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We characterize the relationship between the distributions of two variables linked by a
structural model. We then show that, in models of heterogeneous firms in monopolistic com-
petition, this relationship implies a new demand function that we call “CREMR” (Constant
Revenue Elasticity of Marginal Revenue). This demand function is the only one that is con-
sistent with productivity and sales distributions having the same form (whether Pareto, log-
normal, or Fréchet) in the cross section, and it is necessary and sufficient for Gibrat’s Law to
hold over time. Among the applications we consider, we use our methodology to characterize
misallocation across firms; we derive the distribution of markups implied by any assumptions
on demand and productivity; and we show empirically that CREMR-based markup distribu-
tions provide an excellent parsimonious fit to Indian firm-level data, which in turn allows us
to calculate the proportion of firms that are of sub-optimal size in the market equilibrium.

KEYWORDS: CREMR Demands, Gibrat’s Law, Heterogeneous Firms, Lognormal versus
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1. INTRODUCTION

THE HYPOTHESIS OF A REPRESENTATIVE AGENT has provided a useful starting point in many
fields of economics. However, sooner or later, both intellectual curiosity and the exigencies of
matching empirical evidence make it desirable to take account of agent heterogeneity. In many
cases, this involves constructing models with three components. First is a distribution of agent
characteristics, usually assumed exogenous; second is a model of individual agent behavior;
and third, implied by the first two, is a predicted distribution of outcomes. Models of this kind
are now pervasive in many research areas, including income distribution, optimal income tax-
ation, macroeconomics, and urban economics.1 In the field of international trade they have
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rapidly become the dominant paradigm, since the increasing availability of firm-level export
data from the mid-1990s onwards undermined the credibility of representative-firm models,
and stimulated new theoretical developments. A key contribution was Melitz (2003), who built
on Hopenhayn (1992) to derive an equilibrium model of monopolistic competition with hetero-
geneous firms. In this setting, the model structure combines assumptions about the distribution
of firm productivity and about the form of demand that firms face, and from these derives pre-
dictions about the distribution of firm sales. Such models have provided a fertile laboratory for
studying a wide range of problems relating to the process of globalization. However, with a
few exceptions to be discussed below, we know little about how different assumptions about
the distributions of two variables and the structural model that links them are related to each
other.

In this paper we first provide a complete characterization of this problem in the general case.
This reveals how a structural model constrains the choice of assumptions and the outcomes
that are consistent with them. We then show that, in models of heterogeneous firms in mo-
nopolistic competition, this implies a new demand function that we call “CREMR” (Constant
Revenue Elasticity of Marginal Revenue). This demand function is the only one that is consis-
tent with productivity and sales distributions having the same form (whether Pareto, lognormal,
or Fréchet) in the cross section; and, with additive separability, it is necessary and sufficient for
Gibrat’s Law, a central result in the dynamics of firm size and industry structure, which pre-
dicts that the growth rate of firm sales is independent of firm size. Among the applications we
consider, we use our methodology to characterize misallocation across firms; we derive the
distribution of markups implied by any assumptions on demand and productivity; and we show
empirically that CREMR-based markup distributions provide an excellent parsimonious fit to
Indian firm-level data, which in turn allows us to calculate the proportion of firms that are of
sub-optimal size in the market equilibrium.

Existing results in the theoretical literature on heterogeneous firms highlight important spe-
cial cases in models of monopolistic competition, but give little guidance as to whether the
insights can be generalized. Helpman et al. (2004) and Chaney (2008) considered what can be
called the canonical model in this field, where firm productivities have a Pareto distribution
and demands are CES. They showed that in this case the implied distribution of sales is also
Pareto. Head et al. (2014) derived a second result with a similar flavor: lognormal productivi-
ties plus CES demands imply a lognormal distribution of firm sales. Finally, the literature on
Gibrat’s Law has shown that the rate of growth of a firm’s sales is independent of its size, fol-
lowing both idiosyncratic and industry-wide productivity shocks in monopolistic competition
with CES demands. (See Luttmer (2007, 2011), Arkolakis (2010a,b, 2016).)

All these results give sufficient conditions for the distribution of sales or sales growth to take
a particular form. This leaves open the question of whether there are necessary conditions that
can be stated, and in particular whether any demand functions other than CES are consistent
with results of this kind. CES demands have great analytic convenience: their tractability has
made it possible to extend CES-based models to incorporate various real-world features of the
global economy, such as outsourcing, multi-product firms, and global value chains.2 However,
in a monopolistically competitive setting they also have strong counterfactual implications. In
particular, they imply that markups are constant across space and time: in a cross section, all
firms should have the same markup in all markets; while, in time series, exogenous shocks
such as globalization cannot affect markups and so competition effects will never be observed.
Trade economists have been uneasy with these stark predictions for some time, and a number
of contributions has explored the implications of relaxing the CES assumption, though to date

2See Antràs and Helpman (2004), Bernard et al. (2011), and Antràs and Chor (2013), respectively.



SALES AND MARKUP DISPERSION: THEORY AND EMPIRICS 3

without considering their implications for sales and markup distributions.3 Only recently has it
become possible to confront the predictions of CES-based models with data, following the de-
velopment of techniques for measuring markups that do not impose assumptions about market
structure or the functional form of demand. In particular, De Loecker et al. (2016) show that the
distribution of markups from a sample of Indian firms is very far from being concentrated at a
single value. (We discuss their data in more detail in Section 6.1 below.) A possible explanation
is that such markup heterogeneity arises from aggregation across sectors with different elastic-
ities of substitution. However, Lamorgese et al. (2014), who use data on Chilean firms, show
that markup heterogeneity persists when the data are disaggregated by sector. Taken together,
this evidence suggests that markup distributions are far from the Dirac form implied by CES
demands, but the literature to date has paid little attention to the form of these distributions
implied by alternative assumptions and how well they match the data.

In addition to our substantive results, we make two technical contributions. First, we intro-
duce the “Generalized Power Function” class of probability distributions. This nests many two-
parameter distributions, including Pareto, lognormal and Fréchet, and allows compact proofs
that apply to all these cases. Second, we introduce the property of “h-reflection” of two distri-
butions: the distribution of z is a h-reflection of that of y if the distributions of y and h(z) are
members of the same family of distributions, where h(z) is a monotonically increasing func-
tion. This provides a unifying principle for a range of new results relating the distributions of
firm characteristics and the economic model that links them.

The rest of the paper proceeds as follows. Section 2 states a general proposition which char-
acterizes the form that distributions of agent characteristics and models of agent behavior must
take if they are to be mutually consistent. Section 3 applies this result in the context of hetero-
geneous firms in monopolistic competition to characterize the links between the distributions of
firm productivity and firm sales, and the structure of demand. This Section highlights our new
CREMR demand function, and explores its properties. Sections 4 and 5 apply these results to
distributions of output (in both the market equilibrium and the social optimum), and markups,
respectively. Section 6 provides a quantitative illustration of various theoretical results from
previous sections. First, we take to data a selection of markup distributions implied by differ-
ent assumptions about demand and the distribution of firm productivities. Out of the selected
alternatives, CREMR demands perform the best. We then use this best-fitting specification to
quantify the degree of misallocation in a novel way. Finally, Section 7 concludes, while the
Appendix and Online Appendix give proofs of propositions as well as further technical details
and robustness checks.

2. CHARACTERIZING LINKS BETWEEN DISTRIBUTIONS

The first main result of the paper links the distributions of two agent characteristics to a
general specification of the relationship between them: until Section 3 we make no assump-
tions about whether either characteristic is exogenous or endogenous, nor about the underlying
structural model that relates them. We assume a hypothetical dataset of a continuum of agents,
which reports for each agent i its characteristics y(i) and z(i), both of which are monotonically
increasing functions of i.4 Formally:

3The implications of demand functions other than CES have been considered by Melitz and Ottaviano (2008),
Zhelobodko et al. (2012), Fabinger and Weyl (2012), Bertoletti and Epifani (2014), Simonovska (2015), Feenstra
and Weinstein (2017), Mrázová and Neary (2017), Parenti et al. (2017), Arkolakis et al. (2018), and Feenstra (2018),
among others.

4Conditional on monotonicity, the assumption that y(i) and z(i) are increasing in i is without loss of generality.
For example, if y(i) is increasing and z(i) is decreasing, Proposition 1 can easily be reformulated using the survival
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ASSUMPTION 1: {i, y(i), z(i)} ∈Ω×R2
+, where Ω is the set of agents, with both y(i) and

z(i) monotonically increasing functions of i.

Examples of y(i) and z(i) in models of heterogeneous firms include productivity, sales and
markups.

In addition, we assume that the distributions of the two agent characteristics share a common
parametric structure:

DEFINITION 1: A family of probability distributions is a member of the “Generalized Power
Function” (GPF) class of distributions if there exists a continuously differentiable function
H(·) such that the cumulative distribution function of every member of the family can be
written as:

G (y;θ) =H

(
θ0 +

θ1

θ2

yθ2
)

(1)

where each member of the family corresponds to a particular value of the vector θ ≡
{θ0, θ1, θ2}.

The function H(·) is completely general, other than exhibiting the minimal requirements of a
probability distribution: G(y;θ) = 0 and G(y;θ) = 1, where [y, y] is the support of G; and, to
be consistent with a strictly positive density function, Gy > 0, H(·) must satisfy the restriction:
θ1H

′ > 0. As we show in Appendix A.1, the great convenience of the GPF class given by (1)
is that it nests many of the most widely-used families of distributions in applied economics,
including Pareto, lognormal, uniform, Fréchet, Weibull, and Gumbel, as well as their truncated
versions.

Given Assumption 1 and Definition 1, we can now state our main result:

PROPOSITION 1: Assume Assumption 1 holds. Then any two of the following imply the third:
(A) The distribution of y is a member of the GPF class:

G(y;θ) =H

(
θ0 +

θ1

θ2

yθ2
)
, Gy > 0

(B) The distribution of a monotonically increasing function of z, h(z), h′ > 0, is a member of
the same family of distributions as that of y but with different values of θ1 and θ2:

F (z;θ′) =G (h(z);θ′) =H

(
θ0 +

θ′1
θ′2
h(z)θ

′
2

)
, Fz > 0

(C) y is a power function of h(z): y = y0h(z)E;
where the parameters are related as follows:

(i) (A) and (C) imply (B) with θ′1 = Eθ1y
θ2
0 and θ′2 = Eθ2; similarly, (B) and (C) imply (A)

with θ1 =E−1θ′1y
−E−1θ′2
0 and θ2 =E−1θ′2.

function of z. By contrast, the assumption that they are monotonic in i is an important restriction, though one that
is satisfied by most firm characteristics in models with uni-dimensional firm heterogeneity, on which we focus here.
(For models with multi-dimensional heterogeneity, see Hallak and Sivadasan (2013), Holmes and Stevens (2014),
and Harrigan and Reshef (2015).) Note that we require that monotonicity hold in theoretical models only: measured
firm characteristics need not be monotonically related in the data.
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(ii) (A) and (B) imply (C) with y0 =
(
θ2
θ1

θ′1
θ′2

) 1
θ2 and E =

θ′2
θ2

.

The proof is in Appendix A.2. Comparing the distributions of y and h(z) in (A) and (B), they
are members of the same family of the GPF class, except that the parameter vectors θ and θ′

are different. The h(·) function is completely general, except that it must be monotonically in-
creasing from the monotonicity restriction on F : h′ > 0 since Fz =Gyh

′ > 0; and the elements
of θ can take on any values, except that θ0 must be the same for both distributions.

Each choice of the h(·) function generates in turn a further family, such that the transforma-
tion h(z) follows a distribution from the GPF class. Proposition 1 shows that these families are
intimately linked via a simple power function that expresses one of the two agent characteris-
tics as a transformation of the other. We say that the distribution of z is a h-reflection of that of
y:5

DEFINITION 2: The distribution of z is a h-reflection of the distribution of y if the distribu-
tions of y and h(z) are members of the same family of distributions.

In the remainder of the paper, we apply Proposition 1 to the setting of heterogeneous firms in
monopolistic competition. Our theoretical results can be categorized by the type of h-reflection
they exhibit. One central case is where h(z) is the identity transformation, h(z) = z. We call
this case “self-reflection”, since it implies from Proposition 1 that the distributions of y and
z are members of the same family. This case proves particularly useful when we consider
distributions of firm sales and the rate of growth of firm sales in Section 3.

When we come to consider the distributions of output in the market equilibrium and the
social optimum in Section 4, we will see that they exhibit “marginal-revenue reflection” and
“marginal-utility reflection” of the distribution of productivity respectively. Finally, when we
come to consider the distributions of sales and firm markups for a range of demand functions in
Section 5, we will see that they exhibit a wide range of forms for the h function. One important
case is the odds transformation, h(z) = z

1−z , where 0≤ z ≤ 1. When the distributions of y and
of an odds transformation of z are members of the same family, we say that the distribution of
z exhibits “odds reflection” of that of y. This case proves particularly useful when we consider
distributions of firm markups.

3. SELF-REFLECTION OF PRODUCTIVITY AND SALES: CREMR DEMANDS

In this section we explore some implications of Proposition 1 in models of monopolistic
competition with heterogeneous firms and general demands. In particular, we ask what demand
functions are consistent with the distributions of firm productivity and sales revenue exhibiting
self-reflection, so the two distributions are members of the same family from the GPF class
though with different parameters. (Appendix A.4 gives related results for self-reflection of pro-
ductivity and output and of sales and output.) As noted in the introduction, there are only two
results in the literature that relate productivity and sales distributions: Helpman et al. (2004)
and Chaney (2008) showed that CES demands are sufficient to bridge the gap between two
Pareto distributions; and Head et al. (2014) showed that the same holds for two lognormal
distributions. Given the abundant empirical evidence that both firm productivity and sales are

5The property of h-reflection is not symmetric in general: the fact that the distribution of z is a h-reflection of the
distribution of y does not imply that the distribution of y is a h-reflection of the distribution of z. Also h-reflection
is not in itself related to the GPF class, though all the cases we consider in the paper assume that the distributions of
both y and h(z) are members of a family of the GPF class.
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either Pareto or lognormal shaped, self-reflection is a natural starting point in trying to gen-
eralize these results.6 Our results illustrate the power of Proposition 1: it leads to a complete
characterization of the conditions under which self-reflection holds. This yields a new demand
function that we call “CREMR”, which implies functional forms for the distribution of markups
for which we find strong evidence in our empirical section. In Section 3.3, we give a further
motivation for self-reflection, showing that it is central to an important substantive question:
when does Gibrat’s Law hold in monopolistic competition? We show that, under additive sep-
arability, self-reflection of cumulated productivity shocks and sales growth rates over time is
equivalent to Gibrat’s Law, so Proposition 1 implies that CREMR demands are necessary and
sufficient for this Law to hold in a monopolistically competitive industry. Given these important
implications of CREMR demands, it is desirable to understand their properties and to consider
what preferences rationalize them: Sections 3.4 and 3.5 consider these topics respectively.

