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a b s t r a c t 

Stable light bullets and clusters of them are presented in the monostable regime using the mean-field 

Lugiato–Lefever equation [Gopalakrishnan, Panajotov, Taki, and Tlidi, Phys. Rev. Lett. 126, 153902 (2021)]. 

It is shown that three-dimensional (3D) dissipative structures occur in a strongly nonlinear regime where 

modulational instability is subcritical. We provide a detailed analysis on the formation of optical 3D crys- 

tals in both the super- and sub-critical modulational instability regimes, and we highlight their link to the 

formation of light bullets in diffractive and dispersive Kerr resonators. We construct bifurcation diagrams 

associated with the formation of optical crystals in both monostable and bistable regimes. An analytical 

study has predicted the predominance of body-centered-cubic (bcc) crystals in the intracavity field over a 

large variety of other 3D solutions with less symmetry. These results have been obtained using a weakly 

nonlinear analysis but have never been checked numerically. We show numerically that indeed the most 

robust structures over other self-organized crystals are the bcc crystals. Finally, we show that light-bullets 

and clusters of them can occur also in a bistable regime. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The formation of macroscopic structures, whether ordered or 

ocalized, involve nonequilibrium exchanges of energy and/or mat- 

er, and has been widely observed in many natural systems in- 

luding fluid mechanics, optics, biology, ecology, and medicine 

1–7] . Driven nonlinear optical resonators, in particular, belong to 

his field of research and constitutes an excellent platform for re- 

earchers, to perform experimental investigations of very rich dy- 

amics, self-organization, and symmetry-breaking instabilities. In 

ne-dimensional (1D) dispersive systems such as macro- or mi- 

roresonators, temporal localized structures (LSs) have been ex- 

erimentally evidenced (see recent overview [8] in the theme 

ssue [9] ). In the frequency domain, LSs display combs. Optical 

requency combs generated by microresonators have revolution- 

zed many fields of science and technology, such as high-precision 

pectroscopy, metrology, and photonic analog-to-digital conversion 

10] . In broad area devices where diffraction cannot be ignored, 

wo-dimensional (2D) confinement of light leading to the forma- 

ion of localized structures has been theoretically predicted in [11] , 

nd experimentally realized with a possibility for applications in 
∗ Corresponding author. 
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ll-optical control of light, optical storage, and information process- 

ng [12–14] . 

When both 2D diffraction and 1D dispersion have a comparable 

nfluence during light propagation in a Kerr resonator, light bullet 

uffers collapse beam phenomena in the case of the 3D nonlinear 

chrödinger equation [15,16] . By introducing additional physical ef- 

ects, it is possible to avoid the collapse and to stabilise the LB for- 

ation. Several physical effect have been proposed in the literature 

uch as Kerr cavities [17–19] . The existence of stable LBs have been 

eported in other systems such as in wide-aperture lasers with a 

aturable absorber [20–24] , optical parametric oscillators [25–27] , 

econd harmonic generation [28,29] , passively mode-locked semi- 

onductor lasers [30] , left-handed materials [31] , twisted waveg- 

ide arrays [32] , in Swif-Hohenberg equation [25,28,33] , and in the 

omplex cubic-quintic Ginzburg–Landau equation [34] . (see recent 

eviews [35–37] ). 

In broad area Kerr resonators light bullets are generated. They 

onsist of self-organized structures that travel with the group 

elocity of the light within the cavity. Their stabilization is at- 

ributed to not only a balance between nonlinearity and diffrac- 

ion/dispersion, but also the second balance that involves pump- 

ng or injection and dissipation or losses. This combined action of 

D dispersion and 2D diffraction in a Kerr resonator has revealed 

he existence of three-dimensional (3D) dissipative structures that 

an be spontaneously generated [17,18] . Weakly nonlinear analy- 

https://doi.org/10.1016/j.chaos.2021.111364
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111364&domain=pdf
mailto:mtlidi@ulb.ac.be
https://doi.org/10.1016/j.chaos.2021.111364
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Fig. 1. Schematic setups of optical cavities filled in with Kerr media. (a) Plane parallel cavity with length l between the two mirrors M 1 and M 2 . (b) Ring cavity between 

four mirrors. The input mirros M 1 and the output mirrors M 2 have high reflectivity and are partially transmitting, while M 3 and M 4 are fully reflecting. 
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is and the relative stability analysis in the neighbourhood of 3D 

odulational instability has shown the predominance of the body- 

entered-cubic (bcc) lattice structure over other periodic structures 

uch as lamellae, face-centered-cubic, or hexagonally packed cylin- 

ers. These analytical results however have never been checked 

umerically. The purpose of this paper is two fold: Firstly, to clar- 

fy the formation of optical crystals that emerge from the modu- 

ational instability, and secondly, to study the implication of the 

ubcritical modulational instability on the formation of light bul- 

ets and clusters of them. 

