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Disaster risk reduction is inextricably connected to sustainable 
development1,2. Between 1975 and 2015, the global popula-
tion increased from 4 to 7 billion people3 and simultaneously 

the number of people exposed to natural hazards nearly doubled4. 
The growing demand for food and resources, as well as the loss of 
soil productivity due to poor land management, have incited people 
to expand agricultural land at the expense of near-natural ecosys-
tems5–7. In hilly and mountainous areas, this agricultural expansion 
frequently increases landslide risk as population expansion can be 
associated with settlements in steeper terrain8. The environmental 
degradation processes associated with land settlement can, in turn, 
increase landslide hazard9,10. Quantifying these human–nature 
interactions is thus a prerequisite to understand the occurrence of 
landslides, as well as the risk they pose to humans. The latter is sub-
stantial, causing thousands of fatalities every year11,12.

Since the 1970s, scientists have addressed the question of ‘where’ 
landslides are likely to occur by means of susceptibility assess-
ments13. However, these analyses fall short in addressing a number 
of key questions that need to be answered to fully grasp the interac-
tions between environment, landslides and humans. For example, 
susceptibility assessments do not explicitly quantify the frequency 
and size of landslides (the hazard), nor do they consider the actual 
risk posed to livelihoods, namely the expected number of casual-
ties and economic damage14,15. Also, the vast majority of stud-
ies have considered landslide susceptibility to be static in time13. 
Recent evidence advocates for a more dynamic approach whereby 
susceptibility is allowed to vary over time, reflecting changes in the 
environment16–18.

Deforestation is one of the key environmental changes to affect 
landslide hazard10. The rapid transition from forests into culti-
vated or bare land is associated with a surge in shallow landsliding 
that can persist for more than a decade10,19,20. Many authors make 

an argument for forest conservation by supposing a link between 
deforestation-induced landsliding and a growing risk posed to soci-
ety21,22, but there is a lack of quantitative evidence to support this 
assumption23–25. Investigating these human–nature interactions is 
challenging, especially in the Global South, due to the scarcity of 
detailed landslide and forest-cover records26,27.

In this study, we investigate how landslide risk trends in the 
Kivu Rift (Fig. 1) have been affected by population pressure and 
forest-cover changes during the past six decades. The Kivu Rift is 
embedded in the western branch of the East African Rift, where 
tectonic uplift has produced mountain ranges that have been identi-
fied as a global hotspot of landslide risk28–31. The area encompasses 
Lake Kivu and parts of its three surrounding countries: Burundi, the 
Democratic Republic of the Congo (DRC) and Rwanda. Landslide 
casualties are frequent with about 50 fatalities reported annually 
between 2016 and 2018 for Rwanda alone, though the actual num-
ber is likely to be higher27,32. Tropical forest, the dominant vegetation 
along the Rift shoulders before the twentieth century, only persists 
in a few protected areas in Rwanda and Burundi33,34. Meanwhile, the 
forest in the Congo Basin was, until recently, largely preserved33,35,36. 
In recent decades, rapid population growth in the eastern DRC, 
which was also due to a large influx of Rwandan refugees in 1994, 
has probably led to an increased pressure on the remaining forest 
area3,37,38. To this day, the management and conservation of forests in 
the DRC is hampered by political instability39,40. Thus, historically, 
the timing of deforestation has varied widely between the different 
countries in the Kivu Rift33. Moreover, deforestation as a driver of 
changing landslide activity is expected to exceed the importance of 
other drivers such as climate change12,41, especially in the Kivu Rift 
where evidence for any past decadal trends in extreme precipita-
tion remains feeble42,43. The study area is therefore an ideal setting to 
investigate how population pressure affects landslide risk resulting 
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from deforestation and settlement expansion, and how this can be 
managed more sustainably.

We use historical, panchromatic aerial photographs and regional 
land-cover maps to reconstruct the annual forest dynamics in the 
Kivu Rift and we apply these data to model the multidecadal dynam-
ics of landslide susceptibility, hazard and risk. We use nearly 2,400 
photographs from 1958 to construct an orthomosaic that reveals the 
forest cover in the study area (the ‘Forest cover in 1958’ section in the 
Methods). We combine this historical forest map with more recent 
regional land-cover products (the ‘Forest cover in 1988, 2001 and 
2016’ section in the Methods) to recreate the annual forest-cover 
changes between 1958 and 2016 (the ‘Annual forest-cover changes’ 
section in the Methods). Subsequently, we use an existing land-
slide inventory to (1) develop a dynamic landslide susceptibility 
model that responds to forest-cover changes and (2) calibrate the 
relationship between susceptibility and hazard. As such, the annual 
forest data allow us to assess the evolution of the landslide hazard 
(the ‘Landslide hazard and forest-cover changes’ section in the 
Methods). Finally, the annual landslide hazard is combined with the 
distribution of the population density at different points in time to 
quantify historical trends in landslide risk (the ‘Landslide hazard 
and forest-cover changes’ section in the Methods).

the Kivu Rift in 1958
Most of the forests in Rwanda and Burundi had already been con-
verted into agricultural land by 1958, with the remaining forests 
covering ∼19% and ∼29% of the total land surface area, respectively 
(Fig. 2). Large-scale deforestation had been necessary to sustain the 
at-the-time already large population in Rwanda and Burundi (on 
average 94 inhabitants per km2 in 1958) and to remediate recurrent 
food crises44. In the eastern DRC, population pressure was much 
smaller, as the average density in the wider Kivu region was esti-
mated at only 17 inhabitants per km2 in 1958 (refs. 3,45). As a result, 
forests still covered 70% of the countryside in the DRC west of Lake 
Kivu in 1958.