We begin in Section 3.1 by introducing the monopolistically competitive setting we will use
in the remainder of the paper.

3.1. The Monopolistically Competitive Setting

Consider a model of a monopolistically competitive industry with heterogeneous firms in
the tradition of Melitz (2003), extended to allow for non-CES demands. Firms differ in their
productivity, ϕ, which is drawn from an underlying distribution Ğ(ϕ) with support [ϕmin,∞)
upon paying a sunk entry cost fe. They incur a common fixed cost f which may be zero in
the case when the demand function implies a finite upper bound for marginal revenue. Each
firm produces a unique good, and chooses its output x to maximize its profits π, which equal
operating profits less fixed costs:

π(ϕ,λ, τ) = max
x

((
p(x,λ)− τϕ−1

)
x− f

)
(2)

Here, p(x,λ) is the inverse demand function of a representative consumer faced by all firms,
which depends negatively on their output level x and on λ, a common demand parameter that
is exogenous to firms but endogenous to the industry. From each firm’s perspective, λ is a
measure of the intensity of competition which it takes as given.7 Finally, τ is a uniform cost
shifter that is common to all firms; until Section 3.3 we set this equal to one.

Maximizing profits as in (2) leads to the first-order condition, which equates marginal rev-
enue to marginal cost:

p(x,λ) + xpx(x,λ) = ϕ−1 (3)

Assuming the second-order condition 2px(x,λ) + xpxx(x,λ)< 0 is satisfied, (3) implies that
the equilibrium output and price of each firm are functions of its productivity ϕ and of the
demand shifter λ, where the latter is the same for all firms. In Section 3.2, we suppress λ to
simplify notation. In the rest of the paper, we denote by G (ϕ) the distribution of operating

6Axtell (2001) and Gabaix (2009) argue that the distribution of firm sales is plausibly close to Pareto, at least in
the upper tail. However, Head et al. (2014) and Bee and Schiavo (2018) argue that it is better approximated overall
by a lognormal, and Fernandes et al. (2018) find that the intensive margin of firm sales is inconsistent with a Pareto
productivity distribution. We return to this issue in Online Appendix B.4.

7The specification of demand in (2) corresponds to the generalized separability class of Pollak (1972). It allows
for various preference systems including additive separability as in Zhelobodko et al. (2012), Bertoletti and Epifani
(2014), and Mrázová and Neary (2017). Results in Section 3.2 take a “firm’s-eye" view perspective and do not depend
on the micro-foundation of demand. In Section 3.3 by contrast, we invoke additive separability when discussing
general-equilibrium effects.
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firms with support [ϕ,∞) where ϕ is the productivity of a cutoff firm that makes zero profits
in the market equilibrium.

3.2. Self-Reflection in the Cross Section: Productivity and Sales

The necessary condition for self-reflection follows immediately from Proposition 1: if the
distributions of productivity ϕ and sales r are from the same family, which can be any member
of the GPF class, then they must be related by a power function:

ϕ= ϕ0r
E (4)

To infer the implications of this for demand, we use two properties of a monopolistically
competitive equilibrium. First, firms equate marginal cost to marginal revenue, so from (3)
ϕ = c−1 =

(
∂r
∂x

)−1. Second, all firms face the same residual demand function, so firm sales
conditional on output are independent of productivity ϕ: r(x) = xp(x) and ∂r

∂x
= r′(x).8 Com-

bining these with (4) gives a simple differential equation in sales revenue:

(r′(x))−1 = ϕ0r(x)E (5)

Integrating this we find that a necessary and sufficient condition for self-reflection of produc-
tivity and sales is that the inverse demand function takes the following form:

p(x) =
β

x
(x− γ)

σ−1
σ , 1< σ <∞, x > γσ, β > 0 (6)

Calculating marginal revenue and inverting it brings us back to (4), with the constants ϕ0 and
E equal to β−

σ
σ−1 σ

σ−1
and 1

σ−1
respectively.

We are not aware of any previous discussion of the family of inverse demand functions in
(6), which express expenditure r(x) = xp(x) as a power function of consumption relative to a
benchmark γ. Its key property, from (5), is that the elasticity of marginal revenue with respect
to total revenue is constant: E = 1

σ−1
. Hence we call it the “CREMR” family, for “Constant

Revenue Elasticity of Marginal Revenue.” Summarizing:

PROPOSITION 2: The distributions of firm productivity and firm sales revenue in models
of monopolistic competition with heterogeneous firms are members of the same family of the
Generalized Power Function class if and only if demands take the CREMR form (6).

CREMR demands include CES demands as a special case: when γ equals zero, (6) reduces
to p(x) = βx−

1
σ , and the elasticity of demand is constant, equal to σ. More generally, the

elasticity of demand varies with consumption, ε(x)≡− p(x)

xp′(x)
= x−γ

x−γσσ, though it approaches
σ for large firms.9

It is useful to consider the implications of CREMR demands combined with Pareto and
lognormal distributions of productivity. Starting with the Pareto, it follows immediately as a
corollary of Proposition 1 that CREMR demands are necessary and sufficient for self-reflection

8Our approach is consistent with marginal costs being chosen endogenously by firms, either by optimizing subject
to a variable cost function, as in Zhelobodko et al. (2012), or as the outcome of investment in R&D, as in Bustos
(2011). However, it is not in general consistent with oligopoly, as firms may face different residual demand functions.

9Note that this contrasts with CES models under oligopolistic competition (Atkeson and Burstein (2008)) where
the price-elasticity of demand is equal to σ for the smallest firms only.
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in this case. We state the result formally for completeness, and because it makes explicit the
links that must hold between the parameters of the two Pareto distributions and the demand
function.

COROLLARY 1: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is Pareto: GP(ϕ) = 1−ϕkϕ−k;
(B) The distribution of firm sales revenue is Pareto: FP(r) = 1− rnr−n;
(C) The demand function belongs to the CREMR family in (6);
where the parameters are related as follows:

n=
k

σ− 1
and r = βσ

(
σ− 1

σ
ϕ

)σ−1

This extends a result of Chaney (2008), who showed that n= k
σ−1

with Pareto productivity and
CES demands.

Turning next to the lognormal, since it is also a member of the GPF class, it follows imme-
diately from Proposition 1 that the CREMR relationship ϕ= ϕ0r

E is necessary and sufficient
for self-reflection in the lognormal case. A complication is that, except in the CES case (when
the CREMR parameter γ is zero), the value of sales revenue for the smallest firm is strictly
positive, whereas the lower bound of the lognormal distribution is zero.10 However, this is not
a problem since, as we show in Corollary 3 in Appendix A.1, a truncated distribution from the
GPF family is itself a member of the family. Hence we have the result (where Φ denotes the
cumulative distribution function of the standard normal distribution and T denotes the fraction
of potential firms that are inactive):

COROLLARY 2: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is truncated lognormal with support [ϕ,+∞):
GtLN (ϕ) = Φ((logϕ−µ)/s)−T

1−T ;
(B) The distribution of firm sales revenue is truncated lognormal with support [r,+∞):

FtLN (r) =
Φ((log r−µ′)/s′)−T

1−T ;
(C) The demand function belongs to the CREMR family in (6);
where the parameters are related as follows:

s′ = (σ− 1)s

µ′ = (σ− 1)

(
µ+ log

(
σ− 1

σ
β

σ
σ−1

))

r =

(
σ− 1

σ
β

σ
σ−1ϕ

)σ−1

T = Φ((logϕ− µ)/s) = Φ ((log r− µ′)/s′)

10Since p′(x) =− β

σx2 (x− γ)−
1
σ (x− γσ), the output of the smallest active firm when γ is strictly positive is

greater than or equal to γσ, while its sales revenue is r(x) = β (γ(σ− 1))
σ−1
σ > 0. When γ is strictly negative,

sales revenue is discontinuous at x= 0: lim
x→0+

r(x) = β(−γ)
σ−1
σ > 0, but r(0) = 0.
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Just as in the Pareto case, CREMR is the only demand function that is compatible with lognor-
mal productivity and sales.

We will see in Section 6 how these theoretical results translate to data.

3.3. Self-Reflection over Time: Gibrat’s Law

Having derived the necessary and sufficient conditions for self-reflection in the cross-section,
we now turn to self-reflection over time. Specifically, we show that CREMR demands are nec-
essary and sufficient for Gibrat’s Law, or “The Law of Proportionate Effect”, which asserts
that the rate of growth of a firm is independent of its size. There is persuasive empirical evi-
dence in favor of the Law in general, especially for larger and older firms; see, for example,
Haltiwanger et al. (2013). A variety of mechanisms has been proposed to explain this empirical
regularity.11 Early contributions, by Gibrat (1931) himself and by Ijiri and Simon (1974), gave
purely stochastic explanations. In particular, if firms are subject to i.i.d. idiosyncratic shocks,
these cumulate to give an asymptotic lognormal distribution of firm size, all growing at the
same rate. Later work has shown how Gibrat’s Law can be derived as an implication of indus-
try equilibrium, when firms are subject to industry-wide as well as idiosyncratic shocks. Much
of this work has been carried out under perfectly competitive assumptions, focusing on learn-
ing, as in Jovanovic (1982), or differential access to credit, as in Cabral and Mata (2003). The
result has also been shown to hold in models of monopolistic competition by Luttmer (2007,
2011) and Arkolakis (2010a,b, 2016). However, these papers assume CES demand. Putting this
differently, all models that generate Gibrat’s Law to date imply that prices are either equal to
or proportional to marginal costs. This raises the question whether Gibrat’s Law is consistent
with demand functions that allow for variable markups. The following proposition shows that
this is indeed the case with CREMR demands:

PROPOSITION 3: In monopolistic competition with additive separability, CREMR demands
are necessary and sufficient for Gibrat’s Law to hold following: (i) industry-wide shocks to firm
productivity; and (ii) i.i.d. or AR(1) shocks to firm productivity.

Assume that the productivity process for firm i can be written as: ϕit = γitϕt, where ϕt is an
industry-wide shock, common to all firms, whereas γit is a firm-specific idiosyncratic shock.
To prove Proposition 3, we consider each of these types of shocks in turn.

Consider first an industry-wide productivity shock, as in part (i). Intuitively, it is easy to see
that CREMR demands are necessary and sufficient for such a shock to have the same pro-
portionate effect on the sales of all firms. This outcome is equivalent to a constant elasticity
of sales revenue with respect to marginal cost (which is the inverse of productivity). Since
marginal cost equals marginal revenue, this in turn is equivalent to the CREMR condition for
self-reflection that we have already considered, which entails a constant elasticity of marginal
revenue with respect to total revenue; though the two conditions arise in different contexts:
“cross-section” comparisons across firms in the case of self-reflection, “time-series” compar-
isons between the pre- and post-productivity-shock equilibria in the case of Gibrat’s Law. This
suggests that CREMR demands are necessary and sufficient for Gibrat’s Law to hold following

11For surveys of a large literature, see Sutton (1997) and Luttmer (2010). Gibrat’s Law has also been applied to the
growth rate of cities. See, for example, Eeckhout (2004). We do not pursue this application here, but it is clear that
analogous results to ours can be derived in that case. As Sutton (1997) points out, different authors have considered
shocks to either sales, employment, or assets. In a monopolistically competitive setting, it is natural to assume shocks
to productivity, as below.
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industry-wide shocks to firm productivity. We can show that this holds in general equilibrium
with additive separability.

Consider a uniform improvement in the productivity of all firms that we assume is exogenous
and unanticipated: τ̂ < 0 (where a circumflex denotes a logarithmic derivative: τ̂ = d log τ , τ >
0). The growth rate of sales following such a uniform productivity shock is: g ≡ − r̂

τ̂
=− τ

r
dr
dτ

.
Hence Gibrat’s Law ( dg

dϕ
= 0) obtains when r̂ is independent of ϕ.

We first consider the effects of the shock on each firm’s price and output. Starting with the
household’s first-order condition under additively separable preferences, p(x,λ) = λ−1u′(x)
where u(·) denotes consumer’s sub-utility, totally differentiate to get the proportional change
in prices:

p̂=−1

ε
x̂− λ̂

Hence the change in sales revenue is:

r̂ = p̂+ x̂=
ε− 1

ε
x̂− λ̂ (7)

To solve for the proportional change in outputs we totally differentiate the firm’s first-order
condition, (3):

x̂=−ε− 1

2− ρ
(τ̂ + λ̂), (8)

where ρ(x)≡−xp′′(x)

p′(x)
is the convexity of the demand function. Finally, we substitute (8) into

(7), to obtain the change in sales revenue in terms of the cost shock τ̂ and the implied change
in the intensity of competition λ̂:

r̂ =− (ε− 1)2

ε(2− ρ)︸ ︷︷ ︸
(?)

(τ̂ + λ̂)− λ̂

The way in which the change in the intensity of competition λ̂ depends on the cost shock
τ̂ follows from the assumptions we make about market equilibrium: in particular, it differs
between the cases of free entry and a fixed number of firms. Fortunately, these differences do
not matter for our purposes, since in both cases τ̂ and λ̂ are the same for all firms. It follows
that a necessary and sufficient condition for Gibrat’s Law in this setting is that (?) is constant
across firms. This term, (ε−1)2

ε(2−ρ) , is the elasticity of revenue with respect to productivity. It is
the inverse of the elasticity of marginal revenue with respect to total revenue, which as we
have seen is constant if and only if demands are CREMR, in which case it equals 1

σ−1
. (See

Section 3.2, and equation (32) in Appendix A.3.) This confirms that dg

dϕ
= 0, i.e., with additive

separability, Gibrat’s Law holds following an industry-wide productivity shock in monopolistic
competition, if and only if demands are CREMR.

To prove part (ii) of Proposition 3, consider now idiosyncratic shocks to firms’ productivity,
which can be written as follows:

γit = γi,t−1e
εit (9)
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where εit are identically distributed shocks with zero mean and finite variance. Equation (9)
implies:

logϕit = logγ0t +
t∑

t′=0

εit′ + logϕt

We consider the case of a stationary AR(1) growth rate without drift.12 Specifically, we allow
firm growth rates to be serially correlated:

εit = ξεi,t−1 + νit

where ξ < 1 and νit is white noise with constant variance υ2. (The special case of i.i.d. growth
rates is readily obtained for ξ = 0 and νit i.i.d.) Then, as t→∞, and provided logγ0t + logϕt
is small relative to logϕit, the distribution of ϕit is asymptotically lognormal:

logϕit
t
∼N

(
0,

υ2

1− ξ2

)
(10)

More generally, growth rate shocks will cumulate to give an asymptotic lognormal distribution
if they admit a MA(∞) representation with absolutely summable coefficients. (See Hayashi
(2000), Chapter 6, for extensions of the central limit theorem.) The final step is to recall that
productivity equals the inverse of marginal revenue:

ϕit = ϕiγit = c−1
it = (r′it)

−1

Now, we can invoke Proposition 2 and conclude that CREMR demands are necessary and
sufficient for i.i.d. or AR(1) shocks to productivity to cumulate to give an asymptotic lognormal
distribution of sales, with firm growth rates independent of size. Note that Proposition 2 applies
in the cross-section. In the time series, idiosyncratic shocks also imply changes in λ hence the
level of demand over time. As shown previously however, additive separability implies that
these general equilibrium effects impact all firms proportionally, so that our cross-sectional
characterization still applies.

