (15)

where463

25



A
(t
)
=

                  M
e
(t
)

−
G

e
(t
)

0
.
.
.

0
0

0
β
1
(t
)G

A
f
1
(t
)
+
β
2
(t
)G

A
f
2
(t
)

0
G

e
(t
)

−
G

L
1
(t
)
−
M

L
1
(t
)

0
.
.
.

0
0

0

0
G

L
1
(t
)

−
G

L
2

−
M

L
2
(t
)

0
.
.
.

0
0

0

0
.
.
.

. .
.

. .
.

0
.
.
.

.
.
.

0

0
0

0
0

(1
−
S
R
(t
))

·G
L
n
(t
)

−
M

A
m

(t
)

0
0

0
0

0
0

S
R
(t
)
·G

L
n
(t
)

0
−
M

A
f
1
(t
)
−
G

1
→

2
(t
)

G
1
←

2
(t
)

0
0

0
0

0
0

G
1
→

2
(t
)

−
G

1
←

2
(t
)
−
M

A
f
2
(t
)

                  

(16)

464

26



is the transition matrix containing all the rate functions and parameters465

introduced in the previous subsections.466

As it is common in this kind of models, the dependency on the temper-467

ature should be considered in the average sense, rather than as an instanta-468

neous temperature. Accordingly we will consider average daily temperatures.469

Because of this, assuming a sampling time Ts that is an integer fraction of470

one day, (15) is equivalent to the following discrete-time system471

x(t+ Ts) = eAtTsx(t) (17)

where At denotes the transition matrix (16) with the temperatures mea-472

sured at time t. In this study the sampling time is set equal to Ts = 1 day.473

From (17) the state of the population at the next sampling time t + Ts474

can be obtained based on the current state x(t) and the computed tran-475

sition matrix At. All the code to simulate these equations, including the476

parameters and the daily average temperatures for the different growing sea-477

sons in exam, have been encoded in a Matlab script (vers. R2018b) and478

is publicly available at the GitHub page https://github.com/Niboros91/479

Ectotherms-ODE-based-model.480

2.5.1. Field trials for model validation481

To assess the predictive capability of the presented model, the experimen-482

tal dataset of Rossini et al. [34] will be considered. [34] reports a three-year483

experiment (2017-2019) in an experimental cherry orchard located in Mon-484

telibretti (Lazio, Italy) and a two-year experiment (2018-2019) in a second485

cherry orchard located in Monterotondo (Lazio, Italy). The dataset provides486
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the dynamics of adult male flies during the cherry growing season, in the pe-487

riod April-July. In this work we complement the existing dataset with new488

unpublished data collected in the winter 2018 (from July to December 2018).489

These data are particularly precious for the validation of the model because490

they allow to simulate and validate more generations in different seasons of491

the same year.492

The experimental orchards have a surface of 2000 square meters and are493

cultivated with local mixed cherry varieties. We will denote the two experi-494

mental fields as “Montelibretti field” and “Monterotondo field”, maintaining495

the same nomenclature used in Rossini et al. [34].496

Overall, the data collection covers the period from 20 April to 28 June,497

from 19 April to 15 December and from 12 April to 18 July in the years 2017,498

2018 and 2019, respectively. Three Droso-Trap (Biobest, Waterloo Belgium)499

lured with Droskidrink (Azienda Agricola Prantil, Priò, Trento, Italy) were500

deployed in each field, and inspected weekly.501

Because of the easier distinguishability of the adult males, the population502

profile was obtained only for this sex.503

Daily temperature values were obtained by averaging 24 measurements504

in 24 hours provided by the ARSIAL agency (Regional Agency for the De-505

velopment of Innovation and Agriculture in Lazio) [68]. The most interested506

readers are referred to [34] for further information about the experimental507

trial.508

Simulations and field data can be compared following the procedure al-509

ready discussed in other works such as [69, 28, 70, 71, 72, 73] and combine the510

use of the χ2 function and of the coefficient of determination R2. Notably,511
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the χ2 function is used as indicator of the distance among the n points of512

the simulated and field populations. According to this assumption, hence,513

the lower is the value of the function, more simulations and field data are514

overlapped. However, it may happen that in case of high population densi-515

ties even a small difference between high values can provide high χ2 values.516

Accordingly, the coefficient of determination R2 is introduced to confirm the517

reliability of the estimations provided by χ2. An R2 value close to 1, hence,518

will indicate a high reliability of the simulations in representing field data.519

3. Results520

Mar 01 Mar 16 Apr 01 Apr 16 May 01 May 16 Jun 01 Jun 16 Jul 01

Time [days] 2017   

0

1

2

3

4

5

6

N
u

m
b

e
r 

o
f 

a
d

u
lt
 m

a
le

s

Montelibretti Field 2017

Adult males

Field data

Figure 2: Development of adult males: comparison between simulations and field data.