In 1958, the forests in our study area were much less accessible 
than nowadays35 (the ‘Annual forest-cover changes’ section in the 
Methods). The built-up area in the entire Kivu Rift increased by a 
factor of 2.5 between 1958 and 2016, while population increased by 
a factor of 5 in the same period.3,44 Thus, population density within 
built-up land more or less doubled between 1958 and 2016 (ref. 46). 
The road network was less dynamic, with 87% of the road length 
mapped in 2016 already existing in 1958. However, the relatively 
modest expansion of the network in the DRC unlocked relatively large 
portions of previously inaccessible forest (Supplementary Fig. 1).  
The development of infrastructure is often associated with mining 
or timber concessions and is therefore expected to have accelerated 
deforestation36.

Forest and societal dynamics (1958–2016)
Forest-cover changes in the Kivu Rift are highly variable in space 
and time (Fig. 3). Between 1958 and 1988, the deforestation rates 
in the Kivu Rift generally remained low, despite a tripling of the 
population in Rwanda and Burundi and a sixfold increase in the 
DRC (Fig. 3b). The forest-cover loss became more substantial at 
the time when conflicts emerged in the region39,40,47,48 (Fig. 3a,b). 
In October 1990, a civil war erupted in Rwanda, protracting 
until August 1993 and followed by the genocide against the Tutsi 
between April and July 1994. This period of conflict initiated the 
relocation of 2 million refugees, half of which fled to the Kivu 
region in the eastern DRC47,49. Within Rwanda, displaced people 
settled in the highlands ∼10 km east of Gisenyi and Goma, clearing 
and fragmenting the Gishwati Forest to satisfy their need for food 
and fuelwood (Fig. 3c)47,48. We estimate that since 1958, more than 
80% of the Gishwati Forest has been converted to pasture land. 
Due to these developments, there was a substantial forest decline 
in Rwanda between 1988 and 2001 (Fig. 3b). During the same 
period in Burundi, where a civil war started in 1993, the forests 
shrunk at a rate of 1.6% per year (Fig. 3b). The conflict in Burundi 
ceased in 2005 (Fig. 3a). In recent decades, the governments  
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of Rwanda and Burundi have implemented various afforesta-
tion schemes50,51, leading to an average annual increase in forest  
cover (Fig. 3b).

The fallout of the conflict in Rwanda disrupted the environmen-
tal and political landscape of the eastern DRC39,40. Soon after the 
influx of Rwandan refugees in 1994, the First Congo War erupted 
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(November 1996–May 1997), almost immediately followed by the 
Second Congo War (August 1998–July 2003)52. These conflicts and 
the related issues with refugees and internally displaced people were 
a major factor in the doubling of population density from 109 to 
192 inhabitants per km2 between 1990 and 2000 (ref. 46) (Fig. 3a,b). 
Simultaneously, the international demand for gold and 3T minerals 
(tin, tantalum and tungsten), commodities abundantly present in 
the eastern DRC, grew considerably53–55. In response, mining activ-
ity in the region increased rapidly56,57. The development of mining 
sites had a low direct impact on the forest cover58, but the associ-
ated construction of roads and settlements facilitated access to the 
primary forest, making it more vulnerable to smallholder clearing 
and fuelwood extraction36. The influx of refugees and internally dis-
placed people, combined with the growing mining industry, coin-
cided with a strong forest decline during the 1990s that has persisted 
even after 2001 (Fig. 3a,b).

In all three countries deforestation happened primarily close to 
roads and along the edges of forests, which is in line with previous 
observations that the population pressure on forest resources is more 
pronounced in locations that are easily accessible35,36 (Supplementary 
Table 1). Generally, natural parks and reserves experienced less defor-
estation, showing that a protection status has a positive effect on con-
servation40. However, the effect was smaller in the DRC, especially 
in the most recent years (Supplementary Table 1). The role of slope 
gradient in deforestation is ambiguous (Supplementary Table 1):  

from 1958 to 1988, deforestation tended towards gentler slopes, 
while between 1988 and 2016 the opposite was true in Rwanda and 
Burundi. This result may be explained by the fact that households in 
Rwanda and Burundi largely relied on planted forests for their wood 
supply. Indeed, roughly half of the deforestation in Rwanda and 
Burundi occurred in ‘new’ forests that emerged on steeper terrain 
after 1958 (Supplementary Table 1). We assume that most of these 
‘new’ forests were planted given that afforestation mainly happened 
away from the forest edges (Supplementary Table 2), making natural 
regeneration highly unlikely59.

impact of forest-cover changes on landslide hazard
Our calibrated landslide susceptibility model estimates that defores-
tation increases the odds of landsliding temporarily by a factor of 10 
to 28, depending on the geomorphic context. Likewise, afforestation 
decreases the odds of landsliding by a factor of 1.5 to 4. The model 
discriminates between landslide and non-landslide locations with 
an accuracy of 89%, an improvement of 6% compared with previ-
ously developed susceptibility models for the study area where for-
est cover was considered static29.

