
Improving genome assemblies of non-model
non-vertebrate animals with long reads and Hi-C

Thesis presented by Nadège GUIGLIELMONI
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Patrick Mardulyn (Université libre de Bruxelles, Chair)
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Abstract

The corpus of reference genomes is rapidly expanding as more and more genome assemblies are released

for a wide variety of species. The constant progress in sequencing technologies has led to the release

in 2021 of a first complete, telomere-to-telomere, gap-less assembly of a human genome, yet a myriad

of eukaryote species still lack genomic resources. For animals, genomic projects have focused on species

closely related to humans (vertebrates) and those with an impact on health and agriculture. By contrast,

there is still a dearth of non-vertebrate genomes that poorly represents their tremendous diversity (about

95% of animal diversity).

Haploid chromosome-level genome assemblies using long reads and chromosome conformation capture

(such as Hi-C) have become a standard in recent publications. To provide a haploid representation of

diploid and polyploid genomes, assemblers collapse haplotypes into a single sequence, yet they are sensitive

to high levels of heterozygosity and often yield fragmented assemblies with artefactual duplications. I

tackled these shortcomings with two strategies: improving collapsed assemblies with a comprehensive

long-read assembly methodology tuned for highly heterozygous genomes; and separating haplotypes to

obtain phased assemblies using long reads and Hi-C. The assemblies were finally brought to chromosome-

level scaffolds with a new Hi-C scaffolder, which demonstrated its efficiency on genomes of non-model

organisms.

These methods were applied to generate chromosome-level assemblies of three species for which none

or few assemblies of closely related species were available: the bdelloid rotifer Adineta vaga, the coral

Astrangia poculata, and the chaetognath Flaccisagitta enflata. These high-quality assemblies contribute

to filling the current gaps in non-vertebrate genomics and pave the way for future sequencing initiatives

aiming to generate such reference assemblies for all the species on Earth.
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Chapter 1

Introduction

This introduction is from a review of genomes assemblies of non-vertebrate animals, in preparation with

Ramon E. Rivera-Vicéns, Romain Koszul and Jean-François Flot.

The field of genomics is presently thriving, with new genomes of all kind of organisms becoming available

every day. For Metazoa, efforts have unsurprisingly focused on human’s closest relatives (i.e., vertebrates)

so far [1]: out of 5,994 metazoan assemblies available in the NCBI database (accessed on April 21rst,

2021) [2], ∼ 67.5% (3,809) belong to the subphylum Vertebrata. However, from the currently ∼2.1 mil-

lion described metazoan species, only ∼73,000 (3.5%) belong to vertebrates [3]. The remaining metazoan

phyla, hereafter called "non-vertebrate animals", are thus underinvestigated and lack genetic resources.

Non-vertebrate animals are found in nearly all known terrestrial and aquatic ecosystems (both marine

and freshwater), and represent the diverse branches of the metazoan tree of life (among which vertebrates

are just a twig that originated about 600 millions years ago [4]). Characterizing the genome structure

and gene content of non-vertebrate animals is therefore pivotal for expanding our knowledge regarding

the evolution, ecology and biodiversity of metazoans.

In recent years, important sequencing efforts have started to tackle the dearth of genomic data for

non-vertebrate animals, with a strong focus on arthropods (1,279 assemblies on NCBI). The phylum

Arthropoda is very diverse: it consists of more than 1.3 million species, the majority of which belong

to the class Insecta (∼1 million species) [5]. Insects have a significant impact on agriculture (e.g. as
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CHAPTER 1. INTRODUCTION

crop pests) and on the transmission of diseases (e.g. malaria and dengue) [6]. They also play important

beneficial and regulatory roles in natural ecosystems, through pollination and decomposition of organic

matter [7]. Genome sequencing yields invaluable insights into species that are key in the aforementioned

processes. For example, various genome projects have targeted insects such as Bemisia tabaci, a common

crop pest [8], and the mosquitoes Aedes aegypti (vector of yellow fever, dengue and chikungunya) [9] and

Anopheles darlingi (vector of malaria) [10]. These studies unveiled, among other findings, expansions

of genes involved in insecticide resistance. The genomes of these species are so important for human

health and food security that many have actually been sequenced multiple times, either because of the

availability of newer sequencing methods or to compare different strains (for instance, three versions of

the genome of Aedes aegypti [11, 12, 9] were successively published). Many phyla with less direct human

implications, however, do not even have a single good-quality genome assembly available to date (e.g.,

chaetognaths).

Many other non-vertebrates (and their symbionts) have also shown tremendous importance and relevance

with respect to socio-economic impact. Snails, sponges and corals all produce metabolites with biologi-

cal activities such as anticancer, anti-inflammatory, antibacterial, among others [13, 14, 15]. Terpenoid

metabolites have been found in more than 70 gastropods species [16]. In sponges, compounds such as

polyketides, terpenoids and alkaloids have also been found in species of the genera Haliclona, Petrosia,

and Discodemia, these three genera being the richest among sponges in terms of bioactive compounds

[17]. Thus, genome assemblies are essential to identify and better understand the genes, pathways and

sources of these compounds. Among mollusks, several species valued as food resources are studied for

their impact in aquaculture [18]. Moreover, non-vertebrates are important model systems to understand

processes such as adaptation to climate change, ocean acidification, biomineralization [19, 20, 21, 22].

Various species of corals [23, 24, 25, 26] have been sequenced to study the effects of increasing seawater

temperatures and to understand how these species may survive in changing environments.

Some genome projects are motivated by more theoretical questions, to improve species classification and

elucidate specific traits. Genome assemblies provide abundant sets of genes to build robust phylogenetic

trees, opening the field of phylogenomics [27]. New genome resources bring novel insights into difficult

phylogenetic positions: a large analysis based on genomes and transcriptomes confirmed that myxozoans

belonged to Cnidaria [28]; the sequence of Hoilungia hongkongiensis placed placozoans as a sister group

to cnidarians and bilaterians [29].
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CHAPTER 1. INTRODUCTION

The lack of non-vertebrate genomic resources may be blamed to the difficulty to collect individuals or

extract pure, high-molecular-weight DNA, as well as to their frequently large genomes characterized

by high repetitive contents and high heterozygosity. However, sequencing technologies now offer cost-

effective solutions and wide applicability to solve some of these problems. Reducing the current unbalance

in genomic resources between vertebrates and non-vertebrate animals will increase the precision of fu-

ture tools and studies. Indeed, genome data is often used as the foundation for different genomic and

protein databases. The program BUSCO (Benchmarking Universal Single-Copy Orthologs) [30], used to

measure the completeness of a genome assembly, relies on genomic data to build reference gene sets that

are used for scoring. It uses hidden Markov models to detect orthologs that are shared by ≥90% of the

species in a given clade. Thus, results from under-sampled groups could change drastically when more

species are added to the gene sets. These could also have major effects in analyses such as phylogenomics,

protein families studies and of gene duplication events. Another consequence of the current dearth of

genomic resources for non-vertebrate animals is that BLAST [31] searches for these organisms most of-

ten recover vertebrate and arthropod hits, even though the target species is distant from these phyla,

making difficult the identification of sequences from a species lacking a reference or closely related genome.

It is therefore imperative to explore thoroughly the diversity of metazoans, specifically from non-vertebrates

species. International consortia such as the Global Invertebrate Genomics Alliance (GIGA) [32, 33] have

been put in place to overcome some of the aforementioned limitations. Other consortia such as the Earth

BioGenome Project [34], the Darwin Tree of Life [35], the Aquatic Symbiosis Genomics Project [36] and

the European Reference Genome Atlas [37] are also expected to significantly boost the genomic resources

of non-vertebrates in the near future. Undoubtedly, these projects will benefit from the drastic improve-

ments in sequencing technologies over the last years.

This chapter introduces the current state of genome assemblies of non-vertebrate species. The first part

presents a summary of available sequencing technologies, followed by a description of common assembly

algorithms and an inventory of tools for assembly pipelines. Assembly evaluation methods are then de-

tailed to identify correct assemblies. The last section opens on strategies for phased assemblies.
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CHAPTER 1. INTRODUCTION

1.1 Sequencing

Sequencing technologies have dramatically evolved over the last two decades, providing researchers with

various options when it comes to tackling a genome project (Table 1.1). Sanger sequencing, the widely

used sequencing method with chain-terminating inhibitors published in 1977, produces reads around 1,000

basepair long (bp) with an error rate of about 1% [38]. The principle is to synthesize complementary

strands of DNA from a single strand with a mixture of regular nucleotides and dideoxynucleotides, the

latter stopping the polymerase when incorporated. Four reactions are performed for each type of base,

and the resulting oligonucleotides are migrated by electrophoresis to identify the correct base at every

position and generate a read. This method laid the foundations for DNA sequencing and was used exten-

sively in several genome assemblies projects, which were at that time typically ran by large international

consortia: the budding yeast Saccharomyces cerivisiae [39] was the first eukaryote sequenced, whereas

the nematode Caenorhabditis elegans was the first metazoan [40]. Sanger sequencing is a relatively low-

throughput method in terms of the number of sequences generated, and is costly as well [41]. Although

it is almost not used in genome projects anymore, the technology was pivotal for the generation of the

first assembly of the human genome published in 2001, a monumental effort by 20 sequencing centers, to

an estimated cost of 300 million US dollars [42].

Second-generation sequencing technologies, initially called next-generation sequencing (NGS), are char-

acterized by a strong increase in sequencing throughputs compared to the Sanger method, with millions

of DNA fragments sequenced simultaneously. NGS reads are much smaller than Sanger reads (from 110

bp in for the first 454 machine in 2005 up to to 350 bp for MiSeq Illumina machine nowadays), resulting

in the need for new analysis algorithms and programs[43]. Nevertheless, the arrival of NGS sequencing

democratized genome assembly projects, broadening the scope of investigated species beyond well-studied

model organisms. Several second-generation sequencing methods have emerged through the years, some

of which have since then been discontinued: 454 pyrosequencing [44], Ion Torrent [45], SOLiD [46], and

Solexa (for a comparison on the approaches, see [47]). Among these methods, Solexa, subsequently pur-

chased by Illumina [48], became and remains the most widely used approach to this day. This approach

consists in amplifying short DNA molecules bound on a flow cell, and sequencing them by the sequential

addition of fluorescently tagged nucleotides. This protocol generates highly accurate single or paired-end

reads with a length up to a few hundred bases. The recent NovaSeq system further increased the output

from a single run and abated the cost (up to 3 Terabases per flowcell). Short reads stimulated the whole

field of genomics, and led to a large production of assemblies for all sorts of organisms, up to this day
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(Figure 1.1). These short-reads based assemblies resulted in a tremendous increase of genomic resources,

which remained typically quite fragmented (with N50s below 1 Megabase (Mb)).

Figure 1.1: Contig N50 of non-vertebrate genome assemblies over time. The N50 represents the contiguity of an assembly and is
defined as the length of the largest contig for which at least 50% of the assembly size is contained in contigs equal or greater in
length.

Third-generation sequencing has brought a whole new range of sequencing data, with the sequencing of

long DNA molecules extending up to hundreds of thousands of bases [49]. The two main players in the

field, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (Nanopore), use two different kinds

of technologies. PacBio developed Single Molecule Real-Time (SMRT) sequencing, where a complemen-

tary strand of DNA is produced from a single strand by addition of fluorescently labeled nucleotides.

The fluorescent tag is released and the luminescence is interpreted as a base [50]. The resulting reads

have a length around twenty kilobases (kb) and a high error rate, an issue recently addressed by the

introduction of an extra step called Circular Consensus Sequencing (CCS). In CCS, the DNA polymerase

passes multiple times on the same base on a circularized strand to produce High Fidelity (HiFi) reads

that can achieve an accuracy over 99% [51].

Nanopore sequencing uses a membrane with protein pores, through which an electrical current is flowing.

DNA strands are pulled through the pores, with each passing nucleotide generating a distinct disruption

signature in the current that can be inferred as a specific base [52]. The firm has specifically oriented

its strategy toward a "do it yourself" approach, enabling sequencing in any lab and even directly in the

field via a small portable device [53]. Researchers can control how they generate their sequencing data,

contribute to protocol development, and develop their own basecalling [54] to increase the yield and im-

5



CHAPTER 1. INTRODUCTION

prove the quality and length of the reads. Although Nanopore reads still exhibit a high error rate, their

length keeps increasing to attain hundreds of kilobases to 1 Mb [55]. Besides, the error rate has also been

decreasing with the release of the new flow cells and the development of more accurate basecallers such

as Bonito [56].