For this purpose, we consider optical resonators filled with a 

err medium and coherently driven by an external injected field 

 i . The schematic setup of a Fabry-Perot or a ring cavity setups 

re shown in Fig. 1 . The transmitted part of this field interacts 

ith the nonlinear media and suffers from nonlinearity, diffrac- 

ion, chromatic dispersion, and losses. The physics of the Kerr opti- 

al resonator is best described by the paradigmatic Lugiato–Lefever 

quation (LLE) [38] . This model consists of a damped, and driven 

onlinear Schrödinger equation, with detuning which was origi- 

ally derived to describe diffractive spatial Kerr resonators. In this 

ase, 2D diffraction ensures a coupling between different points in 

he transverse plane. When diffraction is neglected by using wave- 

uided structures such as fibers, the inclusion of the chromatic dis- 

ersion in the dispersive resonators leads also to the temporal LLE 

39] . When 1D dispersion and 2D diffraction have a comparable 

nfluence, the formulation of this problem leads to the generalized 

ugiato–Lefever equation [17,18] 

∂E 

∂t 
= E i − (1 + iδ) E + 

(
∇ 

2 
⊥ + 

∂ 2 

∂τ 2 

)
E + i | E | 2 E , (1)

here E = E(x, y, t, τ ) → (κ/γ l) 1 / 2 E(x, y, t, τ ) is the normalized

lowly-varying envelope of the electric field, with κ being the to- 

al losses, γ is the nonlinear coefficient, and l is the cavity length. 

he detuning parameter δ = φ/κ is the cavity detuning parameter 

here φ is the linear phase shift accumulated by the intracavity 

eld over the cavity length l. The injected field E i → κ(κ/γ δl) 1 / 2 E i 
s real, positive and constant assuming a continuous wave (CW) 

peration. The transverse Laplacian acting on the transverse plane 

x, y ) is denoted by ∇ 

2 
⊥ , and the second-order derivative term has

 positive coefficient so that the cavity operates in the anomalous 

ispersion regime. In this case, the operator ∇ 

2 
⊥ + ∂ 2 τ = ∂ 2 x + ∂ 2 y +

 

2 
τ is the 3D Laplacian acting in the Euclidian (x, y, τ ) space. Time

is the slow time describing the evolution over successive round 

rips, and τ is the fast time in the reference frame moving with the 

roup velocity of the light within the cavity. In terms of physical 

arameters, the transverse coordinate, slow, and fast times are 

x, y ) → 

√ 

l 

2 qκ
(x, y ) , (t, τ ) → 

(
t r 

κ
t, 

√ 

β2 l 

2 κ
τ
)
, 
2 
here t r is the round trip time and β2 denotes the second- 

rder chromatic dispersion coefficient of the Kerr material. The 

LE has been derived for other systems such as liquid crystals, 

eft-handed materials [31] , and photonics coupled waveguides [40] , 

hispering-gallery-mode microresonators [41] . In early reports, the 

LE has been derived for a plasma driven by an external ra- 

iofrequency field [42] and for the condensate in the presence of 

n applied ac field [43] . Due to the richness of its broad spec- 

rum of space-time dynamical behaviors, this simple model has 

ttracted considerable theoretical and experimental investigations 

uring these last decades, as witnessed by recent overviews [8,44] . 

The paper is organized as follows. In Section 2 , we present nu- 

erical simulations of the LLE Eq. (1) showing indeed that the only 

table optical crystals in the neighbourhood of the 2D modula- 

ional instability are indeed the bcc structures. This result has been 

stablished theoretically in previous reports in the weakly nonlin- 

ar regime [17,18] but never checked numerically. We construct 

he bifurcation diagram and we compare the results obtained by 

umerical simulation with these obtained through a normal form 

nalysis. In Section 3 , we consider a bistable regime where the 

D modulational instability appears subcritical. In this case, a pin- 

ing range of parameters exists where stable light-bullets and clus- 

ers of them can be generated. We construct their bifurcation di- 

gram and we show that their domain of stability is wider than 

he monostable case studied recently. In addition, we obtain the 

tationary single light-bullet solution of the LLE Eq. (1) by using a 

pherical approximation, and we compare it with a direct numeri- 

al simulation of the governing equation in Section 3 . We conclude 

n Section 4 . 