In our baseline scenario, we assume that the cutting of new for-
ests (planted or naturally regenerated) does not incite a landslide 
response (Fig. 4b). This scenario is in line with previous research 
suggesting that the first deforestation-induced landslide wave alters 
the slope properties by depleting the most landslide-sensitive slope 
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material, thus reducing the long-term landslide occurrence regard-
less of future forest-cover changes20. If, on the contrary, new for-
ests responded in the same way to deforestation as primary forests  
(Fig. 4c), the estimated landslide hazard (affected area per km2 yr−1) 
in the DRC, Rwanda and Burundi would be, on average, 3.9%, 5.7% 
and 10.5% higher, respectively.

In all three countries, the hazard increases with time until a 
peak is reached around 2001 (Fig. 4b,c). Our model shows that the 
cumulative effects of forest-cover changes since 1958 resulted in a 
net hazard increase of 81–103% in the DRC, 10–27% in Rwanda and 
21–58% in Burundi. In all three countries, hazard initially decreases 
after 2001, a trend that is related to the reduction of deforesta-
tion rates. In the DRC, the landslide hazard rises again after 2013  
(Fig. 4b,c), due to a strong increase in net deforestation (Fig. 3b).

impact of deforestation and growing exposure on  
landslide risk
Landslides in uninhabited regions do not have the same societal 
impact as landslides in a densely populated area. We observe that, 
within the DRC, a larger proportion of the population is located 
on terrain with a high landslide hazard, especially after 1990  
(Fig. 5a). In Burundi and Rwanda, the population generally resides 
in less hazardous terrain. Moreover, no changes in exposure for 
Burundi and Rwanda are apparent between 1975 and 2015.

We recognize that we only look at one aspect of risk (the 
expected number of fatalities, Fig. 5b). Moreover, we only account 

for the exposure of the population and not its vulnerability, which is 
defined as the mortality probability of a person in case of a landslide 
encounter60. While data on vulnerability are not available for our 
study area, we can assume it to be high, given the limited economic 
development in the region (the ‘Risk based on hazard and exposure’ 
section in the Methods)60. In addition, the calculated hazard may 
be an underestimation of the real hazard due to the potential omis-
sion of landslide events in our landslide inventory. Therefore, the 
reported risk is a means to compare the relative landslide risk con-
text between different regions and/or periods, rather than to make 
an accurate estimation of the expected number of landslide victims.

The landslide risk is consistently higher in the DRC when com-
pared with its neighbouring countries (Fig. 5b). While overall risk 
displays a slightly decreasing trend in Rwanda and Burundi, the 
temporal variability is larger in the DRC. Here, the initial risk in 
1975 is high due to the concentration of a small population along 
the steep northwestern shores of Lake Kivu. Up to the 1990s a 
sharp decrease in risk is visible, but afterwards the risk peaks again, 
simultaneously with the hazard (Fig. 4b). In 2015, the risk in the 
DRC is roughly twice as large as in Rwanda and Burundi. Even 
when assuming that the removal of new forests results in the same 
landslide response as the cutting of primary forests, these relative 
differences in risk persist (Supplementary Fig. 2). Between 2000 
and 2015, forest-cover changes increased the shallow landslide 
risk in the DRC by 55%, compared with 30% and 34% in Rwanda 
and Burundi, respectively (Fig. 5b; the ‘Risk based on hazard and  

c

Risk
(annual cases
per km2)

1

1975

0

Hazard (m2 km–2 yr–1)

1990 2000 2015

>15 1.5–15
DRC0.5–1.5

Rwanda Burundi0–0.5

80% confidence
interval

Deforestation
contribution to risk

N

a b

1.0 2.00

1.75

1.50

1.25

1.00

0.75

La
nd

sl
id

e 
ris

k
(c

as
es

 p
er

 1
00

,0
00

 in
ha

bi
ta

nt
s)

0.50

0.25

0

0.5

0
DRC

Rwanda

Burundi

1.0

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n
ex

po
se

d 
to

 h
az

ar
d

0.5

0

1.0

0.5

0

1.50° S
28.90° E 29.00° E 28.90° E 29.00° E 28.90° E 29.00° E 28.90° E 29.00° E

1.60° S

1975 1990 2000
Year

2015 1975 1990 2000
Year

2015

0

Goma

10 km

Fig. 5 | Landslide exposure and risk in the Kivu Rift. a, Exposure of the population to landslide hazard. b, Landslide risk trends and the impact of 
deforestation. c, Spatially explicit landslide risk assessment in four periods south of Masisi and west of Goma. For these risk maps, we presented the risk 
in a spatially explicit way (the number of cases per km2 per year) and improved the visual representation by decreasing the raster resolution by a factor of 
10, retaining the maximal value of aggregated pixels. The average risk in this location in 2015 is 5.7 cases per 100,000 inhabitants, more than three times 
higher than the average risk in the studied part of the DRC (Supplementary Fig. 4).Source data

NAtuRE SuStAiNABiLity | www.nature.com/natsustain

http://www.nature.com/natsustain


Articles NATuRe SuSTAINABIlITy

exposure’ section in the Methods). The effects of forest-cover 
changes are not sufficient to explain the higher risk in the DRC: 
an important fraction of the Congolese population is located on  
terrains that are steeper (Supplementary Fig. 3) and thus more  
susceptible and hazardous (Fig. 5a).