In this section we show the results of the open-loop simulation and com-521

pare them with the data available from the experimental fields.522

The first year of survey, 2017, was the year where only data from the523

Montelibretti field were available (Fig. 2). The field population in this year524
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was on the whole low, reporting three peaks on 25 April, 14 May and 15525

June, respectively. The day zero for the simulations was fixed to 15 March.526

The highest peak was reported on the 15 June. The first simulated peak527

(i.e., half of March - end of April) was slightly anticipated with respect to528

the field data. Despite the low population density assessed, the reliability of529

the model has been confirmed by the χ2 and R2 values reported in Table 4.530

The year 2018 was the most complete regarding the data availability, and531

it allows to show the long term behaviour of the model. In both fields, the532

day zero for the simulations was fixed to 15 April.533
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Figure 3: Development of adult males: comparison between simulations and field data.

In the Montelibretti field (Fig. 3) the experimental population reported534

two close peaks on 26 June and 12 July, while the simulation reported only535

a single peak centered on 2 July. In the hottest period of the season (late536

July-August) the model indicated a population density close to zero, which537

started to rise again at the end of September. Even though the early au-538
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tumnal generation of the experimental population increased slightly slower539

with respect to the simulations, both peaks were centered on the same day,540

19 October.541
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Figure 4: Development of adult males: comparison between simulations and field data.

A similar situation was assessed at the Monterotondo field (Fig. 4), where542

in the first part of the year two peaks were reported at the experimental543

population, on 5 and 19 July, while the model provided a single peak centered544

on 21 July. The behavior during the hottest period of the season was the545

same assessed at the Montelibretti field, with a more pronounced increase546

occurring at the beginning of October. In the second part of 2018 both the547

experimental and simulated populations reported a single peak, centered on548

26 October and 8 November, respectively.549

The numerical consistence of the simulations in representing the field data550

(Table 4) confirmed the overall reliability of the model for the 2018 season,551

also.552
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Figure 5: Development of the individuals within the different life stages.
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Figure 6: Development of the individuals within the different life stages.

Due to the length of the survey, this season highlights the model behavior553

better than the other ones. For this reason, two additional plots (one for each554

field) were reported in Fig. 6 and Fig. 5 with all the D. suzukii life stages of555
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the model.556
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Figure 7: Development of adult males: comparison between simulations and field data.

In the growing season 2019, the last year of survey, the day zero for the557

simulation was fixed to the 18 April. In the Montelibretti field four popu-558

lation peaks were assessed at the field trials occurring on 25 April, 11 May,559

11 and 28 June, respectively, while simulations reported only two peaks cen-560

tered on 1 May and 27 June (Fig. 7). Moreover, the 2019 Montelibretti field561

reported a population density overall higher with respect to Monterotondo562

field.563

Monterotondo field reported three peaks for the experimental popula-564

tions, occurred on 27 April, 12 June and 4 July, respectively, while simula-565

tions indicated two peaks centered on 30 April and 25 June (Fig. 8). The566

higher inhomogeneity of the experimental populations in this season is under-567

lined by the χ2-values listed in Table 4: the highest and the lowest χ2-values568

assessed in the three-year survey were, in fact, assessed on 2019. The R2
569
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Figure 8: Development of adult males: comparison between simulations and field data.