. 3D modulational instablity and optical crystals 

In 2D settings, numerical simulations indicate that only hexag- 

nal structures are stable close to the modulational instability 

45,46] . The weakly nonlinear analysis has allowed an investigation 

n the existence and stability of different periodic solutions, such 

s hexagons and stripes. The pattern selection analysis consists of 

tudying the stability of one pattern to perturbations favoring an- 

ther pattern [45] . This analysis is referred to as the relative stabil- 

ty analysis, and has shown analytically that stripes are not stable 

18] , which we confirm numerically in this study. The same anal- 

sis has been extended to 3D settings and has revealed the pre- 

ominance of the body-centered-cubic (bcc) lattice structure over 

 variety of 3D structures in the cavity field intensity [46] . How- 

ver, numerical simulations of 3D optical crystals are missing. The 

urpose of this paper is to bridge this gap and to present numeri- 

al simulations that confirm the analytical predictions obtained by 

he weakly nonlinear analysis. 

Previous studies that have attempted to solve the 3D LLE (1) 

ave used low-order finite-difference schemes coupled with low 
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Fig. 2. Homogeneous solution for δ = 0 . 7 and δ = 2 . (a, c) Stable and unstable 3D 

modes in the plane (| E s | 2 , k 2 ) . The 3D wavenumbers corresponding to 2D diffrac- 

tion and 1D dispersion given by k 2 = k 2 ⊥ + k 2 τ , with k 2 ⊥ = k 2 x + k 2 y . (b, d) Homoge- 

neous steady states | E s | 2 as a function of the input intensity E 2 
i 

. This suffers a 3D 

modulational instability at E i = E ic . Broken lines correspond to unstable solutions. 
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rder Euler time stepping, which is indeed prone to numerical in- 

tabilities. This is mainly due to the fact that the LLE couples a stiff

iffusion term with a strongly nonlinear term, which when dis- 

retised leads to large systems of strongly nonlinear stiff ordinary 

ifferential equations (ODEs) [47,48] . In addition finite-difference 

ethods can sometimes lead to spurious solutions which are non- 

hysical [47] , which is where higher-order spectral methods come 

o the fore. In the present work, the temporal discretisation is car- 

ied out with a fourth order exponential time differencing Runge–

utta method [49,50] , and the spatial discretisation of the LLE is 

one using a Fourier spectral method with periodic boundary con- 

itions [4 8,4 9,51] . In the resulting discretised set of ODEs the lin-

ar term is diagonal, which is one of the main advantages of us- 

ng a Fourier spectral method. The nonlinear term is evaluated in 

hysical space and then transformed to Fourier space. A detailed 

nalysis on these methods can be found in these excellent books 

4 8,4 9,51] . In this study, we use a periodic domain of size [0 , 80] 3 

nits, which is found to be sufficient for the present study, discre- 

ised using 128 grid points in each direction, with a time-step of 

.01. 

In the absence of diffraction and dispersion, the homogeneous 

teady state solutions of LLE, satisfying ∇ 

2 
⊥ E s = 0 , ∂ 2 τ E s = 0 , and

 t E s = 0 , are given by E 2 
i 

= | E s | 2 [1 + (δ − | E s | 2 ) 2 ] . For δ < 

√ 

3 , the

ransmitted intensity as a function of the input intensity E 2 
i 

is 

ingle-valued, whereas bistability occurs for δ > 

√ 

3 . We consider 

mall perturbations that depend on the coordinates (x, y, t, τ ) in 

he form of plane waves exp [ i k ⊥ · r + ik τ τ + σ t] . This formulation 

eads to the following characteristic equation 

+ 2 σ + 

∂ I s 

∂ I i 
+ (k 2 ⊥ + k 2 τ )[ k 2 ⊥ + k 2 τ − 2(2 I s − δ)] = 0 (2)

here ∂ I s /∂ I i = 1 + (I s − δ)(I s − 2 δ) is the slope of the homoge-

eous steady states. These states undergo a modulational instabil- 

ty when σ = 0 , and ∂ σ/∂ k 2 = 0 with k 2 = k 2 ⊥ + k 2 τ . The thresh-

ld associated with the MI is E 2 
ic 

= 1 + (δ − 1) 2 for the injected

eld intensity. The corresponding intracavity intensity is | E c | 2 = 1 . 

