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Abstract

Modern data science tools are effective to produce predictions that strongly correlate with
responses. Model comparison can therefore be based on the strength of dependence between
responses and their predictions. Positive expectation dependence turns out to be attractive
in that respect. The present paper proposes an effective testing procedure for this dependence
concept and applies it to model selection. A simulation study is performed to evaluate the
performances of the proposed testing procedure. Empirical illustrations using insurance loss
data demonstrate the relevance of the approach for model selection in supervised learning.
The most positively expectation dependent predictor can then be autocalibrated to obtain
its balance-corrected version that appears to be optimal with respect to Bregman, or forecast
dominance.

Keywords: Expectation dependence, concentration curve, Lorenz curve, autocalibration,
convex order, balance correction.



1 Introduction and motivation

Several notions of dependence have been used in insurance studies, including quadrant, ex-
pectation and regression dependence. See, e.g., Denuit et al. (2005) for a detailed account
of dependence structures and their links with stochastic dominance rules. Expectation de-
pendence introduced by Wright (1987) has been shown to play a key role in many financial
problems, such as asset allocation (Wright, 1987; Denuit and Eeckhoudt 2016), demand for
risky asset under background risk (Li, 2011) and insurance under background risk (Hong et
al., 2011; Li et al. 2016; Denuit and Mesfioui, 2017). This dependence concept can be traced
back to Kowalczyk and Pleszczynska (1977) where it was termed as expectation quadrant
dependence.

Positive expectation dependence expresses some form of positive relationship between
two random variables Y and Z. It assesses the influence of Z on Y by specifying the impact
of the information that Z is small (i.e. below some threshold z, say) on the expectation of
Y . Precisely, Y is positively expectation dependent on Z if

E[Y ] ≥ E[Y |Z ≤ z] for all z ⇔ E[Y |Z > z] ≥ E[Y ] for all z. (1.1)

Negative expectation dependence is defined by reversing the sign of the inequalities appearing
in (1.1). Notice that (1.1) is not symmetric in Y and Z so that expectation dependence
distinguishes among two dimensions: a random variable Y of interest and the information
provided by the auxiliary variable Z (as in regression problems).

In this paper, we apply expectation dependence to insurance pricing. Modern data
science tools are effective to produce predictions that strongly correlate with responses.
This is related to the submodularity of standard loss functions adopted in machine learning.
Model comparison can therefore be based on the strength of dependence between responses
and their predictions. Positive expectation dependence turns out to be attractive in that
respect. Our approach builds on Denuit et al. (2019) who demonstrated that the variability
of model predictions as well as the strength of their association with the response must both
be taken into account to select the optimal pricing tool. These aspects are translated into
mathematical terms with the help of convex order (probabilistic tool to assess the dispersion
of random variables, beyond simple indicators such as standard deviations) and expectation
dependence. The latter concept turns out to be closely related with concentration and Lorenz
curves that are known to apply to model selection since Frees et al. (2011, 2014). According
to Property 3.4 in Denuit et al. (2019), the concentration curve lies below the 45-degree line
under positive expectation dependence.

The expectation of Y involved in the definition (1.1) for positive dependence can be
considered as the conditional expectation of Y given Z ≤ z or given Z > z when Y and Z
are mutually independent (so that the condition does not modify the expected value of Y ).
Hence, it is natural to extend the concept to compare the strength of expectation dependence
of Y on two random variables Z1 and Z2. This extension was proposed in the conclusion
to Wright (1987). It appears to be relevant for the application considered in the present
paper, since it allows the actuary to compare different supervised learning models to select
the optimal one. In that setting, Y corresponds to the response under consideration while
Z1 and Z2 correspond to ranks of model predictions under two competing insurance pricing
tools (so that Z1 and Z2 are both uniformly distributed over the unit interval). Then, model
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1 outperforms model 2 if the response Y is more positively expectation dependent on Z1

than on Z2, that is, if

E[Y |Z1 ≤ z] ≤ E[Y |Z2 ≤ z] for all z ⇔ E[Y |Z1 > z] ≥ E[Y |Z2 > z] for all z. (1.2)

The inequalities in (1.2) express that the response is more reactive to the scores produced
by model 1 compared to model 2: a small score (that is, below threshold z) makes the
expected response smaller under model 1 compared to model 2 and a large score (that is,
above threshold z) makes the expected response larger under model 1 compared to model 2.