Shallow landslide risk is spatially very heterogeneous, with most 
areas displaying little to no risk and a few areas that display a very 
high risk (Supplementary Fig. 4). Within the DRC, the risk hotspot 
between 2000 and 2015 is situated in the rural territories located 
south of Masisi and west of Goma (Fig. 5c). While the overall risk 
in the DRC within our study area is 1.7 cases per 100,000 inhabit-
ants per year, the average risk in this particular region is roughly 
5.7 cases per 100,000 inhabitants per year, that is, more than three 
times higher.

Discussion
We present statistical evidence that population pressure and the 
associated deforestation have led to an increased landslide risk in 
the Kivu Rift. We find that the contemporary landslide risk in the 
eastern DRC is at least twice as high as in Rwanda and Burundi. 
The large differences in overall landslide risk are only partly due to 
the poor protection of forest resources in the DRC (Fig. 5b). Even 
in a hypothetical scenario where deforestation is absent, the risk 
in the DRC would still be at least 69% higher compared with its 
neighbouring countries. The remaining risk gap with Rwanda and 
Burundi is explained by the location of Congolese households on 
more hazardous, generally steeper terrain (Supplementary Fig. 3). 
This is a result from the important population growth in the coun-
tryside of the eastern DRC, leading to a sprawl of settlements and 
the associated subsistence farming in hilly terrain (Fig. 6)37.

Besides natural population growth due to high birth rates, this 
demographic evolution can be linked to two other major factors. 
The first is conflict: the relocation of hundreds of thousands of 
Rwandan refugees in 1994 and the internal displacement of peo-
ple during and following the First and Second Congo wars37,56,61.  
The second factor is the expanding artisanal and industrial mining 

industry, fuelled by a globally increasing demand for gold and 3T 
minerals53–55. This economic opportunity has incited a large number 
of people to settle in the mineral-rich hinterland of Lake Kivu, for 
example, Masisi and its southern satellite towns55,56. The issues of 
refugees, internal displacement and mining are of less importance 
within Rwanda and Burundi62.

Our model shows a large spatial and temporal variation in land-
slide risk that is highly influenced by forest cover, demographic 
shifts and settlement patterns (Fig. 4b,c). The risk at a local level may 
be up to three times higher than the average risk at a regional scale 
(Fig. 5c). Generally, such a high local risk is related to the expan-
sion of a rural population in steep terrain at the expense of forests  
(Fig. 6). Landslide risk can in principle be reduced by setting up pol-
icies to raise awareness and understanding of the problem26, both in 
farming and mining communities. However, it is even more impor-
tant to reduce the incentives for the local population to settle in haz-
ardous areas as it influences both hazard (through deforestation) 
and risk (through increased exposure). This goal can be achieved 
by, for instance, encouraging the use of permanent agricultural land 
in low-hazard areas instead of slash and burn agriculture63,64. Such 
a policy requires investments to increase the productivity of crop-
lands63. The extraction of fuelwood (and hence deforestation) from 
primary forest can also be reduced by using more efficient stoves 
and/or by replacing fuelwood with other energy sources where this 
is feasible50. At the same time, forests planted in hazardous areas 
may not only reduce landslide risk but may also serve as a source of 
fuelwood50. All these policies would reduce the loss of primary forest 
and can facilitate reforestation, thereby initiating a forest transition.

Our analysis demonstrates the complexity of interactions 
between shallow landslide hazard and forest dynamics, indicat-
ing that a regional assessment solely based on a direct causal link-
age between net forest-cover change and landslide hazard would 
be incomplete. Thus, to assess the evolution of landslide risk, we 
show that it is important to apply a spatially explicit approach and 
to account for the legacy of environmental and societal changes 
over a multidecadal timespan. Considering our observation that 
deforestation, compared with afforestation, exerts a larger effect on 
susceptibility and thus hazard, even a net expansion of forest cover 
can be associated with an increase in landslide hazard. It is pivotal 
to account for the spatial patterns in deforestation to estimate its 
overall impact on hazard, as the absolute impact of deforestation 
depends on the preexisting susceptibility conditions. Furthermore, 
the impact of deforestation on hazard is temporary, and knowledge 
of the timing of forest-cover changes is also essential to assess the 
temporal dynamics of the landslide hazard.

While our study focused on the past, some of the drivers we 
identified (deforestation, mining activity and population expan-
sion in steep terrain; Fig. 6) are expected to be of high relevance for 
the future development of the area, especially in the highlands of 
the Kivu region in the eastern DRC55–58. Local and national govern-
ments as well as organisations that are locally active should therefore 
account for these drivers when designing disaster-risk-reduction 
programs related to the region.

Methods
Forest cover in 1958. We use the historical, panchromatic aerial photographs from 
1958 conserved at the Royal Museum for Central Africa in Belgium to capture 
the forest cover in the Kivu Rift (http://pasteca.africamuseum.be/). In a first step, 
we use photogrammetric techniques to create a georeferenced and orthorectified 
mosaic (henceforth called orthomosaic) with a spatial resolution of ∼1 m, and 
subsequently convert this panchromatic image into forest cover by means of 
object-based classification techniques. As such, we obtain a 1958 forest-cover map 
with an accuracy of 96.7% (Supplementary Methods). Our study area within the 
Kivu rift is thus limited by the extent of the orthomosaic. Moreover, interactions 
between forest cover, deforestation and landslides are only well understood in 
older lithology20. Hence, we exclude areas of younger lithology (for example, from 
volcanic origin or sediments) from our subsequent analysis. The major urban 
centres in the Kivu Rift (Goma, Bukavu and Bujumbura) are located within areas 

Mining industry

Food production

Deforestation increases 
landslide risk  

1. Population growth + drivers 
of mobility such as conflict

Afforestation 
increases 

slope stability

Roads facilitate 
deforestation  

2. Population expands 
into steep terrain

3. Population faces 
landslide risk

Fuelwood extraction

Fig. 6 | Conceptual overview of the key processes affecting shallow 
landslide risk in the Kivu Rift. The orange boxes represent the trajectory 
of the population. The blue boxes show the pull factors that attract people 
to steep terrain. The red boxes indicate human disturbances that directly 
or indirectly exacerbate the landslide risk, while the green box represents 
interactions that reduce the landslide risk.