This completes the proof of Proposition 3: CREMR demands are necessary and sufficient
for Gibrat’s Law to hold in monopolistic competition with additive separability following both
idiosyncratic and industry-wide shocks to firm productivity.

A qualification that must be made is that the above micro-foundation of Gibrat’s law implies a
non-stationary distribution of firm productivity and sales. Indeed, the asymptotic law expressed
in (10) features a variance that increases quadratically with t. This creates a tension with the
assumption that t must be large enough for the lognormal approximation to hold. This is a
well-known problem which may be solved by adding a constant term to (9), see for instance
Gabaix (1999) and Head et al. (2014). This yields a Kesten process which leads asymptotically
to a Pareto distribution of productivities in the upper tail. Proposition 2 implies in this case that
CREMR is not necessary but still sufficient to obtain a Pareto distribution of sales in the upper
tail.

3.4. Properties of CREMR Demands

Consider next the properties of the CREMR demand function (6). They are derived formally
in Appendix A.3, but can be understood by referring to the three sub-panels of Figure 1. These

12As long as drifts are not firm-specific, this assumption is made without loss of generality since industry-specific
drifts are captured by ϕt.
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(a) γ = 0: CES (b) γ > 0: Subconvex (c) γ < 0: Superconvex

FIGURE 1.—Examples of CREMR demand and marginal revenue functions. Panels (a), (b), and (c) depict the
CREMR demand from (6) and marginal revenue from (29) for β = 1, σ = 1.4, and for γ equal to 0, 1 and −1
respectively.

show three representative inverse demand curves from the CREMR family, along with their
corresponding marginal revenue curves. The CES case in panel (a) combines the familiar ad-
vantage of analytic tractability with the equally familiar disadvantage of imposing strong and
counter-factual properties. In particular, the markup m ≡ p

c
must be the same, equal to σ

σ−1
,

for all firms in all markets. By contrast, members of the CREMR family with non-zero values
of γ avoid this restriction. Moreover, we show in Appendix A.3 that the sign of γ determines
whether a CREMR demand function is more or less convex than a CES demand function. The
case of a positive γ as in panel (b) corresponds to demands that are “subconvex”: less convex
at each point than a CES demand function with the same elasticity. (See Mrázová and Neary
(2019) for further discussion.) In this case the elasticity of demand falls with output, which im-
plies that larger firms have higher markups. These properties are reversed when γ is negative as
in panel (c). Now the demands are “superconvex” – more convex than a CES demand function
with the same elasticity – and larger firms have smaller markups. CREMR demands thus allow
for a much wider range of comparative statics responses than the CES itself.

(a) CREMR Demands (b) Some Well-Known Demand Functions

FIGURE 2.—Demand manifolds for CREMR and other demand functions. Each curve shows the combinations of
elasticity ε and convexity ρ implied by the demand function indicated. Values of ε and ρ in the shaded region are
inadmissible. See text for details.

How do CREMR demands compare with other better-known demand systems? Inspecting
the demand functions themselves is not so informative, as they depend on three different pa-
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rameters. Instead, we use the approach of Mrázová and Neary (2017), who show that any well-
behaved demand function can be represented by its “demand manifold”, a smooth curve relat-
ing its elasticity ε(x) ≡ − p(x)

xp′(x)
to its convexity ρ(x) ≡ −xp′′(x)

p′(x)
. We show in Appendix A.3

that the CREMR demand manifold can be written in closed form as follows:

ρ(ε) = 2− 1

σ− 1

(ε− 1)2

ε
(11)

Whereas the demand function (6) depends on three parameters, the corresponding demand
manifold only depends on σ: it is invariant with respect to β and γ. Panel (a) of Figure 2
illustrates some manifolds from this family for different values of σ, while panel (b) shows
the manifolds of some of the most commonly-used demand functions in applied economics:
CARA, LES, linear, and Translog.13 It is clear that CREMR manifolds, and hence CREMR
demand functions, behave very differently from the others. The arrows in Figure 2 denote the
direction of movement as sales increase. In the empirically relevant subconvex region, where
demands are less convex than the CES, CREMR demands are more concave at low levels of
output (i.e., at high demand elasticities) than any of the others, which are approximately linear
for small firms. As we move to larger firms, the CREMR elasticity of demand falls more slowly
with convexity than any of the others. As for the largest firms, with CREMR demands they
asymptote towards a demand function with elasticity equal to σ; whereas with other demand
functions the largest firms either hit an upper bound of maximum profitable output (in the
CARA and linear cases), or else asymptote to a Cobb-Douglas demand function with elasticity
of one (in the LES and translog cases).

3.5. CREMR Preferences

Next, we ask what specifications of preferences rationalize CREMR demands. The sim-
plest way of doing this is to assume additively separable preferences as in Section 3.3,

U =

∫
i∈X

u(x(i))di where X is the set of available goods. For every i ∈X , x(i) takes values

in [xmin,∞), where xmin equals γσ in the subconvex case and is strictly positive but arbi-
trarily small in the superconvex case. This implies that p(x(i)) = λ−1u′(x(i)), where λ is the
marginal utility of income. Substituting for p(x(i)) from the CREMR demand function (6),
with the demand shifter rewritten as β = λ−1β̃, and integrating yields an explicit form for the
sub-utility function u(x(i)):

u(x(i)) = κ+ β̃
σ

σ− 1

(x(i)− γ)
σ−1
σ

x(i)

(
x(i) + γ(σ− 1) 2F1

(
1,1,1 +

1

σ
,
γ

x(i)

))
(12)

13CARA demands are implied by a negative-exponential utility function, which has the same form as a constant-
absolute-risk-aversion utility function in the theory of choice under uncertainty; translog demands are observationally
equivalent to the almost-ideal demand system of Deaton and Muellbauer (1980); the LES or Linear Expenditure
System is implied by the Stone-Geary utility function. All these manifolds, derived in Mrázová and Neary (2017),
are invariant to all parameters. We confine attention to the admissible region, {ε > 1, ρ < 2}, where firms’ first-
and second-order conditions are satisfied. The curve labeled “CES” is the locus ε = 1

ρ−1
, each point on which

corresponds to a particular CES demand function; this is also equation (11) with ε= σ. To the right of the CES locus
is the superconvex region (where demand is more convex than the CES); while to the left is the subconvex region. The
curve labeled “SM” is the locus ε= 3−ρ; to the right is the “supermodular” region (where selection effects in models
of heterogeneous firms must have the conventional sign, e.g., more efficient firms serve foreign markets by foreign
direct investment rather than exports); while to the left is the submodular region. (See Mrázová and Neary (2019) for
further discussion.) Appendix A.3 shows that the CREMR demand manifold lies wholly in the supermodular region
if and only if σ ≥ 2.
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This equals a constant of integration κ plus a primitive preference parameter β̃ times the prod-
uct of two functions, one an augmented CES, the other an augmented hypergeometric:

2F1(a, b; c;z) =
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
, |z|< 1, (q)n =

Γ(q+ n)

Γ(q)
(13)

where (q)n is the (rising) Pochhammer symbol, and Γ(q) is the gamma function. The only
demand parameter that varies with income and other prices is β; it depends on λ, whose value
can be recovered in a standard way.14

(a) γ = 0: CES (b) γ > 0 (c) γ < 0

FIGURE 3.—Examples of CREMR sub-utility functions. Each panel shows the values of sub-utility u implied by
(12) as a function of x for the same parameter values as in Figure 1: β = 1, σ = 1.4, and γ equal to 0, 1 and −1 in
panels (a), (b), and (c) respectively.

When γ is zero, the hypergeometric function also equals zero, and so (12) reduces to the CES
utility function, u(x(i)) = β̃ σ

σ−1
x(i)

σ−1
σ + κ. Figure 3 illustrates three sub-utility functions

from the CREMR family, each as a function of x, for different values of γ. Panel (a) is the CES
case, showing that utility is increasing and concave in x. The subconvex case in Panel (b) and
the superconvex case in Panel (c) (with positive and negative values of γ respectively) deviate
from the CES case in ways that parallel the ways that the corresponding demand functions
differ from CES demands in Figure 1. In particular, utility is defined on the same range as the
demand function. If needed, they can both be extended in an appropriate way on the entire
positive range to guarantee love for variety.

In some applications it may be desirable to have a homothetic specification of preferences
consistent with CREMR demands. This is not possible with additive separability (which im-
plies homotheticity only in the CES case), but it can be done by embedding CREMR de-
mands in the implicitly additive preferences of Kimball (1995).15 Here the sub-functions cor-
responding to each good depend on the consumption of that good scaled by total utility U :∫
i∈X

Υ

(
x(i)

U

)
di= 1. Proceeding as in the additively separable case, we can combine the

first-order condition Υ′
(
x(i)

U

)
= λp(i) with the CREMR demand function (6) and integrate,

14Inverting (6) yields the direct demand functions: x(i) = (u′)−1(λp(i)), which can be combined with the budget
constraint to obtain:

∫
i∈X p(i) (u′)−1(λp(i)) di = I (where I denotes consumer income). Solving this gives λ as

a function of prices and income. Note that x(i) cannot be written in closed form, but the marginal utility function is
invertible provided the elasticity of demand is positive, i.e., provided x(i) ∈ [xmin,∞).

15Fally (2018) shows that CREMR demands can be integrated to give utility functions from other members of the
single-aggregate Pollak (1972) generalized separability class, but only in the superconvex case.
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which shows that the Υ sub-function takes the same form as u(x(i)) in (12).16 Unlike the more
familiar Klenow and Willis (2016) special case of Kimball preferences, the Kimball-CREMR
direct utility and demand functions cannot be written in closed form, but they can still be used
as a foundation for quantitative analysis of normative issues.

4. MISALLOCATION ACROSS FIRMS

Section 3 used part (ii) of Proposition 1 to back out the demands implied by assumed dis-
tributions of two firm characteristics. In this section and the next we show how part (i) of the
Proposition can be used to derive distributions of firm characteristics given the distribution of
productivity and the form of the demand function. In this section we show how to compare the
distributions of output across firms in the market equilibrium and in the social optimum. Previ-
ous comparisons between the allocation of resources in a monopolistically competitive market
and in the optimum that a social planner would choose have largely focused on the extensive
margin, addressing the question of whether the market leads to an under- or over-supply of
varieties relative to the social optimum when preferences are additively separable. Dixit and
Stiglitz (1977) provided the definitive answer to this question when firms are homogeneous:
the market is efficient, in the sense that it supplies the socially optimal number of varieties,
and the optimal output of each, if and only if preferences are CES. Feenstra and Kee (2008)
showed that the market is also efficient with CES preferences if firms are heterogeneous and
the distribution of firm productivities is Pareto, while Dhingra and Morrow (2019) present a
general qualitative analysis of the heterogeneous-firm case. Here we focus on a quantitative
comparison between the market outcome and the optimal allocation at the intensive margin.
In particular, we show in Section 4.1 how our methods from previous sections can be used to
derive closed-form expressions for the distributions of output in the competitive market equi-
librium and in the social optimum. In Section 4.2 we compare the two distributions explicitly
in the CREMR case, showing that, if and only if demand is subconvex, competitive markets
encourage too many small firms and not enough large ones relative to the optimum. Other au-
thors have derived related results in different contexts: e.g., Nocco et al. (2014), Edmond et al.
(2015), and Behrens et al. (2020). However, these take different approaches from ours; in par-
ticular, they allow the extensive margin to adjust, and they do not compare the optimal and
market output distributions directly as we do.

4.1. Equilibrium and Optimal Output Distributions

We wish to compare the market outcome with the social optimum. Consider first the former.
Recalling from (3) that the first-order condition for each firm is that marginal cost should equal
marginal revenue, so the productivity-output relationship is:

ϕ(x) =
1

r′(x)
=

1

p(x) + xp′(x)
(14)

16Now the direct demand functions depend on two aggregates rather than one, the true price index P
and the shadow price of the budget constraint λ: x(i) = (Υ′)−1 (λp(i)) I

P
. To solve for these we use two

equations: first, the equation given in the text that implicitly defines U , evaluated at the optimal quantities:∫
i∈XΥ ((Υ′)−1 (λp(i))) di= 1; and, second, the definition of the price index: P =

∫
i∈Xp(i)(Υ

′)−1 (λp(i)) di.
See Matsuyama and Ushchev (2017) for further details.
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Letting G(ϕ) denote the productivity distribution of operating firms as before, (14) implies a
new family of distributions, that we can call the “inverse marginal-revenue reflection” family:

J(x) =G(ϕ(x)) =G

(
1

p(x) + xp′(x)

)
(15)

Using (15), we can compute the distribution of firm output in the market equilibrium J(x) for
any distribution of firm productivities G(ϕ) and any demand function p(x).

Consider next the social optimum. Following Dixit and Stiglitz (1977), we assume that the
social planner cannot use lump-sum taxes or subsidies to affect profits. Extending the logic of
this assumption to a heterogeneous-firms context, the feasible optimum is a constrained one,
where the planner faces the same constraints as the market. In particular, she takes as given the
mass of entrants, Ne, and the productivity threshold, ϕ, equal to the productivity of a cutoff
firm that makes zero profits in the market equilibrium. Given these, she maximizes aggregate
utility: ∫

i∈X
u(x(i))di=Ne

∫ ∞
ϕ

u(x(ϕ))ğ(ϕ)dϕ

where X is the set of goods produced, subject to the aggregate labor endowment constraint:17

Ne

(∫ ∞
ϕ

(
Lϕ−1x(ϕ) + f

)
ğ(ϕ)dϕ+ fe

)
≤ L (16)

The first-order condition for a social optimum is:

u′(x(ϕ)) = λ∗ϕ−1

where λ∗ is the shadow price of the constraint (16), which we can interpret as the social
marginal utility of income; it is defined implicitly by (16) with equality and with x(ϕ) =
(u′)−1 (λ∗ϕ−1). Hence the planner allocates production across firms according to:

u′(x(ϕi))

u′(x(ϕj))
=
ϕj
ϕi

(17)

which is a standard marginal-cost-pricing rule.
We can say more if the marginal utility of a threshold firm is finite: u′(x) <∞, where x

is the output of a firm with productivity ϕ. This could be because firms incur fixed costs, or
because the demand function implies a finite upper bound for marginal revenue, as in the case
of linear or strictly subconvex CREMR demands. Reexpressing (17) in terms of the output of a
typical firm relative to that of a threshold one gives:

u′(x(ϕ))

u′(x)
=
ϕ

ϕ
⇒ ϕ∗(x) = ϕ

u′(x)

u′(x)
= ϕ

p(x)

p(x)
(18)

So the optimal productivity-output relationship depends only on demand (with p(x) measuring
the marginal willingness to pay at the optimum). This implies another new family of distribu-

17The number of firms that actually produce, and so the number of varieties available to consumers, is: N =
Ne
∫∞
ϕ
ğ(ϕ)dϕ=Ne(1− Ğ(ϕ)).
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tions that we call the “inverse marginal-utility reflection” family:

J∗(x) =G(ϕ∗(x)) =G

(
ϕ
u′(x)

u′(x)

)
=G

(
ϕ
p(x)

p(x)

)
Just as we did for the market equilibrium, we can now compute the optimal distribution of
output J∗(x) for any distribution of firm productivities G(ϕ) and any demand function p(x).