In order to apply expectation dependence to model selection, we need to be able to test
for this dependence concept. The problem of testing for positive expectation dependence
consists in testing the null hypothesisH0 : E[Y |Z ≤ z] ≤ E[Y ] for all z against the alternative
H1 : E[Y |Z ≤ z] > E[Y ] for some z. Tests for expectation dependance have been proposed
in Zhu et al. (2016), Cmiel and Ledwina (2017) and Linton et al. (2018). Guo and Li (2016)
proposed a method to construct uniform confidence band for quantities defining expectation
dependence, derived from Hoeffding’s inequality. In this paper, we design a testing procedure
for comparing the strength of expectation dependence of Y on Z1 and on Z2. The test is
obtained by adapting Zhu et al. (2016) approach to the testing problem H0 : E[Y |Z1 ≤ z] ≤
E[Y |Z2 ≤ z] for all z against H1 : E[Y |Z1 ≤ z] > E[Y |Z2 ≤ z] for some z for a triplet of
random variables Y, Z1 and Z2 with Z1 and Z2 identically distributed.

The remainder of the paper is organized as follows. In Section 2, we explain the role of
expectation dependence in model comparison. Section 3 presents the testing procedure for
comparing the strength of expectation dependence between Y and Z1 or Z2. A simulation
study is conducted to assess its performances. A case study is performed in Section 4
with a motor insurance data set to demonstrate the relevance of the proposed approach for
model selection. The final Section 5 discusses the results and relates them to autocalibration
discussed in Denuit et al. (2021).

2 Expectation dependence in supervised learning

2.1 Supervised learning

Consider a response Y and a set of features X1, . . . , Xp gathered in the vector X. The
dependence structure inside the random vector (Y,X1, . . . , Xp) is exploited to extract the
information contained in X about Y . Often, the target is the conditional expectation
µ(X) = E[Y |X] of the response Y given the available information X. This is the situ-
ation considered in the present paper. The function x 7→ µ(x) = E[Y |X = x] is unknown
and approximated by a predictor x 7→ π(x) with a simpler structure. Predicting a response
variable from a function of features and parameters is also referred to as supervised learning.

Models are generally calibrated so that a measure of the goodness-of-fit is optimized (de-
viance or log-likelihood, in most cases). Formally, the analyst selects a loss function L(·, ·)
giving the error made when predicting the response. The empirical loss is then minimized on
the training data set, maximizing goodness-of-fit or adherence to observed data. Cross vali-
dation is used for early-stopping rules, for instance. Model performances are then evaluated
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on a separate data set. We refer the reader to Denuit et al. (2020) for a general presentation
of this approach to insurance pricing.

We assume that π(X) is a continuous random variable and we denote as

Fπ(t) = P[π(X) ≤ t], t ≥ 0,

its distribution function and as F−1π the associated quantile function defined as the general-
ized inverse of Fπ, i.e.

F−1π (α) = inf{t ∈ R|Fπ(t) ≥ α} for a probability level α.

2.2 Concentration curve

Following Frees et al. (2011, 2014) and Denuit et al. (2019, 2021), predictor performances
are measured with the help of concentration curves. Recall that the concentration curve of
the response Y with respect to the predictor π(·) based on the information contained in the
vector X is defined as

CC[Y, π(X);α] =
E
[
Y I[π(X) ≤ F−1π (α)]

]
E[Y ]

for a probability level α.

The interested reader is referred to the book by Yitzhaki and Schechtman (2013) for an
exhaustive review of the properties of concentration curves. Notice that Lorenz curves (LC)
correspond to concentration curves of a random variable with respect to itself.

It turns out that

CC[Y, π(X);α] = CC
[
µ(X), π(X);α

]
for any probability level α. (2.1)

Formula (2.1) shows that we can equivalently replace the response Y with the pure premium
µ(X) in the concentration curve. Thus, the concentration curve assesses the dependence
within the pair (µ(X), π(X)), that is, between the target µ(X) and its predictor π(X).
But it can also be expressed in terms of observed response Y , wich appears to be useful for
estimation.

The concentration curve can be equivalently rewritten as

CC[Y, π(X);α] =
E
[
Y
∣∣π(X) ≤ F−1π (α)

]
E[Y ]

× α

=
Cov

[
Y, I[π(X) ≤ F−1π (α)]

]
E[Y ]

+ α

for every probability level α, where I[·] denotes the indicator function, equal to 1 if the event
appearing in the brackets is realized and to 0 otherwise. We refer the reader to Yitzhaki and
Schechtman (2013) for the proofs.