NAtuRE SuStAiNABiLity | www.nature.com/natsustain

http://pasteca.africamuseum.be/
http://www.nature.com/natsustain


ArticlesNATuRe SuSTAINABIlITy

of younger lithology and are therefore also excluded. Our study area could thus be 
considered as the ‘countryside’ of the Kivu Rift (Fig. 2).

Forest cover in 1988, 2001 and 2016. Besides the historical photographs, we have 
access to a range of regional and continental datasets to assess historical forest 
coverage. We use the regional land-cover maps for 1988 and 2001 provided by 
Basnet and Vodacek66. These maps are provided at a 30 m resolution and were 
derived from Landsat imagery. The overall accuracy of the maps is reported to be 
at least 90% (ref. 66). We reclassified the land-cover maps into forest-cover maps 
by merging the following land-cover classes: (1) ‘forest’ and (2) ‘open/degraded 
forest’. The 2016 forest cover is extracted from the continental European Space 
Agency Climate Change Initiative (ESA-CCI) prototype land-cover model, 
provided at a 20 m resolution and derived from Sentinel observations67. Contrary 
to the regional land-cover maps from Basnet and Vodacek66, the accuracy of the 
ESA-CCI model within the Kivu Rift is unknown. We assess the accuracy of its 
‘forest’ land-cover class by validating 500 forest and 500 non-forest points. These 
points are randomly sampled in areas where Google Earth has imagery available 
for the year 2016, so that these 1,000 points can be validated for the correct time 
period. We estimate the 95% confidence interval of the accuracy by recalculating 
it 1,000 times, each time sampling 500 forest and 500 non-forest points (with 
replacement) from our validation dataset. As such, we observe an accuracy of 
86.1 ± 2.1%.

Annual forest-cover changes. To reconstruct the annual forest-cover changes 
in between our four distinct forest-cover observations (1958, 1988, 2001 and 
2016), we develop a new spatially explicit forest-dynamics model following 
the approach of He et al.68 and Bolliger et al.69. Our forest-dynamics model 
integrates four major components: (1) a deforestation likelihood model, (2) an 
afforestation likelihood model, (3) an annual deforestation rate estimate Ndef and 
(4) an annual afforestation rate estimate Naff. For every year between 1958 and 
2016 we recalculate the deforestation and afforestation likelihoods and remove/
add the Ndef/Naff forest pixels with the highest predicted likelihood. We use the 
STATSMODELS and GDAL packages in Python 3.5 (https://www.anaconda.
com/) to implement the forest-dynamics model and import and export the spatial 
data (idem for the ‘Landslide hazard and forest-cover changes’ and ‘Risk based on 
hazard and exposure’ sections).

The binary outcome of our dependent variable (deforested versus conserved) is 
modelled through logistic regression70. The basic equation of logistic regression is:

log
(

P
1 − P

)

= α +

n
∑

i=1
βi Xi, (1)

with P the likelihood of deforestation, α the intercept, Xi the ith of n predictors and 
its accompanying coefficient βi.

The dependent variable is derived from annual deforestation data that 
are obtained from global forest-cover-change data provided for the period 
2001–2017 (ref. 71). To ensure the accuracy of these training data, we only retain 
the data that can be validated with the more accurate 2001 regional and 2016 
continental forest data66,67. For example, when the global data indicate a pixel 
that has been deforested, we only retain this pixel as deforested when the 2001 
regional data indicate forest and the 2016 continental data indicate no forest. 
Note that we potentially exclude areas that are deforested and subsequently 
afforested again between 2001 and 2016. However, due to the lack of annual 
afforestation data, the identification of such locations is not possible. In total, 
we retained 91% of the non-forest area presented by the global model71, 86% of 
the forest area and 34% of the deforested areas to sample training data for the 
deforestation likelihood model. In total, we sample 3,500 deforestation points 
(equally spread over the different years) and 3,500 conservation points from 
these ‘validated’ global forest data.

Within our likelihood model we incorporate a number of predictors that were 
selected in agreement with existing deforestation modelling literature69,72,73. We 
included (1) protection status (0/1), that is, whether or not the area is part of a park 
or reserve; (2) the forest edge69,73 (0/1), indicating the presence of neighbouring 
non-forest pixels and (3) deforestation contagion72 (0/1), defined as the presence 
of neighbouring pixels that were deforested in the previous year. Moreover, we 
incorporate three predictors derived from the one arcsecond resolution Shuttle 
Radar Topography Mission digital elevation model: (4) elevation (m), (5) slope 
(degree) and (6) distance to rivers (m) with a catchment area > 105 m2 (ref. 74). We 
also use (7) distance to built-up land67 (m) and (8) distance to roads (m) (retrieved 
in OpenStreetMapR) as deforestation predictors. All spatial layers were resampled 
to the resolution of the regional forest-cover data, that is, 30 m.

