UNBOUNDED MASS RADIAL SOLUTIONS FOR THE
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ABSTRACT. We consider the boundary value problem

—Au+u—Xe* = 0, u>0 in B1(0)
ou = 0 on 9B4(0),

whose solutions correspond to steady states of the Keller—Segel system for chemo-
taxis. Here B1(0) is the unit disk, v the outer normal to 9B;(0), and A > 0 is a
parameter. We show that, provided A is sufficiently small, there exists a family of
radial solutions u) to this system which blow up at the origin and concentrate on
0B1(0), as A — 0. These solutions satisfy

1
im u\(0) =0 and 0< lim —— e @) dz < oo,
X=0 | In | A=0 [In Al /g, (0

having in particular unbounded mass, as A — 0.
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1. INTRODUCTION

Chemotaxis is the influence of chemical substances in the environment on the
movement of mobile species. It is an important mean for cellular communication by
chemical substances, which determines how cells arrange themselves, for instance in
living tissues. In 1970, Keller and Segel [KKS70] proposed a basic model to describe
this phenomenon. They considered an advection-diffusion system consisting of two
coupled parabolic equations for the concentration of the species and that of the
chemical released, respectively represented by strictly positive quantities v(x,t) and
u(x,t) defined on a bounded smooth domain €2 C R™. This system has the form

% = D,Av —cdiv(vVe(u)) in
ou :
5 = D,Au + k(u,v) in €2,
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with no flux through the boundary, that is, letting v denote the exterior unit normal
vector to 0f2,
Vv-v=Vu-v=0 on 0.

Here, D,, D,, and ¢ are strictly positive constants, the function ¢, usually called
the sensitive function, is a smooth function such that ¢/(u) > 0 for v > 0 and k is
a smooth function such that % > (0 and g—ﬁ < 0. The typical choice for k that we
adopt from now on is k(u,v) = —u + v.

An important property of this system is the so-called chemotactic collapse. This
term refers to the fact that the whole population of organisms concentrate at a single
point in finite or infinite time. When ¢(u) = w, it is well-known that the chemotactic
collapse depends strongly on the dimension of the space. Finite-time blow-up never
occurs if n = 1, whereas it always occurs if n > 3. The two-dimensional case is
critical: if the initial distribution of organisms exceeds a certain threshold, then the
solutions may blow-up in finite time, whereas solutions exist globally in time if the
initial mass is below the threshold. We refer the interested reader to the surveys
[Hor03, Hor04, BBTW15] and to the references therein for further details about the
model and a collection of known results.

Steady states of the Keller—Segel system are of basic importance for the under-
standing of the global dynamics. They solve the system

—D,Av + cdiv(vVe(u)) = 0, v>0 inQ
—D,Au—u+v = 0, u>0 in €,

with homogeneous Neumann boundary conditions on 9€2. This system can be re-
duced to a scalar equation as, indeed, one easily checks that

/ v|V(DyInv — cp(u))|? dz = 0,
Q

which implies v = Ce:?™ for some constant C' > 0. In the most common for-
mulation of the Keller-Segel model, one takes ¢(u) = u, which yields the so-called
Keller—Segel equation

(1.1) —0?Au+u—Xe* = 0, u>0 inQ
' du = 0 on 0,
where the constants o, A depend on D,,, D, c and C'. It is worth mentioning that in
the case ¢(u) = Inu, one gets
—?Autu—u? = 0, u>0 inQ
ou = 0 on 0f2
for some constants ,p > 0, that is, one recovers the celebrated Lin-Ni—Takagi
equation [NT86, LN88, LNT88]. Let us observe that in dimension 2 the Keller—

Segel equation is critical, whereas the Lin—Ni-Takagi problem is subcritical. A
good account of known results about this equation is given in the book by Wei and
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Winter [WW14], in the chapter [Ni04], in the recent paper [IPMRW19], and in the
references therein.

From now on, we study the Keller—Segel equation (1.1) and we assume without
loss of generality that o = 1. In the one-dimensional case, Schaaf [Sch85] proved the
existence of non-trivial solutions. For a general two-dimensional domain, the first
existence results were obtained by Wang and Wei [WW02]| and independently by
Senba and Suzuki [SS00], when the parameter A is small enough. Moreover, Senba
and Suzuki [SS00, SS02] studied the asymptotic behavior of finite mass solutions
when A — 0. These are solutions uy to (1.1) such that

lim A / e < 0.
They showed that there exist points &1, ..., & € Q and points &gy, - - -, Eprm € OS2
such that, in the sense of measures,

k k+m
(1.2) — Auy +uy = e — ZSW% + Z 476,
i=1 i=k+1
in the sense of measures, and
k m
(1.3) ux(z) = > 87G(x, &)+ > 4wG(x,m), as A — 0,
i=1 i=k+1

uniformly on compact subsets of Q\{&1, ..., &k Mes1, - - Mm}, Where, given y € Q,
G(z,y) denotes the Green function that uniquely solves

-AG+G = 6, inQ
VG-v = 0 on 9.
The counterpart of this result was obtained by del Pino and Wei [dPWO06]. For

].
any given integers k and m, they constructed a family of solutions uy to (1.1) that
satisfy (1.2) and (1.3) for a suitable choice of points & € € for i = 1,...,k
&L edfori=k+1,...,k+ m. Near each of these points £ = &;,
ux(z) = V(| =€),

where V),; is a radially symmetric solution to

—AV — X" =0 inR?

and

that is, a function of the form

82

(Ap? + [z[*)?
The parameter p; = C(&1, - . ., Ekrm, €2) is a constant that depends only on the points
&’s and €. In particular, it does not depend on .

(1.4) V,.(Jz]) =1n with g > 0.
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It is worth mentioning that these solutions have quantized mass, that is,

lim [ Ae"™ = 4n(2k + m).
A—=0 Jo

Recently, solutions concentrating on higher dimensional sets with unbounded
mass, namely

lim [ Ae"™* = o0,

have been proven to exist. From now on, we denote by B, the ball of radius r
centered at zero. When 2 = B; C R™ with n > 2, Pistoia and Vaira [PV15]
constructed a family u) of radial solutions concentrating on the whole boundary of
(2 such that

0 < lim Ae @) dy < 0o

2=0 [InA| /5,

More precisely, their solutions satisfy

U,

lim ——wuy =
D0 |In A A
CP-uniformly on compact subsets of By, where U is the unique (radial) solution to

-AU+U = 0 in B
U = 1 on dB.

whereas near the boundary,

4 e\/ﬁrgl
(1.5) ur(r) +InA~W.(r)=In| 5

£ \/ir—l
where € = ¢\ ~ z%ﬁ

Let us point out that W, is a radial solution to the one-dimensional problem
—W"=¢€e" inR, with /eW < 00.
R

Del Pino, Pistoia, and Vaira [dPPV16], generalized this result to general two-
dimensional domains. Also, the existence of solutions concentrating on submanifolds
of the boundary has also been investigated; see for instance [AP16].