values, instead, confirm the reliability of the model in representing the field570

data also in 2019.571

572

4. Discussions and conclusion573

The case study of D. suzukii confirms the reliability of the novel model574

(6) introduced in this work in representing ectotherms’ life cycle. It is worth575

to remark that, despite the approximations and simplifications due to the576

lack of more accurate data about the biology of the spotted wing drosophila.577

Most notably, despite the fact that simulations were performed in open loop,578

the model faithfully describes the trend of all the experimental populations.579

The most interesting results are provided by the growing season 2018,580

when the field trials provided the longer availability of monitoring data to581
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compare with simulations. With a single simulation, the model was capa-582

ble to describe the spring and early-middle autumn generations, as well as583

the apparent absence of D. suzukii in the late summer. The only anomaly584

that the model was not able to predict was the apparent increase of the585

experimental population in the late autumn of 2018.586

This last fact deserves some discussion and represents an interesting start-587

ing point for future investigations. We believe that a major cause of this588

apparent increase of the counted number of males might be actually induced589

by a distortion introduced by the traps. In fact, the scarcity of food in590

these fields due to the dormancy of the great part of the wild and cultivated591

plants occurring in late-autumn/winter may elicit the adults towards the592

traps (which are food-based) to look for food. Accordingly it is reasonable593

to assume that the high number of captured insects in the late 2018 in both594

fields may be mostly provoked by an increase of efficiency of the traps due595

to food scarcity in the fields. Unfortunately, to the best of our knowledge,596

there is no evidence in the current literature to confirm this supposition, even597

though it is suggested by our empirical observations.598

These data, however, also raise the point that clearly in winter the field599

population does not go so close to the zero as predicted by the model. We600

believe this is due to the mortality rate function used, that overestimates the601

mortality as the temperature decreases too much. It is implicitly supposed602

that outside the temperature thresholds provided by the Briére function the603

development rate is zero, while the mortality rate goes to very high values604

(typically around 1 days−1 or above). This is not completely true, as showed605

also by Dalton et al. [58] and it is well known that a certain portion of606
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the population is able to survive the entire winter and restart reproduction607

as temperature raise again. We believe that further studies are needed to608

understand better the winter ecology of the D. suzukii from a quantitative609

point of view. The hope is that this would allow to predict numerically the610

spring generations on the basis of what happens in the previous autumn and611

on the meteorological features of the winter.612

Although additional future validations are necessary, and the link be-613

tween the late autumn generations and the next spring ones have still to be614

numerically established, the existence of such link is well known and docu-615

mented in the literature [74, 75, 76]. In view of this fact, the fact that both616

simulations and data show a relevant peak of insects in middle October is a617

highly relevant evidence that is worth to mention. It is documented in the618

current literature [49] that this autumn population develops on fruits fallen619

on the ground before the harvest or on secondary host plants.620

Currently, in most orchards these insect generations are not controlled by621

farmers as they occur after the harvest. However, the high peak reached by622

this population, combined with the fact that this population is likely linked623

with the amount of successful overwintering insects, suggest that it would624

be convenient to perform autumn/winter control actions in order to reduce625

potential infestations on ripening fruits in the subsequent spring. Controlling626

the last generation of D. suzukii occurring in the year, moreover, has the627

advantage to allow the use of active ingredients in a season where the cherries628

are not present in the field. Accordingly, a preventive control action can help629

to reduce the number of treatments during the fruit growing season, resulting630

in a healthier product for consumers.631
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Overall, the model showed the most efficient response in the fields with632

the higher population densities, where the fluctuations in the experimental633

population were lower. Note that even though it was assumed that the634

population peaks correspond to single generations, it may happened that in635

the case of low population densities the peaks correspond to fluctuations of636

the catches corresponding to the same generation. Given this fact, the model637

described faithfully the increase and decrease of the populations even in the638

cases where the peaks of simulated and field populations were not completely639

overlapped.640

The results presented in this work are in line with the results of Rossini et641

al. [34] where a generalized version of the Von Foerster equation (a first order642

PDE) was applied to simulate the same field dataset of the present study.643

Contrary to this work, however, different fertility and mortality rate functions644

were used. Moreover the use of the generalised Von Foerster equation made645

necessary to run a single simulation for each generation of the year. The646

advantage of a model based on a system of ODEs is both conceptual and647

practical, as stated in the introduction, and the application in the case study648

of the spotted wing drosophila preliminary confirms this claim.649

Among the models used to represent the spotted wing drosophila, also the650

Distributed Delay Model (9) was applied, in 2016, [77] to predict potential651

invasions in America, Europe and Mediterranean basin. However, one of the652

main issues in applying the DDM, is the determination of the number of age653

classes, since there is not a direct connection between the number of equations654

of the model and the number of identifiable life stages [72, 78]. In addition,655

the DDM expresses difficulties in representing a two-sexed populations, since656
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there is not a specific equation for males and females. The physiologically-657