Long reads are now routinely included in genome assembly projects and have lead to N50 lengths much

larger than short-read only assemblies (Figure 1.1). A current limitation lies in the amount of DNA re-

quired to prepare long-read libraries. Still, long-read sequencing remains inaccessible for certain species:

whereas Illumina sequencing can handle small DNA amounts, with a poor quality, long-read protocols

require high-molecular weight DNA [57]. PacBio and Nanopore sequencing remain difficult when one an-

imal is too small to provide a sufficient amount of DNA, especially when the organism requires extraction

protocols that lead to overly fragmented DNA (for example, with coral skeletons). In addition, secondary

metabolites associated to DNA molecules, or branched DNA structures, can also disturb the sequencing

reaction.

1.2 Genome assembly

A variety of programs have been developed to assemble sequencing reads de novo, taking advantage of

different sequencing technologies while considering their limitations. Genome assembly aims to correctly

reconstruct the original chromosome sequences from short or long, and accurate or error-prone fragments.

Assemblers are typically based on one of the following paradigms: greedy, Overlap-Layout-Consensus, de

Bruijn graphs.

The assembly problem can be represented as a linear puzzle where the pieces are the reads. Reads match

together when they have overlapping sequences. This puzzle could be intuitively solved by iteratively

putting together the overlapping pieces that match best: this greedy approach is an efficient heuristic

to find the shortest common superstring of the set of reads (i.e., the shortest sequence that includes all

the reads as substrings) [114]. Greedy algorithms have been implemented for first-generation sequenc-

ing reads, for instance in TIGR [69], and were further applied in short-read assemblers like PERGA [82],

SSAKE [91] and VCAKE [93]. However, they cannot resolve complex, repetitive genomes: for this reason,

greedy assemblers are mostly used nowadays to assemble small organelle genomes such as chloroplasts

and mitochondria [80].
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Table 1.1: Sequencing approaches and associated assemblers.

Sequencing Length Accuracy Methods Assemblers
First 1 kb High Sanger ARACHNE [58], Atlas [59], CAP3 [60],
generation Celera [61], Euler [62], JAZZ [63],

Minimus [64], MIRA [65], phrap [66],
Phusion [67], SUTTA [68], TIGR [69]

Second 25-300 bp High 454, IonTorrent, ABySS [70, 71], ALLPATHS [72],
generation Solexa, SOLiD CABOG [73], Edena [74], Euler-SR [75],

Gossamer [76], IDBA [77],
JR-Assembler [78], Meraculous [79],
MIRA [65], Newbler, NOVOPlasty [80],
PCAP [81], PERGA [82], Platanus [83],
QSRA [84], Ray [85], Readjoiner [86],
SGA [87], SOAPdenovo [88],
SOAPdenovo2 [89] SPAdes [90],
SSAKE [91], SUTTA [68], Taipan [92],
VCAKE [93], Velvet [94]

Third 10-100.000+ kb Low PacBio CLR, Canu [95], FALCON [96], Flye [97],
generation Nanopore HINGE [98], MECAT [99],

MECAT2 [99], miniasm [100],
NECAT [101],NextDenovo [102],
Ra [103], Raven [104], Shasta [105],
SMARTdenovo [106], wtdbg [107],
wtdbg2 [108]

20 kb High PacBio HiFi Flye [97], HiCanu [109], hifiasm [110],
IPA [111], mdBG [112], MIRA [65],
Peregrine [113]

The Overlap-Layout-Consensus (OLC) paradigm was first described in 1979 by Rodger Staden [115] and

is based on an overlap graph (Figure 1.2). The Overlap step consists in finding overlaps above a certain

quality threshold between all the reads and building a directed graph, where the nodes are the reads and

the edges represent the overlaps between them. The Layout step removes redundant edges that can be

inferred from other edges. Finally, the Consensus step finds the shortest generalized Hamiltonian path

through the graph, i.e. returns the shortest path (or set of disconnected paths) that visit each contig

of the assembly at least once. The OLC paradigm has thrived with the program Celera [61], which was

used to assemble a human genome from a Sanger shotgun dataset [116].

De Bruijn Graphs (DBGs) (Figure 1.3) are a well studied structure in graph theory, described by Nicolaas

Govert de Bruijn in 1946 [117] and before him by Camille Flye Sainte-Marie [118]. DBG-based assemblers

require highly accurate reads in which errors are only substitutions, with no indels. They start by index-

ing all the different sequences of a given k length (k -mers) found in the reads. In node-centric DBGs, the

k -mers present in the reads are represented as nodes and are connected in the graph when they have an

7
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Figure 1.2: Overview of Overlap-Layout-Consensus assembly. The graph was built with all overlaps of at least 5 bases with a
tolerance of 1 mismatch.
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overlap of a k -1 length. In edge-centric DBGs, the k -mers present in the reads are represented as edges

connecting their left and right (k -1)-mers. Once the graph is contructed, DBG assemblers look for a gen-

eralized Eulerian (in the case of edge-centric DBGs) or Hamiltonian (in the case of node-centric DBGs)

path through the graph, i.e. returns the shortest path (or set of disconnected paths) that visits each

k -mer of the assembly at least once. This approach was first used for genome assembly of first-generation

sequencing datasets [119] and was quickly implemented in multiple popular short-read assemblers, e.g.

ABySS [70, 71], IDBA [77], SOAPdenovo [88] and SOAPdenovo2 [89], SPAdes [90], Velvet [94].

With the advent of third-generation sequencing, OLC assemblers have benefited from a renewed inter-

est whereas DBG-based ones are poorly suited for long, low-accuracy reads, containing many erroneous

k -mers. Numerous assemblers have implemented the OLC approach to produce de novo assemblies from

error-prone long-read datasets: Flye [97], Ra [103], Raven [104], Shasta [105], wtdbg2 [108]. Now that

HiFi reads bring a new type of high-accuracy long reads, assemblers have been adapted to better handle

these sequences, such as Flye (with adapted parameters), HiCanu [109] and hifiasm [110], and we can

expect the development of new DBG assemblers adapted for large k -mer values [120, 112].

From sequencing reads, assemblers build contiguous sequences called contigs. A perfectly assembled

genome should have one contig representing each chromosome, but this is rarely achieved for eukaryotes.

Assemblers need to find unambiguous paths in the assembly graph to reconstitute the chromosomes, but

they often fail to do so due to the genomic structure: size, heterozygosity, repetitive content. Large

genomes require a high amount of sequencing data in order to reach a sufficient depth to represent every

loci. Genome sizes have a high variability (Figure 1.4): in the phylum Cnidaria, some myxozoans have a

genome size of only some tens of Megabases (Mb) (Kudoa iwatai : 22.5 Mb, Myxobolus squamalis: 53.1

Mb, Henneguya salminicola: 60.0 Mb [121]), while the hydrozoan Hydra oligactis (1.3 Gigabases (Gb))

[122] has a genome size two orders of magnitude larger. Heterozygous regions constitute a major cause for

breaks in assemblies of non-model animal genomes, as they generally have higher levels of heterozygosity

than model species [123]. Most assemblers try to build a haploid representation of all genomes, even for

multiploid (i.e. diploid or polyploid) genomes. To this end, heterozygous regions are collapsed in order to

keep a single sequence for every region in the genome. In an assembly graph, these heterozygous regions

will appear as bubbles, where one contig (a homozygous region) can be connected to several other contigs

(the alternative haplotypes of a heterozygous region). When the assembler is unable to select one path,

the homozygous region is not joined with any of the haplotypes, leading to a break in the assembly.

9
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Figure 1.3: Overview of genome assembly using de Bruijn graphs. A circular genome is assembled based on three reads using
node-centric and edge-centric DBGs with k = 3. The node-centric DBG is searched for a Hamiltonian cycle (visiting all nodes),
and the edge-centric DBG for an Eulerian cycle (visiting all edges). These cycles are represented in blue in the graphs.
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Figure 1.4: Assembly sizes. The left graph shows the number of assemblies included for each phylum and the right part shows the
corresponding assembly-size ranges.

1.3 Assembly pre and post-processing

As obtaining high-quality chromosome-level contigs still remains challenging, upstream and downstream

tools have been developed in conjunction with assemblers (Table 1.2). Researchers can test numerous

combinations of these tools to devise the pipeline that will yield the best assembly.

Long reads have the advantage over short reads that they result in more contiguous assemblies. Nev-

ertheless, assemblies of PacBio Continuous Long Reads (CLR) or Nanopore reads can have remaining

errors due to their low accuracy; while errors in PacBio CLR are random and are compensated with a

high coverage, Nanopore reads have systematic errors in homopolymeric regions. Assemblies of error-

prone long reads often necessitate additional processes to increase the quality. There are two possible

strategies: correct the long reads prior to assembly, and polish the contigs after assembly. Correcting

long reads can be done using only the long reads or by adding high-accuracy short reads. Many tools

have been developed for both scenarii and have been thoroughly reviewed on multiple datasets [198].

When tested on Caenorhabditis elegans Nanopore reads, the error rate decreased from 28.93% to less

than 1% (using Canu [95], CONSENT [131], FLAS [133], Jabba [127], LORMA [129] or MECAT [99]).

Some assemblers include a self-correction step in their pipeline, namely Canu [95], MECAT [99], NECAT

11
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Table 1.2: Assembly pre and post-processing tools for haploid assemblies.

Step Sequencing data Tools
Reads filtering Long reads Filtlong [124]
Long reads Short reads CoLoRMAP [125], Hercules [126], Jabba [127], LoRDEC [128],
error correction LoRMA [129], proovread [130]

Long reads Canu [95], CONSENT [131], Daccord [132], FLAS [133],
NextDenovo [102], MECAT [99], MECAT2 [99], NECAT [101]

Polishing Short reads ntEdit [134], Pilon [135], POLCA [136]
Short & long reads Apollo [137], HyPo [138], Racon [139]
Long reads Arrow [140], CONSENT [131], Medaka [141], NextPolish [142],

Nanopolish [143], Quiver [140]
Haplotigs purging Long reads HaploMerger2 [144], purge_dups [145], Purge Haplotigs [146]
Scaffolding Short reads Bambus [147], BATISCAF [148], BESST [149], BOSS [150],

Mate pairs GRASS [151], MIP [152], Opera [153], ScaffMatch [154],
ScaffoldScaffolder [155], SCARPA [156], SCOP [157], SLIQ [158],
SOPRA [159], SSPACE [160], WiseScaffolder [161]

Long reads LINKS [162], LRScaf [163], npScarf [164], PBJelly [165],
RAILS [166], SLR [167], SMIS [168], SMSC [169],
SSPACE-LongRead [170]

Genetic maps ALLMAPS [171]
Optical maps AGORA [172], BiSCoT [173], OMGS [174], SewingMachine [175],

SOMA [176]
Linked reads ARBitR [177], Architect [178], ARCS [179], ARKS [180],

fragScaff [181], Scaff10X [182]
3C/Hi-C 3D-DNA [12], dnaTri [183], GRAAL [184], HiCAssembler [185]

instaGRAAL [186], Lachesis [187], SALSA [188], SALSA2 [189]
Gap filling Short reads GapFiller [190], GAPPadder [191], Sealer [192]

Long reads Cobbler [166], FGAP [193], GMcloser [194], LR_Gapcloser [195],
PBJelly [165], PGcloser [196], TGS-GapCloser [197]
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[101], NextDenovo [102]. Assembling corrected reads is expected to yield contigs with higher quality and

contiguity. Alternatively, or additionally, the contigs can be polished to reduce errors, using long reads

and/or short reads. Polishing can be a more computationally efficient strategy: the reads are mapped

solely to the draft assembly, while correction is usually based on an all-versus-all read mapping.

Assemblers are generally tested on model-organism datasets, and are ill-suited for non-model genomes

with variable levels of heterozygosity. They often fail to collapse highly divergent haplotypes, causing

artefactually duplicated regions that hinder subsequent analyses [199]. Some long-read assemblers, Ra

and wtdbg2, have been identified as less prone to retain uncollapsed haplotypes [200]. Contigs can

also be post-processed to remove these duplications with dedicated tools such as HaploMerger2 [144],

purge_dups [145] and Purge Haplotigs [146]. HaploMerger2 detects uncollapsed haplotypes based on

sequence similarities, while purge_dups and Purge Haplotigs also rely on coverage depth.

To improve the contiguity of an assembly, contigs can be grouped, ordered and oriented into scaffolds.

These scaffolds may contain gaps, when the sequence that should connect two contigs cannot be retrieved,

represented as a sequence of Ns, and these gaps can be reduced post-scaffolding with gap-filling tools.