t this bifurcation point, the wavelength of 3D patterns is 
 = 

 π/ 
√ 

2 − δ. When increasing the injected field above its value at 

he MI, there exists a finite band of Fourier modes k , k 2 ⊥− + k 2 τ− <

 

2 
⊥ + k 2 τ < k 2 ⊥ + + k 2 τ+ with 

 

2 
⊥± + k 2 τ± = 2 I s − δ ±

√ 

I 2 s − 1 , (3) 

hich are linearly unstable and trigger the spontaneous evolu- 

ion of the intracavity field towards a self-organized optical crys- 

al. These structures consist of regular 3D lattices of bright spots 

raveling at the group velocity of light within the cavity. 

The marginal stability curves together with the characteristic 

nput-output are shown in Fig. 2 for two different values of the 

etuning parameter δ. The number of unstable Fourier modes is 

uch larger than in the 2D setting. These modes are arbitrarily di- 

ected in the Fourier space (k x , k y , k τ ) since the system is isotropic

n the Euclidean (x, y, t, τ ) space. The maximum gain or the most 

nstable wave number is k 2 c = k 2 x + k 2 y + k 2 τ = 2 − δ. These modes

orm a sphere of radius 
√ 

2 − δ in Fourier space (k x , k y , k τ ) . There

xists an indefinite number of modes generated with arbitrary di- 

ections. However, the nonlinear interaction allows for the gener- 

tion and selection of regular crystals. Close to the MI threshold, 

hree-dimensional periodic crystals, are approximated by a linear 

uperposition of n pairs of opposite wave vectors k j lying on the 

ritical sphere of radius 
√ 

2 − δ as 

(r , t ) = E s + e 

n ∑ 

j = 1 
A j exp ( ̇ ı r · k j ) + c . c . (4)

here c.c denotes the complex conjugate, and e = (2 − δ) /δ is the 

igenvector of the corresponding Jacobian matrix associated with 
3 
he zero eigenvalue. The lamellae and rhombic structures are char- 

cterized by n = 1 and n = 2 respectively, and the 3D hexagons or

exagonally packed cylinders correspond to n = 3 with 

∑ 3 
j=1 k j = 

 . The face-centered-cubic (fcc) lattice and the quasiperiodic crys- 

als are obtained for n = 4 and n = 5 , respectively. The body-

entered-cubic (bcc) lattice corresponds to n = 6 with the reso- 

ance conditions. 

Applying a weakly nonlinear analysis that consists of seeking 

onlinear solutions by using an expansion in terms of a small pa- 

ameter which measures the distance from the Turing bifurcation, 

t has been shown in 2D settings that only triangular or hexagonal 

tructures are stable, and transition from hexagons to stripes 

s not possible for the LLE [17] . In 3D, an analytical calculation 

ased on a weakly nonlinear analysis allows one to determine 

he variety and the stability properties of the three-dimensional 

issipative crystals which are solutions of the generalized LLE 

17,18] . In these papers, the solvability condition allows for the 

erivation of amplitude equations for the critical modes associated 

ith a set of finite modes. The most simple nonlinear solutions 

re lamellae, hexagonally packed cylinders (hpc), and body- 

entered-cubic (bcc) crystals. Their stationary solutions are A lam 

= 

g/α) 1 / 2 , A 

±
hpc 

= [ −h 2 ± [ h 2 
2 

− 4 α(2 h 1 − g)] 1 / 2 ] / 2(2 h 1 − g) , A 

±
bcc 

=
 −h 2 ± [ h 2 2 − α(2 h 3 + 5 h 1 − g)] 1 / 2 ] / (2 h 3 + 5 h 1 − g) , with α = (E i −
 ic ) /E ic (2 − θ ) 2 , g = [2(41 − 30 δ)] / 9(1 − (1 − δ) 2 ) 2 , h 1 = (4 δ −
) / [1 − (1 − δ) 2 )2] , h 2 = [1 + F (E i − E ic )] / [ E ic θ ] , F = [19(δ3 − 8)