based model that we have introduced hereby, instead, not only includes the658

DDM as special case, but has the great advantage to avoid the calibration659

necessary to determine the number of its age classes.660

The distinction between the mated and non-mated females or, more in661

general, between the female stage 1 and female stage 2 makes the representa-662

tion of the life cycle of most of the ectotherms more realistic. At first sight,663

in the case of the spotted wing drosophila, one can think to eliminate directly664

the non-mated female stage, with a consequent elimination of an equation by665

the system. Even if practically this choice can be reasonable (with a suitable666

re-tuning of the parameters), it is not from a conceptual point of view. The667

transition towards the stage of non-mated females, in fact, is necessary from668

a biological point of view, since the individuals continue to develop before be-669

coming mated. It is known from the literature [79] that after the emergence670

the adult females become mated in a time range of 1-3 days. Avoiding the671

non-mated stage in the model, hence, means to anticipate the reproduction672

of the aforementioned time range, introducing a distortion in the description673

of the population dynamics.674

The same mechanism of reproduction described by our model was pre-675

sented by Nance et al. [18] in the case of the Aedes albopictus and by Otero676

et al. [20] in the case of Aedes aegypti, as showed in Section 2.3: the adult677

females also in this case were distinguished in mated and non mated ([18]) or678

in two gonotrophic cycles ([20]), even though no reference to the modelling679

of males is made. Also in those cases the differentiation of the adult female680

stage in two substages provided a more reliable description of the life cycle,681
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as confirmed by their results. The difference of our model with respect to682

the model of Nance et al. [18] and Otero et al. [20] is the generalization683

of the system of ODEs in order to consider both the sexes and the birth684

rate. In addition, we have extended the concept of life stage to all the stages685

that are entomologically “identifiable”, without considering the preimmagi-686

nal stages as a single stage. This make the model suitable for most species687

of agricultural interest, given a clear description of the life cycle.688

An implicit assumption of our study, and of the great part of the models689

presented in literature, is that the population is closed, namely there are no690

immigration/emigration terms. Future works will extend to the case of open691

populations. Migration terms can be introduced in the specific stage equa-692

tions with slight modifications, considering that the incoming/outcoming in-693

dividuals are proportional to specific “migration rate” functions. Also here694

the advantage to have equations specific for each identifiable stage allows to695

include the biological notions into the model. It is known that not all the696

stages are allowed to move or migrate. To be more concrete, let us refer697

to the case of the spotted wing drosophila, where the egg and larval instars698

represent the great part of the life cycle. The motion in this part of the life699

cycle is limited to the plant scale. Accordingly it is reasonable to say that700

these are “static stages”. On the other hand, adults fly and spread within701

the field and towards other fields, looking for oviposition sites or individuals702

of the other sex for mating. Even though the aforementioned example is703

referred to the case study considered hereby, once the biological traits of the704

species are, known the same specific considerations can be done accordingly.705

This aspect leaves to suppose that migration terms can be considered for the706
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model spatialization: if the field is subdivided in a lattice, it is possible to707

consider a matrix of “local populations” able to migrate from neighbouring708

parcels.709

Spatial patterns of insects (and animal in general) is usually represented710

with second order PDEs, where a reaction and a diffusion term is considered711

[26, 80, 81, 82]. However, this representation does not consider the subdivi-712

sion of the life cycle in physiological age classes (age is usually considered as a713

time), nor the dependence of the development on environmental parameters.714

On the other hand, other authors [77] proposed the insertion of physiolog-715

ically based models (the DDM, more specifically) in GIS systems, without716

considering, nevertheless, the interaction between neighbouring parcels of717

the grid. The model presented in this work, once provided with migration718

terms, can potentially solve the problem of modelling the spatial diffusion of719

insect pests and ectotherms in general. In addition, the mathematical repre-720

sentation of males and females provides an advantage in the introduction of721

migration terms for all the species where the motion is allowed only for one722

of the two sexes. This is, for instance, the case of the Opheroptera brumata723

where the males can migrate actively and the females can only move passively724

(because of underdeveloped wings) [83]. Also considering the aforementioned725

example, O. brumata has a different behavior for males and females, since726

males emerge a week earlier on average with respect to females, and can mate727

multiple times. Our model, with the specific assumptions, can describe a be-728

havior of this type, also and it is our main purpose of future developments729

and studies.730

Always remaining in the context of potential applications and future de-731
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velopments, it is worth to remind that the results presented in this study732

were obtained in open loop, without using the data collected to improve the733

estimation at each data collection time. The advantage of working with sys-734

tems of ODEs, and more specifically with linear systems, is the possibility to735

use the theory of the Kalman filtering to correct the predictions on the basis736

of the present and past monitoring data. Future works will study how the737

use of Kalman filtering can improve the estimation and the prediction of a738

population behaviour.739
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Table 1: List of the variables and functions involved in the model (6)