From now on, we suppose that 2 = B; C R", with n > 2. In [BCN17b], a
bifurcation analysis of radial solutions to (1.1) was performed. Observe that for
A < 1/e, the equation (1.1) can be rewritten as

{—Au—l—u = =D >0 in B

(1.6) Vu-v = 0 on 0B,
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for > 1. This equation admits the constant solutions v = 1 and u, < 1. To
describe the bifurcation result, we denote by A2 the i-th eigenvalue of the operator
—A+1d in By, restricted to the set of radial functions, with homogeneous Neumann

boundary conditions.

Theorem ([BCN17b]). For every i > 2, (N2 1) is a bifurcation point of (1.6).
Denoting by B; the continuum that branches out of (\*4,1), we have

(i) the branches B; are unbounded and do not intersect; close to (A4, 1), B; is a
O -curve;
(i) if u, € B; then u, > 0;
(111) each branch consists of two connected components: the component B
which u,(0) < 1, and the component B}, along which u,(0) > 1;
(iv) if u, € B; then u, — 1 has exactly i — 1 zeros, w, has ezxactly i — 2 zeros, and
each zero of uj, lies between two zeros of u, —1;

(v) the functions satisfying u,(0) < 1 are uniformly bounded in the C*-norm.

7

along

We conjecture that the solutions constructed by Pistoia and Vaira [PV15] cor-
respond to those on B;, while the solutions constructed by del Pino and Wei
[dPWO06] (when restricted to the 2-dimensional ball) correspond to the branch B; . In
[BCN17b], the authors constructed solutions concentrating on an arbitrary number
of internal spheres by combining variational and perturbative methods. Solutions
sharing the same qualitative properties were obtained with a different method in
[BCN17a] with very precise asymptotics. We conjecture that those solutions are
indeed the same and correspond to the solutions on the branches B; .

In this paper, we restrict ourselves to the disk, that is, the case n = 2. Our
main result is the construction of solutions to (1.1) that concentrate at the origin
and on the boundary of By, as A — 0. We conjecture that they correspond to
the solutions to (1.6) on the branch By. We emphasize that only a few results
concerning existence of solutions concentrating simultaneously on points and layers
are available in the literature, see for instance [SW13, WW08]. Let us also mention
[AMW11a, AMW11b], where solutions concentrating on a large number of points lo-
cated on interior straight-lines intersecting the boundary of the domain orthogonally
are provided.

Theorem 1.1. There exist \g > 0 and a family of radial solutions {uy | A € (0,o)}
to (1.1) such that

ux(0) =00 and 0< lim

Ae @y < oco.
A0 [In | 2—0 [In A /5, ‘ v

Moreover, letting ex — 0 as A\ — 0 be the parameter defined by

4
(1.7) In—- —In\= Her A2, + Q3,6
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for suitable constants ay.,, ase,, and as., depending on e (see (3.7)), and letting
Ge, be the unique radial solution for e = ey to

—AGa‘l—Ga =0 in Bl
(1.8) im G20

r—0+ |Inr|

G. =1 on 0B,

where A, = Ale 4 Ag . + Asce for suitable constants Ay ., As., and As. depending

)

on e (see (3.6)), we have that, uniformly on compact subsets of B1\{0},
lim (up(x) — A, Ge, (2)) =0,
A—=0
and, in the sense of measures,
Ae"™ — 8oy in By, gxre — \/55331 in Fl\Bl/g.

We now briefly describe the behavior of our solution and the method of proof.
Theorem 1.1 will be proven using a fixed point argument. In order to apply it, we
will look for a solution to (1.1) of the form uy = Uy + ¢, where U, is a first “good”
approximation of the solution and ¢, is a small perturbation. Roughly speaking,
U, is constructed by gluing the Green’s function A., G., with V, (recall (1.4)) near
the origin and with W, (recall (1.5)) near the boundary, for well chosen parameters
1 and €. To obtain a “good” matching between these functions, we are forced to
choose ¢ satisfying (1.7) and
H., (0)

8 Y
where H., denotes the regular part of A, G.,, that is H., (r) = A, G.,(r) + 4Inr.
We explicitly compute H., (0) (see (3.11)), which leads to

e

ph= gy =

A
83 ~ efMax — 00 as A — 0,

where A; = lim. ,0A;. > 0 and ¢ is the function defined in Lemma 2.1, which
satisfies £(1) > 1.

To be more precise, uy(r) behaves like V,,, (r) + H., (r) — H¢, (0) for small 7. The
bubble’s dilation parameter (squared) Au3 satisfies the crucial estimate

M = %exp <—f—: (1 - Wi))) (1+0(1))

— Oy In A e AE) (14 0(1)) = 0 as A — 0,
where C] and Cy are constants independent of A. It is worth stressing that this is
very different from the previously described situation of finite mass blow-up. In fact,

the scale of the spike at the origin becomes drastically modified to suitably match
the boundary layer, that is, the scale of the bubble at the origin depends strongly
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on the scale of W,, namely on the behavior of our solution close to the boundary.
We also mention that far from the concentration regions, our solution behaves like

A G.,.

It is worth mentioning that it would be very interesting to know if solutions con-
centrating simultaneously on points and on the boundary could be constructed in
non-radially symmetric domains. We believe that the non-radial boundary layer
constructed in [dPPV16] is the starting building block for such a construction. Nev-
ertheless, several difficulties arise in this context. As already observed in [dPPV16],
a resonance phenomenon will appear at the boundary. It is also unclear how to
connect the bubble to the boundary layer. As we mentioned before, in the radial
case the scale of the bubble is intimately linked with the scale of the boundary layer.
This relation heavily relies on an (almost) explicit construction of the singular Green
function G.,, which seems extremely challenging to be performed in a more general
setting.

Ex

The rest of the paper is organized as follows. In Section 2, we provide the ex-
istence of the Green’s function solution to (1.8), which is used to build the first
approximation of the solution in Section 3. We then estimate the error introduced
by our approximation in Section 4. In Section 5, we prove the solvability of the
linearized equation around our approximate solution, which allows us to use a fixed
point argument to prove Theorem 1.1 in Section 6.
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2. GREEN’S FUNCTION

This section is devoted to prove the existence of G. defined in (1.8). First, let us
recall the following lemma from [BCN17b].
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Lemma 2.1. There exist two positive linearly independent solutions ¢ € C?((0,1])
and & € C*([0,1]) of the modified zero-order Bessel differential equation

1
—u"—=u'+u=0 in (0,1),
r
satisfying

§(0)=¢(1) =0 and r(&(r)¢(r) = &(r)¢"(r)) = 1 for any r € (0,1].