The layout of built-up land and roads has changed over time; hence we 
investigate the compatibility of the 1958 and 2016 data. If there is no agreement, 
we cannot use these data to construct predictive variables for past deforestation. 
First, we identify all urban clusters in 2016, defined as an isolated and contiguous 
area consisting solely of built-up land. Second, we randomly sample 1,000 cluster 
instances and assess whether each of these built-up areas was already present in 
1958. The historical compatibility of the road data is assessed through calculating 
the proportion of roads (kilometre road in 1958 per kilometre road in 2016) that 

were already present in 1958. When reconstructing historical deforestation prior to 
2001, we exclude the roads that were not present in 1958 as a predictor variable.

For the validation of the deforestation likelihood model, we assess the area 
under the curve (AUC) of the receiver operating characteristic (ROC). The 
AUC ranges between 0 and 1 and is a measure for the discriminatory power 
of the model75. To obtain a robust estimate of the AUC, we apply 10-fold 
cross-validation29,76: the deforestation and conservation data are split randomly into 
10 subsets. Subsequently, we use nine parts to train a model that is validated with 
the remaining tenth part of the data. This procedure is iterated 10 times, each time 
using a different data subset for model validation. The average of these 10 AUC 
estimates is considered a robust model-performance statistic76.

We investigate the importance of the different deforestation predictors by 
means of McFadden’s pseudo R2 (ρ2). This statistic is a measure for the variance 
explained by the model and values between 0.2 and 0.4 generally indicate an 
excellent model fit77,78. We assess the importance of each variable by training 
and validating models using only the considered variable. We can use the ρ2 of 
such a model to estimate the proportion of variance explained by each predictor. 
We repeat this investigation for the three different time periods (1958–1988, 
1988–2001 and 2001–2016). For the periods 1958–1988 and 1988–2001 we cannot 
investigate the importance of deforestation contagion as we do not have annual 
data available to train these two deforestation models.

The annual deforestation rate Ndef is assumed to be dynamic in time 
(Supplementary Methods). It is calculated based on the assumption that the 
initial deforestation rate in all 3 countries doubles every 20 years in the period 
1958–1988, considering more general deforestation trends in the central African 
rainforest79 and the fact that the populations in Rwanda, Burundi and the DRC 
have grown at a similar rate3. Between 1988 and 2001, the estimation of Ndef in the 
DRC and Rwanda is complicated by political conflicts that induced refugee fluxes 
and internal displacement, causing an accelerated forest decline37,38. Therefore, we 
assume for these countries a tripling of the deforestation rate in 1994. Between 
2001 and 2016, we derive the deforestation rates in all three countries from the 
global forest data71.

Similarly to the deforestation pattern, we reconstruct the afforestation pattern 
by means of a logistic regression model predicting the annual afforestation 
likelihood. The outcome of this model is again a binary variable (afforested/not 
afforested). Here, we select the same independent variables as for the deforestation 
likelihood model, with the exception of the deforestation contagion factor. In total, 
7,000 training samples are generated randomly from the global forest-cover-change 
data71 (these global data were also validated with the regional and continental forest 
data66,67). An equal-shares sampling design for the afforested/not afforested data 
is applied. For every year between 1958 and 2016, we recalculate the afforestation 
likelihood and convert the Naff non-forest pixels with the highest predicted value 
into forest pixels. The number Naff is derived as the total number of afforested pixels 
between two given images divided by the number of years covered by those images. 
Hence, we assume the annual afforestation rate to be invariable in time. We assess 
the model quality and variable importance by means of the 10-fold cross-validation 
and the analysis of the univariate ρ2.

Landslide hazard and forest-cover changes. To link the annual forest-cover 
pattern to the shallow landslide hazard, we apply a two-step modelling approach 
proposed by Broeckx et al.80 where we first calculate the annual shallow landslide 
susceptibility (LSS) and subsequently link the LSS to the shallow landslide hazard. 
The landslide hazard is defined as the probability of landslide occurrence (and 
associated magnitude) within a certain time frame and area14. Hence, within this 
study, we calculate landslide hazard as the total affected area per km2 per year  
(m2 km−2 yr−1).

For the calibration of both the LSS and hazard model, we rely on (1) the 
shallow landslide inventory presented by Depicker et al.20 and Depicker et al.29 
that was compiled by visually assessing 932 Google Earth images from 2000 to 
2019, and (2) the global forest-cover-change data for the period 2000–201771. 
Both the landslide and forest data are corrected with the regional and continental 
forest-cover data66,67 (the ‘Annual forest-cover changes’ section). As such, we retain 
4,367 validated landslide instances that are used to calibrate our models. The total 
affected area of these landslides ranges from ∼10 to ∼10,000 m2 and is on average 
781 m2. Within this inventory, we observe three common landslide types, or a 
combination thereof: debris slides, avalanches and debris/mud flows81.

