Contents

1	Introduction							
	1.1	Brain-inspired computing	1					
	1.2	Artificial neural networks	3					
	1.3	Reservoir computing	6					
	1.4	Photonic reservoir computing	8					
	1.5	Scope and motivation of this work	11					
		1.5.1 Introducing photonic liquid RC	11					
		1.5.2 Lugiato-Lefever Equation as inspiration	11					
		1.5.3 Objectives	12					
	1.6	Formalism and tools	13					
		1.6.1 RC operation	13					
		1.6.2 RC training and testing	14					
		1.6.3 Benchmark tasks	15					
	1.7	Thesis outline	20					
າ	No	nlinoar diffusivo BC	97					
4	2.1	Introduction	21					
	$\frac{2.1}{2.2}$	Nonlinear diffusive loop model	21					
	2.2	2.2.1 System equation	20					
	<u> </u>	Implementing a reservoir computer	20					
	2.0	2.3.1 Encoding neurons in the system's spatial extent	29					
		2.3.1 Encouning neurons in the system's spatial extent	29					
	24	2.5.2 Coupling input data to the neurons	29					
	2.4	2.4.1 Steady states without diffusion and input	30					
		2.4.1 Steady states with diffusion without input	30					
		2.4.2 Steady states with diffusion and input	36					
		2.4.5 Steady states with diffusion and input	38					
	25	2.4.4 Steady states with stationary non-nonlogeneous input .	45					
	2.0	2.5.1 Santa Fo time series prediction task	40					
		2.5.1 Santa re time series prediction task	40					
	26	2.5.2 Computational capacity	40 51					
	2.0		51					
3	Diffractive photonic RC 53							
	3.1	Introduction	53					
	3.2	System description	54					
		3.2.1 Diffraction model	56					
		3.2.2 Stabilisation	57					

	3.3	Implementing a reservoir computer	58
		3.3.1 Spatially multiplexed neurons	58
		3.3.2 Efficient simulation of propagation in the cavity	58
		3.3.3 SLM modelling	60
	.	3.3.4 Output layer	61
	3.4	Reservoir computing performance	62
		3.4.1 Diffractive coupling scheme	62
		3.4.2 RC performance trends	64
	3.5	Symmetries in the diffractive neural coupling	67
		3.5.1 Visualizing the supported symmetries	67
		3.5.2 Effects of symmetries on performance	70
	3.6	Summary and conclusions	72
4	Fib	er-based RC	77
	4.1	Introduction	77
	4.2	System description	79
		4.2.1 Schematic of the system	79
		4.2.2 Physical model	81
		4.2.3 Implementing a reservoir computing	83
		4.2.4 Balanced Mach-Zehnder modulator operation	85
	4.3	Reservoir computing performance	86
	4.4	Spatially distributed nonlinearity	89
		4.4.1 Numerical performance on time series prediction	89
		4.4.2 Experimental linear and nonlinear memory capacity	91
	4.5	Exploiting dispersion for interneural coupling	96
	4.6	Summary and conclusions	98
5	RC	in unstable environments	103
	5.1	Introduction	103
	5.2	Parameter fluctuations: effects and mitigation	104
		5.2.1 Simulating phase fluctuations	105
		5.2.2 Effects of phase fluctuations	105
		5.2.3 Training with varying phase	106
		5.2.4 Phase dependent output weights	107
	5.3	Supervised feature-based weight tuning	109
		5.3.1 Estimating the phase	110
		5.3.2 Output weights depending on estimated phase	111
	5.4	Feature based output expansion	112
		5.4.1 Feature based weight tuning	112
		5.4.2 Alternative perspective on the output expansion	115
	5.5	Unsupervised feature-based output expansion	117
		5.5.1 Random features	118
		5.5.2 Memory capacity	121
		5.5.3 Nonlinear channel equalization task	123
	5.6	Summary and conclusions	126
6	Spe	ckle based telecom & computing	131
	6.1	Introduction	131

	6.2	Speckle: a useful nuisance	132
		6.2.1 Speckle characteristics in MMFs	132
		6.2.2 Speckle-based photonic processing	134
	6.3	Exploiting quasi-static speckle for SDM	135
		6.3.1 Introduction to SDM in optical telecommunication	135
		6.3.2 A novel speckle-based SDM scheme	137
		6.3.3 Input differentiation with bulk optics	140
		6.3.4 Bulk optics SDM demonstration	143
		6.3.5 Transition to fiber-based input and output coupling	149
		6.3.6 Fiber-based SDM demonstration	151
	6.4	Exploiting dynamic speckle for photonic processing	154
		6.4.1 A novel MMF-based neuromorphic computer	155
		6.4.2 ESN-based dispersive fiber model	156
		6.4.3 Demonstrating memory capacity	157
		6.4.4 Demonstrating pattern recognition	159
		6.4.5 Demonstrating dispersion compensation	160
	6.5	Summary and conclusions	165
7	Con	clusion and outlook	171
	7.1	Summary and conclusions	171
	7.2	Future perspectives	174
	7.3	Closing remarks	176
Ap	pen	dix A Integrating LLE-like equations	181
-	-		
Ap	pen	dix B Diffractive cavity simulation	183
Ap	pen	dix C Slow feature expansion	187
		die D. Gradde and a constations	100