We have that & is bounded and strictly increasing in [0, 1], C is strictly decreasing in
(O’ 1]7

o) _ 1, and lim (—r¢'(r)) = 1.

r0t | Inr| r—0+

£(0) =1,

Moreover, as r goes to 0, we have (see [AS64])

(2.1) §(r) = (|tr| + e1) + (| Inr| + c2) + O ),
(2.2) ((r)= —%+w+0(r3|lnr|),
and

(2.3) £r) =1+ % LOo@Y, €)= g O,

where ¢y, co, c3 are positive constants.

Using this result, we are able to construct a radial Green’s function on the unit
ball By blowing up at 0 and equal to 1 on 0B;.

Lemma 2.2. For any € > 0 small enough, there exists a function G. satisfying

1
~GU- GG = 0 i (0,])

(2.4) im S0 g
r—0+ |Inr|
G.(1) = 1,

Ale .

where A, = 6’ + Ao + As e, with
V2 1 In4 c
A= s, Ape = = —2), Ay =S
TGy TG (G;(l) ) A

for c e R.
Moreover, there exists 7 € (0,1) with 7 ~ /e, that is, there exist two constants
c1,c2 > 0 such that c1\/e < T < cav/e, such that GL(F) = 0, and there holds
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!
lim._,o GL(1) = ( ) We also have, as r goes to zero,

(2.5) Go(r) — Ai€| Inr| =

O,(r*| Inr])

2
+ O, (r) + A

1
5(_1) +OE(€),

where C' is a constant independent of €, and

4 O(r|Inr|)

(2.6) GL(r)+ A =0(r) + A

Proof. Using the properties of the functions £ and ¢ (defined in Lemma 2.1), it is
immediate to see that, for any b € (0,1),

is a solution to (2.4) such that

) 20
w(l) =1 and -l o= S0 — e

Moreover, for b small enough, we have

g®) = zb+o(b),
gO)¢(1) =M b) = &L+ 0(b).

Therefore, for b small enough, we have

up(r) I 2
— B 4o,
Jm S = 22y e

On the other hand, it is easy to check that

¢(1)
2.7 w (1) = + 0p(1),
(2.7 0 =S+ o)
where 0,(1) — 0 as b — 0. Therefore, we can choose b & /¢ such that lim ﬁb(r)‘ =
r—0 nr

4/ A., which proves the existence of the function G..
From (2.7), we immediately see that lim._,o GL(1) = Eg((f))' The fact that uj(b) =0
implies the existence of 7 ~ /e such that G.(7) = 0. Finally, (2.5) and (2.6) follow

from (2.1), (2.2), and (2.3). O
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3. THE APPROXIMATE SOLUTION

We look for a radial solution to (1.1) concentrating at 0 and on dB;. To do so,
we take an ansatz of solution of the form

Uo [ 9)
Uus [1 — 251, 1— (51)

uy in [1 —dy,1],

where 0 and d; are suitable constants depending on A. Let us first describe our
ansatz in words. Near the origin, we want U = u, to behave approximately like V,,
the two dimensional standard bubble given by

8u?
(31) VM(T) =In m,
for some constant 1 = py > 0 to be specified later. Let us recall that these functions
correspond to all solutions of the problem

—AV =XV inR? with A/ e’dr < oo.
R2

Near the boundary 0B, of the disk, we want that U = uy behaves like W, — In A

where W, is the one dimensional standard bubble solving —W” = e in R, which
is given by
V3(r—1)
4 e
W.r)=In|—= ¢ :

g2 (1 + e_mrn)?

for some constant ¢ = ), > 0 to be determined later. In order to “glue” these
singular solutions, far from the origin and 0B, we choose U = A.,G.,, where G, is
the singular at the origin Green’s function given in Lemma 2.2 (with € = €, and a
suitable constant c). Finally, we choose u; and u3 to be linear interpolations between
u;—1 and w1, for i = 1,3, namely

(3.2) ui(r) = xi(r)ui—a(r) + (1 = xi(r))uia (r),

where x; € C*((0,1)) are cut-off functions such that

i) =1in (0,6), xa(r) =010 (25,1), ()] < 1, i) < e, Wi(r)] < 62,

and

x3 = 1in (0,1-26), x5 = 0in (1-31,1), [xs(r)] < 1, [xa(r)] < o7t Ixa(r)| < edp2.

We now describe our ansatz in detail.
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3.1. Construction of u4. First, let us set ¢ = ¢, — 0 as A — 0, via the relation

4 e
(3.3) In— —InA= e + as. + as.e,
£ £
for some constants a;., ¢ = 1,2,3 to be determined later (see (3.7)), and let
2
(3.4) 0, = €', for some n € (5’ 1) :

We define uy in the same way as the function “u;” of [PV15] (or [BCN17a]) with
ro = 1. The construction of this function is quite lengthy .We only briefly recall it
here, and refer to the above two papers for more details. We define
ug=We—InA+a.+v-+ 6+ 2
~ 7 = ~~

TV
15t order approzx. ond order 37 order

where a. (1), v:(r), B:(r), and z.(r), which we briefly describe below, are functions
introduced in order to produce a good enough match between uy and uy = A.G.;
see Lemma 3.1.

The function o, satisfies

_(ae)// _ %(ae)/ —

a.(l) =
(ar)'(1) =

and the following estimate holds, for s < 0,
(3.5) (g5 + 1) = e(ae)1(s) + e2(ae)a(s) + O(3sY),
where, letting W be defined via

(W) = W.+1InA in (0,1)

© O3 |

—1 4
W(T >+1n—2—1n4:WE(T),
£ £

a 2

and

s 1
/ / ln4)d,0da+/ oW (o )da—aal/\s + 22A s2.
0

The function v, solves

—(v)" — e, = eeVe(a.), (T ; 1) in R
ve(l) = 0
(v2)(1) = 0 :
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where (a.); is defined in (3.5). Moreover, we have
lr—1]

ve(r) = vi(r = 1) +1e + Ofee™ =),

where
vy €R and 1y =-2(1-1n2)+ a1 V21n 2.

The function f. is the solution of

(B = (B = () i (0,)
5.(1) = 0
(56)/(1) = 0,

and the following estimate holds, for s < 0,
Be(es +1) = e2(B)1(s) + O(35?),

where, letting v be defined via

ve(r) = v (7:1),

G == [ [ voripde

Finally, the function z. satisfies

we have

z(1) = 0
{ (z)(1) = 0
and there holds

[r—1]|

=)

2(r) = (i (r — 1) + (e® + O(e%e™
for some (; € R, j =1,2.

3.2. Construction of us. Thanks to Lemma 2.2 (with ¢ = (;), we know that, for
any ¢ small enough, there exists a function G, satisfying

1
~GU- GG = 0 (0,

im S0 g4

r—0t |In7r|

G.(1) = 1.
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A
where A, = =5 + Ay . + As e and

g
\/§ 1 1[14 Cl
. A= 24— o), A= o
(36 A=y A= g (Gg<1> ) v = T
Letting
(37) a1e = Al,ea A2 = A2,€7 a3 = A3,€ — Vy,

and recalling (3.3), we define
(3.8) ug(r) = Ac, Gz, (7).
Thanks to our definition of uy and wuy, one can show, arguing as in [BCN17a, Lemma

3.3], the following estimates.