4(23 δ3 − 44 δ2 − 14)] / 2(2 − δ) 4 [1 + (2 − δ) 2 ] , h 3 = −2[1 + (1 −
) 2 ] / [1 − (1 − θ ) 2 ] 2 . The relative linear stability analysis has been

erformed analytically and leads to the conclusion that only the 

ost stable crystals are the bcc over others 3D nonlinear solutions 

17] . It has been remarked in the concluding remarks of this 

aper that these results are obtained in a perturbative way and 

herefore need further support from either numerical simulations 

r experimental evidence’ [17] . We fill this gap by confirming the 

bove pattern selection scenario by numerically integrating the 

LE equation with periodic boundary conditions. 

The results of the weakly nonlinear analysis are summarized 

n the bifurcation diagram displayed in Fig. 3 (a). The stable bcc 

tructure in Fig. 3 (b) is obtained by time-marching the LLE us- 

ng the coordinates of the associated stable wavevectors and their 

omplex conjugates in wavenumber space, which are given by 
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Fig. 3. (a) Bifurcation diagram of the three-dimensional periodic patterns obtained 

from the weakly nonlinear analysis for δ = 0 . 7 . Broken lines correspond to unsta- 

ble solutions. The black dots along the bcc branch are the maximum values of the 

bcc solutions obtained by numerical simulations of the 3D LLE Eq. (1) . (b) and (c) 

Isosurface of the intracavity field intensity corresponding to the 3D bcc solutions of 

Eq. (1) obtained from numerical simulations and its Fourier spectrum, respectively. 

Parameters are E i = 1 . 05 and δ = 0 . 7 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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 c (±1 , ±1 , 0) / 
√ 

2 , k c (±1 , 0 , ±1) / 
√ 

2 and k c (0 , ±1 , ±1) / 
√ 

2 , as the

nitial condition. The Fourier transform of the bcc structures is 

he fcc in Fourier space as shown in Fig. 3 (c). We can see that

amella appears supercritically. This is because the above weakly 

onlinear analysis has restricted the values of the detuning param- 

ter to the range δ < δsub with δsub < 41 / 33 . The hpc and the bcc

ppear subcritically. However, lamellae and hpc are unstable, and 

nly a branch of the bcc crystals emerges subcritically from the 

omogeneous solution at the bifurcation point. The bcc structures 

re unstable until a turning point given by h 2 2 = α(2 h 3 + 5 h 1 − g)

s reached from which the branch A bcc emerges and is stable as 

hown in Fig. 3 (a). To make explicit comparisons with analyti- 

al results, the numerical solutions are obtained for the parame- 

er range where the system exhibits a monostable homogeneous 

teady-state solution and a supercritical modulational instability. 

he results of numerical simulations are shown by the black dots 

long the bcc branch of solutions (cf. Fig. 3 (a)). From this compar- 

son, we can see a good agreement. To show that the bcc crystals 

re the most stable solutions of the 3D LLE, we choose an initial 

ondition consisting of a hexagonally packed cylinder as shown 

n Fig. 4 . Time evolution of the system starting with this initial 

ondition in which a small amplitude noise is added is shown in 

ig. 4 . In an earlier stage of time evolution, the cylinders break 

nto spheres that interact and the system reaches a stable bcc 

rystal. 

. Sub-critical modulational instability and localised light 

ullets 

In the previous section, we have checked numerically that close 

o the 3D modulational instability the dynamics of the 3D Kerr cav- 

ty is predominated by the body-centered-cubic crystals over a va- 

iety of 3D structures in the cavity field intensity [18] . The validity 

f this analysis is restricted to the values of the detuning parame- 

er within the range δ < δ with δ < 41 / 33 . In what follows we
sub sub 

4 
ocus on the strongly nonlinear regime where 3D modulational in- 

tability is subcritical, i.e., δ > δsub . Remarkably, besides the emer- 

ence of bcc structures, the same mechanism predicts the possi- 

le existence of stable of aperiodic distribution of dissipative light 

ullets. Recently, we have reported on the formation of LB in the 

onostable regime δsub < δ < 

√ 

3 where the transmitted intensity, 

s a function of the input intensity is single-valued [52] . The re- 

ults reported below describe the behavior predicted based on the 

D LLE Eq. 1 , in a strongly nonlinear regime where the HSS ex- 

ibits a bistable regime δ > 

√ 

3 . For this purpose, we fix the de- 

uning parameter to δ = 2 , and we let the injected field amplitude 

e the control parameter. 