Landslide susceptibility assessment. We develop a LSS model to predict the absence/
presence of landslides based on logistic regression (equation (1)). Moreover, this 
LSS model responds to deforestation and afforestation so that we can examine the 
evolution of the shallow LSS by linking it to the (reconstructed) annual changes 
in forest cover (the ‘Annual forest-cover changes’ section). However, the effect 
of forest cover and deforestation in this region is shown to be dependent on 
landscape rejuvenation20. Active rifting and the associated tectonic uplift induce 
the upstream migration of knickpoints, that is, a sudden and steep increase in 
the river profile (often a waterfall) that forms the boundary between a ‘younger’ 
downstream rejuvenated landscape and an ‘older’ upstream relict landscape. These 
two types of landscape within the Kivu Rift display a different response to forest 
coverage and deforestation as a result of differences in seismicity, regolith thickness 
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and climate20. We therefore include a land-cover variable in our LSS model that 
integrates the interaction between land cover and landscape rejuvenation. In 
total, we distinguish five land-cover classes: (1) forest inside the rejuvenated 
areas, (2) forest in relict areas, (3) non-forest in rejuvenated areas, (4) non-forest 
in relict areas and (5) areas deforested less than 15 years ago (the duration of the 
deforestation-induced landslide wave)20.

In 7.2% of the study area, the situation arises that non-forest land is afforested 
and afterwards deforested again. We do not know whether the landslide response 
of ‘new’ forests is the same as for primary forest. Hence, we run the hazard 
simulations twice, one time assuming that cutting new forests causes a landslide 
wave similar to that caused by the cutting of primary forest, and a second time 
assuming that the removal of new forests does not cause a deforestation-induced 
landslide wave. The landslide literature favours the latter scenario10,20. Generally, a 
new landslide equilibrium will be established within ∼15 years after deforestation20. 
This implies that if forest is allowed to re-establish >15 years after initial 
deforestation and is consequently removed, the landscape simply returns to the 
equilibrium situation reached after the first deforestation event and no extra 
landslides are to be expected.

Beside the categorical land-cover variable, we use six additional predictor 
variables within our LSS analysis, as a previous study in the region has confirmed 
that these variables are of intermediate to high importance for predicting LSS29: 
slope, planar curvature, profile curvature, distance to drainage and the east 
exposure. Lastly, we include imagery density, that is, number of available images in 
Google Earth for a certain location, as it may affect the total number of instances 
observed in our shallow landslide inventory20. By taking into account imagery 
density, we avoid a bias in the LSS calculations, as a higher imagery density will 
allow for better landslide detection and thus a higher LSS20. The imagery density 
data are retrieved from Depicker et al.20. To remediate the imagery density bias, 
we first calibrate the LSS model with the original (biased) imagery density data 
and subsequently reconstruct the annual LSS from 1958 to 2016 by assuming an 
equal, fixed density of five images (the average imagery density) for the entire 
study area. The spatial pattern of extreme rainfall (which is the main trigger for the 
observed landslides) is not included in the susceptibility analysis, as previous LSS 
assessments in the region showed a very weak effect29.

For the calibration and validation of the LSS model we use our 4,367 landslide 
observation points in combination with 11,580 randomly sampled non-landslide 
points. The number of non-landslide points is large enough to ensure a proper 
representation of the different land-cover classes. We assess the model quality by 
means of the 10-fold cross-validation. We use the susceptibility model to make 
a first estimation of the impact of deforestation and afforestation on landslide 
occurrence by calculating the odds ratios for the different dummy variables that 
represent the forest cover.29

Hazard as a function of susceptibility. We link the LSS to the landslide hazard by 
assessing the average hazard in different subregions that are delineated according 
to their susceptibility. The first subregion encompasses all areas with an LSS value 
between 0 and 0.1, the second subregion all areas with an LSS value between 0.1 
and 0.2, and so on. For each subregion and its associated landslides, we apply the 
following equation, proposed by Depicker et al.20:

hazardi =
1
Ai

ni
∑

j=1

ajtot
rj

, (2)

whereby hazardi is the average landslide hazard in the ith of our 10 subregions, Ai 
the total surface area (km2) of subregion i, ajtot the total affected area (m2) of the jth 
of ni observed landslides (with ni the number of landslides in subregion i) and rj 
the Google Earth imagery range (years) observed in landslide j. The imagery range 
data are retrieved from the work of Depicker et al.20 whereby the range is defined 
as the age difference between the oldest and newest image available at the landslide 
location. Finally, we couple these 10 hazard observations to the 10 median LSS 
values of the subregions by means of an adjusted logistic regression (Fig. 4a), which 
we found to yield a better fit than linear models:

hazard =
Hmax

1 + e−(αh+βhLSS)
, (3)

where Hmax is the maximum of the 10 observed hazard values in the subregions, αh 
is the intercept and βh is the coefficient for variable LSS.

Using equation (3), we convert the annual LSS (with continuous values between 
0 and 1) into an annual landslide hazard map (continuous values between 0 and 
Hmax). To estimate the proportion of hazard that is attributed to deforestation, we 
compare the current results with a benchmark scenario in which no deforestation 
has taken place since 1958.

Uncertainty of hazard and susceptibility. The susceptibility model and 
susceptibility–hazard relationship are only calibrated for contemporary data 
between 2001 and 2016. Nevertheless, we assume these models are applicable 
to historical landscapes prior to the year 2000. This assumption is supported by 
the notion that the conditions governing susceptibility, with the exception of 

forest cover, have remained stable within our observation period (slope, aspect, 
curvature and distance to rivers). Furthermore, we cannot fully characterize the 
deforestation-induced landslide wave (lasting approximately 15 years20) between 
1958 and 1973, given that no forest data prior to 1958 are available.