Lemma 3.1. For any 6; < |r — 1| < 261, we have
r—1* r—1
wlr) = walr) =0 (el =1+ = 1P+ P e ()
Ex Ex
and

r—1/3 1 r—1
uﬁl(r)—ué(r):O(exlr—1|+|r—1|2+| - | +aexp <—| |))

EX

In order to define ug and estimate ug — us, it is important to introduce the regular
part H,, of ug, namely

(3.9) H. (r) =us(r) +4Inr,
We let py > 0 be defined via the relation
(3.10) 82 = a0,

/
1
Thanks to (2.5), (2.6), and limy o GL, (1) = iél)), we have, for a constant ¢ inde-

pendent of £,

2
(3.11) H_, (0) V2 + ¢+ 0O, (ex) and  lim H. (r) =0.

5/(1)6)\ r—0t
Moreover, as r — 0, we have

2
(3.12) |H., (r) — H, (0)] < C (;_ + 7| lnr|) ;
A

where C' > 0 is a constant independent of ¢,.
In particular, recalling (3.3), we have the crucial estimate

C A (1
3.13 M2~ — ——-1 0 A — 0 (and th 0),
(3.13) JT5y giexp(@\ (§<1) ))—> as A — 0 (and thus €y, — 0)
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where A; = limy_,0 A1, > 0, C > 0 is a constant independent of ¢, and & is the
function defined in Lemma 2.1, which satisfies £(1) > 1 due to the fact that it is an
strictly increasing function with £(0) = 1.

3.3. Construction of uy. Recall, by Lemma 2.2, that there exists
(3.14) SRV
such that u5(7) = 0. We define

(315) Up = V,u)\ + HO,;L,\a

where V,, is the function defined in (3.1) and H, ,, is the solution, for p = p,, to
3.16 H iy . ’

(3.16) { () = V().

We introduced the function Hy,, in order to get a better matching between uy and
uy. We choose ¢ such that

(3.17) 20 <7 and 0 & /.

Arguing in a similar way to the proof of [{PW06, Lemma 2.1], we obtain the fol-
lowing estimates.

Lemma 3.2. For any a € (0,1), we have, for r € (0,7),

(3.18) Ho i, (r) = He, (r) = In(813) + O ((13N)7)
C%7(Bj)—uniformly, for v € [0,1), where H.,(r) is defined in (3.9). Moreover,
(3.18) holds uniformly in C'(Bgs\Bs). Finally, for r € (0,7),

2

(3.19) Ho ()] < € (= 4 inr]+ )"
A

where C' > 0 1s a constant independent of €.

Proof. Let us consider the function z(r) = Hy ,, (r)— He, (r)+In(8u3 ), which satisfies

1 . -
_AZ+Z = —IDW—}—IHF mn (077“)
JF) = 4
s + 72 T
By recalling (3.3) and that 7 &~ /¢, we deduce that
4N3
1~ A 2\«
S S——c 1O\
z (T> 7;()\,[/& + 7;2) (( /1“)\) )7
1

1
for any o € (0,1). We set f = —1In +1In — and let p > 2. We have
r

(A +72)?

/ flPde = / fPde+ / flPde.
B; BAB 5, B

Y2YN
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It is easy to see that
[ ipds < onimndp
B\/XNA
C\/XMA

r

and, using the fact that |f(r)| < , one gets

[ UrPds <A < Ok
BAB s,

Using elliptic regularity theory (see Lemma A.1), we deduce that
Iz llcon () < C(Aw3)"
for any v € (0,1) and a € (O, %)
On the other hand, for any ¢ > 2, since 6 ~ /¢y, we have
/ fl7dz < COB)7267 < C(ni) 23 < C(u)™,
Bas\Bs

for any a € (O, %) We deduce that
12l Basms) < C AR
Finally, (3.19) is a direct consequence of (3.18) and (3.12). O

Thanks to the previous lemma, we are able to show that uy and us are very close
in C'—norm sense in the interval [4, 24].

Lemma 3.3. For o <r <26, we have
[uo(r) —ua(r)] = O (\3)?)  and  Jug(r) — uy(r)| = O ((A3)?)
for any o € (O, %)
Proof. The proof is a direct consequence of Lemma 3.2. Indeed, by definition, for
r € [6,26], we have

2
S H

u0<7n) = V/M (T) + HO,#A (T) =In (>\,U§\ n T2)2 €x

(r) = In(8413) + O((Ap3)")

and
ug(r) = —4nr + H., (r).
It follows that

up(r) —uz(r) = —21In (1 + )\—M?\> + 0 (O\Mi)a)

— 0 ((d)7).

Arguing in a similar way, one shows that

i) = 50) =0 (252 ) + 0 () = 0 ().
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O

We will now look for a solution of (1.1) of the form U + ¢, where ¢ is a correction
term. Let us observe that U + ¢ is a solution to (1.1) if and only if ¢ solves

L(¢) = N(¢)—R(U) in (0,1)

(3.20) ¢'0) = 0
¢'(1) = 0,
where
(3.21) L(¢) = —Ap+ ¢ — XV
(3.22) N(¢) = AT — eV —eVg)

RU)=-AU+U — eV
4. THE ERROR ESTIMATE

In this section we estimate the terms R(U) and N(¢). In order to take benefit of
the estimates in [PV15], we are going to work with the norm || - || (see (5.1)) which
is,roughly speaking, a weighted L*°—norm on B 1 and a L'—norm elsewhere. We
begin by estimating N(¢).

Lemma 4.1. There exists C' > 0 such that, for any 8 > 0,

L 2 ifr <o
41 N <Clo2d a2 |1 ( . )
(4.1) IN(9)] 9] m( + NoTh )
£ if 6 <r<1-26
and
—1 2
(4.2) HN(cb)HLl(BI\B%) < Cej qul\m(&w%)-

Proof. First, using a Taylor’s expansion, it is immediate to see that
IN(9)] < Cre[]*.

Therefore, the proof reduces to estimate eV. Let us observe that if r € [0, 26], using
(3.19) and (3.17), we have that

Aeo = \eVmTHou < C’—'u?\ exp T—2 < ¢ .
(M +r2)? ex) N
A2 |1+ < )
g \/X,UA

Besides, by definition of uy, we know that it is decreasing in (0,7) and increasing
elsewhere. Then, for r € [§,1 — 24;], we have

e’LLQ(T‘) S €u2(6) _'_ e’UIQ(].7261)
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Making a Taylor’s expansion, we obtain, for some 6 € (1 — 24, 1),

2
wn(1— 260) = up(1) — 26005(1) + 2630(6) < — V2~ (1),
5,\G'5A(1)

Thus, noting that u)(1) ~ v/2¢;" and recalling (3.3) and (3.4), we deduce that
)\eug(l—261) < 05;26—511/2(1) < Cc‘:'f

for any 8 > 0. On the other hand, recalling (3.8), we see that e“2(®) < 5—6; < C&)®.
By noticing that Ae}® < C’&?f for any 8 > 0, we conclude that
A ) < ¢l
for any r € [§,1 — 2d;] and any § > 0. Finally, by observing that for r € (6, 26),
AeV < Amax{e®, e“2} < C¢ef,

we deduce (4.1).
We refer to [PV15, Lemma 4.3] for the proof of (4.2).