Chromosome-level scaffolds have become a standard in genome assembly publications: unlike fragmented

assemblies, they can be used for synteny analysis, finding rearrangements, and to separate chromosomes

from different species. Several sequencing techniques have been used to scaffold assemblies: mate pairs,

long reads, genetic maps, optical mapping, linked reads, and proximity ligation [201]. Mate pairs are

short reads with a large insert size (more than several kb), and have been widely used in next-generation

assemblies. Among the 237 assemblies we surveyed, 78 included a mate-pair scaffolding step (Figure 1.5).

Both genetic maps [202] and optical maps [203] provide information on the linkage and relative position

of a set of markers, spread over the genome, thus they can be used to anchor contigs. Genetic maps

were used for the genome assemblies of the flatworm Schistosoma mansoni [204], the copepod Tigriopus

japonicus [205] and the coral Acropora millepora [206]. Although existing genetic maps provide precious

resources, building one is particularly difficult as it requires breeding [202], making it hardly accessible

for wild species, and impossible for asexual species. Markers of optical maps are motifs in the sequence

that are labeled and detected by a fluorescent signal. Companies such as Bionano or Nabsys propose

this service to scaffold assemblies [207], and this method was included in some non-vertebrate genome

projects: several nematodes including Onchocerca volvulus [208], Ascaris suum and Parascaris univalens

[209], the tapeworms Echinococcus multilocularis [210] and Hymenolepis microstoma [211], and the chiton

Acanthopleura granulata [212].
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Figure 1.5: Assemblies scaffolding. Left: number of assemblies that included each scaffolding method. Right: scaffold N50 of
non-vertebrate genome assemblies over time. The assemblies that included a Hi-C scaffolding step are highlighted in red; they form
a cluster with a scaffold N50 over 1 Mb.

Linked reads and proximity ligation are based on short-read sequencing, preceded by a specific library

preparation. For linked reads, also called cloud reads, long fragments of DNA are barcoded and then

sequenced. The company 10X Genomics was a leader of this technology, but they chose to discontinue

its commercialization in June 2020. Linked reads have been used to scaffold the genomes of the coral

Acropora millepora [206] and the bee Lasioglossum albipes [213]. As linked reads are also shotgun Illu-

mina reads, these reads are sometimes used for assembly (using Architect [178] or Supernova [214]) or

polishing, as was done for the mosquito Anopheles funestus [215].

Proximity ligation techniques, based on capture of chromosome conformation [216], were not originally

developed with genome sequencing applications in mind. Instead, they aimed at investigating the inter-

play between chromosome 3D organization and DNA processes [217]. A popular genomic derivative of

3C, Hi-C [218] documents the average conformation of the genomes of a population of cells. Briefly, the

approach consists in freezing the chromosome folding of each individual cell using chemical fixation by

formaldehyde, which generates bonds between proteins and proteins, and proteins and DNA. Then, the

genome is cut into fragments using a restriction enzymes, that are then ligated in dilute conditions. As a

consequence, fragments that were trapped together by the crosslinking step are more prone to be ligated

with each other, rather than with a fragment belonging to a different crosslinked complex. This results

in chimeric fragments with respect to the original genome agencement, reflective of their 3D contacts in

vivo. The relative proportions of ligation events between all restriction fragments of a genome can then
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be quantified, in theory, through high-throughput sequencing. On average, and because of the polymer

nature and physical properties of DNA, the frequency of contacts between a pair of loci reflects either

their 1D cis disposition along a chromosome, or their trans disposition on two independent chromosomes

[219, 220]. Hi-C scaffolders have been developed following these principles: some follow a graph approach

and use Hi-C links to join contigs (3D-DNA [12], SALSA2 [189]), whereas others exploit Markov Chain

Monte Carlo (MCMC) sampling and Bayesian statistics to reorganize DNA segments into the scaffolds

most likely to explain the observed interaction frequencies (GRAAL [184] and its later improved version

instaGRAAL [186]).

The Hi-C protocol itself is becoming more and more accessible as commercial kits are now available (e.g.

Arima Hi-C, Phase Genomics, or Dovetails Genomics). Besides, Dovetails Genomics uses both regular

Hi-C and its own protocol for in vitro proximity ligation, dubbed CHICAGO. Hi-C scaffolding proved

efficient at bringing highly fragmented draft assemblies to chromosome-level scaffolds (Figure 1.5), and is

now included in many genome projects for all sorts of non-vertebrates: the arthropods Varroa destructor

[221] and Carcinoscorpius rotundicauda [222], the cnidarians Xenia sp. [223] and Rhopilema esculentum

[224], the echinoderms Lytechinus variegatus [225] and Pisaster ochraceus [226], the molluscs [227] and

Chrysomallon squamiferum [228], the nematods Caenorhabditis remanei [229] and Heterodera glycines

[230], the platyhelminthe Schistosoma haemotabium [231], the poriferan Ephydatia muelleri [232], the

rotifer Adineta vaga [233], the xenacoelomorph Hofstenia miamia [234], and more. A compelling advan-

tage of Hi-C scaffolding over other scaffolding methods is its ability to discriminate different organisms in

a draft assembly: DNA from different organisms belong to distinct nuclei, thus they have no 3D interac-

tions. This feature is especially useful for non-vertebrates with symbionts, that can hardly be eliminated

from the host prior to sequencing, and are often targets for genome assembly as well.

1.4 Assemblies evaluation

A critical step in genome assembly is to estimate the quality of draft assemblies, and choose the best

one for subsequent analysis. The first metric to assess is the assembly size and its adequacy with an

estimated genome size. The size can be estimated experimentally with flow cytometry or Feulgen den-

sitometry [235], but these methods require a reference species for which the genome size is already well

known, exposing them to errors induced by the reference genome size. Reference-free genome size esti-

mation tools are typically k -mer based approaches and use high-accuracy reads (e.g. Illumina, PacBio
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Table 1.3: Assembly evaluation of Achatina fulica and Xenia sp..

Achatina fulica Xenia sp.
Basic statistics Assembly size 1.86 Gb 222.7 Mb

N50 59.6 Mb 14.8 Mb
N90 44.1 Mb 6.9 Mb
Largest scaffold 116.6 Mb 22.5 Mb
Number of scaffolds 1500 168
Number of scaffolds larger than 1 Mb 32 17
N count 3,600,500 194,000

BUSCO completeness Complete and single-copy BUSCOs 84.4% 86.0%
Complete and duplicated BUSCOs 3.6% 2.2%
Fragmented BUSCOs 3.5% 3.5%
Missing BUSCOs 8.5% 8.3%

Reads mapping Short reads 96.2% 87.8%
Long reads 81.62% 99.5%
Hi-C 70.2% 65.7%

HiFi). These tools, such as BBtools [236], GenomeScope [237] and KAT [238], build a k -mer spectrum

representing the number of k -mers with a certain frequency of occurence. When the sequencing depth

is sufficient, the k -mer spectrum should display one or more peaks depending on the ploidy. For a

haploid organism, there should be only one peak, whereas a diploid organism should have two peaks.

The plot may also show a peak of k -mers with a frequency of occurence close to zero, corresponding to

erroneous k -mers. Another recent tool called MGSE [239] estimates genome size based on reads map-

ping to a highly continuous assembly of the same genome; this method can be used as a post-hoc analysis.

N50 is a popular metric that reflects the contiguity of an assembly: it is defined as the length of the

largest contig for which 50% of the assembly size is contained in contigs of equal or greater length. Some

tools provide in addition the N75, N90, N99, computed in a similar fashion. The NG50 is a variant of N50

that refers to an estimated genome size instead of the assembly size. The target assembly can further be

mapped against a reference assembly to detect misassemblies and break them: the N50 and NG50 of the

resulting fragments are called NA50 and NGA50. All these metrics can be computed using QUAST [240].

For genome assemblies of non-model non-vertebrates, reference assemblies are seldom available, or they

have a poor quality or contiguity that the new assembly aspires to improve. Therefore we will focus on

reference-free evaluation methods. Table 1.3 and Figure 1.6 present an example of assembly evaluation

for the recently published snail Achatina fulica [241] and coral Xenia sp. [223].

Another feature to optimize is the completeness of the genome, usually based on orthologs or k -mers.

BUSCO [30] searches for orthologs in a user-provided lineage; the current Metazoa lineage (designated

as Metazoa odb10) contains 954 features. Assemblies are evaluated based on the proportion of orthologs
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Figure 1.6: Assembly evaluation of Achatina fulica and Xenia sp.. Left: KAT comparison of the k-mers in the Illumina datasets
v. the assembly. Right: Hi-C contact maps, with a binning of 300 for Achatina fulica, 30 for Xenia sp..
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to these 954 genes that can be retrieved into them; yet, some features are systematically missing in

some genomes as they are absent from these species. More specific lineages are available for arthropods,

insects, vertebrates, mammals, as many assemblies are available for these groups, but other metazoan

phyla suffer from their lack of resources. Consequently, BUSCO is most powerful when comparing several

draft assemblies for one genome. BUSCO scores provide information on complete single-copy and dupli-

cated features, and the latter can be used to detect improperly duplicated regions in a haploid assembly.

However, BUSCO scores are limited to genomic regions and cannot report for non-coding ones.

k -mer completeness scores do not present such limitations: KAT assesses the completeness of a whole

assembly based on its representation of k -mers from a high accuracy sequencing dataset. The k -mer

spectrum should display one or several peaks depending on the ploidy of the genome: one peak for a

haploid genome; two peaks for a diploid genome, the first depicting heterozygous k -mers, and the second

for homozygous k -mers. Depending on the ploidy of the genome, every k -mers should be represented in

the assembly as many times as they actually are in the genome.

Both Achatina fulica and Xenia sp. have high BUSCO scores (against the lineage Metazoa odb10), yet

slightly below 90%, and they have few duplicated BUSCO features. The k -mer spectrum of Achatina

fulica only shows one peak around 70X (Figure 1.6, top left). These k -mers are expected to be repre-

sented exactly once, which is the case for the majority; there are almost no k -mers that appear twice in

the assembly (in purple), but there is a noteworthy amount of missing k -mers (in black). For Xenia sp.,

the k -mer spectrum has two peaks with a k -mer multiplicity around 35X and 70X (Figure 1.6, bottem

left). The first peak, representing heterozygous k -mers, shows that a portion is represented once in the

assembly, while the rest is missing, as expected in a collapsed assembly. The second peak, for homozygous

k -mers has a majority of k -mers represented once, and some k -mers either absent or duplicated. These

assemblies seem overall properly collapsed and complete.

KAD, for k -mer abundance difference [242], proposes an alternative k -mer-based evaluation. This tool

does not compute an overall completeness score, but instead classifies k -mers based on their abundance

in the assembly and the sequencing dataset: good k -mers, erroneous k -mers (absent from the dataset),

overrepresented k -mers (duplications), and underrepresented k -mers (collapsed repetitions).

Assemblies need to be screened for contaminants, to tell apart the sequences coming from the target and
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from other species. Contaminants may originate from the environment, the symbiont, or be artificially

introduced by the sequencing process. Blobtools [243] and BlobToolKit [244] aim to identify them with

GC content, coverage depth and taxonomy assignment using the NCBI TaxID. Discriminating bacteria

in metazoan assemblies is usually straightforward based on their distinct GC percentage. The task is

more challenging when the target metazoan genome is mixed with other eukaryotes or even metazoans,

especially when these species are absent from databases. Chromosome-level assemblies reduce the risk of

contamination, as downstream analysis can be run exclusively on sequences that were anchored to the

main scaffold. In addition, with Hi-C data, sequences from different species can be separated based on

their absence of trans interactions. Contamination can lead to false conclusions: for instance, a study on

a highly fragmented genome assembly (N50 = 16 kb) of the tardigrade Hypsibius dujardini assumed that

about 17% of its genome derived from horizontal gene transfers [245], when these sequences were in fact

contaminants [246].

When Hi-C data are available, contact maps, i.e. the representation of the paired-end reads from the Hi-C

library aligned on the resulting scaffold, procure another evaluation asset to search for misassemblies.

The contact map is expected to show heightened frequencies for each chromosome, in a chromosome-level

assembly, and these interaction frequencies should decrease with increased distances separating loci on

the sequence, based on the distance law. For Achatina fulica, 30 chromosome-level scaffolds (out of 31)

display relatively consistent and regular contact patterns, representing well individualized entities in the

contact map (Figure 1.6, top right). By contrast, the contact map of Xenia sp. does not display such

patterns, with multiple trans contacts appearing between the scaffolds and most likely corresponding to

scaffolding errors.