4.2. Misallocation with CREMR Demands

To illustrate these general results, consider the distributions implied by CREMR demands.
First we need the relationships between productivity and output in the market and socially
optimal cases. These follow by using the expressions for CREMR marginal revenue and price
in (14) and (18) respectively:

ϕ(x) =
σ

β(σ− 1)
(x− γ)

1
σ = ϕ

(
x− γ
x− γ

) 1
σ

and ϕ∗(x) = ϕ
(x− γ)

σ−1
σ

x

x

(x− γ)
σ−1
σ

(19)

The lower bounds for productivity and output are related in the same way as ϕ(x) and x:

ϕ= ϕ(x) =
σ

β(σ− 1)
(x− γ)

1
σ (20)

From (19), there is a simple relationship between the levels of productivity in the social opti-
mum and the market equilibrium:

ϕ∗(x) =
x− γ
x

x

x− γ
ϕ(x) (21)

The coefficient of ϕ(x) on the right-hand side of (21) is less than one if and only if γ is positive.
Recalling that J(x) =G(ϕ(x)) and J∗(x) =G(ϕ∗(x)) yields a simple but important result:

PROPOSITION 4: Assume the distribution of firm productivity G(ϕ) is continuous. Then,
when demands are subconvex CREMR, the distribution of output in the social optimum J∗(x)
first-order stochastically dominates that in the market equilibrium J(x).

Heuristically, we can say that, with subconvex CREMR demands, the market equilibrium has
too high a ratio of small to large firms relative to the social optimum.

It is straightforward to combine the productivity-output relationships from (19) with an as-
sumed underlying productivity distribution in order to derive the distributions of output in the
market equilibrium and the social optimum. We will see in Section 6.3 how these allow us to
quantify the pattern of misallocation across firms, and to compare the social optimum and the
market outcome at all points in the output distribution.

5. INFERRING SALES AND MARKUP DISTRIBUTIONS

Next, we want to derive the distributions of sales r and markupsm≡ p

c
, given the distribution

of productivity and the form of the demand function. Section 5.1 shows how this is done in
general; Section 5.2 considers the distributions of markups implied by CREMR demands; while
Section 5.3 presents the distributions of both sales and markups implied by a number of widely-
used demand functions.
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5.1. Sales and Markup Distributions in General

In order to be able to invoke part (i) of Proposition 1, we need to express productivity as
a function of sales and markups; combining these with the distribution of productivity allows
us to derive the implied distributions of sales and markups: F (r) = G(ϕ(r)) and B(m) =
G(ϕ(m)). To see how this works in practice, recall the relationship between productivity and
output, ϕ(x), from (14). (We illustrate for the case where the functional form of the inverse
demand function, p(x), is known. A similar approach is used when we know the direct demand
function x(p): see the discussion of the translog case in Appendix A.5.) Next, we need to relate
output to sales and markups. For the former, we need to invert the function r(x) = xp(x). When
this can be done we can solve for x(r), which gives ϕ(r) by substitution: ϕ(r) = ϕ(x(r)). For
the latter, to express output as a function of the markup, we need to invert the function m(x) =
p(x)

r′(x)
. When this can be done, we again obtain ϕ(m) by substitution: ϕ(m) = ϕ(x(m)).

5.2. CREMR Markup Distributions

To illustrate this approach, we consider the markup distributions implied by CREMR de-
mands, which have the attraction that they take relatively simple forms. First, we can write
the CREMR markup as a function of output: m(x) = p(x)

r′(x)
= x−γ

x
σ
σ−1

. We concentrate on
the case of strictly subconvex demands (i.e., γ > 0), which implies that larger firms have
higher markups. Hence the support of the markup distribution is: m(x) ∈ [m,m); the mini-
mum markup is m≡ x−γ

x
σ
σ−1

, where x is the minimum value of output, given by (20); while
the upper bound of the markup, m≡ σ

σ−1
, is the value that obtains under CES preferences with

the same value of σ. Define the relative markup m̌ as the markup relative to its maximum value:
m̌≡ m

m
= σ−1

σ
m ∈ [m̌,1). Hence it follows that: m̌(x) = x−γ

x
. Inverting this allows us to ex-

press output as a function of the relative markup: x(m̌) = γ

1−m̌ . Finally, combining this with
the CREMR relationship between productivity and output from (19), ϕ(x), gives the desired
relationship between productivity and the markup:

ϕ(m̌) =
ϕ

ω

(
m̌

1− m̌

) 1
σ

where ω ≡
ϕβ

γ
1
σ

σ− 1

σ
(22)

From the discussion following Proposition 1, this implies that the distribution of markups is
an “odds reflection” of that of productivity. Hence, if productivity follows any distribution in
the GPF class and the demand function is subconvex CREMR, then relative markups follow
the corresponding “GPF-odds” distribution. We illustrate for the Pareto and lognormal cases;
extensions to other members of the GPF class are straightforward.18

First, if productivity is distributed as a Pareto as in Corollary 1, then when demands are
subconvex CREMR the relative markup has a “Pareto-Odds” distribution:

B(m̌) =GP(ϕ(m̌)) = 1−
(

m̌

1− m̌

)n′ (
m̌

1− m̌

)−n′
m̌ ∈ {m̌,1} m̌≡ m

m
, m̌≡ m

m
,

(23)

18For example, if a firm’s productivity in different markets follows a Fréchet distribution, in the tradition of Eaton
and Kortum (2002), and demands are CREMR, the relative markup follows a “Fréchet-Odds” distribution, which
provides an exact characterization of the distribution of profit margins for a firm selling in many foreign markets, as
in Tintelnot (2017).
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where n′ ≡ k
σ

and m̌ ≡ ωσ

1−ωσ . This distribution appears to be new, and may prove useful in
future applications.

Next, if productivity has a truncated lognormal distribution as in Corollary 2 and demands
are subconvex CREMR, the relative markup has a “Lognormal-Odds” distribution:

B(m̌) =GtLN (ϕ(m̌)) =

Φ

(
1

s̃

(
log

m̌

1− m̌
− µ̃
))
− T

1− T
(24)

where: s̃= σs, µ̃= σ
(
µ+ log

(
ω
ϕ

))
, and T = Φ

(
1
s̃

(
log m̌

1−m̌ − µ̃
))

is the fraction of poten-
tial firms that are inactive, as in Corollary 2. This distribution has been studied in its untruncated
form by Johnson (1949) and Mead (1965) who call it the “Logit-Normal”, though we are not
aware of a theoretical rationale for its occurrence as here. For some parameter values, it im-
plies inverted-U-shaped markup densities similar to those found empirically by De Loecker
et al. (2016) and Lamorgese et al. (2014), as discussed in the Introduction. In the next section
we will compare these more formally.

5.3. Other Sales and Markup Distributions

TABLE I

PRODUCTIVITY AS A FUNCTION OF SALES AND MARKUPS FOR SELECTED DEMAND FUNCTIONSa

p(x) or x(p) ϕ(r) or ϕ(ř) ϕ(m) or ϕ(m̌)

CREMR β

x
(x− γ)

σ−1
σ β

− σ
σ−1 σ

σ−1
r

1
σ−1 1

β
σ
σ−1

γ
1
σ

(
m̌

1−m̌

) 1
σ

Linear α− βx 1
α

(
1

1−ř

) 1
2 2m−1

α

LES δ
x+γ

γδ
(

1
1−ř

)2
γ

δ
m2

Translog 1
p

(γ − η log p) (r+ η) exp
(
r−γ
η

)
m exp

(
m− η+γ

η

)
aSee Appendix A.5 for detailed derivations. ř and m̌ denote sales and markups relative to their maximum values, respectively.

Proposition 1 can be used to derive the distributions of sales and markups implied by any
demand function. In particular, closed-form expressions for productivity as a function of sales
or markups can be derived for some of the most widely-used demand functions in applied eco-
nomics. Table I gives results for linear, LES, and translog demands, along with the CREMR
results already derived in (4) and (22). Combining these with different assumptions about the
distribution of productivity, and invoking Proposition 1, generates a wide variety of sales and
markup distributions. For example, the relationships between productivity and sales implied by
linear and LES demands have the same form, so the sales distributions implied by these two
very different demand systems are observationally equivalent. The same is not true of their im-
plied markup distributions, however; in the LES case, productivity is a simple power function
of markups, so the LES implies self-reflection of the productivity and markup distributions if
either is a member of the GPF class.19 In the next section we compare the markup distribu-

19For example, a lognormal distribution of productivity and LES demands imply a lognormal distribution of
markups, which provides microfoundations for an assumption made by Epifani and Gancia (2011).
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tions implied by these different demand functions with each other and with a given empirical
distribution.

6. FITTING MARKUPS AND QUANTIFYING MISALLOCATION

So far we have shown how to characterize the exact distributions of various firm outcomes (in
particular firm sales, markups, output in the market equilibrium and socially-optimal output)
implied by particular assumptions about the primitives of the model: the structure of demand
and the distribution of firm productivities. In this section, we illustrate how, when applied to
an actual data set, these theoretical results can be exploited empirically to estimate markup
distributions and to quantify misallocation. In Section 6.1 we introduce the firm-level data on
Indian markups used in our econometric analysis. In Section 6.2, we fit the markup distributions
implied by the theoretical models derived in Section 5 to the markup distributions in the data,
and select the best-fitting models. For these models, we show in Section 6.3 how the approach
to quantifying misallocation introduced in Section 4 can be implemented. In particular, we
use the estimated parameter values obtained in Section 6.2 to infer the distributions of output
given by the market and the one that would be chosen by the planner, and to compare them
quantitatively.

As discussed in the introduction, Pareto and lognormal distributions yield very good fits for
sales distributions. Thus, since CREMR demands exhibit self-reflection by construction, we
would expect that, when combined with an underlying Pareto or lognormal distribution of pro-
ductivities, they will yield a good fit to the distribution of sales.20 By contrast, we are not aware
of any previous attempts to fit the distribution of markups and explore its implications for mis-
allocation in a theory-consistent way. Hence we focus in this section on fitting the distribution
of markups.

6.1. The Data

The data set comes from De Loecker et al. (2016): see Appendix A.6 for more details. It
consists of 2,457 firm-product observations on markups in Indian manufacturing for the year
2001. These markup data are estimated using the so-called “production approach”: markups are
calculated by computing the gap between the output elasticity with respect to variable inputs
and the share of those inputs in total revenue.21 This approach assumes cost minimization, a
translog form for the production technology, and that some factor inputs are variable while oth-
ers are fixed. However, it does not impose any restrictions on consumer demand nor on market
structure. Hence it is particularly well-suited to our purpose, which is to compare the perfor-
mance of different assumptions about the productivity distribution and the demand function.
The approach of De Loecker et al. (2016) has been criticised by Bond et al. (2020); however,
the markup estimates we use are not subject to their main critique because they are based on
output data rather than revenue data.

6.2. Actual Versus Predicted Markup Distributions

The approach we adopt builds directly on the theoretical framework developed in previous
sections. Let B̃(m) denote the markup distribution in the data, while B(m;θ) is the theory-

20As we show in Online Appendices B.3 and B.6, this expectation is confirmed with data on Indian sales and
French exports respectively, in line with previous literature.

21We do not have access to the confidence intervals for the markups and so we cannot take into account the fact
that they were estimated, though it would be straightforward to do so.
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consistent predicted distribution. B(m;θ) in turn is implied by an assumed underlying dis-
tribution of firm productivities, G(ϕ,θ1), combined with a productivity-markup relationship
implied by an assumed demand function, ϕ(m;θ2), as given in Table I:

B(m;θ) =G(ϕ(m,θ2),θ1),

where the parameter vector θ is a function of the parameter vectors that characterize the pro-
ductivity distribution and the demand function, θ1 and θ2 respectively. For each specification
ofG and ϕ, we estimate θ that provides the best fit to the observed distribution B̃(m). Note that
in all cases θ is of lower dimension than the combined dimensions of θ1 and θ2. Hence, these
parameters are not separately identified, so we cannot fully disentangle the effects of demand-
and supply-side influences, though as we shall see we are able to discriminate between different
demand functions given a maintained hypothesis about the productivity distribution.

To illustrate our approach in the simplest way, we select from the universe of potential speci-
fications of productivity distributions and demand functions, a number of the most-widely-used
alternatives which yield closed-form expressions for the implied distributions of firm markups
and output. For the distribution of productivity, we focus on the Pareto and lognormal: both
are plausible in themselves, albeit at different tails of the distribution, and they span a wide
range of distributions that have been used in practice. As for our choice of demand functions,
we confine attention to the four demand functions presented in Table I in Section 5.3, all of
which allow for variable markups.22 It goes without saying that these choices represent only
a limited selection from all possible specifications, but nonetheless a representative sample of
current practice, especially when the constraints of tractability are taken into account.

We have seen how to calculate the theoretical markup distributions in Section 5; further
details are given in Appendix A.7. Using maximum-likelihood (ML) estimation, we fit the
theoretical markup density functions implied by eight different combinations of assumptions
about the productivity distribution and the demand function. (Details of the estimation process
and the code a re available on our websites.) The estimation results are summarized in Table II
and the fitted distributions illustrated in Figure 4.

As the estimates in the third column show, some of the primitive parameters are identified:
the Pareto shape parameter k, the lognormal standard deviation of the logs s, and the asymptotic
CREMR demand elasticity σ. The other primitive parameters are not identified from our data,
and are subsumed into the estimated parameters m and µ̃: detailed expressions are given in Ta-
ble A.II in Appendix A.7. To discriminate between different specifications, we use the Akaike
information criterion (AIC), which is well-suited to compare models with different numbers of
parameters, as it trades off goodness of fit and parameter parsimony. The models are ranked in
the table by their AIC values as given in the second-last column. The final column gives the
relative likelihood of the other models to the AIC-minimizing one, exp((AICmin−AICi)/2),
and can be interpreted as being proportional to the probability that the i’th model minimizes
the estimated information loss.