The concentration curve α 7→ CC[Y, π(X);α] is defined from π(X) ≤ F−1π (α). This
means that it is enough to consider the ranking induced by the predictor, that is, we are free
to replace every predictor π(X) with the corresponding rank

Π = Fπ
(
π(X)

)
3



obeying the unit uniform distribution. The concentration curve at probability level α can
be rewritten as

CC[Y, π(X);α] =
E
[
Y I[Π ≤ α]

]
E[Y ]

=
E
[
Y
∣∣Π ≤ α

]
E[Y ]

× α

=
Cov

[
Y, I[Π ≤ α]

]
E[Y ]

+ α.

These expressions only involve the rank Π induced by the predictor under consideration.

2.3 Model comparison

Assume now that we have two predictors π1 and π2 for µ(X). These predictors may differ
in their functional form (π1 instead of π2) and/or in the information (X1 instead of X2) on
which they are based. The respective distribution functions of the two predictors π1 and π2
are denoted as Fπ1 and Fπ2 . Both Fπ1 and Fπ2 are assumed to be continuous and strictly
increasing. Define Π1 = Fπ1(π1) and Π2 = Fπ2(π2) that are both uniformly distributed over
the unit interval [0, 1].

Better predictions result in a lower concentration curve, meaning that they induce a larger
average decrease of the target when they fall below their αth quantile, for every probability
level α. Thus,

Π1 outperforms Π2 ⇔ E[Y |Π1 ≤ α] ≤ E[Y |Π2 ≤ α] for all probability levels α. (2.2)

This definition is in line with (1.2): model performances are assessed by the degree of
expectation dependence of the response with the predictor. In words, (2.2) means that the
reduction in the expectation resulting from the knowledge that Πk ≤ α is larger for Π1

compared to Π2. The ranking of the concentration curves amounts to requiring that Y is
more positively expectation dependent on Π1 than on Π2 so that (2.2) can be equivalently
stated in terms of concentration curves.

3 Testing for more positive expectation dependence

The problem under investigation can be stated as follows: we have a random variable Y and
two random variables Π1 and Π2 that are both uniformly distributed over the unit interval
[0, 1] and possibly correlated between each other and with Y . We observe n realizations of
these random variables. Let (Y1,Π11,Π21), . . . , (Yn,Π1n,Π2n) be the corresponding triplets,
assumed to be independent copies of (Y,Π1,Π2). We want to test the null hypothesis H0 :
E[Y |Π1 ≤ α] ≤ E[Y |Π2 ≤ α] for all α ∈ (0, 1) against the alternative H1 : E[Y |Π1 ≤ α] >
E[Y |Π2 ≤ α] for some α ∈ (0, 1). The null hypothesis thus corresponds to (2.2) and supports
predictor π1. Now since both Π1 and Π2 have the same distribution we readily have the null
hypothesis H0 is equivalent to

E[I[Π1 ≤ α]](E[Y |Π1 ≤ α]− E[Y ]) ≤ E[I[Π2 ≤ α]](E[Y |Π2 ≤ α]− E[Y ]) for all α ∈ (0, 1),
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so that H0 is also equivalent to

Cov
[
Y, I[Π1 ≤ α]− I[Π2 ≤ α]

]
≤ 0 for all α ∈ (0, 1).

Letting
D(α) := Cov

[
Y, I[Π1 ≤ α]− I[Π2 ≤ α]

]
,

the most natural estimator of D(α) is obtained by computing an empirical covariance based
on the observed sequences; that is,

D̂(α) :=
1

n

n∑
i=1

(Yi − Ȳ )(I[Π1i ≤ α]− I[Π2i ≤ α]− (I[Π1 ≤ α]− I[Π2 ≤ α]))

where Ȳ := n−1
∑n

i=1 Yi and I[Πk ≤ α] := n−1
∑n

i=1 I[Πki ≤ α], k = 1, 2. We then consider a
test that rejects the null hypothesis at level β ∈ (0, 1) when

Tn := supα∈(0,1)
√
nD̂(α) > ξβ,

where the critical value ξβ can be obtained by studying the limiting behavior of the empirical

process
√
n(D̂(α)−D(α)) under the null hypothesis. We have the following result.