1.5 Phasing assemblies

As collapsing multiploid genomes can be difficult for highly divergent regions and frequently causes breaks

in the assembly, an intuitive solution would be to phase genomes to retrieve all haplotypes. Phased assem-

blies represent a whole different challenge as they necessitate to correctly associate alleles, i.e. different

versions of a heterozygous region [247]. A first approach, called trio-binning, is to assemble one individual

using sequencing data from the individual itself and its parents [248]; yet this method is only adapted

when the parents can be identified, and is inapplicable on asexual species. Some tools are able to re-

construct haplotypes from collapsed assemblies using long reads, namely HapCUT2 [249] and WhatsHap

[250]. Ideally, genomes should be uncollapsed, as can be done with Bwise [251] and Platanus-Allee [252]
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using short reads and FALCON-Unzip [96] using PacBio CLR or HiFi. FALCON-Unzip uses the output

from the FALCON assembler, that includes both a haploid assembly and alternative haplotigs for het-

erozygous regions, to associate haplotypes based on long reads. Phased assemblies of low-accuracy long

reads are limited, as small heterozygous regions were confused with errors; this led to haplotypes being

erroneously collapsed.

HiFi reads have made a disruption in the fields of genomics: they are especially well-suited for phased

assemblies thanks to their length and low error rate, and they have already been used to produce phased

assemblies of a human [253] and the potato Solanum tuberosum [254]. Nevertheless, sequencing HiFi

reads can remain inaccessible for non-model organisms as pure DNA is necessary.

Many organisms have already been assembled using low-accuracy longs reads and high-accuracy short

reads, thus an alternative is to correct long reads with short reads using a tool that conserves haplotypes

such as Ratatosk [255]. Phased long-read assemblies can be further polished with adequate programs

(e.g. Hapo-G [256]). As Hi-C has already demonstrated its efficiency to scaffold haploid assemblies, the

principles were further exploited in ALLHiC [257] and FALCON-Phase [258] to phase assemblies while

increasing their contiguity: as alleles from one haplotype belong to one chromosome, these alleles have

higher Hi-C interaction frequencies together than with alleles from alternative haplotypes.

Phasing-specific evaluation methods are still scarce, and publications of phased assembly rely on various

datasets to prove their correctness (e.g. parental assemblies [253]). Merqury [259] proposes a k -mer-based

approach, inspired by KAT, and computes plots and scores to assess phasing completeness and find hap-

lotype switches. However, similarly to trio-binning, it requires parental data.

1.6 Outline of the thesis

This first chapter introduced the principles of DNA sequencing, genome assembly, and the difficulties

specific to non-vertebrate animals. This thesis is divided into two main sections: Chapters 2, 3 and 4

describe methodologies and tools for genome assembly, whereas Chapters 5, 6 and 7 present applications

of these methods to past and ongoing genome projects to which I contributed.
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Chapter 1 evaluates the performances of seven long-read assemblers, and more specifically their behavior

on non-model genomes with variable levels of heterozygosity, based on the example of the rotifer Adineta

vaga. The end goal of this study is to produce high-quality collapsed contigs from multiploid genomes.

In Chapter 2, the strategy is the opposite, as the aim is to obtain uncollapsed, phased assemblies. This

part presents the tool GraphUnzip, which takes advantage of assembly graphs, long reads and Hi-C reads

to yield phased gap-less supercontigs with a high contiguity. Chapter 3 takes contigs to scaffolds with

the Hi-C scaffolder instaGRAAL, a new version of GRAAL. Chapter 4, 5 and 6 describe the genome

assemblies of Adineta vaga, Astrangia poculata and Flaccisagitta enflata, using the strategies identified

in Chapter 2 for long-read assembly, and instaGRAAL for Hi-C scaffolding.
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Benchmark of long-read assemblers on

the genome of the bdelloid rotifer

Adineta vaga

Long reads have made highly contiguous assemblies accessible for all genomes, but most long-read as-

semblers aim to produce a haploid assembly, regardless of the actual degree of ploidy (haploid, diploid

or polyploid) of the genome being assembled. To obtain haploid assemblies from diploid or polyploid

genomes, homologous chromosomes need to be collapsed into a single sequence. This process is straight-

forward for homozygous regions, but more challenging for heterozygous regions as the assembler needs

to find a consensus between haplotypes or select one to represent the region. Collapsing haplotypes is

especially challenging for non-model diploid or polyploid genomes, as they often display variable levels of

heterozygosity across their genomes.

I designed a benchmark of seven long-read assemblers, namely Canu [95], Flye [97], NextDenovo [102],

Ra [103], Raven [104], Shasta [105] and wtdbg2 [108]. I tested these assemblers on the genome of a non-

model diploid organism, Adineta vaga, for which high-coverage sequencing datasets of both PacBio and

Nanopore low-accuracy long reads were available. I investigated the improvement of haplotype-collapsing

when combining these assemblers with pre-assembly read filtering and post-assembly haplotig purging. I

defined a thorough evaluation strategy to identify the best haploid assemblies, based on assembly size,

contiguity, completeness, and a new metric of haploidy that was implemented in the tool HapPy. I also
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evaluated the impact of sequencing depth on haplotype collapsing and overall assembly quality, and found

that most assemblers were optimized for a sequencing depth of 40X. A higher sequencing depth would

not necessarily improve the assemblies but would rather lead to more uncollapsed haplotypes.

I initiated this benchmark to evaluate how long-read assemblers behaved on a small non-model eukaryote

genome, and applied these strategies in several assembly projects for larger genomes, including Astrangia

poculata and Flaccisagitta enflata.
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Abstract 

Background: Long‑read sequencing is revolutionizing genome assembly: as PacBio 
and Nanopore technologies become more accessible in technicity and in cost, long‑
read assemblers flourish and are starting to deliver chromosome‑level assemblies. 
However, these long reads are usually error‑prone, making the generation of a haploid 
reference out of a diploid genome a difficult enterprise. Failure to properly collapse 
haplotypes results in fragmented and structurally incorrect assemblies and wreaks 
havoc on orthology inference pipelines, yet this serious issue is rarely acknowledged 
and dealt with in genomic projects, and an independent, comparative benchmark of 
the capacity of assemblers and post‑processing tools to properly collapse or purge 
haplotypes is still lacking.

Results: We tested different assembly strategies on the genome of the rotifer Adineta 

vaga, a non‑model organism for which high coverages of both PacBio and Nanopore 
reads were available. The assemblers we tested (Canu, Flye, NextDenovo, Ra, Raven, 
Shasta and wtdbg2) exhibited strikingly different behaviors when dealing with highly 
heterozygous regions, resulting in variable amounts of uncollapsed haplotypes. Filter‑
ing reads generally improved haploid assemblies, and we also benchmarked three 
post‑processing tools aimed at detecting and purging uncollapsed haplotypes in long‑
read assemblies: HaploMerger2, purge_haplotigs and purge_dups.

Conclusions: We provide a thorough evaluation of popular assemblers on a non‑
model eukaryote genome with variable levels of heterozygosity. Our study highlights 
several strategies using pre and post‑processing approaches to generate haploid 
assemblies with high continuity and completeness. This benchmark will help users to 
improve haploid assemblies of non‑model organisms, and evaluate the quality of their 
own assemblies.
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Background

With the advent of third-generation sequencing, high-quality assemblies are now com-

monly achieved for all types of organisms. The rise of two main long-read sequencing 

companies, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (Nano-

pore), has prompted an increase in output as well as a decrease in cost, making their 

technologies more accessible to research teams and more applicable to any genome, 

including the more challenging ones with large genome sizes and high repetitive con-

tent. The primary advantage of long reads over short reads (such as those generated by 

Illumina sequencing platforms) is their typical length, which is two or three orders of 

magnitude greater [1]. As a result, long reads facilitate genome assembly into contigs 

and scaffolds as they can span repetitive regions [2] and resolve haplotypes [3].

However, long reads typically have a much higher error rate than Illumina data, and 

these errors are mainly insertions and deletions (vs. substitutions for Illumina reads). 

PacBio data have a random error pattern that can be compensated with high coverage, 

and recent developments have aimed to increase accuracy by generating circular con-

sensus sequences [4], where one DNA fragment is read multiple times. Nanopore reads, 

on the other hand, have systematic errors in homopolymeric regions and therefore 

Nanopore contigs generally require further correction using Illumina or PacBio reads, 

in a process called “polishing” [5, 6]. Despite this disadvantage, Nanopore reads are cur-

rently much longer than PacBio reads, with runs attaining N50s over 100 kilobases (kb) 

and longest reads spanning over 1 Megabase (Mb) [7, 8].

This progress has prompted the development of programs dedicated to producing 

de novo assemblies from long reads, all of which follow the Overlap Layout Consensus 

(OLC) paradigm [9]. Briefly, OLC methods start by building an overlap graph (the “O” 

step), then simplify it and clean it by applying various heuristics (the “L” step), which 

typically include the removal of transitively inferable overlaps, and finally compute the 

consensus sequence of each contig (the “C” step). Some long-read assemblers follow 

strictly this paradigm, such as Flye [10], Ra [11], Raven [12] (a further development of 

Ra by the same authors), Shasta [13] and wtdbg2 [14]; whereas other assemblers such as 

Canu [15] and NextDenovo [16] add a preliminary correction step based on an all-ver-

sus-all alignment of the reads (see Table 1). At present, most assemblers aim to generate 

a haploid assembly, in which each region of the genome is represented exactly once. For 

diploid or polyploid genomes, haploid assemblies include only one version of each het-

erozygous region and are therefore reduced representations of the actual complexity of 

the genome. Haplotypes can be reconstructed from a reference collapsed assembly using 

Table 1 Assemblers included in this study

Assembler Reads correction Version used Access

Canu � 1.9 github.com/marbl/canu

Flye × 2.5 github.com/fenderglass/Flye

NextDenovo � 2.2 github.com/Nextomics/NextDenovo

Ra × 0.2.1 github.com/lbcb‑sci/ra

Raven × 0.0.7 github.com/lbcb‑sci/raven

Shasta × 0.3.0 github.com/chanzuckerberg/shasta

wtdbg2 × 2.5 github.com/ruanjue/wtdbg2
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long reads with tools such as HapCUT2 [17] and WhatsHap [3]. PacBio reads can also 

be used to generate haplotype-aware de novo assemblies with Falcon-Unzip [18]. Nev-

ertheless, haploid assemblies provide a precious resource for genome analysis as they 

make it possible to compare easily genome structures, gene sets across species, identify 

orthologs for phylogenomic analysis, and detect variants across individuals.

Long-read assemblers were recently benchmarked on real and simulated PacBio and 

Nanopore bacterial datasets [19], and all assemblers tested proved their efficiency at 

reconstructing small haploid genomes within 1 h and with a low RAM usage. For eukar-

yotic genomes, the wtdbg2 publication [14] included an evaluation of Canu, Flye, Ra and 

wtdbg2 on several model organisms (Caenorhabditis elegans, Drosophila melanogaster, 

Arabidopsis thaliana and Homo sapiens), all of which had low levels of heterozygosity 

(at most 1% for A. thaliana). The assemblies of Caenorhabditis elegans and Homo sapi-

ens had small variations in assembly size, as these genomes have a low heterozygosity 

and are properly collapsed. For Arabidopsis thaliana, the Canu assembly was over-

sized (196.5 Mb) compared to the expected size of 144 Mb, suggesting that the higher 

heterozygosity of this species led to artefactual duplications. By contrast, all the other 

assemblies were shorter than the expected size, thus they were likely incomplete and it 

is unclear how well these assemblers  can handle divergent haplotypes. This compari-

son suggested that wtdbg2 produces fewer artefactual duplications, but no attempt was 

made to pre-filter reads or post-process assemblies to improve the result. Hence, a com-

prehensive evaluation of strategies to generate a structurally correct haploid assembly of 

a non-model, heterozygous diploid organism is still lacking.

To fill this gap, we present here a quantitative and qualitative assessment of seven 

long-read assemblers on the relatively small eukaryotic genome of the bdelloid rotifer 

Adineta vaga, for which a draft assembly based on short reads was published some years 

ago [20]. As with most non-model organisms, Adineta vaga’s genome presents a mid-

range heterozygosity of ca. 2% with a mix of highly heterozygous and low-heterozygosity 

regions, making such genome more challenging to assemble than those of model organ-

isms, which often exhibit very low levels of polymorphism [21].