Table II shows that the combination of Pareto productivity and CREMR demands minimizes
the AIC. The truncated lognormal with CREMR model comes closest, but all the others are
far inferior by the AIC criterion. The Pareto assumption also gives a better fit with translog
demands, but the truncated lognormal does better with LES and linear demands. These results
suggest that the choice of productivity distribution is less important than the choice of demand
function in fitting the data. Hence in the next subsection, we will explore misallocation focusing
on the two best-fitting CREMR models.

22We do not consider refinements of CES since they cannot match the heterogeneity of markups that we see in the
data.
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TABLE II

ESTIMATED MARKUP DENSITIES GIVEN ASSUMPTIONS ABOUT PRODUCTIVITY (PARETO (P ) OR TRUNCATED
LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES OR TRANSLOG)a

Model Markup PDF Estimated AIC Relative
b(m) Parameters Likelihood

CREMR k
(

(σ−1)m

m+σ−mσ

) k
σ

(σ−1)m2

(
(σ−1)m

m+σ−mσ

) σ−k
σ

σ = 1.111
6049.43

+P k = 1.233

CREMR
e
−

(log( σ
m+σ−mσ−1)−µ̃)2

2(σs)2
√

2πms(m+σ−mσ)

1−Φ

 log

(
(σ−1)m
m+σ−mσ

)
−µ̃

σs



µ̃=−49.982

+ s= 6.051 6060.99 0.003

tLN σ = 1.110

Linear √
2
π

e
− (log(2m−1)−µ̃)2

2s2

s(2m−1)

1−Φ
(

log(2m−1)−µ̃
s

)
µ̃= 0.054

6180.66 3.2× 10−29

+tLN s= 1.228

LES √
2
π

e
− (2 log(m)−µ̃)2

2s2

ms

1−Φ
(

2 log(m)−µ̃
s

)
µ̃=−3.234

6184.79 4.1× 10−30

+tLN s= 2.732

LES
2k(m)2km−2k−1 k = 0.747 6244.63 4.1× 10−43

+P

Translog
k(mem)k(m+ 1)m−k−1e−km k = 0.487 6258.08 4.9× 10−46

+P

Translog
1√
2πs

m+1
m

e
− (log(mem)−µ̃)2

2s2

1−Φ
(

log(mem)−µ̃
s

) µ̃=−77.641
6283.10 1.8× 10−51

+tLN s= 13.064

Linear
2k(2m− 1)k (2m− 1)−k−1 k = 1.001 6428.43 5.1× 10−83

+P

aThe ML estimator of the minimum markup m is the minimum empirical markup mmin = 1.001.

6.3. Quantifying Misallocation

Next we want to use the estimated markup-distribution parameters from Section 6.2 for a
quantitative comparison of the market and socially optimal distributions of output characterized
in Section 4.2. As we have seen, not all the demand parameters are identified. Nonetheless, we
can use the parameter estimates from the fitted markup distributions to illustrate the divergence
between market and optimum, and we can exploit the properties of CREMR demands to draw
some general conclusions.

Consider first the case where the productivity distribution is Pareto. As we saw in Sec-
tion 4.2, we can combine this with the CREMR productivity-output relationship, using J(x) =
G(ϕ(x)), to derive the implied distribution of output in the market equilibrium:

J(x) = 1−
(
x− γ
x− γ

)− k
σ

= 1− γ kσωk (x− γ)−
k
σ (25)

The first expression depends on primitive parameters, of which two (k and σ) are observable
using our data, while two (x and γ) are not; whereas in the second only γ is unobservable, since
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FIGURE 4.—Histograms of empirical markup densities compared with fitted densities implied by different as-
sumptions about productivity (Pareto or truncated lognormal) and demand (CREMR, LES, Linear or Translog).

ω is a composite parameter that can be calculated from the estimates in Table II. (See (23) and
Appendix A.7.) The same holds for the optimal distribution of output with Pareto productivity:

J∗(x) = 1−

(
(x− γ)

σ−1
σ

x

x

(x− γ)
σ−1
σ

)−k
= 1− γ kσ

(
ωσ−1

1 + ωσ
x(x− γ)

1−σ
σ

)−k
(26)

If instead the productivity distribution is a lognormal, left-truncated at ϕ, then the distribution
of output in the market equilibrium is:

J(x) =

Φ

( log

(
ϕ

(
x− γ
x− γ

) 1
σ

)
− µ

s

)
− T

1− T
=

Φ

 log

(
x− γ
γ

)
− µ̃

σs

− T
1− T

(27)

while the optimal distribution of output is:

J∗(x) =

Φ

( log

(
ϕ

(
(x− γ)

σ−1
σ

x

x

(x− γ)
σ−1
σ

))
− µ

s

)
− T

1− T

=

Φ

 log

(
xσ(x− γ)1−σ

γ

)
− µ̃x∗

σs

− T
1− T

(28)
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(a) γ = 1.0 (b) γ = 1.5 (c) γ = 2.0

(d) γ = 3.0 (e) γ = 4.0 (f) γ = 5.0

FIGURE 5.—Market versus socially-optimal output profiles: Pareto and CREMR. Each curve shows the market
(solid blue line) or socially optimal (dotted red line) density of output, assuming a Pareto distribution of productivities
and CREMR demands, with estimated parameters k = 1.233, σ = 1.111, and m= 1.001, for different values of γ.

where µ̃x∗ = µ̃ − σ log
(
σ−1
σ
m
)

and T is the fraction of potential firms that are inactive, as
in (24). Once again, conditional on γ, the final expressions in (27) and (28) are functions of
observables (in this case µ̃, s, σ, and m).

Since γ is the only unobservable parameter in equations (25) to (28), we can illustrate the
implied densities of output (in the market equilibrium and in the social optimum) given the
estimates of the other parameters from Table II, conditional on different values of γ. Figures 5
and 6 do this for the Pareto and lognormal cases respectively.

Once again, the choice of the underlying productivity distribution between Pareto and trun-
cated lognormal does not seem to be very consequential. Indeed, the similarities between the
two figures are striking: changes in γ seem to affect the densities in the same way; the optimal
and market output densities intersect only once; and the value of output at which they intersect
is increasing in γ. We will now prove the last two results more formally.

We have already seen in Proposition 4 that, with CREMR demands, the distribution of out-
put in the social optimum first-order stochastically dominates that in the market equilibrium.
We can go further and show that, conditional on observables, the critical value of output at
which the market and optimal output densities intersect (which we denote by xc) is unique and
increases linearly in γ for both Pareto and lognormal distributions:

LEMMA 1: With subconvex CREMR demands, the critical value of output xc at which the
market and planner pdfs intersect is unique and proportional to γ, for any values of the ob-
servable parameters (m, k, and σ) when the productivity distribution is Pareto, and for the
estimated values of the observable parameters (m, µ̃, s and σ) when it is lognormal.

The proof is in Appendix A.8. Using the estimated parameters from Table II we find that xc
equals 1.465γ in the Pareto case and 1.472γ in the lognormal case. Lemma 1 in turn implies
that a key measure of misallocation does not depend on γ:
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(a) γ = 1.0 (b) γ = 1.5 (c) γ = 2.0

(d) γ = 3.0 (e) γ = 4.0 (f) γ = 5.0

FIGURE 6.—Market versus socially-optimal output profiles: truncated lognormal and CREMR. Each curve shows
the market (solid blue line) or socially optimal (dotted red line) density of output, assuming a truncated lognormal dis-
tribution of productivities and CREMR demands, with estimated parameters µ̃=−49.982, s= 6.051, σ = 1.110,
and m= 1.001, for different values of γ.

PROPOSITION 5: With CREMR demands and either Pareto or lognormal productivity, the
fraction of firms that lies below the critical value of output xc in both the market equilibrium
and the social optimum is independent of γ for given observables: m, k, and σ when the
productivity distribution is Pareto, and m, µ̃, s and σ when it is lognormal.

The proof is in Appendix A.9. Using the estimated parameter values, we find that J(xc) =
0.795 and J∗(xc) = 0.151 in the Pareto case, while J(xc) = 0.797 and J∗(xc) = 0.153 in
the truncated lognormal case. So both the optimal and the market output profiles have more
smaller firms in the truncated lognormal case than in the long-tailed Pareto case, but these
differences are small as illustrated by figures 5 and 6. Furthermore, we can conclude that,
independent of γ, in the fitted CREMR-Pareto model, the market gives rise to J(xc)/J

∗(xc) =
5.252 times as many “small" firms as a planner would choose, while the corresponding figure
in the fitted CREMR-lognormal model is very similar: J(xc)/J

∗(xc) = 5.220. Thus, although
the key parameter γ is unobservable, we can draw a strong conclusion about the extent of
misallocation with CREMR demands: for the parameters that we have estimated, the market
equilibrium has over 5.2 times as many firms that are “too small” relative to the optimum.

7. CONCLUSION

This paper has addressed the question of how to relate the distributions of agent charac-
teristics in models of heterogeneous agents. We provide a general necessary and sufficient
condition for consistency between arbitrary assumptions about the distributions of two agent
characteristics and an arbitrary behavioral model that relates those two characteristics at the
individual level. In the specific context of Melitz-type models of heterogeneous firms compet-
ing in monopolistic competition, we showed that our condition implies a new demand function
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that generalizes the CES. The CREMR or “Constant Revenue Elasticity of Marginal Revenue”
demand function is necessary and sufficient for the distributions of firm productivities and firm
sales to be members of the same family. It is also necessary and sufficient for Gibrat’s Law
to hold over time under additive separability, it allows for variable markups in a parsimonious
way, it provides a better empirical fit to data on Indian markups drawn from De Loecker et al.
(2016) than a number of other better-known demand functions, and it leads to an operational
way of quantifying the deviation of the competitive equilibrium from the social optimum. All
these results hold for both Pareto and lognormal distributions of productivity, suggesting that
the choice between these two distributions is less important than the choice between CREMR
and other demands.

While we have concentrated on explaining the distributions of firm markups given assump-
tions about the distribution of firm productivity, it is clear that our approach has many other
potential applications. As noted in the introduction, linking observed heterogeneity of out-
comes to underlying heterogeneity of agents’ characteristics via an assumed model of agent
behavior is a common research strategy in many fields of economics. Both our general formu-
lations and the specific functional forms we have introduced should prove useful in many other
contexts where our results make it possible to move seamlessly between observed distributions
of firm outcomes, hypothesized underlying distributions of firm characteristics, and the behav-
ioral model that links them.23 To give just one example, the interaction of distributional and
demand assumptions matters for quantifying the misallocation of resources, as we have shown
in Sections 4 and 6. The pioneering study of Hsieh and Klenow (2009) estimated that close to
half the difference in efficiency between China and India on the one hand and the U.S. on the
other could be attributed to an inefficient allocation of labor and capital. However, this was un-
der the maintained hypothesis that the output of each industry was a CES aggregate. As Dixit
and Stiglitz (1977) and Feenstra and Kee (2008) showed, CES preferences for differentiated
products imply that goods markets are constrained efficient. In a non-CES world, inefficiency
may be partly a reflection of goods-market rather than factor-market distortions, with very dif-
ferent implications for welfare-enhancing policies.24 In this and other cases, the assumptions
made about the productivity distribution and demand structure matter for the distribution of
markups and other firm outcomes, yet the existing literature gives little guidance on the impli-
cations of relaxing the standard assumptions, nor how best to proceed when the assumptions of
the canonical model do not hold. Our paper has charted a way forward in these directions.

APPENDIX A

This appendix gives technical details, proofs, and extensions. Sections A.1 and A.3 give
more details on the class of Generalized Power Function distributions and the properties of
CREMR demand functions respectively. Sections A.2, A.8, and A.9 give proofs of Proposi-
tion 1, Lemma 1 and Proposition 5 respectively. Section A.4 notes some further implications of
Proposition 1, Section A.5 sketches the derivations underlying Table I, Section A.6 discusses

23Other examples where our approach may prove fruitful are the interpretation of the trade elasticity, the elasticity
of trade with respect to trade costs, which is a constant for many demand functions and Pareto productivities (see
Arkolakis et al. (2012), Melitz and Redding (2015), and Arkolakis et al. (2018)) but not when the distribution of firm
productivities is lognormal (see Head et al. (2014) and Bas et al. (2017)); and the granular origins of aggregate fluctu-
ations, where Gabaix (2011) and di Giovanni and Levchenko (2012) have shown that considering a discrete number
of draws from a continuous distribution implies that the largest firms can have an impact on aggregate fluctuations,
when the distribution of firm size is a power law in the upper tail.

24Arguments along these lines can be found, for example, in Epifani and Gancia (2011), Dhingra and Morrow
(2019), and Haltiwanger et al. (2018).
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the data used in the empirics, while Section A.7 gives details of the markup distributions esti-
mated in Section 6.2.

A.1. Generalized Power Function Distributions

Table A.I shows that many well-known distributions are members of the Generalized Power
Function class, G (y;θ) = H

(
θ0 + θ1

θ2
yθ2
)

, introduced in Definition 1. Hence Proposition 1
can immediately be applied to deduce a constant-elasticity relationship between any two firm
characteristics which share any of the distributions in the table, provided the two distributions
have compatible supports, and the same value of the parameter θ0.

TABLE A.I

SOME MEMBERS OF THE GENERALIZED POWER FUNCTION CLASS OF DISTRIBUTIONS

G (y;θ) Support H (z) θ0 θ1 θ2

Pareto 1− yky−k [y,∞) z 1 kyk −k

Right-Truncated 1−yky−k

1−yky−k
[
y, y
]

z
1

1−yky−k
kyk

1−yky−k −kPareto

Lognormal Φ ((log y− µ)/s) (0,∞) Φ (log z) 0 1
s

exp
(
−µ
s

)
1
s

Left-Truncated Φ((log y−µ)/s)−T
1−T [y,∞) Φ(log z)−T

1−T 0 1
s

exp
(
−µ
s

)
1
sLognormala

Uniform y−y
y−y

[
y, y
]

z − y

y−y
1

y−y 1

Fréchet exp
(
−
(
y

s

)−α)
[0,∞) exp (−z) 0 αsα −α

Weibull 1− exp
(
−
(
y

s

)−α)
[0,∞) 1− exp (−z) 0 αs−α α

Gumbel exp
(
− exp

(
−
(
y−µ
s

)))
(−∞,∞) exp (− exp (−z)) −µ

s
1
s

1

aT = Φ
(
(log y− µ)/s

)
.