For the susceptibility and hazard calculations, we assume that the historical 
changes are driven by deforestation and afforestation and that they are not 
influenced by other environmental changes such as changes in rainfall patterns. 
This approach is justified as human disturbances (such as forest-cover changes), 
when compared with climatic variations, are expected to have a larger impact on 
changes in landslide hazard at the decadal timescale12,41. Moreover, contrary to the 
widespread forest-cover changes in the region, evidence for any decadal trends in 
extreme rainfall events (positive or negative) is weak.42,43

The uncertainty of the final landslide hazard estimates will depend, to a large 
extent, on the uncertainty associated with the LSS model that is used to translate 
forest cover into landslide hazard. We apply Efron’s bootstrap82 to budget the 
landslide hazard uncertainty arising from the LSS model: the LSS and hazard 
calculations are iterated 200 times, each time recalibrating the LSS model (as well 
as the hazard = f(LSS) relationship) with a training dataset that is a random sample 
(with replacement) from the original training dataset and has an equal size. These 
200 results are expected to fall between the lower and upper limits of the 80% 
confidence interval.82

Risk based on hazard and exposure. We define landslide risk as the expected 
number of fatalities, calculated as the combination of the hazard (where and how 
often do landslides occur?), the exposure (who could encounter a landslide?) and 
the vulnerability of the people (the mortality probability when a person encounters 
a landslide)15. However, no quantitative information on vulnerability is available 
for the Kivu Rift. Moreover, a vulnerability assessment is hampered by data and 
fieldwork constraints. We assume that the vulnerability in the Kivu Rift is high due 
to poor housing quality, the absence of early warning systems and a lack of mobility 
during nighttime and/or heavy rain (the dominant landslide trigger in the study 
area60). Moreover, we consistently underestimate the hazard (and thus the risk), 
as hazard is directly derived from a landslide inventory that could potentially be 
incomplete (the ‘Landslide hazard and forest-cover changes’ section). The potential 
incompleteness stems from biases in the available Google Earth imagery used to 
detect those landslides20 and/or the difficulty of visually assessing landslides that 
have a small total affected area.

Assuming that there are no large regional differences in vulnerability and 
considering that our objective is to compare the relative risk between regions 
rather than obtaining accurate estimates of the expected number of fatalities, we 
adopt a fixed vulnerability factor of 1. Hence, we approximate risk as the product 
of hazard and exposure. Moreover, risk is expressed as the expected number of 
people affected per 100,000 inhabitants per year (the incidence). It is calculated by 
multiplying the landslide hazard (the ‘Landslide hazard and forest-cover changes’ 
section) with population density4,31 and subsequently dividing this number by the 
entire population.

The population density is assessed through the spatially explicit Global 
Human Settlement Layer46, which is provided for four years: 1975, 1990, 2000 
and 2015. The data are available at: http://ghsl.jrc.ec.europa.eu/. The gridded data 
are the result of detecting the built-up land in satellite imagery and subsequently 
calculating the average population density per built-up pixel (at a 30 m resolution) 
by means of regional/national census data. Although these data overall give a 
realistic image of the population density at different times, they have some visible 
artefacts, especially in the 1975 data, such as large surfaces (typically administrative 
regions) with homogeneous population density.

To assess the contribution of deforestation to risk in a certain year, we compare 
the estimated risk with a scenario with no forest-cover changes since 1958. More 
precisely, this benchmark risk is calculated by multiplying the population density 
in that year with the hazard calculated for 1958.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The 1958 forest-cover data can be accessed at: https://doi.org/10.5281/
zenodo.5027117. The 1958 panchromatic orthomosaics will become available 
at the end of the PAStECA project in March 2022 (http://pasteca.africamuseum.
be/data). The landslide inventory is provided by Depicker et al.20 (https://doi.
org/10.5194/esurf-9-445-2021) and can be downloaded at: https://doi.org/10.5281/
zenodo.5027004. The land-cover data for 1988 and 2001 are provided by Basnet 
and Vodacek66 (https://doi.org/10.3390/rs70606683). The 2016 land-cover data 
are provided by ESA and can be accessed at: http://2016africalandcover20m.
esrin.esa.int/. The population-density data are derived from the Global Human 
Settlement Layer that can be accessed at: http://ghsl.jrc.ec.europa.eu/. The 
Shuttle Radar Topography Mission digital elevation model is provided by the 
US Geological Survey (https://earthexplorer.usgs.gov/). The seismic data (Peak 
Ground Acceleration) are provided by Delvaux et al.83 (https://doi.org/10.1016/j.
jafrearsci.2016.10.004) upon contacting the corresponding author. The road 
data can be downloaded from OpenStreetMap (https://www.openstreetmap.
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org/#map=7/50.510/4.475). The Global Forest Change 2000–2019 data from 
Hansen et al.71 can be found at: https://data.globalforestwatch.org/documents/14
228e6347c44f5691572169e9e107ad/explore. The lithology data are retrieved from 
the work of Depicker et al.29 (https://doi.org/10.1016/j.geomorph.2019.106886) 
and can be requested from the author. The raw data used for Figs. 3–5 in this work 
can be accessed at: https://doi.org/10.6084/m9.figshare.14838825. Source data are 
provided with this paper.

Code availability
The Python code used to derive the forest cover from aerial photographs and 
reconstruct the forest-cover changes can be requested from the corresponding 
authors.
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