In addition to assessing the ability of these seven assemblers to collapse highly het-

erozygous regions, we investigated whether adding a pre-assembly read-filtering step 

(selecting reads based on their length and quality) or removing uncollapsed haplotypes 

post-assembly (using existing tools HaploMerger2 [22], purge_dups [23] and purge_hap-

lotigs [24]) improved the assembly. HaploMerger2 detects uncollapsed haplotypes in 

assemblies based on sequence similarity alone and can process both low and high-het-

erozygosity genomes. Along with sequence similarity, purge_dups and purge_haplotigs 

take into account the coverage depth obtained by mapping short or long reads to the 

contigs. Coverage depth represents the number of reads covering a position in a contig 

(computed after mapping reads on the assembly). The contigs are then aligned to select 

duplicates accurately and remove them. While purge_dups sets its coverage thresholds 

automatically, purge_haplotigs requires user-provided values. As the focus of the present 

benchmark was on dealing with uncollapsed haplotypes and not on polishing assemblies 

(a step for which many tools are available and that would represent a benchmark topic in 

itself ), we did not perform polishing of our contigs.
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Assemblies were evaluated using several metrics quantifying their level of continuity 

and the correctness of their haploid representation of a diploid genome: namely their 

assembly size, N50, BUSCO completeness, k-mer completeness, and coverage distribu-

tion. The assembly size represents the sum of the lengths of all the contigs in the assem-

blies. The N50 is a popular metrics that reflects directly the continuity of the assembly 

but does not account for possible structural errors; it is defined as the length of the larg-

est contig for which 50% of the assembly size is contained in contigs of equal or greater 

length. The BUSCO completeness [25] assesses the number of orthologs retrieved com-

pletely from the assembly in one or several copies: a high-quality, properly collapsed 

haploid assembly should exhibit a high number of complete single-copy BUSCO fea-

tures and a low number of duplicated BUSCO features. The k-mer completeness is the 

percentage of solid (i.e., frequently observed and therefore probably correct) k-mers in 

the set of reads present in the assembly. In the case of a haploid assembly of a diploid 

genome, all homozygous k-mers (i.e., k-mers that are shared by the two haplotypes) 

should be represented in the assembly, whereas only half of the heterozygous k-mers 

(i.e., k-mers that are found in only one haplotype) should be represented. To detect both 

underpurging and overpurging, we focused in our benchmark on the k-mer complete-

ness of heterozygous k-mers: as we expect only half of them to be present in a haploid 

assembly, a well-collapsed assembly should exhibit a k-mer completeness of about 50%, 

whereas a lower value indicates that too many k-mers were lost (overpurging) and a 

higher value indicates that too many k-mers were retained (underpurging).

We also investigated the coverage-depth distribution of each assembly. In an ideal 

haploid assembly, all positions should be equally covered, hence we would expect a sin-

gle peak in the coverage distribution. Based on our analysis of the coverage distribution, 

we developed a new metric to evaluate the haploidy, or proper collapsing, of assemblies 

of diploid genomes. The haploidy score is based on the identification of two peaks in the 

per-base coverage depth distribution: a high-coverage peak that corresponds to bases 

in collapsed haplotypes (hereafter called “collapsed peak”), and a peak at about half-

coverage of the latter that corresponds to bases in uncollapsed haplotypes (“uncollapsed 

peak”). The haploidy score represents the fraction of collapsed bases in the assembly, 

and is equal to C/(C+U/2), i.e. the ratio of the area of the collapsed peak (C) divided by 

the sum of the area of the collapsed peak (C) and half of the area of the uncollapsed peak 

(U/2). This metric reaches its maximum of 1.0 when there is no uncollapsed peak, in a 

perfectly collapsed assembly, whereas it returns 0.0 when the assembly is not collapsed 

at all (as in the case of a phased diploid assembly). We implemented this metric in a new 

tool called HapPy [26] available at github. com/ Antoi neHo/ HapPy.

Finally, as computational resources can be a limiting factor in genome assembly, we 

compared the CPU time and RAM usage for the different assemblers tested by running 

them on the same machine under the same conditions. Canu and NextDenovo were not 

included in this comparison, as they required significantly higher resources and had to 

be run on different machines.
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Results

Preliminary observations

The genome size of our benchmark organism was estimated as 102 Mb based on k-mer 

frequencies (see Methods). The k-mer spectrum shows two peaks (Additional file  1: 

Figure S1): the first one, around 45X, for heterozygous k-mers (found in only one hap-

lotype); and the second peak, around 90X, for homozygous k-mers (identical in both 

haplotypes). As Adineta vaga has a mid-range heterozygosity, the number of distinct 

heterozygous k-mers is higher than the number of homozygous k-mers, making a hap-

loid assembly more difficult to obtain than with low-heterozygosity genomes.

We initially ran each assembler (Table  1) five times on our complete and filtered 

Nanopore and PacBio datasets, as we had observed that there were some discrepan-

cies (assembly size, N50) in the outputs when running several times Flye, NextDenovo, 

Shasta and wtdbg2. We found that the assembly size, N50 and BUSCO scores of the 

resulting assemblies were very similar to each other (Additional file 1: Figures S2–S3). 

As a result, we chose randomly one replicate assembly from each assembler and used 

this replicate for the subsequent haplotype-purging step.

To represent assembly statistics in a comprehensive manner, we defined four scores 

(see Methods): size, that is 1 minus the distance of the assembly size to the expected 

genome size; N50; completeness, a combined metric that includes both the single-copy 

BUSCO score and the distance of the observed k-mer completeness to the expected 

value of 50%; haploidy, computed using HapPy.

Assemblies of PacBio reads

Full assembly statistics are available in Additional file 1: Figure S4 and Additional file 1: 

Table S1–S3, whereas a summary of the results is presented in Fig. 1.

Raw assemblies

All raw assemblies of the full PacBio datasets were oversized compared to the estimated 

genome size of 102 Mb, ranging from 114 Mb (wtdbg2) to 169 Mb (Canu) (Fig. 1a, raw 

assemblies). The NextDenovo assembly obtained the highest N50 score with a value of 

8.9 Mb, while other assemblies had an N50 ranging from 301 kb (Canu) to 2.7 Mb (Flye). 

The Canu assembly had the lowest completeness score, as its k-mer completeness greatly 

exceeded the expected value of 50% (73.5%) and its number of single-copy BUSCOs was 

only 538, compared to a highest value of 687 features (NextDenovo). The wtdbg2 and 

Ra assemblies scored the highest according to the haploidy metrics (0.90), while Canu 

obtained the lowest score (0.59).

Larger assembly sizes correlated with highly bimodal coverage distributions (Fig. 1b, 

raw assemblies). This was particularly the case with Canu assemblies, which exhibited 

two large peaks plus a smaller, low-coverage peak. The high-coverage peak, around 

210X, was the collapsed peak C whereas the 100X peak, at about half-coverage of the 

C peak, corresponded to the uncollapsed peak U. In the case of the Canu assembly, the 

U peak was larger than the C peak, revealing a poor collapsing of highly heterozygous 

regions. The Flye, NextDenovo, Raven and Shasta assemblies also exhibited two peaks in 

their coverage distribution, although their U peak was smaller than the one of Canu. The 
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Ra, Raven, Shasta, and wtdbg2 assemblies exhibited an additional low-coverage peak 

identified as contaminants (see Additional file 1: Figures S5–S11).

Read filtering

We filtered PacBio reads using two strategies: either keeping reads longer than 15 kb; or 

filtering reads with Filtlong [27] based on quality (in priority) and length. These filtered 

datasets resulted in assemblies closer to the expected size than assemblies of all reads for 

Canu, NextDenovo, Ra, Raven and Shasta (Fig. 1a, read filtering). In the case of NextDe-

novo, filtering based on length made the N50 assembly drop to a value comparable with 

other assemblies (from 8.9 to 1.8 Mb), while the N50 did not decrease for the Filtlong 

dataset. Most assemblies maintained their completeness score with both strategies, and 

it even increased for some (Canu, Flye, Raven). As for the coverage distribution (Fig. 1b, 

read filtering), the Ra assembly no longer showed a low-coverage contaminant peak. 

For the NextDenovo assembly the U peak was absent when selecting the longest reads, 

but remained with the Filtlong dataset. The contaminant peak was also removed for the 

Raven assembly, and the U peak was reduced. The Shasta assembly had no U peak with 

the longest reads, but the assembly was shorter than expected (89 Mb) and had a poor 

completeness score.

a

b

Fig. 1 Statistics of PacBio assemblies. Statistics of raw assemblies obtained from the full PacBio dataset 
(raw assemblies), with a preliminary read‑filtering step (keeping only reads larger than 15 kb, or those 
selected by Filtlong based on quality and length), or a subsequent removal of uncollapsed haplotypes with 
HaploMerger2, purge_dups, or purge_haplotigs. a Assembly scores for size, N50, completeness and haploidy. 
b Long‑read coverage distribution over the contigs

CHAPTER 2. BENCHMARK OF LONG-READ ASSEMBLERS ON THE GENOME OF THE
BDELLOID ROTIFER ADINETA VAGA

29



Page 7 of 23Guiglielmoni et al. BMC Bioinformatics          (2021) 22:303  

Haplotig purging

When adding a post-assembly haplotig-purging step, we observed strikingly different 

results depending on the combination of assembler and post-assembly purging tool, 

namely HaploMerger2, purge_dups, purge_haplotigs. While HaploMerger2 reduced the 

size of all assemblies (resulting in higher size scores on Fig. 1a), it also led to a decrease 

of the completeness score of all assemblies, except for Canu (Fig.  1a, HaploMerger2). 

Nevertheless, the haploidy scores all increased (with a minimum of 0.84 for Canu and 

a maximum of 0.92 for Ra and wtdbg2) as U peaks decreased drastically in all cover-

age distributions (Fig. 1b, HaploMerger2). Assemblies purged with purge_dups were all 

closer to the expected size of 102 Mb, and the N50 and completeness scores were main-

tained or even improved (Fig. 1a, purge_dups). The haploidy scores were also improved 

as they ranged from 0.89 (Canu and Flye) to 0.91 (Ra and wtdbg2). The coverage distri-

butions showed that the U peaks were removed or at least reduced, but the low-coverage 

peaks were not (Fig. 1b, purge_dups). After purging with purge_haplotigs, all assembly 

sizes were closer to the expected size except for Flye, and the N50 and completeness 

scores were maintained or even improved (Fig. 1a, purge_haplotigs). The haploidy scores 

were improved for Canu, NextDenovo and Shasta. The coverage distributions showed 

a reduction of the U peak for the Canu, NextDenovo and Shasta assemblies, explain-

ing their higher haploidy scores (Fig. 1b, purge_haplotigs). The low-coverage peaks were 

removed for Ra, Raven, Shasta and wtdbg2, explaining their smaller assembly size.

Combination of read filtering and haplotig purging

The combination of read filtering and haplotig purging resulted in assemblies that 

almost all had a unimodal coverage distribution (Additional file 1: Figure S12–S13). As 

observed with assemblies of all reads, HaploMerger2 seemed to overpurge assemblies of 

the filtered datasets. Only the Canu assembly remained above the expected size, but its 

statistics were similar to those obtained with the Canu assembly of all reads. Assemblies 

purged with purge_dups or purge_haplotigs were closer to the estimated size and exhib-

ited high numbers of single-copy BUSCO features. The combination of pre-assembly 

read filtering and post-assembly purge_dups seemed beneficial for most assemblers with 

the exception of Shasta, as the resulting assemblies ranged in haploidy from 0.90 (Canu 

and Flye) to 0.97 (NextDenovo). By contrast, the improvements observed when using a 

combination of read filtering and purge_haplotigs were similar to those obtained with 

either one of the two. NextDenovo, Ra and wtdbg2 assemblies had satisfying assembly 

sizes (from 99 to 107 Mb), high haploidy scores (from 0.85 to 0.96) (Additional file 1: 

Table  S2) and unimodal coverage distributions, but similar scores were also obtained 

using only read selection for NextDenovo and Ra and using only purge_haplotigs for 

wtdbg2.

Combination of haplotig‑purging tools

The combination of purge_dups or purge_haplotigs with HaploMerger2 resulted in 

problems similar to those observed on assemblies purged only with HaploMerger2: 

except for Canu, assemblies were shorter than expected and the number of single-copy 

BUSCO features dropped (Additional file 1: Figure S14). Assemblies purged with both 

purge_dups and purge_haplotigs were all reduced in size, but none went below the 
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expected size. The BUSCO score and the k-mer completeness were stable, and the hap-

loidy scores ranged from 0.88 (Canu and Raven) to 0.92 (NextDenovo) (Additional file 1: 

Table S3). The coverage distributions were all close to a unimodal distribution, as there 

were no low-coverage contigs and the U peaks had mostly disappeared.

Assemblies of Nanopore reads

Full assembly statistics are provided in Additional file 1: Figure S15 and Additional file 1: 

Table S4–S6.