A useful result is that an arbitrarily truncated member of the GPF class is also a member:

COROLLARY 3: If the family of distributions G(y;θ) is a member of the GPF class, then the
family G̃(y;y, y,θ), formed by truncating G(y;θ) to the interval y ∈ [y, y], is also a member
of the GPF class.

The corollary follows immediately from the properties of a truncated distribution:

G̃(y;y, y,θ) = H̃

(
θ0 +

θ1

θ2

yθ2
)

where: H̃(z)≡
H(z)−G(y;θ)

G(y;θ)−G(y;θ)

When comparing two distributions from the same family, their supports must be compatible.
For example, if the distributions of y and z are from the same truncated family that is a member
of the GPF class, then we must have G(y;θ) =G(z;θ) and G(y;θ) =G(z;θ).

A simple example of a distribution that is not a member of the GPF class is the exponen-
tial: G (y;θ) = 1 − exp (−λy). This one-parameter distribution does not have the flexibility
to match either the sufficiency or the necessity part of Proposition 2. If y is distributed as an
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exponential and y = y0z
E , then z is distributed as a Weibull: F (z;θ′) = 1 − exp(−λy0z

E).
Whereas if both y and z are distributed as exponentials, then y = y0z, i.e., E = 1.

A.2. Proof of Proposition 1

We first give a preliminary lemma, that characterizes the links between the distributions of y
and z and the theoretical function linking them:25

LEMMA 2: Given Assumption 1, any two of the following imply the third:
(A) y is distributed with CDF G (y), where g(y)≡G′(y)> 0;
(B) z is distributed with CDF F (z), where f(z)≡ F ′(z)> 0;
(C) Agent behavior is such that: y = v(z), v′(z)> 0;
where the functions are related as follows:

(i) (A) and (C) imply (B) with F (z) =G(v(z)) and f(z) = g(v(z))v′(z); similarly, (B) and
(C) imply (A) with G(y) = F (v−1(y)) and g(y) = f(v−1(y))d(v

−1(y))

dy
.

(ii) (A) and (B) imply (C) with v(z) =G−1(F (z)).

Part (i) of the lemma is a standard result on transformations of variables. Part (ii) is less standard
(it is closely related to Lemma 1 of Matzkin (2003)), and requires Assumption 1: characteristics
y(i) and z(i) must refer to the same agent and must be monotonically increasing in i.

The importance of the result is that it allows us to characterize fully the conditions under
which assumptions about the distributions of two variables and about the relationship that links
them are mutually consistent. Part (ii) in particular provides an easy way of determining which
specifications of agent behavior are consistent with particular assumptions about the distribu-
tions of agent characteristics. All that is required is to derive the form of v(z) implied by any
pair of distributional assumptions.

As already noted, part (i) of Lemma 2 is standard. To prove part (ii), that (A) and (B) imply
(C), consider an arbitrary firm i with characteristics y(i) and z(i). Because y(i) and z(i) are
monotonically increasing in i, the fraction of firms with characteristics equal to or less than
y(i) and z(i), are equal:

G[y(i)] = F [z(i)] ∀i ∈Ω

Inverting gives y(i) = G−1[F (z(i))]. Since this holds for any firm i ∈ Ω, it follows that y =
v(z) =G−1[F (z)], as required. This completes the proof of Lemma 2.

Next, we turn to the proof of Proposition 1 itself. The proof of part (i) is immediate. To show
that (A) and (C) imply (B), assume G (y;θ) = H

(
θ0 + θ1

θ2
yθ2
)

, Gy > 0, and y = y0h(z)E .
Then the implied distribution of z is:

F (z;θ) =H

(
θ0 +

θ1

θ2

(
y0h(z)E

)θ2)=H

(
θ0 +

θ′1
θ′2
h(z)θ

′
2

)
where: θ′2 = Eθ2 and θ′1

θ′2
= θ1

θ2
yθ20 so θ′1 = θ1

θ2
θ′2y

θ2
0 = Eθ1y

θ2
0 . Thus (A) and (C) imply (B). A

similar proof shows that (B) and (C) imply (A).

25We consider a continuum of agents whose characteristics are realizations of a random variable. Because we work
with a continuum, the c.d.f. of this random variable is the actual distribution of these realizations. Henceforward, we
use lower-case variables to describe both a random variable and its realization.
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Next, we wish to prove part (ii), that (A) and (B) imply (C). The proof uses a key property
of the GPF class: the composition of one member of a GPF family and the inverse of an-
other is a power function: G−1 (G(z,θ′),θ) = y0z

E . Let ψ equal the distribution in (A): ψ ≡
G (y;θ) = H

(
θ0 + θ1

θ2
yθ2
)

, Gy > 0. Inverting the G and H functions gives: y ≡ G−1 (ψ;θ)

and θ0 + θ1
θ2
yθ2 = H−1(ψ). Eliminating y yields: G−1 (ψ;θ) =

(
θ2
θ1

(H−1(ψ)− θ0)
) 1
θ2 . In-

voking part (ii) of Lemma 2, we can state that y = G−1 (F (z;θ′) ;θ), where F (z;θ′) =

H
(
θ0 +

θ′1
θ′2
h(z)θ

′
2

)
, Fz > 0, from (B). Hence, substituting for G−1 (ψ;θ) and F (z;θ′) gives:

y =

(
θ2

θ1

(
H−1

(
H

(
θ0 +

θ′1
θ′2
h(z)θ

′
2

))
− θ0

)) 1
θ2

=

(
θ2

θ1

((
θ0 +

θ′1
θ′2
h(z)θ

′
2

)
− θ0

)) 1
θ2

= y0h(z)E

where: E =
θ′2
θ2

and y0 =
(
θ2
θ1

θ′1
θ′2

) 1
θ2 =

(
1
E

θ′1
θ1

) 1
θ2 . Thus (A) and (B) imply (C), which com-

pletes the proof of Proposition 1.

A.3. Properties of CREMR Demand Functions

First, we wish to show that the CREMR property ϕ= (r′)−1 = ϕ0r
E is necessary and suffi-

cient for the CREMR demands given in (6). To prove sufficiency, note that, from (6), total and
marginal revenue given CREMR demands are:

r(x) ≡ xp(x) = β (x− γ)
σ−1
σ r′(x) = p(x) + xp′(x) = β

σ− 1

σ
(x− γ)−

1
σ (29)

Combining these, the revenue elasticity of marginal revenue is constant, equal to 1
σ−1

:

r′(x) = β
σ
σ−1

σ−1

σ r(x)−
1

σ−1

To prove necessity, invert equation (5) to obtain r′(x) = ϕ−1
0 r(x)−E . This is a standard first-

order differential equation in r(x) with constant coefficients. Its solution is:

r(x) =
(
(E + 1)

(
ϕ−1

0 x− κ
)) 1

E+1 (30)

where κ is a constant of integration. Collecting terms, recalling that r(x) = xp(x), gives the

CREMR demand system (6), where the coefficients are: σ = E+1
E

, β = (E+1)
1

E+1ϕ
− 1
E+1

0 , and
γ = ϕ0κ. Note that it is the constant κ which makes CREMR more general than CES. Since the
CREMR property ϕ = (r′)−1 = ϕ0r

E is both necessary and sufficient for the demands given
in (6), we call the latter CREMR demands.

Next, we wish to derive the demand manifold for CREMR demand functions. This can be
done directly by calculating the elasticity and convexity of demand:

ε=
x− γ
x− γσ

σ and ρ= 2−
(

1

x− γσ
− 1

(x− γ)σ

)
x (31)
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Eliminating x yields the CREMR demand manifold in the text, equation (11). An alternative
route to deriving this result that proves useful in Section 3.3 follows Mrázová and Neary (2017),
who show that, for a firm with constant marginal cost facing an arbitrary demand function, the
elasticities of total and marginal revenue with respect to output can be expressed in terms of the
elasticity and convexity of demand. These results yield an expression for the revenue elasticity
of marginal revenue which holds for any demand function:

r̂ = ε−1
ε
x̂

r̂′ =− 2−ρ
ε−1

x̂

}
⇒ r̂′ =−ε(2− ρ)

(ε− 1)2 r̂ (32)

Equating the coefficient of r̂ to the CREMR elasticity from (30) above, again leads to equation
(11). Note that requiring marginal revenue to be positive (ε > 1) and decreasing (ρ < 2) implies
that σ > 1, just as in the familiar CES case.

The expression for the elasticity of demand in (31) shows that it decreases in output, and so
demand is subconvex, if and only if γ is positive. Further details on this and other properties of
CREMR demands are given in Online Appendix B.2.

A.4. Other Implications of Proposition 1

CEMR

r

CES

CREMR

M

x

FIGURE A.1.—Demand functions that yield self-reflection between the distributions of firm characteristics.

Section 3 showed that CREMR demands are necessary and sufficient for the distributions
of productivity ϕ and sales revenue r to be members of the same family of the GPF class of
distributions. In Online Appendix B.1 we use the same approach to characterize the demand
functions that are necessary and sufficient for self-reflection between the distributions of pro-
ductivity and firm output x, and between output and sales revenue. Figure A.1 summarizes
schematically all these results: necessary and sufficient for self-reflection of the distributions
of productivity and output is a demand function that we call “CEMR” (Constant Elasticity of
output with respect to Marginal Revenue); while CES demands are necessary and sufficient
for self-reflection of the distributions of output and sales. Corollaries of these results are that
CES is sufficient for each of the three bilateral links between distributions, and is necessary and
sufficient for all three distributions to have the same form.

A.5. Derivations Underlying Table I

As in Mrázová and Neary (2017), we give the demand functions from a “firm’s-eye view”;
many of the parameters taken as given by the firm are endogenous in industry equilibrium. For
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each demand function, we follow a similar approach to that used with CREMR demands in
Sections 3.2 and 5.2: we use the first-order condition to solve for productivity as a function of
either output or price; the definition of sales revenue to solve for output or price as a function
of sales; and the relationship between markups and elasticities to solve for output or price as a
function of the markup. Combining yields ϕ(r) and ϕ(m) as required.

Linear: p(x) = α − βx, α > 0, β > 0. Sales revenue is quadratic in output, r(x) = αx −
βx2, but only the root corresponding to positive marginal revenue, r′(x) = α − 2βx > 0, is
admissible. Since maximum output is x= α

2β
, maximum sales revenue is r = α2

4β
, and we work

with sales relative to their maximum: ř ≡ r
r

. Hence output as a function of relative sales is:

x(ř) = α
2β

(
1− (1− ř) 1

2

)
. Equating marginal revenue to marginal cost gives ϕ(x) = 1

α−2βx
,

so we can calculate ϕ(ř) = ϕ(x(ř)). As for the markup, as a function of output it is m(x) =
p(x)

r′(x)
= α−βx

α−2βx
. We do not work with the relative markup in this case, since m(x)→∞ as

x→ x. Inverting m(x) gives x(m) = α
β

m−1
2m−1

, from which we can calculate ϕ(m) = ϕ(x(m))
in Table I.

LES: p(x) = δ
x+γ

, γ > 0, δ > 0. We use the inverse demand function rather than the more
familiar direct one: x(p) = δ

p
− γ. In monopolistic competition, the second-order condition

requires that γ be positive, which rules out its usual interpretation as minus a subsistence level
of consumption and also guarantees subconvexity. Sales revenue is r(x) = δ x

x+γ
, attaining its

maximum at r = δ, so we work with relative sales: ř ≡ r
r

= x
x+γ

. Inverting gives: x(ř) = γ ř
1−ř .

The first-order condition yields: ϕ(x) = (x+γ)2

γδ
. Combining gives ϕ(ř) = ϕ(x(ř)). Finally, the

markup as a function of output is m(x) = p(x)

r′(x)
= x+γ

γ
; inverting gives x(m) = γ(m − 1),

which again yields ϕ(m) = ϕ(x(m)).
Translog: x(p) = 1

p
(γ − η log p), γ > 0, η > 0. From the direct demand function, sales rev-

enue as a function of price is r(p) = γ − η log p. Inverting gives p(r) = exp
(
γ−r
η

)
. From the

first-order condition, ϕ(p) = x′(p)
r′(p) = η+γ−η log p

ηp
. Combining this with p(r) gives the expression

for ϕ(r) in Table I. Finally, the markup as a function of price is m(p) = p

r′(p) = η+γ−η log p

η
;

inverting gives p(m) = exp
(
η+γ

η
−m

)
, which yields ϕ(m) = ϕ(p(m)) in Table I.

A.6. Data on Indian Sales and Markups

See De Loecker et al. (2016) for a detailed description of the data, which come from the
Prowess data set collected by the Centre for Monitoring the Indian Economy (CMIE). Obser-
vations with negative markups (about 20% of the total) are not included in the sample, as they
are inconsistent with steady-state equilibrium behavior by firms.

A.7. Markup Distributions

Table A.II gives the markup distributions implied by different assumptions about the under-
lying productivity distribution and the demand function, using the relation B(m) =G(ϕ(m)).
The two distributions implied by CREMR demands have already been given in Section 5.2 in
terms of the relative markup as a function of primitive parameters. (Recall equations (23) and
(24).) Here all eight distributions are expressed in terms of observables; the estimated values
of these are given in Table II in the text. The expressions are simplified by writing them in
terms of composite parameters ω and T which can be calculated from observable parameters.
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TABLE A.II

MARKUP DISTRIBUTIONS IMPLIED BY ASSUMPTIONS ABOUT PRODUCTIVITY (PARETO (P ) OR TRUNCATED
LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES OR TRANSLOG)

Demand Function Pareto Productivity Truncated Lognormal Productivity

GP(ϕ) = 1−ϕkϕ−k GtLN (ϕ) =
Φ( logϕ−µ

s )−T
1−T

CREMR B(m) = 1− ωk
(

(σ−1)m

m+σ−σm

)− k
σ

B(m) =

Φ

 log

(
(σ−1)m
m+σ−mσ

)
−µ̃

sσ

−T
1−T

p(x) = β
x
(x− γ)

σ−1
σ ω =

ϕβ

γ
1
σ

σ−1
σ =

(
(σ−1)m
m+σ−σm

) 1
σ

µ̃= σ

µ− log

 σ
σ−1

γ
1
σ
β


T = Φ

(
logϕ−µ

s

)
= Φ

 log

(
(σ−1)m
m+σ−mσ

)
−µ̃

sσ



Linear B(m) = 1−
(

2m−1
ω

)−k
B(m) =

Φ
(

log(2m−1)−µ̃
s

)
−T

1−T
p(x) = α− βx ω = αϕ= 2m− 1 µ̃= µ+ logα

T = Φ

(
logϕ−µ

s

)
= Φ

(
log(2m−1)−µ̃

s

)

LES B(m) = 1−
(
m2

ω

)−k
B(m) =

Φ
(

2 log(m)−µ̃
s

)
−T

1−T

p(x) = δ
x+γ

ω =
δϕ
γ =m2 µ̃= µ+ log( δγ )

T = Φ

(
logϕ−µ

s

)
= Φ

(
2 log(m)−µ̃

s

)

Translog B(m) = 1− ωk (mem)−k B(m) =
Φ
(

log(mem)−µ̃
s

)
−T

1−T

x(p) = 1
p
(γ − η log p) ω = e

1+
γ
η ϕ=mem µ̃= µ+ 1 +

γ
η

T = Φ

(
logϕ−µ

s

)
= Φ

(
log(mem)−µ̃

s

)

The table also shows how all observable parameters can be expressed in terms of unobservable
primitive parameters.