Proposition 3.1. Provided that E[Y 2
i ] <∞, we have that when D(α) = 0 (at the boundary

between the null hypothesis and the alternative), the empirical process
√
nD̂(α) converges

weakly to a Gaussian process with mean zero and covariance function

Σ(α1, α2) := E
[
(Y − E[Y ])2(I[Π1 ≤ α1]− I[Π2 ≤ α1])(I[Π1 ≤ α2]− I[Π2 ≤ α2])

]
. (3.1)

The proof of Proposition 3.1 is given in the appendix. Note that (3.1) is equal to 0 when

α1 or α2 is equal to 0 or 1. This is in line with the fact that for α = 0 or α = 1,
√
nD̂(α)

has variance zero.
Now, it directly follows from Proposition 3.1 and the continuous mapping theorem that

a Kolmogorov-Smirnov type test can be obtained by rejecting the null hypothesis H0 at the
asymptotic level β ∈ (0, 1) when

Tn = supα∈(0,1)
√
nD̂(α) > cβ, (3.2)

where the critical value cβ can in principle be obtained from Proposition 3.1. Although
Proposition 3.1 shows that Tn in (3.2) is a very natural test statistic for the problem consid-
ered, the computation of the critical value cβ is delicate since it requires the computation of
Σ(α1, α2) which is not realistic in practice (in particular, we do not know the distribution of
Y ). Therefore, we suggest a Monte-Carlo procedure to perform the test that follows along
the same lines as in Zhu et al. (2016):

1. GenerateM independent samples U 1, . . . ,UM , where themth sample Um = (Um1, . . . , Umn)
contains n independent standard Gaussian random variables.
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2. Compute

p̂ :=
1

M

M∑
m=1

I

[
max
0≤α≤1

∆
(
α, D̂(α),Um

)
> max

0≤α≤1

√
nD̂(α)

]
,

where

∆
(
α, D̂(α),Um

)
:=

1√
n

n∑
i=1

(
(Yi − Ȳ )(I[Π1i ≤ α]− I[Π2i ≤ α])− D̂(α)

)
Umi.

3. Reject the null hypothesis at the level β when p̂ < β.

We conclude the section with a simulation exercise whose objective is to show that the
test performed using the steps 1-3 above reaches the correct nominal β-level constraint and
enjoys power under the alternative. In this simulation exercise, we generated R = 1000
independent samples of the form

(Y `
1 ,Π11,Π21), . . . , (Y

`
n ,Π1n,Π2n), ` = 0, 1, 2, 3,

via the following schemes:

(i) the Π1j’s and the Π2j’s are mutually independent and uniformly distributed over [0, 1].
The random variables Y `

1 , . . . , Y
`
n are obtained as

Y `
j = 2`Π2j + Vj,

where Vj is uniform on [−1, 1] and independent from Π2j (and Π1j). Clearly, E[Y `
j ] =

` = E[Y `
j |Π1j ≤ α] for all α while E[Y 0

j |Π2j ≤ α] = 0 = E[Y 0
j |Π1j ≤ α] and E[Y `

j |Π2j ≤
α] ≤ ` for all α and ` = 1, 2, 3. The value ` = 0 therefore coincides with the (boundary)
of the null hypothesis while the values ` = 1, 2, 3, provide data generating processes
that are increasingly under the alternative.

(i) the Π1j’s are i.i.d. uniform over [0, 1], while the Π2j’s are defined as

Π2j = Π1jI[Π1j ≤
1

2
] + (

3

2
− Π1j)I[Π1j >

1

2
].

It is easy to check that the Π2j’s are uniform over [0, 1] and correlated with Π1j’s. The
random variables Y `

1 , . . . , Y
`
n are obtained as

Y `
j = 2`Π2j + Vj,

where Vj is uniform on [−1, 1] and independent from Π2j (and Π1j). As in the first
scheme above, the value ` = 0 therefore coincides with the (boundary) of the null
hypothesis while the values ` = 1, 2, 3, provide data generating processes that are
increasingly under the alternative.
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(iii) the Π1j’s and the Π2j’s are mutually independent and uniformly distributed over [0, 1].
The random variables Y `

1 , . . . , Y
`
n are obtained as

Y `
j = `Π1j + 2`Π2j + Vj,

where Vj is uniform on [−1, 1] and independent from Π2j (and Π1j). Clearly, E[Y 0
j |Π2j ≤

α] = 0 = E[Y 0
j |Π1j ≤ α] while E[Y `

j |Π2j ≤ α] ≤ E[Y `
j |Π1j ≤ α] for all α and ` = 1, 2, 3.