Raw assemblies

Similarly to the PacBio assemblies, Nanopore assembly sizes exceeded the expected size 

of 102 Mb, ranging from 118 Mb (Shasta, wtdbg2) to 154 Mb (Canu) (Fig. 2a, raw assem-

blies). Nanopore assemblies achieved a much higher continuity than PacBio assemblies, 

as PacBio assemblies had a lowest N50 of 301 kb while Nanopore assemblies had a low-

est N50 of 1.6 Mb. Canu, NextDenovo, Ra and wtdbg2 achieved a N50 over 5 Mb using 

Nanopore reads. The number of complete single-copy BUSCOs was lower in Nanop-

ore assemblies (up to 559) than in PacBio assemblies (up to 699). The k-mer complete-

ness was also usually lower for Nanopore assemblies, around 38.6–54.8%, compared to 

47.7–73.5% for PacBio assemblies. These lower values for k-mer completeness in Nano-

pore assemblies were likely not due to a better collapsing but rather to systematic errors. 

The haploidy scores were higher for Nanopore assemblies produced by Canu, Ra, Raven, 

a

b

Fig. 2 Statistics of Nanopore assemblies. Statistics of raw assemblies obtained from the full Nanopore 
dataset (raw assemblies), with a preliminary read filtering step (keeping only reads larger than 30 kb, or those 
selected by Filtlong based on quality and length) or a subsequent removal of uncollapsed haplotypes with 
HaploMerger2, purge_dups, or purge_haplotigs. a Assembly scores for size, N50, completeness and haploidy. 
b Long‑read coverage distribution over the contigs
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Shasta and wtdbg2, in comparison with PacBio assemblies, but this score was lower for 

Flye and NextDenovo assemblies (Additional file 1: Table S1, Additional file 1: Table S4). 

The coverage distribution of the Canu assembly exhibited two distinct U (uncollapsed) 

and C (collapsed) peaks respectively around 75X and 160X, indicating that many haplo-

types were not collapsed and were therefore represented twice in the assemblies (Fig. 2b, 

raw assemblies). This was also the case for the Flye, NextDenovo, Raven and Shasta 

assemblies, albeit their U peak was smaller than the one of the Canu assembly. The Ra, 

Raven, Shasta and wtdbg2 assemblies had an additional low-coverage peak identified as 

contaminants (see Additional file 1: Figures S16–S22).

Read filtering

When assembling a subset of either the longest Nanopore reads (over 30 kb) or reads 

filtered with Filtlong, the Ra and Raven assemblies had sizes closer to the estimated 

size and did not exhibit a contaminant peak in their coverage distribution, whereas 

other assemblies were generally unmodified (Fig. 2, read filtering). The Raven assembly 

of filtered reads had a smaller U peak compared to the raw assembly, but still present, 

whereas the U peak of the Ra assemby disappeared. The wtdbg2 assembly of the Fit-

long dataset no longer shows a contaminant peak. These improvements came along with 

increased haploidy scores: from 0.90 to 0.95–0.97 for Ra, and from 0.83 to 0.89–0.92 

for Raven. The result produced by Shasta with read filtering was the opposite, as the 

size and haploidy scores became lower and the U peak became larger with both filter-

ing strategies. This increase in size of the U peak explained the higher k-mer complete-

ness obtained due to a higher percentage of uncollapsed homozygous and heterozygous 

k-mers (Additional file  1: Figure S23–S24). Overall, read filtering did not affect com-

pleteness scores.

Haplotig purging

As we observed with PacBio reads, all assembly sizes were reduced by HaploMerger2, 

which resulted in higher size scores, and the U peaks were removed from the coverage 

distributions, but this also led to lower scores for completeness (Fig. 2, HaploMerger2). 

purge_dups improved size scores while maintaining or increasing completeness scores 

and removing U peaks (Fig.  2, purge_dups). These improved coverage distributions 

resulted in higher haploidy scores, ranging from 0.90 (Flye and Raven) to 0.93 (Ra and 

Raven). purge_haplotigs improved size scores for all assemblies except Flye and also kept 

high completeness scores (Fig. 2). Haploidy scores were higher for assemblies produced 

by Canu and NextDenovo, and the coverage distribution shows that U peak were indeed 

reduced or removed for Canu and NextDenovo assemblies, while the contaminant 

peaks were removed for Ra, Raven, Shasta and wtdbg2 assemblies. We observed again 

that HaploMerger2 generally decreased the continuity and quality metrics of the assem-

blies, while purge_dups and purge_haplotigs did not. Interestingly, the Canu assembly 

obtained the highest N50 of all the assemblies presented in this paper (12.4 Mb) when 

raw assemblies were purged with either purge_dups or purge_haplotigs.
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Combination of read filtering and haplotig purging

The read-filtered Nanopore assemblies after HaploMerger2 were too short, except for 

the Canu assembly (Additional file 1: Figure S25–S26). All assemblies of the longest 

reads after purge_dups were close to the expected genome size (96–109 Mb), except 

for the wtdbg2 assembly (114 Mb), and the coverage distributions were almost all uni-

modal, with a haploidy score ranging from 0.87 (Canu) to 0.96 (Ra) (Additional file 1: 

Table S5). Notably, the Shasta assembly of filtered reads had a strong U peak that was 

completely removed by purge_dups, which brought the assembly to a size close to 

our estimation (102 Mb) and resulted in a high number of singe-copy BUSCO fea-

tures (519 features). purge_haplotigs was apparently less efficient, as the U peak was 

reduced for the Canu and Raven assemblies but remained high for the Flye, NextDe-

novo and Shasta assemblies. The BUSCO scores of assemblies purged with purge_

dups or purge_haplotigs were similarly high (up to 539 single-copy BUSCO features, 

Ra).

Combination of haplotig‑purging tools

The combination of HaploMerger2 with either purge_dups or purge_haplotigs led to 

excessively shorter assemblies, except for Canu, as HaploMerger2 tended to overpurge 

(Additional file 1: Figure S27). The assemblies purged with both purge_dups and purge_

haplotigs were all close to the expected size (100–110 Mb), their single-copy BUSCO 

score was maintained (up to 559 features, Flye assembly), they had a k-mer complete-

ness below 50%, their haploidy ranged from 0.90 (Flye and Raven) to 0.94 (NextDenovo) 

(Additional file 1: Table S6) and their coverage distribution was unimodal or close to it.

Impact of sequencing depth

We further evaluated the impact of sequencing depths ranging from 10X to 100X on 

the size, N50, BUSCO score, and haploidy metrics of PacBio and Nanopore assem-

blies (Fig. 3).

With a 10X  sequencing depth, almost all assemblers produced outputs excessively 

small compared to the expected genome size, and NextDenovo and Shasta performed 

the worst. However, with wtbdg2 on PacBio and Nanopore reads, and with Flye on 

PacBio reads, the assembly size was close to the expected size. At 20X, Canu, Flye, Ra, 

Raven and wtdbg2 reached at least 93 Mb. Assembly sizes increased sharply up to 40X, 

except for Canu for which the assemblies kept increasing in size with sequencing depth.

While there was no variation in assembly size among replicates, N50s were highly 

variable for PacBio assemblies with NextDenovo, Flye and wtdbg2, and for almost all 

Nanopore assemblies other than wtdbg2. For NextDenovo, there was a clear opti-

mal coverage at about 40X in terms of N50 with PacBio as well as Nanopore reads. 

Other assemblers also showed a decrease in N50 above a certain sequencing depth: 

for PacBio assemblies, this happened for Raven over 30X and for Shasta and wtbdg2 

over 80X; for Nanopore assemblies, this happened for Flye over 30X, for Shasta over 

40X, and for Raven over 80X.
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The number of single-copy BUSCO features did not vary much among replicate 

subsamplings; only NextDenovo exhibited some variability in that regard. Over 

40X, the number of single-copy BUSCOs became strikingly stable for most assem-

blers with both PacBio and Nanopore reads, except for Shasta that is tuned for a 60X 

a

b

c

d

Fig. 3 Impact of sequencing depth. Statistics of the PacBio and Nanopore assemblies depending on 
sequencing depth, with a assembly size, b N50, c complete single‑copy BUSCOs and d haploidy. The 
assemblies were ran on five random subsamplings of the long‑read datasets
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depth. For Canu assemblies, the number of complete single-copy BUSCOs decreased 

when sequencing depth exceeded 30X. For wtdbg2 the complete single-copy BUSCOs 

remained low for the Nanopore dataset at the different sequencing depths.

For most assemblers, haploidy decreased when sequencing depth increased, and 

this was especially drastic for Canu assemblies. Only the assemblies produced by 

wtdbg2 had a stable haploidy value, whereas the Ra assemblies of PacBio reads also 

exhibited limited variations in haploidy.

Computational performance

We evaluated the computational performance of Flye, Ra, Raven, Shasta and wtdbg2. 

Canu was only evaluated on PacBio reads as the CPU time was too high for Nanop-

ore reads, and we had to run Canu on a cluster. For the full Nanopore dataset, with 

32 threads, Canu ran in 7 days 4  h 41  min and used 99 GB. NextDenovo was not 

included in this comparison as it required high RAM resources and was therefore run 

on a different machine; we were not able to measure properly its RAM usage or CPU 

time. RAM usage and CPU time (Fig. 4) increased with sequencing depth, except for 

wtdbg2 and Canu that did not display much change. wtdbg2 was the assembler that 

required the lowest amount of RAM (less than 20 GB) and was the second fastest 

on PacBio reads (less than 53 h) and Nanopore reads (less than 192 h). Flye had the 

highest RAM usage for Nanopore assemblies (Canu and NextDenovo excluded), with 

high variability. Notably, Shasta generally required a lot of RAM and had the high-

est memory footprint for high-coverage PacBio data, but it ran the fastest on PacBio 

a

b

Fig. 4 Computational performance. Computational resources (RAM and CPU time) used by the assemblers. 
a Maximum RAM usage and b mean CPU time depending on sequencing depth. Canu (for Nanopore reads) 
and NextDenovo were not included in this comparison as they were run on different machines
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as well as on Nanopore reads. The most recent versions of Flye (2.8) and Raven (1.5) 

have decreased the CPU time. Raven was already an efficient assembler, and its latest 

improvements have halved the RAM usage and CPU time, when tested on the full 

PacBio and Nanopore datasets. Shasta 0.7.0 also decreased its RAM usage and CPU 

time.

Discussion

Comparison of PacBio and Nanopore assemblies

While PacBio assemblies were superior in terms of completeness, the continuity of 

Nanopore assemblies was far greater for most assemblers, probably due to the greater 

length of Nanopore reads. The lower completeness scores of Nanopore assemblies likely 

resulted from the lower accuracy along with the non-random error pattern of Nanop-

ore reads producing errors (mostly indels) in the consensus sequences produced by the 

assemblers. These systematic errors in Nanopore reads may be improved with more 

recent protocols [28] and basecallers [29].

However, there was no striking difference regarding the efficiency of haplotype col-

lapsing when assembling PacBio or Nanopore reads. The results in terms of coverage 

distribution and haploidy were similar, and it appears therefore that both technologies 

can be used to produce properly collapsed assemblies. An important finding was that 

filtering reads based on length and quality improved in many cases the quality of hap-

loid assemblies, as it led to a decrease in coverage depth and to a lower support for both 

haplotypes, thereby favoring the collapse of the region. We further observed that read 

filtering did not lead to a decrease in assembly quality as long as the sequencing depth 

remained sufficient, and for some assemblers read filtering resulted in an increase in 

N50 and in completeness.

Successful combinations for haploid assemblies

We found that Canu poorly collapsed alleles and yielded oversized assemblies. The pro-

gram did not seem able to collapse highly divergent regions on its own. Post-process-

ing assemblies using haplotype-purging tools greatly improved haploidy. All three tools 

tested reduced the assembly size and the size of the U peak, but purging was most effi-

cient using purge_dups. Purging Canu assemblies with purge_dups or purge_haplotigs 

improved greatly their haploidy. Besides, Canu assemblies of Nanopore reads purged 

with purge_dups or purge_haplotigs yielded the highest N50s among all our tests. 

However, the computational resources required to run Canu may be a limiting factor: 

although the RAM usage can be limited with the parameter maxMemory, this reduced 

the number of CPUs used and increased the running time.

Flye assemblies exhibited uncollapsed haplotypes too; selecting the longest reads did 

not help, but purge_dups improved collapsing, brought the assembly size close to the 

expectation and kept a good quality.

NextDenovo produced the assemblies with the highest N50s before post-processing, 

but with poorly collapsed haplotypes. This problem was alleviated for PacBio assemblies 

when selecting the longest reads, and uncollapsed haplotypes were efficiently removed 

by haplotig-purging tools. The best haploidy values were achieved when combining 

NextDenovo with read filtering, purge_dups and purge_haplotigs. These assemblies also 
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reached high values of continuity and completeness. However, although NextDenovo 

runs quickly, it requires a large amount of RAM.