A.8. Proof of Lemma 1

Begin with the case of a Pareto productivity distribution. We first show that the market equi-
librium and optimal output pdfs cross only once. Using the distributions (25) and (26), we
derive the densities j(x) and j∗(x). At any point where these intersect:

γ
k
σ
k

σ
ωk (x− γ)−

k+σ
σ = γ

k
σ
k

σ

x− γσ
x(x− γ)

(
ωσ−1

1 + ωσ
x(x− γ)

1−σ
σ

)−k
⇔

(
ωσ

1 + ωσ

)k
=
x− γσ
x

(
x− γ
x

)k
(33)

Given x > γσ > γ, the right-hand side of (33) is increasing in x. Two densities must intersect
at least once, so this proves that they intersect only once. Next, we hypothesize that, for given
values of ω, k and σ, the unique solution is linear in γ, so xc = aγ, where a is a constant.
Substituting this into (33), γ cancels, leaving an implicit expression for a as a function of ω, k
and σ only. Recalling that ω is a composite parameter which can be expressed in terms of m



SALES AND MARKUP DISPERSION: THEORY AND EMPIRICS 33

and σ as in (23), this confirms that, for given values of observables m, k, and σ, xc = aγ is the
unique solution of j(x) = j∗(x), which proves Lemma 1 for the Pareto case.

The proof in the case of a lognormal productivity distribution proceeds in the same way.
Using the distributions (27) and (28), we derive the densities. At an intersection point:

exp

−
(

log

(
x− γ
γ

)
− µ̃
)2

2s2σ2


√

2πsσ(x− γ)

1− T
=

(x− γσ) exp

(
−

(
log

(
xσ(x− γ)1−σ

γ

)
− µ̃x∗

)2

2s2σ2

)
√

2πsσx(x− γ)

1− T

⇔ 1 =
x− γσ
x

(
1 + ωσ

ωσ
x− γ
x

) log

(
( ωσ

1+ωσ )σ x
σ(x−γ)2−σ

γ2

)
−2µ̃

2s2σ

(34)

Recalling that ω =
(

(σ−1)m

m+σ−σm

) 1
σ

, for the estimated values of the observable parameters µ̃, σ, s
and m, and any γ, the right-hand side of (34) is monotonically increasing in x for x > γσ > γ.
This proves that the densities intersect only once. Next, we test the solution xc = aγ where a
is a constant for the estimated parameters. Substituting into (34) yields an implicit expression
for a as a function of µ̃, σ, s and ω. This confirms that, for the estimated values of observable
parameters µ̃, σ, s andm, xc = aγ is the unique solution of j(x) = j∗(x), which proves Lemma
1 for the lognormal case.

A.9. Proof of Proposition 5

Consider first the Pareto case. Evaluating (25) and (26) at x= xc = aγ yields:

J(xc) = 1− ωk (a− 1)−
k
σ and J∗(xc) = 1−

(
ωσ−1

1 + ωσ
a(a− 1)

1−σ
σ

)−k
Recalling that ω is a composite parameter which can be expressed in terms of m and σ as in
(23), this confirms that, for given values of observablesm, k, and σ, the proportion of firms that
are smaller or equal to xc is independent of γ in both the market and the planner’s distributions.

Similarly, in the lognormal case, evaluating (27) and (28) at x= xc = aγ yields:

J(xc) =

Φ

(
log (a− 1)− µ̃

σs

)
− T

1− T
and J∗(xc) =

Φ

(
log
(
(a− 1)1−σ)− µ̃x∗

σs

)
− T

1− T

Recall that T = Φ
(

1
σs

(
log
(

(σ−1)m

m+σ−mσ

)
− µ̃
))

and µ̃x∗ = µ̃− σ log
(
σ−1
σ
m
)
. So, once again,

conditional on observables m, µ̃, s and σ, the proportion of firms that are smaller or equal to
xc is independent of γ in both the market and the planner’s distributions.
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APPENDIX B: SUPPLEMENTARY ONLINE APPENDIX

Section B.1 proves some further corollaries of Proposition 1 beyond those given in Section
3. Section B.2 expands on Appendix A.3 with further properties of the CREMR demand func-
tion and its demand manifold. Section B.3 uses the Kullback-Leibler Divergence to compare
the goodness of fit for both sales and markups of Indian firms of different assumptions about
the productivity distribution and demand. Section B.4 explores how the relative performance
of different specifications, especially the choice of Pareto versus lognormal productivity, is af-
fected by truncating the sample. Section B.5 shows that the results are robust to an alternative
distance measure, the QQ estimator. Finally, Section B.6 shows that similar results are obtained
with a different data set of exports by French firms to Germany.

B.1. Other Implications of Proposition 1

The proof of each of these corollaries to Proposition 1 proceeds in the same way. Given two
distributions y ∼G (y) and z ∼ F (z), we first solve for y = G−1 (F (z)), and then solve the
resulting differential equation to derive the implied demand function.

B.1.1. Self-Reflection of Productivity and Output

We first explore the conditions under which output follows the same distribution as pro-
ductivity. Proposition 1 implies that a necessary and sufficient condition for this form of self-
reflection is that productivity is a simple power function of output: ϕ= ϕ0x

E . Replacing ϕ by
r′(x)−1 as before yields a new differential equation in r(x), the solution to which is:

p(x) =
1

x
(α+ βx

σ−1
σ ) (35)

This demand function plays the same role with respect to firm output as the CREMR demand
function does with respect to firm sales (recall (6)). It is necessary and sufficient for a constant
elasticity of marginal revenue with respect to output, equal toE = 1

σ
. Hence we call it “CEMR”

for “Constant (Output) Elasticity of Marginal Revenue.”26

Unlike CREMR, there are some precedents for the CEMR class. It has the same functional
form, except with prices and quantities reversed, as the direct PIGL (“Price-Independent Gen-
eralized Linearity”) class of Muellbauer (1975).27 In particular, the limiting case where σ ap-
proaches one is the inverse translog demand function of Christensen et al. (1975). However,
except for the CES (the special case when α= 0), CEMR demands bear little resemblance to
commonly-used demand functions.28 When the common distribution of productivity and output
is a Pareto, we can immediately state a further corollary of Proposition 1:

COROLLARY 4: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is Pareto: GP(ϕ) = 1−ϕkϕ−k;
(B) The distribution of firm output is Pareto: FP(x) = 1− xmx−m;

26“CEMR” rhymes with “seemer,” just as “CREMR” rhymes with “dreamer.”
27For this reason, Mrázová and Neary (2017) called it the “inverse PIGL” class of demand functions.
28As shown by Mrázová and Neary (2017), the CEMR demand manifold implies a linear relationship between

the convexity and elasticity of demand, passing through the Cobb-Douglas point (ε, ρ) = (1,2): ρ= 2− ε−1

σ
. The

manifold for the inverse translog special case (σ→ 1) coincides with the SM locus in Figure 2(b). For smaller firms
when demand is subconvex, CEMR demands are qualitatively similar to CREMR, except that they are somewhat
more elastic: the CEMR manifold can be written as ε= (2− ρ)σ + 1, while for high ε (so ε− 1≈ ε) the CREMR
manifold is approximately ε= (2− ρ)(σ− 1) + 1.



38

(C) The demand function belongs to the CEMR family in (35);
where the parameters are related as follows:

m=
k

σ
and x=

(
β
σ− 1

σ
ϕ

)σ
A similar result holds if firm productivities have a lognormal distribution, though, as in the
CREMR case of Corollary 2, we have to allow for the possibility that the distribution is left-
truncated, as the value of output for the smallest firm may be strictly positive.

COROLLARY 5: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is truncated lognormal with support [ϕ,+∞):
GtLN (ϕ) = Φ((logϕ−µ)/s)−T

1−T ;
(B) The distribution of firm output is truncated lognormal with support [x,+∞): FtLN (x) =
Φ((logx−µ′′)/s′′)−T

1−T ;
(C) The demand function belongs to the CEMR family in (35);
where the parameters are related as follows:

s′′ = σs

µ′′ = σ

(
µ+ log

(
β
σ− 1

σ

))

x=

(
β
σ− 1

σ
ϕ

)σ
T = Φ((logϕ− µ)/s) = Φ ((logx− µ′′)/s′′)

B.1.2. Self-Reflection of Output and Sales

A final self-reflection corollary of Proposition 1 relates to the case where output and sales
follow the same distribution. This requires that the elasticity of one with respect to the other is
constant, which implies that the demand function must be a CES.29 Formally:

COROLLARY 6: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm output x is a member of the generalized power function class;
(B) The distribution of firm sales revenue r is a member of the same family of the generalized
power function class;
(C) The demand function is CES: p(x) = βx−

1
σ , where β = x

− 1
E

0 and σ = E
E−1

.

In the Pareto case, the sufficiency part of this result is familiar from the large literature on the
Melitz model with CES demands: it is implicit in Chaney (2008) for example. The necessity
part, taken together with earlier results, shows that it is not possible for all three firm attributes,
productivity, sales and revenue, to have the same distribution from the generalized power class
under any demand system other than the CES. Corollary 6 follows immediately from previous

29Suppose that x= x0r(x)E . Recalling that r(x) = xp(x), it follows immediately that the demand function must
take the CES form.
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results when productivities themselves have a generalized power function distribution, since
the only demand function which is a member of both the CEMR and CREMR families is the
CES itself. However, it is much more general than that, since it does not require any assumption
about the underlying distribution of productivities. It is an example of a corollary to Proposition
1 which relates two endogenous firm outcomes rather than an exogenous and an endogenous
one.

B.2. Further Properties of CREMR Demand Functions

To establish conditions for demand to be superconvex, we solve for the points of intersection
between the demand manifold and the CES locus, the boundary between the sub- and super-
convex regions. From Mrázová and Neary (2017), the expression for the CES locus is: ρ= ε+1

ε
.

Eliminating ρ using the CREMR demand manifold (11) and factorizing gives:

ρ− ε+ 1

ε
=−(ε− σ)(ε− 1)

(σ− 1)ε
= 0

Given 1< σ ≤∞, this expression is zero, and so every CREMR manifold intersects the CES
locus, at two points. One is at {ε, ρ} = {1,2}, implying that all CREMR demand manifolds
must pass through the Cobb-Douglas point. The other is at {ε, ρ} = {σ,1 + 1

σ
}. Hence every

CREMR demand manifold lies strictly within the superconvex region (where ρ > ε+1
ε

) for
σ > ε > 1, and strictly within the subconvex region for ε > σ. The condition for superconvexity,
ε ≤ σ, can be reexpressed in terms of γ by using the fact that the elasticity of demand is
ε = x−γ

x−γσσ. Substituting and recalling that σ must be strictly greater than one, we find that
CREMR demands are superconvex if and only if γ ≤ 0. As with many other demand manifolds
considered in Mrázová and Neary (2017), this implies that, for a given value of σ, the demand
manifold has two branches, one in the superconvex region corresponding to negative values
of γ, and the other in the subconvex region corresponding to positive values of γ. Along each
branch, the equilibrium point converges towards the CES locus as output rises without bound,
as shown by the arrows in Figure 2.

Similarly, to establish conditions for profits to be supermodular, we solve for the points of
intersection between the demand manifold and the SM locus, the boundary between the sub-
and supermodular regions. From Mrázová and Neary (2017), the expression for the SM locus
is: ρ= 3− ε. Eliminating ρ using the CREMR demand manifold and factorizing gives:

ρ+ ε− 3 =
((σ− 2)ε+ 1)(ε− 1)

(σ− 1)ε
= 0

Once again, this expression is zero at two points: the Cobb-Douglas point {ε, ρ}= {1,2}, and
the point {ε, ρ} = { 1

2−σ ,
5−3σ
2−σ }. The latter is in the admissible region only for σ < 2. Hence

for σ ≥ 2, the CREMR demand manifold is always in the supermodular region.

B.3. Fitting Sales and Markup Distributions

Section 6.2 in the text focused on how different assumptions compare in predicting the dis-
tribution of markups. Here we supplement this by showing in addition how they compare in
predicting the distribution of sales. To compare the “goodness of fit” of different models, we
use the Kullback-Leibler Divergence (denoted “KLD” hereafter), introduced by Kullback and
Leibler (1951). This measures the divergence of the predicted distribution from the actual one,
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and is asymptotically equivalent to maximum likelihood.30 It equals the information loss from
using the theory rather than knowing the true distribution. Whereas information scientists typ-
ically present KLD values in “bits” (log to base 2) or “nats” (log to base e), units with little
intuitive appeal in economics, we present its values normalized by the value implied by a uni-
form distribution. This is an uninformative prior in the spirit of the Laplace principle of in-
sufficient reason; it is analogous to the “dartboard” approach to benchmarking the geographic
concentration of manufacturing industry of Ellison and Glaeser (1997), or the “balls and bins”
approach to benchmarking the world trade matrix of Armenter and Koren (2014). The value of
the KLD is unbounded, but a specification that gave a value greater than that implied by a uni-
form distribution would be an unsatisfactory explanation of the data. Appendix B.5 shows that
an alternative criterion for choosing between distributions, the QQ estimator, gives qualitatively
similar results.

TABLE B.I

KLD FOR INDIAN SALES AND MARKUPS COMPARED WITH PREDICTIONS FROM SELECTED PRODUCTIVITY
DISTRIBUTIONS AND DEMAND FUNCTIONSa

CREMR Translog LES Linear

A. Sales

Pareto 0.2253 0.1028 0.1837 0.1837

Lognormal 0.0140 0.5825 0.7266 0.7266

B. Markups

Pareto 0.1851 0.2205 0.2191 0.2512

Lognormal 0.1863 0.2228 0.2083 0.2075

aEach KLD value measures the divergence of the predicted from the empirical distribution. A value of zero indicates no divergence, a
value of one a divergence as great as a uniform distribution.

The minimized KLD values for each specification are given in Table B.I and illustrated in
Figure B.1. The rankings of different specifications for sales are very different in the Pareto
and lognormal cases. Conditional on a Pareto distribution of productivities, CREMR demands
give the worst fit to sales, with translog demands performing best, and linear-LES intermediate
between the others. However, the differences between the KLD values for these specifications
are much less than those conditional on lognormal productivities. In this case CREMR does
best, with translog performing much less well and linear-LES worst of all.