Next, we estimate R(U).
Lemma 4.2. Let a € (0, %) There exists C' > 0 such that

(

2
r
(Au3)™ + = + 7% Inr|
A

|R(U)| < C M&G+< r)j

5 ifr <o

\/XNA
\ & if 6 <r<1-25
for any B >0, and
140
LGOI

for some o > 0.

Proof. First, we consider the case r < § so that U(r) = uo(r)(r) = V,, (r) +Ho ., (7).
Combining (3.1), (3.16), and (3.19), and making a Taylor’s expansion, we infer that

’R<u0)| - }_A(V/M + HO,/M) + V#A + HO,;M B )‘eVMJrHO’M‘
— })\eVM (1 _ eHo,M)|
< CAe'i |Hy,, |
(M) + = + 72| I

(e () )




18 DENIS BONHEURE, JEAN-BAPTISTE CASTERAS, AND CARLOS ROMAN

Next, when 20 < r < 1 — 26y, we have U(r) = ua(r). Arguing as in the previous
lemma, we obtain

(4.4) |R(uy(r))] = Ae®2) < Cef

for any 8 > 0.
On the other hand, it is proven in [PV15, Lemma 4.2] that

(4.5) ||R(u4)HL1(B1\BHsI) < Cey™  for some o > 0.

Finally, we consider the two intermediate regimes. First, let us consider the case
d <r < 26. In this interval, we have U(r) = uy(r). Using (3.2), we get
| R(ui]) = [x1R(uo) + (1 — x1) R(uz) — 2x) (up — uy) + (—Ax1 + x1)(uo — u2)
+Ax1e™ + A(1 — xq1)e™ — A6X1“°+(1_X1)“2|
|up — ub| | [uo — us]
5T
(4.6) + Xe"? + ‘)\euo (e(XI_l)(uo_W) — 1)| .

< |R(uo)| + | R(us) +c(

Using a Taylor’s expansion and Lemma 3.3, we have
‘)\6“0 (e(Xl’l)(uo’w) — 1)} < Ae"lug — ug| < A" (Ap3)e.

Using Lemma 3.3 once again, we get

|ug — uh| | Juo — ua
5
Plugging these two last estimates into (4.6) and using (4.3) and (4.4), we obtain

< O(2)62.

1 )\ 2\«
IR(u)| < C | sup ~ +a§+( 1)

5<r<26 ) , 2 02
s [ 1+ < )
A VAN

/\2 /\Qa
gC(ﬁJraer( 1) >§Cs§

o4 52
Finally, when 1 — 20; < r <1 — 4;, arguing as above, we have
[R(us)] = [xaR(uz) + (1= xa) Rlus) = 25(uty = 5) + (=L + xs) (s — uz)
+)\X3€u4 + )\(1 — X3)€u2 — )\6X3U4+(1—x3)u2|

< |R(u)| + |Rlug)| + ¢ (Ha= vl | Jua—ual
5 52

(4.7) + e 4+ Xe™ |uy — ugl.



THE KELLER-SEGEL EQUATION IN THE DISK 19

Using Lemma 3.1 and the definition of §; given in (3.4), we obtain
Ol — | fug — g -
/ ( 45 2+ 5 >rdr:O(5i+)
1-26, 1 1

1-6;1
/ e |uy — ug| rdr = O(e31).
1

—25,
Thanks to (4.4) and (4.5), we see that

and

/1 - (R(ug) + R(uy) + Xe"™) rdr = O(e,7).

—201

Plugging the three previous estimates into (4.7), we obtain
R < Ceite.

| (U?»)“L1 (Bl\B%) = A

This concludes the proof of the lemma. O

5. INVERTIBILITY OF THE LINEARIZED OPERATOR

In this section we develop an invertibility theory for the operator L defined in
(3.21). To do so, we use ideas from [dPKMO05,dPW06,dPR15, PV15]. First, we
define the norms

(5.1) Jelle =mee {[In)l Sl o022 00, 0}
and

Julloo =max {[aull Kol om0

where
() 1if7“§% o) 1if7"2%
r) = , r) = ,
. 0 ifr>3 0 ifr<l
and
A Ju(r)]

[ulls = sup

== = sup /a(r)]u(r)]
v ()

for some v € (0, 1).
The following proposition is the main result of this section.

Proposition 5.1. There exist positive constants \g and C' such that for any A\ €
(0, Xo) and for any h € L=(By), there exists a unique radial function ¢ € W*?(By)
solution to

(5:2) {qﬁ'(l) 0.
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which satisfies
(5.3) 101l oo 5,y < C IR -

Rather than directly proving this statement, we first provide a priori estimates
for the solution to (5.2) when ¢ is orthogonal to

r? — A\
Zo(r) = —22
r2 4+ A3
This function is a solution to
S\u2
5.4 —ANZy=—— "2 __7,
o0 TP
that is, the linearization of the equation —Awv = e around the radial solution

83
(A3 +1r?)*
It is well-known that the only bounded radial solutions to (5.4) are multiples of z,
(see [CLO2, Lemma 2.1]).

v(r) =V, (r)+InA=1n

Consider a large but fixed number Ry > 0 and a radial smooth cut-off function
xa(r) such that xx(r) = 1if 7 < Rov/ Ay and xa(r) = 0 if r > (Ry + 1)V Apa.

Lemma 5.1. There exist positive constants Ao and C' such that for, any A € (0, o),
the unique radial solution ¢ € W?2%(By) to

L(¢) = h in By
(5.5) ¢'(1) = 0

XaZo¢ de = 0
By

satisfies

Proof. Assume towards a contradiction that there exist a sequence of positive num-
bers A, — 0 and a sequence of solutions ¢,, to (5.5) such that

(5.6) lonll sy =1 and  hal,, —2 0.

We denote by £, (resp. u,) the sequence defined by (3.3) (resp. (3.10)) with A = A,,.
Also, we let U, denote the first approximation for A = A, and u{ (resp. u}) the
sequence defined by (3.15) (resp. (3.8)) with A = A,,.

Our goal is to prove that ¢,(r) = 0,(1), for any r € [0,1], which yields to a
contradiction with (5.6), where here and in the rest of the proof o,(1) denotes a
function f,,(r) such that nhﬁl{.lo fn(r) = 0 uniformly in r. We split the proof in 4 steps.