Fig. 5 shows the homogeneous steady states together with the 

xtended and periodic 3D dissipative structures. Numerical simula- 

ions showed that in the strongly nonlinear regime the bcc struc- 

ures are the most stable crystals. The L 2 norm, defined below by 

q. 5 , is plotted as a function of the injected field amplitude in 

ig. 5 . In this bifurcation diagram, the homogeneous steady states 

re plotted together with the bcc crystals. The upper branch of the 

istable HSS curve is entirely unstable for the 3D modulation insta- 

ility denoted by the dashed black line in Fig. 5 . The L 2 norm asso-

iated with the bcc crystals is indicated by the black dot in Fig. 5 .

rom this figure, we see a domain indicated by P where the sys- 

em exhibits multistability. The lower homogeneous steady states 

re represented by a continuous black line, and along with the 

cc crystal, additional variety of aperiodic 3D structures can be ob- 

ained. Fig. 5 (a) shows a single stationary LB obtained numerically 

y using an initial condition consisting of a Gaussian shell centered 

n the computational domain. By placing multiple Gaussian shells 

nd by varying the distances between them, one can obtain mul- 

iple robust stationary LBs within the optical cavity. Fig. 5 shows 

wo, three and four light bullets bounded together along differ- 

nt perspectives for E i = 1 . 40 , and δ = 2 . Indeed, once robust LBs

ave been obtained for a specific parameter setting, numerically 

hey are used as the initial condition for further simulations, for 

nstance, to obtain the bifurcation diagram for varying values of 

he amplitude of the injected field E i . Since the amplitudes of LBs 

aving different numbers of 3D peaks are more or less the same, 

t is convenient to plot the dimensionless “L 2 norm”, 

 = 

∫ 
| E − E s | 2 d x d y d τ (5) 

s a function of the injected field amplitude E i . Curves a,b,c,d in 

ig. 5 (a) shows the L 2 norm associated with LBs with 1, 2, 3, and

 peaks. The single LB obtained by a direct numerical simulation 
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Fig. 5. Bifurcation diagram associated with the LBs. The continuous black line de- 

notes the stationary steady state. P indicates the pinning range. The black dots rep- 

resent the corresponding values for the bcc solution. (a) A single elemental LB and 

(b,c,d) clusters of 2, 3, and 4 LBs bounded together represented using the isosur- 

faces of the intracavity field intensity. Parameter settings: E i = 1 . 40 and δ = 2 . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 6. The real part of the steady-state solutions obtained using spherical symme- 

try considerations is shown in panels (a) and (c), with the total intensity shown 

using a black line in panels (b) and (d). The steady-state solution obtained by time- 

marching the LLE as discussed in the Letter is shown using a red line in panels (b) 

and (d) for comparison. Parameter settings are δ = 2 (a) E i = 1 . 35 (b) E i = 1 . 40 . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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f Eq. (1) , can be solved under a spherical approximation. This ap- 

roximation appears plausible since the LB is a stationary object 

ith a spherical symmetry, and has the form E(r) = E s (1 + A (r))

ith r = (x 2 + y 2 + τ 2 ) 1 / 2 and E s denotes the lower homogeneous

teady state. By replacing this ansatz in the 3D LLE Eq. (1) , and

ecomposing the intracavity field into real and imaginary parts as 

 S (r, z) = A r + ̇ ı A i (r) , and by replacing the Laplace operator in polar

oordinates ∇ 

2 
⊥ + ∂ 2 /τ 2 = ∂ 2 /∂ r 2 + (2 /r) ∂ /∂ r, we obtain four first

rder ODEs as 

dy 1 
dr 

= y 2 , 

dy 2 
dr 

= δy 1 + y 3 −
(

y 2 1 + y 2 3 

)
y 1 − 2 y 2 

r 
, 

dy 3 
dr 

= y 4 , 

dy 4 
dr 

= E i − y 1 + δy 3 −
(

y 2 1 + y 2 3 

)
y 3 − 2 y 4 

r 
. (6) 