The value ` = 0 therefore coincides with the (boundary) of the null hypothesis while
the values ` = 1, 2, 3, provide data generating processes that are increasingly under the
alternative.

Figures 3.1, 3.2 and 3.3 display the empirical rejection frequencies of our test performed
using steps 1-3 above with M=500 at the nominal level β = .05 for various sample sizes. Note
that the maxima over (0, 1) required in step 2 of the Algorithm have been obtained by taking
maxima over grids of the form (0, 1

100
, 2
100
, . . . , 1). Inspection of the various Figures clearly

reveals that the proposed testing procedure is valid in all the sampling schemes; it reaches
the correct nominal level constraint in the various scenarii involving different dependance
structures between the random variables. It furthermore clearly shows power.
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Figure 3.1: Empirical power curves of the test in the sampling scheme (i) for various sample
sizes.

4 Case study

4.1 Data set

We consider the motor third-party liability insurance portfolio used in Denuit et al. (2020).
It relates to an insurance company operating in the EU that has been observed during one
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Figure 3.2: Empirical power curves of the test in the sampling scheme (ii) for various sample
sizes.
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Figure 3.3: Empirical power curves of the test in the sampling scheme (iii) for various sample
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Number Exposure-
of claims to-risk

0 126 499.7
1 15 160.4
2 1424.9
3 145.4
4 14.3
5 1.4
≥ 6 0

Table 4.1: Descriptive statistics for the number of claims.

year. The portfolio comprises 160 944 insurance policies. For each policy i, the data set
contains the numbers of claims Yi filed by policyholder i, the corresponding exposure-to-risk
ei ≤ 1 (expressed in policy-year), and the following eight features X i = (Xi1, . . . , Xi8):

- Xi1 = AgePh: policyholder’s age;

- Xi2 = AgeCar: age of the car;

- Xi3 = Fuel: fuel of the car, with two categories (gas or diesel);

- Xi4 = Split: splitting of the premium, with four categories (annually, semi-annually,
quarterly or monthly);

- Xi5 = Cover: extent of the coverage, with three categories (from compulsory third-
party liability cover to comprehensive);

- Xi6 = Gender: policyholder’s gender, with two categories (female or male);

- Xi7 = Use: use of the car, with two categories (private or professional);

- Xi8 = PowerCat: the engine’s power, with five categories.

Figure 4.1 displays the exposure-to-risk by category/value for each of the eight features and
Table 4.1 shows the observed numbers of claims with corresponding exposures-to-risk.

We partition the data set into a training set D and a validation set D. The training set
D is composed of 80% of the observations taken at random from the entire data set and the
validation set D is made of the 20% remaining observations. We refer the reader to Denuit
et al. (2020) for more details about the data set, the notions of training and validation sets
as well as for the regression techniques used throughout this section.

4.2 Models under consideration

The observations are assumed to be independent. Given X = x and the exposure-to-risk e,
the response Y is assumed to be Poisson distributed with mean eµ(x). So, µ(xi) represents
the expected annual claim frequency for policyholder i. We aim to estimate the unknown
function x 7→ µ(x).
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Figure 4.1: Levels/values of the features and corresponding exposures-to-risk.
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Figure 4.2: Histograms for ΠGAM1 (left panel) and ΠGAM2 (right panel) estimated from D.

To that end, we first fit generalized additive models (GAMs) on D with Poisson de-
viance loss and log-link function using the R package gam. More precisely, we fit two GAMs
producing the following predictors:

• πGAM1(x), with only two features, namely X1 (AgePh) and X2 (AgeCar);

• πGAM2(x), using all 8 available features.

We expect the second model πGAM2(x) to clearly outperform the more simple one πGAM1(x)
as variables such as X4 (Split) or X8 (PowerCat) are also known to be important in this
setting (as shown for instance in Section 5.8 in Denuit et al. (2020)). In both models, the
effects of the covariates AgePh and AgeCar are captured by splines and we do not consider
interaction terms. We denote by ΠGAM1 and ΠGAM2 the ranks corresponding to eπGAM1(x)
and eπGAM2(x), respectively. Figure 4.2 depicts their distribution estimated on the validation
set D.