Step 1. There holds ¢,,(r) = 0,(1) on compact subsets of (0, 1).
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First, it is easy to see that eV = 0,(1) on compact subsets of (0,1). Since, by

assumption, ||h,|,, — 0, we deduce that, up to subsequence, ¢,, — ¢ Cy—uniformly
on compact subsets of (0,1), where ¢ is a radial bounded solution to

~Adp+¢ = 0 in B\ {0}
>0 A

We claim that ¢ = 0, which in turn implies that ¢, (r) = 0,(1) on compact subsets
of (0,1). To prove the claim, let us observe that equation (5.7) corresponds to the
modified zero-order Bessel differential equation, whose solution is given by

~

o(r) = C1&(r) + Co((r),

where C4,Cy are constants, £(r) is the zero-order modified Bessel function of the
first kind, and {(r) is the zero-order modified Bessel function of the second kind
defined in Lemma 2.1. Since ((r) becomes unbounded as r — 0 and ¢ is bounded,
we deduce that Cy = 0. Moreover, since £'(1) # 0 = ¢/(1), we have C; = 0. Hence,

~

6 =0.

Step 2. We have that ¢,,(r) = 0,(1) for r close to 1.

We set ¥,(s) = ¢n(ens + 1) for s € [—e,;1,0]. Then, since v, is bounded, by
arguing as in [PV15, Proposition 5.1] it is possible to show that ), — 1 C?*-
uniformly on compact subsets of (—oo, 0] where v satisfies

—" = e¥ inR™
¥'(0) = 0
Y]l < 1.

We know (see [Gro06]) that any solution v to —¢” = e? is of the form

PTG S PR, Kokl
s) =a—=—— — §——
eV + 1 eV +1

for some a,b € R. Since [[1]|oo < 1, we have b = 0, and since ¥'(0) = 0, we get
a = 0. Hence, ¥ = 0.

Let us now consider the radial Green’s function G(r,t) associated to the operator

(-A-+ 1)
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satisfying G (r, ) = G’(r, 1) = 0 and singular at the point r € (3,1). Using Green’s
formula, we have that, for l <r<l,

bn(r) — G ( )gbn (1) —/IG(T t)hn (t)dt + A, /:G(r t)eUr g, (t)dt

0
/ G(r,t)h,(t)dt + G(r, 1)€n)\n/ eUnEnsty) (5)ds

2en

+ 8n)\n/ (G(r,ens + 1) — G(r, 1))eV=CEnsty, (s)ds.

- 2en

From Step 1 we know that ¢, (1) = 0,(1). Combining this with the fact that G is
bounded and ||h,|[« — 0 as n — oo, we have

o (). (3) + [ G000 =t

Arguing as in [PV15, Proposition 5.1], one shows that

EnAn /0 ) (G(ryens+1) — G(r, 1))6U"(5”3+1)1pn(3)d5 = 0,(1).

Hence,
on(r) = C,G(1,1) 4+ 0,(1),
where C,, = e, \, f Un(enst Dy, (s)ds

Since ¢,(1) = wn( ) = o,(1) and hmr_ﬂ G(r,1) # 0, we deduce that C, = 0.
Hence, ¢, = 0,(1) for r € [%, 1].

In the following steps it is convenient to work with rescaled variables. We set
r

VA tin

(5 3 :¢n \/_ﬂn
U S \/_/J/n —|—21H nﬂn)

s = for r € [0, 1],

and define

iL S = )\n/'Ln \/ Mn

Letting L(-) = —A - +\,p2 - —e Un. it easy to see that ¢, satisfies
(58) L(n(s)) = fin(s).
We also define (with some abuse of notation)

7 hs)
59 h *x = == hl 11 ||
5.9) o= s G = ey

G
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for functions h defined in the rescaled variable.

Step 3. Up to subsequence, we have that gzgn — 0 as n — oo uniformly over
compact sets of R2.

Recalling (3.19), elliptic estimates applied to (5.8) imply that, up to subsequence,
¢, converges uniformly over compact sets of R? to a bounded solution ¢ to

~ 8

By~[CL02, Lemma 2.1], we deduce that there exists a constant Cj such that ¢ =
CoZo(s), where

s2—1 r? — Ao pi?

ZO($> e m — ZO,TL(\/ )\nﬂn(g) Wlth Z()’n(/r) — 7’2 + )\ ,u2 .

Let X(s) = xa, (W Antns) where x, is defined just before the statement of the lemma.
Notice that it does not depend on n. The orthogonality condition satisfied by ¢,
yields

0= / X)\nZO,ngbndx = /\nPJ?L/ )ZZO§Endx
By B1y(vxnun)

Passing to the limit n — oo, we find
| Xz =0,
RQ

which implies Cy = 0. The result thus follows.

Step 4. We have that ¢, () = 0,(1) for r close to 0.

This is based on a maximum principle argument. Let us show that there exists a
constant C' > 0, independent of n, such that

(5.10) |!<23n||Loo( <C Suglqgn(S)H||7lnH*+|¢n(T)! ,

By (Vxmn)) s<

where R > 0 is a large but fixed number and 7 is a small but fixed number.
To prove this, we need the following version of the maximum principle. We claim
that there exists a fixed number R; > 0 such that for all R > Ry,

if E(gp) >0in Ay = B /xmum) \ Bg and ¢ > 0 on 0A,,, then ¢ > 0in A,.

To prove this, we consider the function ¢y(s) = 1 — . Observe that

sV

—Apy =v(r+2) el
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Letting 4 (s) = ug (v Anptns) + 2In(A, ) and §,, be defined by (3.17) with A = A,,,
and using (3.19), we deduce that, for any s € [0, 26, /v Antin),

~m

8 C
511 Ug (S) —_ HO,IA)\n (\/Tnﬂns) < .
(511) ‘ (1+ 52)26 = (14 $2)?

On the other hand, letting 4% (s) = ul (v Anitns) + 2In( A, 1n), and 7, be defined by
(3.14) with A = A, and recalling that u} is increasing for r > 7, and (3.10), we

have, for any s € [7n/(vVAutin), T/ (V Antin)],

~ 4
71 it 01 An n
(5.12) e < et W“"”ZS(TM) exp (He, (1) — H., (0)).

Exp

Choosing 7 small but fixed so that (3.12) holds, we have that

exp (H., (1) — H., (0)) < Cexp C—j) .

In view of (3.13), choosing 7 smaller if necessary, we have that

2
VAt exp (HEM (r) — H.,, (0)) < C\/A_”'un exp (;—) <C.
T T A

Plugging this into (5.12), we deduce that

3
(5.13) JEE) < G/ ) < ¢ (_V/\n”n> < 93
T s
Besides, arguing similarly, it is easy to check that, for any s € [8,,/v/ Antin, Tn/ vV Anftin],
. C
a3 (s) « =
e\ < e
From this, (5.13), and (5.11), we deduce that
. C
Un(s) —
e < 3
Therefore, for any R is sufficiently large, we have

|

L(p0) = —Ago + Moo — €/"pp > 3 s

1
- §Anui >0 in A,
and ¢g > 0 on dA,. The claim thus follows.