Function Description

xe(t) Number of individuals in the egg stage at time t.

xLi(t) Number of individuals in the ith larval stage at time t.

xAm(t) Number of individuals in the adult male stage at time t.

xAf1 (t) Number of individuals in the female adult substage 1 at

time t.

xAf2 (t) Number of individuals in the female adult substage 2

at time t.

Me(t) Mortality rate of the eggs at time t.

MLi(t) Mortality rate of the ith larval instar at time t.

MAm(t) Mortality rate of adult males at time t.

MAf1
(t) Mortality rate of adult females substage 1 at time t.

MAf2
(t) Mortality rate of adult females substage 2 at time t.

β1(t) Fertility rate of the adult females substage 1 at time t.

β2(t) Fertility rate of the adult females substage 2 at time t.

Ge(t) Development rate function of the egg stage.

GLi(t) Development rate function of the ith larval stage at time t.

GAf1
(t) Development rate function of the adult females substage 1 at time t.

GAf2
(t) Development rate function of the adult females substage 2 at time t.

SR(t) Sex ratio of the species: SR(t) for females, 1− SR(t) for males.

G1→2(t) Transition rate of adult females to substage 2

from the substage 1 at time t.

G1←2(t) Transition rate of adult females to return in the substage 1

from the substage 2 at time t.
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Table 2: Comparison between the model (6) and the models (7)-(10)

Model (6) Banks et al.[9] Nance et al.[18] Manetsch [17] Otero et al. [20]

Vansickle [19]

n 1 1 h 2

xe(t) xe E Q0 E

xLi(t) xN I Qi L,P

xAm(t) Omitted Omitted Omitted Omitted

xAf1 (t) xA Ah Omitted A1

xAf2 (t) Omitted Ag Omitted A2

Me(t) de µE 0 me

MLi(t) dN mI AR(t) mL − αL, mP

MAm(t) 0 0 0 0

MAf1
(t) dA(Tt−270) mA(t) + µr 0 ma

MAf2
(t) 0 mA(t) + µr 0 ma

β1(t) b(Tt−270) 0 0 egn

β2(t) 0 (1− E
kE(1+αP )

)β 0 egn

Ge(t) re(Tt−270) fE(t) hG(t) elr(1− γ(L))

GLi(t) rN(Tt−270) fI(t) hG(t) lpr, par

GAf1
(t) 1 0 0 ovr1

GAf2
(t) 0 γAg 0 ovr2

G1→2(t) 0 fAh(t) 0 ovr1

G1←2(t) 0 γAg 0 0

SR(t) 1 1 0 1
2
ef
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Table 3: List of the parameters (± standard error) used to simulate Drosophila suzukii

populations. χ2, R2 and number of degrees of freedom are also reported in the table. The

column reference indicates the literature from which data or parameters were retrieved,

while if some information is missing a ∗ above the name of the function is indicated.

Rate Parameter ±SE χ2-value R2-value NDF (n) Reference

function

a = (1.20± 0.15) · 10−4

Briére TL = 3± 2 0.0014 0.99 3 [34, 55]

(11) TM = 30± 1 Parameters

m = 6± 3 and data

a1 = (−5± 1) · 10−5

Mortality b1 = (5± 8) · 10−4

(12) c1 = 0.1± 0.2 0.2174 0.84 10 [53]

d1 = (2.2± 0.3) · 10−5 Data

e1 = 1.3± 0.9

α = 659.06

γ = 88.53

Fertility∗ λ = 52.32 [53]

(14) δ = 6.06 – – – Parameters

τ = 22.87

Tmin = 5

Tmax = 30
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Table 4: Numerical evaluation of the goodness of the simulation in representing adult male

populations.

Growing season Experimental field χ2-value R2-value

2017 Montelibretti 9.11 0.73

Monterotondo – –

2018 Montelibretti 73.93 0.74

Monterotondo 56.61 0.67

2019 Montelibretti 971.37 0.80

Monterotondo 2.98 0.72
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