Then, we fit gradient boosting trees (GBT) on D with Poisson deviance loss and log-link
function with the help of the R package gbm. We expect to get better results than with the
GAMs because we allow for interaction effects between feature components. The bagging
fraction γ (that is, the fraction of observations randomly selected from the training set to
fit the next tree in the expansion), is set at 0.5. The shrinkage parameter τ is set at the low
value 0.01. The size of the trees is controlled by the interaction depth ID, and we consider
four values for ID, namely ID = 1, 2, 3, 4. The training set D is divided into two sets, D1 and
D2, where D1 comprises 80% of the observations of D. We train the GBT on D1. Figure 4.3
displays the in-sample (computed on D1) and out-of-sample (computed on D2) estimates of
the generalization error for the GBT with ID = 1, 2, 3, 4 against the number of trees T . The
out-of-sample estimates of the generalization error for ID = 1, 2, 3, 4 is minimized for T =
1186, 1043, 633, 721, respectively. We denote by πGBT1(x), πGBT2(x), πGBT3(x) and πGBT4(x)
the GBT corresponding to (ID = 1, T = 1186), (ID = 2, T = 1043), (ID = 3, T = 633) and
(ID = 4, T = 721), respectively. We turn the predictions πGBT1(x), πGBT2(x), πGBT3(x) and
πGBT4(x) on the validation set into the corresponding ranks ΠGBT1, ΠGBT2, ΠGBT3 and ΠGBT4

by transforming them using the distribution function of the predictors estimated from the
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πGAM1 549.93 · 10−3

πGAM2 548.05 · 10−3

πGBT1 545.06 · 10−3

πGBT2 544.54 · 10−3

πGBT3 544.29 · 10−3

πGBT4 544.30 · 10−3

Table 4.2: Out-of-sample estimates (on D) of the generalization error.

training set. Their distributions on D are shown in Figure 4.4. Conditionally on the training
set, the ranks ΠGBT1, ΠGBT2, ΠGBT3 and ΠGBT4 can be seen as independent realizations so
that we are in a position to apply the testing procedure described in Section 3.

In Table 4.2, we compute out-of-sample estimates (on D) of the generalization errors
for the six models under consideration. As expected, πGAM2 outperforms πGAM1, which
confirms the importance of some additional features used in πGAM2 as highlighted in Denuit
et al. (2020). Moreover, we notice that πGBT1 outperforms πGAM2. Finally, πGBT3 and
πGBT4 have the lowest errors, which may indicate that there are three-way or even four-way
interactions between the features that have not been captured in the other models.

4.3 Testing procedure

The conditional expectation E[Y |Π ≤ α] can be estimated on D as

Ê[Y |Π ≤ α] =

∑
i∈D yiI[Π(xi) ≤ α]∑
i∈D I[Π(xi) ≤ α]

.

In Figure 4.5, we display α 7→ Ê[Y |Π ≤ α] for the models under consideration.
Table 4.3 contains the values of p̂ computed with M = 500. The null hypothesis H0 :

E[Y |Π1 ≤ α] ≤ E[Y |Π2 ≤ α] for all α ∈ (0, 1) is always rejected for Π1 = ΠGAM1 whatever
Π2. This shows that the first GAM model with only two features in inferior to all other
models under consideration because it fails to produce more positively expectation dependent
predictions. For Π1 = ΠGAM2, the same observation holds at the level 0.05 except for
Π2 = ΠGAM1. This shows that GBT outperforms GAMs on this data set. The testing
procedure does not identify one GBT dominating the others. This confirms the similar
performances of all GBTs on D.

5 Discussion

In the present paper, we have shown that model comparison can be based on the strength
of dependence between responses and their predictions. Positive expectation dependence
is adopted to that end and an effective testing procedure is proposed for model selection.
Numerical illustrations with both simulated and real data demonstrate the relevance of the
approach. It is worth mentioning that model comparisons are based here on a formal test.
This is in contrast with the classical cross-validation approach that consists in estimating
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Figure 4.3: In-sample (solid blue line) and out-of-sample (dotted red line) estimates of the
generalization error for ID = 1 (top-left), ID = 2 (top-right), ID = 3 (bottom-left) and
ID = 4 (bottom-right).