Let us now prove (5.10). We define

On = C1 | max [on(s)] + [nlls + [0n(m)]| 20

4
for a constant C] independent of n and R > R;. Observe that if C; > — then
v

2 —2—v )‘n i B L
(1 fs)zt + ﬁfnl)%%) > |ha| = [L(¢n)]

L(n) 2 2llhallo(s77 + Augi) > |
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2(s727Y + \yu?)
(1 +8)727" + Anpi)
On the other hand, if C; > (1 — R™")~!, we have
G > |du| on DA,

Applying the maximum principle and observing that |po| < 1, we are led to (5.10).

Finally, by noting that |||« < [|Bnllw = 0n(1) (by (5.6)), ¢n(7) = 0,(1) (by Step
1), and maxc(o,p) |6 ()| = 0,(1) (by Step 3), we conclude that |60l oo (B,) = 0n(1).
From this and Step 1 and Step 2, we deduce that ||¢,| z~B,) = on(1) which

contradicts the fact that ||¢y||z(s,) = 1. This completes the proof. O

> 1fors € [R,+00) (taking R larger if necessary).

in A, since

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. We reuse the notation introduced in the proof of the pre-
vious lemma. For a scaled function §(s) = Au2g(vVAuxs) with s = /(v Auy), we
define

(5.14) 1G]l = 119l

Let R > Ry + 1 be a large fixed number, 7 > 0 as in Step 4 of the proof of Lemma
5.1, and Zy be the solution to

8

_Aéo = méo ln BT/(\/X,LL)\)\BR

2(R) = Zo(R)
% (7/(Vama)) = 0,

where Z, is the function defined in Step 3 of the proof of Lemma 5.1. A direct

computation shows that
/ 5odt
> R tZ3(t)

fol8) = Zo() | 1=~ 7w
/R tZ3(t)

We also let 2; be the solution to
—Aé’l + )\Niél = )\/,L?\?:“O in BT/(\&,UJA)\BR
4 (7/(\/%)) — 0.

Elliptic estimates immediately yield that

(5.15) ) < OMG.

Hzl ”02 (Br/(ﬁm\)\BR

We consider smooth cut-off functions 7, (s) and 7(s) with the following properties:
m(s) = 1for s < R, m(s) = 0for s > R+ 1, |[ni(s)] < 2, pa(s) = 1 for s <
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T/(2VAm), m2(s) = 0 for s > 7/(V M), [mh(s)] < CV Ay, and |ng(s)] < O\g3.
We also define the test function

%0 =2y + (L —m)n2(20 — 21).

Let ¢ be a solution to (5.2). As previously, we denote QNS(S) = &(v Muxs) and we let
X(s) = X)\(\N/XIU)\S) where y, is defined before the statement of Lemma 5.1. Next,
we modify ¢ so that the orthogonality condition with respect to Z, is satisfied. We
let

(5.16) b= ¢+ A%,

where the number A is such that

A/ Xzl dx + / XZopdz = 0.
By /(v3uy) By (vRuy)
Then
(5.17) L(9) = h + AL(%),
and / YZoddr = 0. Recalling (5.14), Lemma (5.1) yields
By (vRuy)
1 ) < [~** AEN**].
(5.15) 160 5o, ) < © [IBlls + 1ANIECGD))

Observe that %) = 0 for s > 7/(v/Auy). Thus, recalling (5.9), we have
1L (Zo)llex = IL(Z0) .

Let us now estimate the size of |A| and || L(%)]|,. Testing equation (5.17) against
Zo and integrating by parts, we find

~

<¢7 E(20)> = <iL7 20> + A(‘Z(ZO)) 20>a
where (f, g) = / fgdx. Combining this with (5.18),
By (Vauy)
/B BIIEGo)ldz < Cldll | EGo) s and / zoldz < Cl]L,

1/(VXpy) 1/(VXpy)

we are led to

(5.19) A(L(Z0), Z0) < ClIRIL [T+ I + CIAIIL )2



THE KELLER-SEGEL EQUATION IN THE DISK 27

We next measure the size of ||L(Z)||.. We have

(5.20)
- 8 5 2\ & U5 8 ~ Uy/s 2
L(Zo) =m (mZ@ + M}\)\ZO — € Z(]) + (1 — 771)772 <m2@ — € (ZO — Zl))
+2VmV(na(20 — 21) — Zo) + Am (20 — 21) — Zo)
—2(1 =m)VV (% — 21) — (1 = m)Anz(20 — 21),
where U denotes, as in the proof of the previous lemma, the first approximation of

the solution in the rescaled variable.
In the support of n;, we have

8 ~ 05
mZO—e Z():

which combined with (3.19) gives

8

o, 5
T (1) %

< C(3)*

8 . 5 -
T (mZ@ + )\,LL%\ZO - €UZO)

*

If R<s<6/(vAuy) (recall (3.17)), we have that

8 T/ o 8 8

- — _ F— 1 _ HO,/A ) - HO,;L 5 .
(1—|—S2)2Z0 (& (Zo 21) (1—|—52)2 ( e A Zo+—(1+82)26 AZ1
Therefore, using once again (3.19) and (5.15), we deduce that

: Z 2 2 «
H (mzo N eU(ZO - Zl)) 1{R§S§5/(ﬁux)} < C()‘,U?\) .

*

Arguing as in Step 4 of the proof of Lemma (5.1), we deduce that, for any s €

[5/(\5#&)7 T/(\/X/h\)],

eUS

%l Q

Hence,

8 s N
H (sz me (- zl)) Lo/ omuzs<r/vmu|| < CO)%,

*

and therefore

(5.21)

] . . .
m(a:??%+*ﬁ%‘é70

+ (1 —m)m (ﬁ% —eV(5 — 51))




28 DENIS BONHEURE, JEAN-BAPTISTE CASTERAS, AND CARLOS ROMAN

On the other hand, it is easy to see that, for s € (R, R+ 1),

/s dt
R tZ3(1)

7/(V ) dt
/R tZ2(t)

|Zo — 20| = | Zo <Ol and [ Z — 5] < Clln(\id) "

Besides, for s € (T/(Q\/Xu,\), T/(\/Xu,\)>, we have

(5.22) [20] < ClIn(A3)| ™" and  |25] < OV A In(A3)|
We then easily deduce, using (5.15), that
12V V (1220 — 21) = Zo) + A (na(20 — 21) — Zo)
—2(1 = m)VV (% — 21) — (1 = m)Anz(Z — 21)|lx < ClIn(A3)|
By combining this with (5.21), we conclude that
(5.23) IZ(Z0) [l < ClIn(Aa)|

Finally, we estimate (L(Z), Zo). Arguing as above, it is easy to see that

(L(%), %) = / L(%y) Zodx + / L(Z0)Zodz 4+ O (A\3)*) -
Bry1\Br B (v/run) \Br/(2v/Ruy)
Using (5.20), (5.15), and (5.22), we get
(5.24)
/ E(ig)éodx
B

/(R \Br2vay)

<C (IVmal|V 20| |Z0] + |Ana||20]*) + O (A3)%)
B/ (vrun) \Br/2v/Auy)
< Clm(vR) 2.