Ra was more efficient at collapsing haplotypes than most assemblers, and its oversized 

assemblies were rather due to contaminants. Ra assemblies proved even better when 

using only the longest reads, which led to a better continuity, equal completeness and 

improved collapsing. Although Ra was not the most computationally efficient assembler, 

its RAM usage and CPU time remained low up to a sequencing depth of 50X; thus it 

appeared even more desirable to use only a subset of the longest reads for this assembler.

Raven is a further development of Ra, yet it exhibited a different behavior: Raven was 

more computationally efficient but produced less collapsed haplotypes compared to Ra. 

Read filtering and haplotig-purging reduced these uncollapsed haplotypes, resulting in 

high-quality assemblies when combining read filtering with purge_dups, or with purge_

dups and purge_haplotigs. The low RAM usage and runtime of the newest version make 

it a compelling assembler.

We observed singular results with Shasta. The assembly of filtered Nanopore reads 

was less collapsed than the assembly of all reads. purge_dups efficiently purged the 

assemblies of all PacBio and Nanopore reads but, surprisingly, the best haploid Shasta 

assembly was obtained from filtered Nanopore reads purged with purge_dups. Shasta 

assemblies generally achieved a good completeness, but their continuity was lower than 

with other programs, as the developers explicitly aimed for quality over continuity.

wtdbg2 performed well on PacBio data, but less on Nanopore reads, for which it 

obtained the lowest completeness scores. This program did not seem to have difficul-

ties with heterozygous regions, but low-coverage contigs identified as contaminants 

remained in the final assemblies. Read selection on size did not significantly improve the 

assemblies, but purge_haplotigs removed contaminant contigs, therefore improving the 

output. Short-read polishing would certainly improve the low completeness of Nanop-

ore assemblies. Users may want to test this assembler as it collapses genomes well and 

runs fast using a moderate amount of RAM.

Based on the above, we recommend users interested in generating the best haploid 

assembly of a diploid genome to try all or some of the solutions described in Table 2, 

depending on the size of the genome they want to assemble, the technology of reads 

they have, and their available computational resources.

Table 2 Recommended strategies for generating high‑quality haploid assemblies

Assemblers Recommended strategies Advantages

Canu purge_dups and/or purge_haplotigs Highest N50 (Nanopore)

Flye purge_dups

NextDenovo read filtering, purge_dups and/ 
or purge_haplotigs

High continuity

Ra read filtering Low RAM usage and CPU time

Raven read filtering + purge_dups or purge_dups + 
purge_haplotigs

Low RAM usage and CPU time

Shasta purge_dups Low CPU time

wtdbg2 purge_haplotigs Lowest RAM usage and CPU time
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Impact of sequencing depth

Our study of the impact of sequencing depth on the assemblies showed that deeper 

sequencing usually did not result in higher continuity or improved haploidy of the 

assemblies. Most programs reached the expected assembly size between 10X and 30X, 

while the BUSCO scores and k-mer completeness plateaued around 40X. Depending 

on the assembler, N50s also decreased when sequencing depth went beyond a specific 

threshold. A deeper coverage may lead to erroneous low-coverage contigs and provide 

more support to both haplotypes in highly heterozygous regions, promoting incomplete 

collapsing of haplotypes. We observed in our benchmark that a deeper sequencing led 

to a lower haploidy (as computed using HapPy). The combination of the continuity and 

quality metrics show that a sequencing depth of 40X is sufficient for generating a high-

quality haploid assembly. Besides, a counter-intuitive finding is that a larger amount of 

reads does not improve the assembly and can even make it worse in terms of continuity 

and haploidy. Most assemblers seem optimized for sequencing depths around 30 to 40X 

and therefore did not appear to benefit from more data, except Shasta that is optimized 

for 60X.

Assembly evaluation

We propose here a set of metrics to evaluate thoroughly genome assemblies and identify 

uncollapsed haplotypes. The N50, BUSCO score and k-mer completeness are commonly 

used to estimate the continuity and completeness of assemblies, but do not discriminate 

properly collapsed haploid assemblies. It is possible to combine the completeness and 

continuity with a comparison of assembly size vs. expected genome size and an exami-

nation of the coverage distribution to identify the best assemblies. We further described 

a new metric of the haploidy of an assembly and implemented it in HapPy. We used the 

haploidy metric to systematically evaluate haploid assemblies. HapPy gives an accurate 

numerical representation of the coverage distribution.

These metrics have their limits, and not one of them is sufficient to identify the best 

assembly. The N50 is the most popular metric to describe contigs as it represents the 

continuity, yet high N50s can be achieved with efficient scaffolding methods. Therefore, 

we should aim for high-quality contigs that can be later turned into high-quality scaf-

folds. Comparing the assembly size to an estimated genome size depends on the reliabil-

ity of the estimation itself. Genome size can be estimated computationally with a k-mer 

spectrum [30, 31], or experimentally using flow cytometry and Feulgen densitometry 

[32]. The BUSCO score only represents orthologs and does not account for the com-

pleteness of non-coding regions. Besides, the k-mer completeness is not sufficient as a 

value, as it could reach 50% with an assembly that has a balanced combination of missing 

regions and uncollapsed ones. To better estimate the k-mer completeness, it is necessary 

to examine plots provided by KAT. Collapsed repeated regions appear in the coverage 

plot along the contigs as localized peaks of elevated coverage. Since most assemblers 

included in our benchmark can produce an assembly graph, we strongly advise read-

ers to investigate this file using dedicated tools [33]: uncollapsed haplotypes are usually 

observed as bubbles in the graph. Ideally, the contigs should be evaluated with all met-

rics available to find, if not the perfect assembly, the best assembly, while assessing its 

limitations.
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Genome papers present only the most successful assembly strategy, but researchers 

usually try more than one method to obtain the best result. They rarely report details of 

all the tested approaches in publications, although such negative results could help the 

community and could guide developers in how to improve their tools. To improve on 

this situation, we suggest reporting alternative assembly results as additional file or sepa-

rately on a preprint platform.

Comparison with other studies

Few comparisons of long-read assemblers are currently available. A thorough study 

was conducted on simulated and real bacterial datasets [19], and showed that all these 

assemblers can achieve assemblies of varying quality. Flye and Raven were also tested in 

this study and emerged among the most reliable assemblers. We also found that these 

assemblers reached high single-copy BUSCO scores, but when processing data from 

a diploid organism, they are not the most efficient at collapsing haplotypes. Besides, 

the benchmark on bacterial datasets also showed that Canu required more computa-

tional time and memory than most assemblers. Although this benchmark gave essen-

tial information on the performance of these assemblers, eukaryotic genomes represent 

a completely different challenge. Recently, a publication compared different long-read 

sequencing technologies to assemble a plant genome, Macadamia jansenii [34]. They 

included statistics for different assemblers and obtained, depending on the tool, over-

sized assemblies combined with heightened numbers of duplicated BUSCO features on 

an 80X PacBio dataset, while they did not observe such differences on a 30X Nanopore 

dataset. These results agree with our observations on the impact of sequencing depth, as 

the 30X Nanopore dataset was not problematic, while the 80X PacBio dataset was, likely 

because of a deeper sequencing.

Toward high‑quality diploid and polyploid assemblies

Haploid assemblies of multiploid (i.e. diploid or polyploid) organisms provide a par-

tial representation of their genomes as only one version of all heterozygous regions is 

included in the assembly. Ideally, we would prefer to generate phased multiploid assem-

blies. Low-accuracy long reads can separate haplotypes for highly heterozygous regions, 

but their high error rates do not allow the identification and separation of small het-

erozygous regions. Furthermore, phased assemblies bring an extra challenge, as alleles 

from different heterozygous regions need to be correctly associated. A protocol for high-

accuracy long reads (above 99%) has been released recently, called PacBio HiFi [4], and 

brings new possibilities for phased multiploid assemblies. To better accommodate these 

high-accuracy long reads, new versions of assemblers have been released such as HiCanu 

[35] (a development of Canu), hifiasm [36], or Flye’s new option --pacbio-hifi. Fully 

phased assemblies will provide complete representations of multiploid genomes.
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Conclusion

We tested seven long-read assemblers on PacBio and Nanopore for a non-model eukary-

ote genome. As this genome has variable levels of heterozygosity, including highly het-

erozygous regions, we found that most assemblers had difficulties collapsing divergent 

haplotypes, resulting in oversized assemblies. Ra and wtdbg2 emerged as the most effi-

cient programs to obtain haploid assemblies. We identified several assembly strategies 

combining assemblers, pre-assembly read filtering and post-assembly haplotig purg-

ing tools (either purge_dups or purge_haplotigs) that led to properly collapsed haploid 

assemblies, and also improved continuity and completeness. To guide users when fil-

tering datasets, we tested assemblers with different sequencing depths, and found that 

aiming for a sequencing depth of 40X could optimize haplotype collapsing and continu-

ity. In addition, we also conducted a thorough evaluation of these assemblies using N50, 

BUSCO and k-mer completeness, coverage distribution, and a new metric of haploidy 

that we implemented in HapPy. We recommend to reproduce these evaluations for any 

haploid assembly of a multiploid genome to ensure proper collapsing and avoid artefac-

tual duplications.

We believe that benchmarks such as ours are essential to help researchers working 

on non-model organisms select a long-read sequencing technology and an assembly 

method suitable for their project. It will also help them better understand the results 

they obtain thereby improving the rapidly evolving field of genomics.

Methods

All command lines are provided in Additional file 1: Table S7.

Genome size estimation

The genome size of Adineta vaga was estimated using KAT v2.4.2 [30] on an Illu-

mina dataset of 25 millions paired-end 250 basepairs (bp) reads (see Additional file 1: 

Table  S2). The diploid size was estimated to 204.6 Mb, therefore a haploid assembly 

should have a length around 102.3 Mb.

Long‑read assemblies

Canu, Flye, NextDenovo, Ra, Raven, Shasta and wtdbg2 were tested on two Adineta vaga 

long-read datasets: PacBio reads totalling 23.5 Gb with a N50 of 11.6 kb; and Nanopore 

reads totalling 17.5 Gb with a N50 of 18.8 kb (after trimming using Porechop v0.2.4, 

github. com/ rrwick/ Porec hop). All assemblers were used with default parameters, except 

for Shasta for which the minimum read length was set to zero (instead of the default 

10 kb setting). To run Shasta on PacBio reads, we used the recommended parameters 

--Assembly.consensusCaller Modal --Kmers.k 12. When assemblers 

required an estimated size, the value 100 Mb was provided. PacBio assemblies were run 

on all reads and on reads > 15 kb (4.7 Gb). Nanopore assemblies were run on all reads 

and on reads > 30 kb (5.7 Gb). For both datasets, we tested several length thresholds to 

find the optimal one. For more details on the long-read datasets we used, see the publi-

cation by Simion et al. [37] and Additional file 1: Table S8. To test for reproducibility, all 

assemblers were run five times.
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Read filtering

Reads were filtered following two strategies: keeping only the reads larger than 15 kb 

(PacBio reads) or 30 kilobases (Nanopore reads); using Filtlong v0.2.0. Filtlong was run 

with the parameters --target_bases 4092000000 –mean_q_weight 10 to 

keep about 40X of data and give a priority to quality over length.

Purging duplicated regions

Reads were mapped on assemblies using minimap2 v2.17-r941 [38]. For each assembly, 

we ran purge_haplotigs hist [24] to compute coverage histograms that we used 

to set low, mid and high cutoffs; these values were then used by purge_haplotigs 

cov to detect suspect contigs. Finally, we ran purge_haplotigs purge to eliminate 

duplicated regions.

purge_dups [23] was run following instructions by first generating the configuration 

file and then purging the assembly. HaploMerger2 [22] was run by sequentially running 

the modules BuildDatabase, RepeatModeler, RepeatMasker and finally the main script of 

HaploMerger2 to purge the assembly.

Impact of sequencing depth

To find out the impact of sequencing depth, five replicate subsets were randomly sam-

pled from the long-read datasets using the script reformat.sh from BBTools v38.79, 

available at sourceforge.net/projects/bbmap/, by providing the desired number of 

bases. The assemblers were run on these subsets with the same parameters as previ-

ously, with the exception of Canu: the parameters stopOnLowCoverage was set to 1 to 

allow runs on low-depth datasets. We tested subsets with a sequencing depth of 10X, 

20X, 30X, 40X, 50X, 60X, 80X, 100X.