Π2

ΠGAM1 ΠGAM2 ΠGBT1 ΠGBT2 ΠGBT3 ΠGBT4

ΠGAM1 / 0.000 0.000 0.000 0.000 0.000
ΠGAM2 0.998 / 0.049 0.008 0.022 0.010

Π1 ΠGBT1 1.000 0.710 / 0.420 0.256 0.232
ΠGBT2 0.998 0.856 0.990 / 0.902 0.250
ΠGBT3 1.000 0.616 1.000 0.792 / 0.230
ΠGBT4 0.998 0.806 1.000 0.910 0.964 /

Table 4.3: Values of p̂ for M = 500. The null hypothesis H0 : E[Y |Π1 ≤ α] ≤ E[Y |Π2 ≤ α]
for all α ∈ (0, 1) is rejected at the level 0.05 when p̂ < 0.05 (cases printed in bold in the
table).
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Histogram for GBT3
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Figure 4.4: Distribution functions for ΠGBT1 (top-left), ΠGBT2 (top-right), ΠGBT3 (bottom-
left) and ΠGBT4 (bottom-right) estimated on D.
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the generalization errors of two different models and select the model with the smaller cross-
validation error. Here, we perform the comparison on a validation set by applying a formal
testing procedure for comparing the strength of expectation dependence of the response on
the predictors of the models under consideration. The rejection of the null hypothesis yields
to the conclusion that one model is significantly superior than the other. Cross-validation
and the test for positive expectation dependence should both be used as diagnostic tools,
providing the analyst with complementary comparison criteria for models under considera-
tion (as it can be seen from Tables 4.2-4.3 in the numerical illustration performed on motor
insurance data).

The approach proposed in this paper appears to be closely related to Bregman, or fore-
cast dominance, as well as to autocalibration, as discussed next. The more Πk is correlated
to Y , the more information the corresponding predictor πk contains. More informative pre-
dictors thus lead to greater variability of the conditional expectation E[Y |Πk]. Assessing the
performances of predictors can thus also be based on the comparison of the variability of
these conditional expectations. In that respect, the convex order is often used in applied
probability to compare the variability inherent to probability distributions beyond standard
deviations. It is therefore a natural candidate to assess the variability of conditional expec-
tations E[Y |Πk]. Recall that a random variable Z1 is said to be smaller than another random
variable Z2 in the convex order, henceforth denoted as Z1 �cx Z2, if

E[Z1] = E[Z2] and E[(Z1 − t)+] ≤ E[(Z2 − t)+] for all t ∈ R.

The name convex order comes from the fact that Z1 �cx Z2 ⇔ E[g(Z1)] ≤ E[g(Z2)] for all
the convex functions g for which the expectations exist. For more details, we refer the reader
e.g. to Denuit et al. (2005) or Shaked and Shanthikumar (2007).

It is easy to see that
Z1 �cx Z2 ⇒ Var[Z1] ≤ Var[Z2]. (5.1)

This explains why �cx is a variability order: it only applies to random variables with the
same expected value and compares the dispersion of these variables. The convex order is
a more sophisticated comparison than only focusing on the variances, yet (5.1) indicates
that it agrees with this approach. Henceforth, we can interpret Z1 �cx Z2 as “Z2 is more
variable than Z1”, keeping in mind that the variability in question extends beyond the simple
comparison of standard deviation.

Here, E[Y |Πk] measures how the rank Πk induced by the predictor πk explains the re-
sponse Y . Therefore, we consider that Π1 is more informative than Π2 if E[Y |Π2] �cx

E[Y |Π1]. This ensures that the mean square error of prediction (MSEP) is smaller with Π1

compared to Π2:

E[Y |Π2] �cx E[Y |Π1]⇒ E
[(
Y − E[Y |Π1]

)2] ≤ E
[(
Y − E[Y |Π2]

)2]
,

that is, Y is closer to E[Y |Π1] in the L2-norm. The literature about auction theory says that
Π1 is more integral precise than Π2 in such a case. See Ganuza and Penalva (2010).

In their study of dependence orderings based on generalized Lorenz curves, Muliere and
Petrone (1992) established that, provided the functions α 7→ E[Y |Πk = α] are continuous
and strictly increasing for k ∈ {1, 2},

E[Y |Π2] �cx E[Y |Π1]⇔ E[Y |Π1 ≥ α] ≥ E[Y |Π2 ≥ α] for all α. (5.2)
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Notice that the condition appearing in (5.2) corresponds to (2.2) since the identity

E[Y ] = αE[Y |Πk ≤ α] + (1− α)E[Y |Πk > α]

holds for k ∈ {1, 2} and all probability levels α. See also Denuit (2010). The test to check
for the assumption E[Y |Π2] �cx E[Y |Π1] can thus also be based on the procedure proposed
for testing for more positive expectation dependence.