here y 1 = A r , y 2 = 

dA r 
dr 

, y 3 = A i , y 4 = 

dA i 
dr 

. We solve these set of

quations as a boundary value problem for a finite value of A r at 

 = 0 , and A r , A → 0 as r → ∞ . 
i 

5 
Fig. 6 shows the steady-state solution obtained by solving the 

bove set of equations with the real part A r shown in panels (a, b), 

nd | E S | 2 in (b, d) in black respectively for δ = 2 . 0 , and for two val-

es of E i . The solution obtained via integrating the LLE, is shown 

n red in panels (b, d) for comparison. The steady-state solutions 

btained as a boundary value problem involves a careful choice 

n the initial amplitude for A r at r = 0 , and by imposing smooth

onditions at r = 0 as d A r /d r = d A i /d r = 0 . The present method has

een used in earlier studies, for instance in [16] where the study 

ocussed on the nonlinear Schrödinger equation. It can be noted 

n panels (b, d) that the oscillatory tail is more evident in the so- 

utions obtained numerically by time-marching the LLE. although 

hey are evident in both the solutions. Though the solutions are 

n good qualitative agreement, the absolute values of the intensity 

btained using the two methods are slightly different. The steady- 

tate solution obtained using spherical symmetry considerations by 

olving Eq. (6) as a boundary value problem has been carried out 

o qualitatively validate the results from the nonlinear simulations, 

ather than for precise quantitative comparisons. 

It should be noted that the LBs can bind themselves to each 

ther via their oscillatory tails. We focus now on the situation 

here 3D peaks are close-packed so that their overlapping oscilla- 

ory tails interact strongly. All these LBs coexist as stable solutions 

ith the bcc crystals in the range P shown in Fig. 5 (a). The LBs

re localized dissipative structures along the x , y , and τ directions. 

hey can be seen as a cluster of the elemental structure (a single 

B) with a well-defined size. Their position depends on the initial 

onditions, and the maximum of the coexisting LBs is essentially 

onstant for fixed values of the system parameters. 

As a final example of what 3D LLE Eq. (1) is able to generate,

s clusters of LBs can coexist with a single isolated LB as shown in 

ig. 7 . Depending on the initial condition, we have also been able 

o find stable LBs with a few 3D peaks packed together forming 

 cluster of six LBs bounded together coexisting with a single LB. 

see Fig. 7 ]. These two 3D localized objects are far away from each 

ther. The distance between them is determined solely by the ini- 

ial conditions used. 

. Discussion and concluding remarks 

In conclusion, we have shown that the 3D Lugiato–Lefever 

quation Eq. (1) , captures quite a large variety of three- 

imensional dissipative structures and clusters of light-bullets. In 
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Fig. 7. Clusters of LBs coexisting along with an isolated LB. Parameter settings: E i = 

1 . 40 , δ = 2 . 
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he first part, we have discussed the 3D pattern selection through 

he weakly nonlinear analysis and the relative stability analysis. 

e have checked numerically that the only possible periodic struc- 

ures are the body-centered-cubic crystals. This n-analysis is re- 

tricted to the weakly nonlinear regime where close to the 3D 

odulational instability appears super-criticaly. The second part 

as been centered rather on the formation of light-bullet and clus- 

ers of them. We have shown that there exists a range of parame- 

ers called pinning zone where the system exhibits a multistability 

ehavior. Besides the body-centered cubic crystals and the homo- 

eneous steady states, another type of localized and aperiodic 3D 

tructures have been generated for a fixed value of the system’s 

arameters. 

The multiplicity of these 3D solutions of the LLE is strongly 

eminiscent of homoclinic snaking. The full diagram can be com- 

lex, and we displayed only four branches of LBs. Indeed, in 

ne-dimensional settings, localized structures exhibit a homoclinic 

naking bifurcation which has been established by continuation al- 

orithms [53,54] . The snaking bifurcation diagram consists of two 

naking curves: one describes localized structures with 2 n peaks, 

hile the other corresponds to 2 n + 1 peaks where n is a posi-

ive integer. As one moves further along the snaking curve, the 

B becomes better localized and acquires stability at the turning 

oint where the slope becomes infinite. Outside of the pinning 

ange, the LB begins to grow by adding extra peaks symmetrically 

t either side. This growth is associated with back and forth os- 

illations across the pinning range of the control parameter. This 

omoclinic snaking has been established first in [55] . An exten- 

ion to two-dimensional settings of the homoclinic bifurcation has 

een discussed in recent overviews [56,57] . However, continuation 

lgorithms in 3D are still largely unexplored, and most of the re- 

ults are obtained by direct numerical simulations of the governing 

quation. 
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