As for the results for markups, these imply exactly the same ranking of different specifica-
tions as the estimates given in Table II in Section 6.2, despite the different methodologies used
(using individual observations and minimizing the AIC rather than using data grouped in bins
and minimizing the KLD as here). Once again, CREMR demands clearly do best, irrespective
of the assumed distribution, with translog and LES performing at the same level, and linear
doing better under Pareto assumptions but less well in the lognormal case. This reinforces the
conclusion drawn in the text that the choice between Pareto and lognormal distributions is less
important than the choice between CREMR and other demands.

30The KLD weights the log of the ratio of the estimated density to the empirical density by the empirical density
itself. Many alternative weighting schemes have been proposed, such as Exponential Tilting, which weights the ratio
of the empirical density to the estimated density by the estimated density. (See Nevo (2002) for further discussion).
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FIGURE B.1.—KLD for Indian sales and markups. Data from Table B.I.

TABLE B.II

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: INDIAN SALESa

CREMR + LN CREMR + P TLog + P Lin + P TLog + LN Lin + LN

CREMR + LN – 0% 0% 0% 0% 0%
CREMR + P 100% – 0% 0% 0% 0%

TLog + P 100% 100% – 0% 0% 0%
Lin + P 100% 100% 100% – 0% 0%

TLog + LN 100% 100% 100% 100% – 0%
Lin + LN 100% 100% 100% 100% 100% –

aSee text for explanation. “LN” denotes lognormal, “P” denotes Pareto.

TABLE B.III

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: INDIAN MARKUPSa

CREMR + P CREMR + LN Lin + LN LES + LN LES + P TLog + P TLog + LN Lin + P

CREMR + P – 2% 0% 0% 0% 0% 0% 0%
CREMR + LN 98% – 0% 0% 0% 0% 0% 0%

Lin + LN 100% 100% – 0% 0% 0% 0% 0%
LES + LN 100% 100% 100% – 0% 0% 0% 0%
LES + P 100% 100% 100% 100% – 16% 6% 0%
TLog + P 100% 100% 100% 100% 84% – 0% 0%

TLog + LN 100% 100% 100% 100% 94% 100% – 0%
Lin + P 100% 100% 100% 100% 100% 100% 100% –

aSee text for explanation.

To assess whether the KLD values in Table B.I are significantly different from one another,
we use a bootstrapping approach. We construct one thousand samples of the same size as the
data (i.e., 2,457 observations), by sampling with replacement from the original data. For each
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sample, we then compute the KLD value for each of the six models. Tables B.II and B.III
gives the results for Indian sales and markup data respectively. Each entry in the table is the
proportion of samples in which the combination in the relevant column gives a higher value of
the KLD than that in the relevant row. All the values are equal to or very close to 100%, which
confirms that the results in Table B.I are robust.

B.4. Robustness to Truncation

The results for Indian sales data in the preceding sub-section are broadly similar to those with
French sales data in Appendix B.6 below, except for the case of CREMR demands combined
with Pareto productivity: this gives a good fit with French data but performs less well with In-
dian data. One possible explanation for this is that the French data relate to exports, whereas the
Indian data are for total domestic production. Presumptively, smaller firms have been selected
out of the French data, so we might expect the Pareto assumption to be more appropriate. To
throw light on this issue, we explore the robustness of the Indian results to left-truncating the
data: specifically, we repeat a number of the comparisons between different specifications for
the Indian sales distribution dropping one observation at a time.

KLD

Number of Observations Dropped

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800

  Pareto + CREMR

  Lognormal + CREMR

FIGURE B.2.—CREMR vs. CREMR: KLD for Indian Sales.

Figure B.2 compares the KLD for the Pareto and lognormal, conditional on CREMR de-
mands, starting on the left-hand side with all observations (so the values are the same as in Fig-
ure B.1) and successively dropping up to 809 observations one at a time.31 Although the curves
are not precisely monotonic, the broad picture is clear: conditional on CREMR demands, Pareto
does better and lognormal does worse as more and more observations are dropped. The Pareto
specification dominates when we drop 663 or more observations: these account for 27% of all
firm-product observations, but only 1.2% of total sales.

31Each KLD value is normalized by the value of the KLD for a uniform distribution corresponding to the number
of observations used to calculate it; i.e., excluding the observations dropped. Alternative approaches would make
very little difference however, as the KLD value for the uniform varies very little, from 3.940 with no observations
dropped to 3.560 with 809 observations dropped.



SALES AND MARKUP DISPERSION: THEORY AND EMPIRICS 43

0.00

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80 100 120 140 160 180 200

  Pareto + CREMR

  Pareto + Linear/LES

  Pareto + Translog

KLD

Number of Observations Dropped

FIGURE B.3.—CREMR vs. The Rest, Given Pareto: KLD for Indian Sales.

Figure B.3 shows that a similar pattern emerges when we compare the performance of differ-
ent demand functions in explaining the sales distribution, conditional on a Pareto distribution
for productivity. (Note that the horizontal scale differs from that in Figure B.2.) In this case,
the CREMR specification overtakes the linear one when we drop 11 or more observations,
which account for 0.44% of all firm-product observations, and only 0.0002% of sales. As for
the translog, CREMR overtakes it when we drop 118 or more observations, which account for
4.80% of observations, and 0.03% of sales.

These findings confirm that the combination of CREMR demand and Pareto productivities
fits the sales data relatively better when the smallest observations are dropped. They also make
precise the pattern observed in many datasets, whereby the Pareto assumption outperforms the
lognormal in the right tail of the sales distribution. For example, Figure B.2 shows that the
relevant region in the right tail begins at exactly 663 observations.

B.5. Robustness to Divergence Criterion: The QQ Estimator

To check the robustness of our results, we consider an alternative criterion to the KLD for
comparing predicted and actual distributions. Here we consider the QQ estimator, developed
by Kratz and Resnick (1996), and previously used by Head et al. (2014) and Nigai (2017). This
estimator does not have the same desirable theoretical properties as the KLD, in particular it
is not asymptotically equivalent to maximum likelihood, but it has a simple interpretation. It
equals the parameter vector θ∗ that minimizes the sum of the squared deviations of the quantiles
of the predicted distribution from those of the actual distribution:

QQ(F̃ || F (·;θ)) =
n∑
i=1

(log q̃i − log qi(θ))2

where q̃i = F̃−1(i/n) is the i’th quantile observed in the data, while qi(θ) = F−1(i/n;θ) is
the i’th quantile predicted by the theory.

To implement the QQ estimator we need analytic expressions for the quantiles of the sales
and markup distributions under each of the eight combinations of assumptions about demand
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TABLE B.IV

QUANTILE FUNCTIONS FOR SALES DISTRIBUTIONS IMPLIED BY ASSUMPTIONS ABOUT PRODUCTIVITY
(PARETO (P ) OR TRUNCATED LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES OR TRANSLOG)a

Demand Function Pareto Productivity Truncated Lognormal Productivity

GP(ϕ) = 1−ϕkϕ−k GtLN (ϕ) =
Φ( logϕ−µ

s )−T
1−T

CREMR
Q(y) = βσ

(
σ−1
σ
ϕ
)σ−1

(1− y)
1−σ
k Q(y) = βσ

(
σ−1
σ
eµ+sΦ−1(y(1−T )+T )

)σ−1

p(x) = β
x
(x− γ)

σ−1
σ

Linear
Q(y) =

α2ϕ2−(1−y)
2
k

4βϕ2 Q(y) = α2−e
−2(µ+sΦ−1(y(1−T )+T ))

4βp(x) = α− βx

LES
Q(y) = δ−

√
γδ
ϕ
(1− y) 1

2k Q(y) = δ−
√
γδ

e
1
2 (µ+sΦ−1(y(1−T )+T ))p(x) = δ

x+γ

Translog Q(y) = η
(
W
(
ϕe1+

γ

η (1− y)− 1
k

)
Q(y) = η

(
W
(
e1+ γ

η
+µ+sΦ−1(y(1−T )+T )

)
x(p) = γ−η log p

p
− 1
)

-1
)

aΦ(·): c.d.f. of a standard normal;W(·): the Lambert function.

TABLE B.V

QUANTILE FUNCTIONS FOR MARKUP DISTRIBUTIONS IMPLIED BY ASSUMPTIONS ABOUT PRODUCTIVITY
(PARETO (P ) OR TRUNCATED LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES OR TRANSLOG)a

Demand Function Pareto Productivity Truncated Lognormal Productivity

GP(ϕ) = 1−ϕkϕ−k GtLN (ϕ) =
Φ( logϕ−µ

s )−T
1−T

CREMR Q(y) = σ
σ−1

1(
1+ω−σ(1−y)

σ
k
) Q(y) = σ

σ−1
1

1+e−µ̃−sσΦ−1(y(1−T )+T )

p(x) = β
x
(x− γ)

σ−1
σ ω =

ϕβ

γ
1
σ

σ−1
σ µ̃= σ

µ− log

 σ
σ−1

γ
1
σ
β



Linear Q(y) = 1
2

(
1 + ω (1− y)−

1
k

)
Q(y) = 1

2

(
1 + eµ̃+sΦ−1(y(1−T )+T )

)
p(x) = α− βx ω = αϕ µ̃= µ+ logα

LES Q(y) =

√
ω (1− y)−1/k Q(y) = e

1
2 (µ̃+sΦ−1(y(1−T )+T ))

p(x) = δ
x+γ

ω =
δϕ
γ µ̃= µ+ log( δγ )

Translog Q(y) =W
(
ω (1− y)−1/k

)
Q(y) =W

(
eµ̃+sΦ−1(y(1−T )+T )

)
x(p) = γ−η log p

p
ω = e

1+
γ
η ϕ µ̃= µ+ 1 +

γ
η

aΦ(·): c.d.f. of a standard normal;W(·): the Lambert function.
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and the distribution of productivity we consider. These are given in Tables B.IV and B.V. We
set the number of quantiles n equal to 100. The resulting values of the QQ estimator for Indian
sales and markups are given in Table B.VI, and they are illustrated in Figure B.4.

Comparing Table B.VI and Figure B.4 with Table B.I and Figure B.1 in Appendix B.3 re-
spectively, it is evident that the results based on the QQ estimator are qualitatively very similar
to those for the KLD. In particular, the Pareto assumption gives a better fit for sales than for
markups, except in the CREMR case; while the lognormal assumption tends to give a better
fit for markups than for sales. Comparing different demand functions, CREMR demands give
a better fit to the markup distribution than any other demands, irrespective of which produc-
tivity distribution is assumed. As for sales, the results differ between the Pareto and lognormal
cases. Conditional on lognormal, CREMR again performs much better, whereas, conditional
on Pareto, it performs least well, with the translog doing best. The only qualitative difference
between the results using the two criteria is that with the QQ estimator the translog does some-
what better than the LES in fitting the markup distribution. Overall, we can conclude that the
rankings given in Section 6.1 are not unduly sensitive to our choice of criterion for comparing
actual and predicted distributions.

TABLE B.VI

QQ ESTIMATOR FOR INDIAN SALES AND MARKUPS

CREMR Translog LES Linear

A. Sales

Pareto 58.939 12.693 24.484 24.484

Lognormal 3.078 116.918 133.274 133.274

B. Markups

Pareto 0.113 0.978 1.133 3.606

Lognormal 0.110 0.990 0.340 0.325

B.6. French Exports to Germany

The Indian data used in Section 6 have the great advantage that they give both sales and
markups for all firms. This is important, for example, in allowing us to discriminate between
CES and CREMR, whose implications for sales are observationally equivalent. However, rel-
ative to many data sets used in recent trade applications, they refer to total sales rather than
exports and they cover a relatively small number of firms. Hence it is useful to repeat the anal-
ysis on a more conventional data set on export sales, even if this does not give information on
markups. We do this in this section, using data on the universe of French exports to Germany
in 2005, drawn from the same source as that used by Head et al. (2014).32

As with the Indian data in the text, we use the KLD as the criterion to determine how well
different assumptions fit the data. Table B.VII gives the values of the KLD measuring the di-
vergence from the empirical sales distribution from the distributions implied by CREMR/CES,
translog and linear demand functions combined with either Pareto or lognormal productivities.
These distributions are calculated by combining the relevant productivity distribution with the

32The data set contains 161,191 firm-product observations on export sales by 27,550 firms: 5.85 products per firm.
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FIGURE B.4.—QQ Estimator for Indian sales and markups.

TABLE B.VII

KLD FOR FRENCH EXPORTS COMPARED WITH PREDICTIONS FROM SELECTED DEMAND FUNCTIONS AND
PRODUCTIVITY DISTRIBUTIONS

CREMR/CES Translog Linear and LES

Pareto 0.0012 0.3819 0.4711
Lognormal 0.0001 0.7315 0.8314

relationships between productivity and sales given in Table I. (Recall from that table that the
linear and LES specifications are observationally equivalent.) Each entry in the table is the
value of the KLD that measures the information loss when the combination of assumptions
indicated by the row and column is used to explain the observed distribution of sales. (As with
the Indian data in Section 6, the data are normalized by the value of the KLD for a uniform
distribution, which for this data set is 6.8082.)

Turning to the results in Table B.VII, the values of the minimized KLD show that, conditional
on CREMR or CES demands, the lognormal provides a better overall fit than the Pareto: 0.0001
as opposed to 0.0012. However, the difference between distributions turns out to be much less
significant than those between different specifications of demand. The KLD values for the
translog and linear/LES specifications are much higher than for the CREMR case, as shown in
the third and fourth columns of Table B.VII, with the Pareto now preferred to the lognormal.
The overwhelming conclusion from these results is that, if we want to fit the distribution of sales
in this data set, then the choice between Pareto and lognormal distributions is less important
than the choice between CREMR and other demands. This is broadly in line with the results for
Indian sales data in Section 6, especially when we exclude the smallest firms as in Section B.4.

Table B.VIII repeats for French exports data the bootstrapping comparisons presented in Ta-
bles B.II and B.III for Indian sales and markup data respectively. It is clear that the comparisons
between different values of the KLD for the French data shown in Table B.VII are just as robust
as those for the Indian data shown in Table B.I and Figure B.1 in the text.
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TABLE B.VIII

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: FRENCH SALESa

CREMR + LN CREMR + P TLog + P Lin + P TLog + LN Lin + LN

CREMR + LN – 0% 0% 0% 0% 0%
CREMR + P 100% – 0% 0% 0% 0%

TLog + P 100% 100% – 0% 0% 0%
Lin + P 100% 100% 100% – 0% 0%

TLog + LN 100% 100% 100% 100% – 0.3%
Lin + LN 100% 100% 100% 100% 99.7% –

aSee text for explanation.
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