On the other hand, we have

I ::/ L(%) 20dx =
Br+1\Br
2/ V’I]IV(ZA’O — Zo)?:'()dl’ + / A?’]l (20 - Z())?:'()dl' + O (()\,Lbi)a) .
Brt1\Br Br+1\Br
Thus, integrating by parts, we find

I = / VmV(éo - Z(])éodl‘ - / Vﬂl(?:’o - Zo)VZA’OdZL‘ + @) (()\/Li)a) .
Br11\Br Br11\Br
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Now, we observe that, for s € (R, R + 1), |Zo(s) — Z(s)| < C|In(\u3)|~!, while
120(s)| < C (& + £/ In(Ap3)|™?). Thus

D _
< )],

/ V?’h(ﬁo — Zo)vgod.%
Br11\Br

where D is a constant that does not depend on R. Note that

/ v771V(20 — Zo)i’odl‘
Br+1\Br

R+1 B 5
- 27r/ (o = Zo)' (Zo+ O (NS ™)) sds
R

S (/mm@(z@/sdzﬁi>wp+mmwﬁww

/ dt Jr R 2Z3(z) s
R tZ3(t)

E
=1 1)+ O(|In(Au3)| "
where F is a strictly positive constant independent of R and A. We thus conclude,
choosing R large enough, that I ~ —F|In(Au3)|~'. Combining this with (5.24), we
find

E
LGG).5) = —— —~
G 20) = i)
This together with (5.19) and (5.23), yields
Al < ClnAE)|[1A]ls-
Recalling (5.16) and using (5.18), we then deduce that
1M1z (1) < CUAllex + (AR A])-

[1+0( () )] -

Observe that

. h(s A3 |h(r .
lilo= s s < s POl <l
s€[0,1/(2v/Aux)] A r€l0,1/2] /\Mi + (1 + \/Xru )
A

The previous two inequalities then yield

1l (B1) < CUIRNLs + (M) X2 ll).

Recalling the definition of the norm || - ||., we conclude that

[0l 2 (z1) < CllA[.

It only remains to prove the existence part of the statement. For this purpose, we
consider the space

H={¢ec H(B) | ¢isradial} ,
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endowed with the inner product (¢, ¥)m = [ 5, VOVidz + / 5, $tbdx. Problem (5.2)
expressed in weak form is equivalent to ﬁndlng ¢ € H such that

(O, )y = /B AeV¢ + hlapdx  for all o € H.

By Fredholm’s alternative this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by (5.3). O

6. THE PROOF OF THEOREM 1.1

Proof. Thanks to Proposition 5.1, we know that the operator L is invertible. There-
fore, we can rewrite (3.20) as

¢=T(¢) = L' [R(U) + N(¢)].
Let p be a fixed number. We define
A, = {¢ € L>(B1) : 9]l (B) = PgHU} )
where o is the constant defined in Lemma 4.2. We will show that the map 7" : A, —

A, is a contraction. Using Lemma 4.1, recalling the definition of || - [|. given in (5.1),
and since |In(Auf)| = O (g3'), we see that

1

(i () )

|In(Au3)| sup  fu(r )6»%)

H)\eUH* < Cmax | [In(Ay3)| sg%) a(r)

5<r<3/4

< Ce;l.

From this and recalling the definition of N(:) (see (3.22)), we deduce that, for
o, €Ay,

(6.1) IN(¢

< Cex 9l s

and

IN(¢) = N, < 05;1 maX{H(bHLOO(Bl) ) ||¢”Loo(31)} ¢ — wuLoo(Bl) :
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Next, using Lemma 4.2, we obtain
(6.2)

2
,
o ]+ (g)”
IR < Cmax | ()] sup f(r) =

|In(Ap3)| sup fx(?“)sf,eiﬂr)

5<r<3/4

< Cey™.
Thus, using (6.1) and (6.2), we get that, for ¢,¢ € A,,

1Ty < CUAN@IL, + [RD]L) < Ceb (0265 + 1)
and

IT(0) = T() oo,y < CIN(D) = NI, < CreXllo = Yll ooy -

where C' is a constant independent of p. It follows that, for any sufficiently small A
(and thus €)), T" is a contraction mapping in A,, and it therefore has a unique fixed
point in A, for p > 2C'. This concludes the proof. 0

APPENDIX A. AN ELLIPTIC ESTIMATE

We show a very rough elliptic estimate which is needed in the proof of Lemma
3.2.

Lemma A.1. Let R > 0 and u € H'(Bg(0)) be a radial solution to

{—Au—i—u = f in Bg(0)
u(R) = 9,

for some f € LY(Bg(0)), with ¢ > 2. Then, we have

1 _ 1
lull=nan < € | (3 + ) B0 oo + (3 + ) lall=omno

and
14| 2o (Broyy < C [R™ fllLasroy + (1 + R)||gll @B 0))]

for some constant C' not depending on R.
Proof. Multiplying the equation by v and integrating by parts, we get

(A.1) ullzr sy < I F e el s + Rlu'(R)|[u(R)].
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Since u(R) — u(r) = fR

. u/(s)ds, one deduces that

R
B < C | ulr)F + 142 0 ]

where throughout the proof C' denotes a constant not depending on R. Multiplying
the previous inequality by r and integrating, we find

RJu(R)[* < Clllullzzs,) + 141725, B

This implies that

1
(A2) )] <€ (1) Il
From (A.1), (A.2), and «/(R) = g, we obtain that

ullirs sy < 12w lulla s + CL+ R)l|gl @ lull msg)-
Thanks to Holder inequality, we find that

(A.3) ull sy < CIR™? fllLaer) + (14 R)gll @8]

Next, observe that for any s € (0, R) we can rewrite the equation as

u'(s)s :/ (u — f)rdr.
0
From Holder inequality, we obtain that

[W/(s)] < Cllw — fllzazr < Cllullrzzn + B2 flrasmn)-

From (A.3), we deduce that
/|y < CR N Nl amn + 1+ R)llglle@0)-
By noting that
uw(R) —u(s) = /R u'(r)dr,
we get from (A.2) that

1
HUHLOO(BR) S C |:<E + 1) HUHHl(BR) + RHUIHLW(BR)]

1 1
<O |(F 14 R) B oy + (35 + ) lallmam |-

This concludes the proof. 0
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