Recall that a predictor π is said to be autocalibrated if π(X) = E[Y |π(X)]. We refer
the reader to Kruger and Ziegel (2020) for a general presentation of this concept. By Jensen
inequality, autocalibration thus ensures that π(X) �cx Y . Thus, autocalibration implies
that the predictor is less variable than the response, in the sense of the convex order.

Bregman dominance, also called forecast dominance is defined as dominance for every
Bregman loss function. Precisely, π2 outperforms π1 in terms of Bregman dominance if the
inequality E[L(Y, π2)] ≤ E[L(Y, π1)] holds true for every Bregman loss function L. We refer
the interested reader to Kruger and Ziegel (2020) and the references therein for an extensive
presentation of this concept.

Let π1 and π2 be two autocalibrated predictors. Bregman dominance reduces to the
convex order for autocalibrated predictors, as pointed out by Kruger and Ziegel (2020).
Precisely, π1 outperforms π2 in terms of Bregman dominance if, and only if,

π2(X) �cx π1(X)

⇔ LC[π1(X);α] ≤ LC[π2(X);α] for all probability levels α

⇔ CC[µ(X), π1(X);α] ≤ CC[µ(X), π2(X);α] for all probability levels α

since Lorenz and concentration curves coincide for autocalibrated predictors, as shown by
Denuit et al. (2021). It is interesting to notice that, for autocalibrated predictors, π1
outperforms π2 in terms of Bregman dominance if, and only if, π1 is more discriminatory
than π2 in the sense defined in Denuit et al. (2019).

Denuit et al. (2021) defined the balance-corrected version πBC of the predictor π as

πBC(X) = E[Y |π(X)].

It is shown there that if s 7→ E[Y |π(X) = s] is continuously increasing then the balance-
corrected version πBC of π satisfies the autocalibration property. The strategy proposed in
this paper can be decomposed as follows:

- fit the models under consideration to the training data set D to get estimated distri-
bution functions Fπk .

- compute the ranks Πk on D and select the more expectation dependent Πk? with the
response Y .

- use the selected model to produce the balance-corrected version

πBC(X) = E[Y |Πk? ].
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The resulting πBC is autocalibrated and dominates the competing models in Bregman dom-
inance.

Models under consideration produce predictions πk(xi) on D. Therefore, we can apply
existing tools to test for convex order based on the corresponding samples (see, e.g., Barrett
and Donald, 2003). This can be an alternative to the testing procedure for more positive
expectation dependence developed in the present paper.
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APPENDIX

A Proof of Proposition 3.1

The classical CLT and the Glivenko-Cantelli Lemma entail that

√
nD̂(α) :=

1√
n

n∑
i=1

(Yi − Ȳ )(I[Π1i ≤ α]− I[Π2i ≤ α])

=
1√
n

n∑
i=1

(Yi − E[Yi])(I[Π1i ≤ α]− I[Π2i ≤ α])

+(E[Yi]− Ȳ )
1√
n

n∑
i=1

(I[Π1i ≤ α]− I[Π2i ≤ α])

=
1√
n

n∑
i=1

(Yi − E[Yi])(I[Π1i ≤ α]− I[Π2i ≤ α])

+
√
n(E[Yi]− Ȳ )

1

n

n∑
i=1

(I[Π1i ≤ α]− Funif(α))− (I[Π2i ≤ α]− Funif(α))

=
1√
n

n∑
i=1

(Yi − E[Yi])(I[Π1i ≤ α]− I[Π2i ≤ α]) + oP(1)

=
1√
n

n∑
i=1

(Yi − E[Yi])((I[Π1i ≤ α]− Funif(α))− (I[Π2i ≤ α]− Funif(α))) + oP(1)

as n→∞, where Funif stands for the unit uniform distribution function. Letting

M(Y,Π1,Π2, z) := (Y − E[Y ])((I[Π1 ≤ z]− Funif(z))− (I[Π2 ≤ z]− Funif(z))),

we have that since Y is square integrable, the class of functions {M(Y,Π1,Π2, z), z ∈ (0, 1)}
is P - Donsker in the sense of Theorem 19.5 in van der Vaart (2000). The result follows.
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