Assembly evaluation

To evaluate the assemblies, we ran BUSCO v4 [25] against metazoa odb10 (954 fea-

tures) without the parameter --long. We ran KAT comp v 2.4.2 [30] to calculate 

k-mer completeness by reference to the same Illumina 2*250 bp dataset used to esti-

mate the genome size. To compute coverage, long reads were mapped on one repli-

cate assembly per assembler using minimap2 and the coverage was computed with 

tinycov, available at github.com/cmdoret/tinycov, with a window size of 20 kb.

Haploidy evaluation

To evaluate the collapsing of assemblies based on the coverage distribution, we devel-

oped a script, available at github.com/AntoineHo/HapPy. HapPy estimates the hap-

loidy of an assembly (a measure of how well it is collapsed) by analyzing the per-base 

coverage histogram obtained after mapping reads to the assembly. For a well-col-

lapsed haploid assembly, this histogram should consist of one peak around the theo-

retical average depth of coverage.

HapPy takes a raw coverage frequency histogram as input. First, to avoid problems 

due to local variations and noise in the dataset, two filters are applied before attempt-

ing to find peaks in the dataset. The first filter avoids misdetections due to potential 
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peaks at very large coverage. These can be due to repetitive DNA for instance. These 

peaks are eliminated from the curve by using a filter on the cumulative sum of the fre-

quency of each coverage value. For each increasing coverage value, the total frequency 

sum is incremented by the frequency of this coverage value. When this sum exceeds 

99% of the sum of frequencies of all coverage values, then the remaining coverage 

values are discarded. Effectively, this discards the very large coverage bins containing 

low information peaks. The second filter is applied on the resulting histogram curve. 

It smoothes the curve using a Savitzky-Golay filter [39] from the SciPy package. This 

filter uses convolution to smooth the curve by fitting a low-degree polynomial func-

tion (using linear least squares) to consecutive subsets of adjacent data points. The 

window length used is 41 and the polynomial degree used is 3.

Then SciPy is used to detect local maxima in the curve. A local maximum is defined 

as a sample in the input array for which any neighbouring sample has a smaller ampli-

tude. Local peaks detected are filtered by SciPy using different parameters such as the 

minimum height to be considered a peak and the prominence of a peak compared to 

its neighboring local maxima. Finally, to determine peak widths, SciPy uses an algo-

rithm described in its documentation: https:// docs. scipy. org/ doc/ scipy/ refer ence/ 

gener ated/ scipy. signal. peak_ widths. html# scipy. signal. peak_ widths.

Actual coverage curves rarely match the theoretical expectation of a single peak for a hap-

loid assembly because of several factors:

• contaminant contigs (e.g. bacteria and viruses that were sequenced along the organism 

of interest) can appear as additional peaks at unexpected coverage values (usually lower 

than the actual sequencing depth);

• some contigs or contig regions in the assembly may actually correspond to uncollapsed 

haplotigs;

• large and/or abundant hemizygous deletions, as well as haploid chromosomes (e.g. the 

Y chromosome of male mammals), can result in a half-coverage peak; in such case, this 

peak is a biological signal that will prevent reaching a perfect haploidy score.

HapPy expects up to three peaks in the per-base coverage histogram: a low-coverage con-

taminant peak (if any), an uncollapsed peak at around half of the expected coverage and a 

collapsed peak around the expected coverage.

After peak detection, HapPy determines whether peaks are contaminant, collapsed or 

uncollapsed based on the thresholds given by the user in input parameters and their rela-

tive positions in the curve. Then, it finds the actual limits between contaminants, collapsed 

and uncollapsed regions of the curve using the computed peak widths. The peak area cor-

responds to the number of bases in the specific range of coverage values that was attributed 

to each peak.

We defined a haploidy score using the following Equation 1, in which U is the area of the 

uncollapsed peak and C the area of the collapsed peak. It describes the proportion between 

bases that are collapsed and the total number of bases that we expect in a perfectly haploid 

assembly. A perfectly haploid assembly is theoretically an assembly of a diploid organism 

for which all bases from one haplotype have an homologous representation on the other 

haplotype. For such an assembly, the haploidy score would be equal to 1.0. However, this 
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equation does not take into account insertions and deletions (indels). If indels are numer-

ous or large, then the best scores that the assembly could reach would be lower than 1.0 

because all bases do not have an homologous equivalent on the alternative haplotype. For 

instance, an insertion will not have, by definition, a homologous counterpart; thus this 

homologous region is not present to be sequenced, which will result in a halved coverage 

over the insertion region.

Note that Eq. 1 does not take into account bases that were attributed to contaminant 

sequences based on the coverage curve. Ideally, the contigs should be pre-filtered for 

obvious contaminant taxa before using HapPy.

Scoring

We defined four scores to evaluate the assemblies in Figs. 1 and 2: size, N50, complete-

ness and haploidy. The N50 score corresponds to the regular N50 value, and the haploidy 

score is computed using HapPy. The size score reflects the distance of the assembly size 

to the estimated haploid genome size and is computed following Eq. 2, in which s is the 

assembly size and G the estimated haploid genome size (102 Mb).

The completeness score includes both the number of single-copy BUSCO features and a 

measure of the distance of the observed k-mer completeness compared to the expected 

one. This metrics is computed using Eq. 3, in which kobs is the observed k-mer complete-

ness, kexp the expected k-mer completeness and kexp = 50.

The number of single-copy BUSCOs and the value K are normalized on a 0 to 1 scale 

following Eq. 4, in which xi is the initial value, xmin the minimum value for all PacBio 

or Nanopore assemblies, and xmax the maximum value for all PacBio or Nanopore 

assemblies.

The final completeness score is computed using Eq. 5, in which Bnorm is the normalized 

single-copy BUSCO score and Knorm is the normalized k-mer completeness value com-

puted previously.

Performance evaluation

For Flye, Ra, Raven, Shasta and wtdbg2, maximal RAM usage and mean CPU time were 

measured using the command time with 14 threads on a computer with an i9-9900X 

3.5 Ghz processor and 128 GB RAM. NextDenovo was run on a computer with an Intel 

(1)Haploidy =
C

C +
U
2

(2)S = 1 −

Abs(s − G)

G

(3)K = 1 − Abs
(
kobs − kexp

)
/kexp

(4)xf = (xi − xmin)/(xmax − xmin)

(5)Comp = (Bnorm + Knorm)/2
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Xeon E5-2650 with 256 GB of RAM, while Canu was run on a cluster with an AMD 

Epyc 7551P and 256 Gb of RAM. NextDenovo ran in a few hours, while Canu runs each 

required several days.
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Supplementary data

Figure S1: k-mer spectrum of Adineta vaga using Illumina reads and KAT v2.4.2. The first peak corresponds to heterozygous
k-mers (around 45X) and the second peak corresponds to homozygous k-mers.
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Figure S2: Statistics of PacBio assemblies obtained from the full PacBio dataset or with a read-filtering step prior to assembly based
on read length exclusively, using different thresholds: 10 kb, 15 kb. All assemblies were run five times to assess the reproducibility
of the output produced by each assembler. a) N50 plotted against total assembly length. The dashed line indicates the expected
genome size, with a +/- 10 Mb margin delimited by the dotted lines. b) Number of complete single-copy BUSCOs plotted against
number of complete duplicated BUSCOs, from a total of 954 orthologs.

Figure S3: Statistics of Nanopore assemblies obtained from the full Nanopore dataset or with a read-filtering step prior to assembly
based on read length exclusively, using different thresholds: 10 kb, 20 kb, 30 kb, 40 kb. All assemblies were run five times to
assess the reproducibility of the output produced by each assembler. a) N50 plotted against total assembly length. The dashed
line indicates the expected genome size, with +/- 10 Mb margin delimited by the dotted lines. b) Number of complete single-copy
BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs.
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Figure S4: Statistics of raw assemblies obtained from the full PacBio dataset (raw assemblies), with a preliminary read filtering
step (keeping only reads larger than 15 kb, or those selected by Filtlong based on quality and length) or a subsequent removal of
uncollapsed haplotypes with HaploMerger2, purge_dups, or purge_haplotigs. a) N50 plotted against total assembly length. The
dashed line indicates the expected genome size, with +/- 10 Mb margin delimited by the dotted lines. b) Number of complete
single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs. c) k-mer completeness.
The dashed line indicates the expected 50% completeness.
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Figure S5: Blobtools v1.0 analysis of a Canu assembly of the full PacBio dataset.
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Figure S6: Blobtools v1.0 analysis of a Flye assembly of the full PacBio dataset.
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Figure S7: Blobtools v1.0 analysis of a NextDenovo assembly of the full PacBio dataset.
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Figure S8: Blobtools v1.0 analysis of a Ra assembly of the full PacBio dataset.
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Figure S9: Blobtools v1.0 analysis of a Raven assembly of the full PacBio dataset.
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Figure S10: Blobtools v1.0 analysis of a Shasta assembly of the full PacBio dataset.
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Figure S11: Blobtools v1.0 analysis of a wtdbg2 assembly of the full PacBio dataset.
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Figure S12: Statistics of PacBio assemblies obtained from the filtered PacBio dataset of reads longer than 15 kb, with a subsequent
removal of uncollapsed haplotypes with HaploMerger2 (HM), purge_dups (PD), or purge_haplotigs (PH). a) N50 plotted against
total assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited by the dotted
lines. b) Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954
orthologs. c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage distribution
over the contigs.
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Figure S13: Statistics of PacBio assemblies obtained from the PacBio dataset filtered with Filtlong, with a subsequent removal
of uncollapsed haplotypes with HaploMerger2 (HM), purge_dups (PD), or purge_haplotigs (PH). a) N50 plotted against total
assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited by the dotted lines. b)
Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs.
c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage distribution over the
contigs.
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Figure S14: Statistics of PacBio assemblies obtained from the full PacBio dataset with a subsequent removal of uncollapsed
haplotypes with combinations of HaploMerger2 (HM), purge_dups (PD), and purge_haplotigs (PH). a) N50 plotted against total
assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited by the dotted lines. b)
Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs.
c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage distribution over the
contigs.
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Figure S15: Statistics of raw assemblies obtained from the full Nanopore dataset (raw assemblies), with a preliminary read filtering
step (keeping only reads larger than 30 kb, or those selected by Filtlong based on quality and length) or a subsequent removal of
uncollapsed haplotypes with HaploMerger2, purge_dups, or purge_haplotigs. a) N50 plotted against total assembly length. The
dashed line indicates the expected genome size, with +/- 10 Mb margin delimited by the dotted lines. b) Number of complete
single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs. c) k-mer completeness.
The dashed line indicates the expected 50% completeness.
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Figure S16: Blobtools v1.0 analysis of a Canu assembly of the full Nanopore dataset.
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Figure S17: Blobtools v1.0 analysis of a Flye assembly of the full Nanopore dataset.
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Figure S18: Blobtools v1.0 analysis of a NextDenovo assembly of the full Nanopore dataset.

63



CHAPTER 2. BENCHMARK OF LONG-READ ASSEMBLERS ON THE GENOME OF THE
BDELLOID ROTIFER ADINETA VAGA

Figure S19: Blobtools v1.0 analysis of a Ra assembly of the full Nanopore dataset.
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Figure S20: Blobtools v1.0 analysis of a Raven assembly of the full Nanopore dataset.
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Figure S21: Blobtools v1.0 analysis of a Shasta assembly of the full Nanopore dataset.
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Figure S22: Blobtools v1.0 analysis of a wtdbg2 assembly of the full Nanopore dataset.
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Figure S23: k-mer spectrum of the Shasta assembly of the full Nanopore dataset obtained with KAT v2.4.2.
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Figure S24: k-mer spectrum of the Shasta assembly of the longest Nanopore reads obtained with KAT v2.4.2.
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Figure S25: Statistics of Nanopore assemblies obtained from the filtered Nanopore dataset of reads longer than 30 kb, with a
subsequent removal of uncollapsed haplotypes with HaploMerger2 (HM), purge_dups (PD), or purge_haplotigs (PH). a) N50
plotted against total assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited
by the dotted lines. b) Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a
total of 954 orthologs. c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage
distribution over the contigs.
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Figure S26: Statistics of Nanopore assemblies obtained from the Nanopore dataset filtered with Filtlong, with a subsequent removal
of uncollapsed haplotypes with HaploMerger2 (HM), purge_dups (PD), or purge_haplotigs (PH). a) N50 plotted against total
assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited by the dotted lines. b)
Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs.
c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage distribution over the
contigs.
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Figure S27: Statistics of Nanopore assemblies obtained from the full Nanopore dataset with a subsequent removal of uncollapsed
haplotypes with combinations of HaploMerger2 (HM), purge_dups (PD), and purge_haplotigs (PH). a) N50 plotted against total
assembly length. The dashed line indicates the expected genome size, with a +/- 10 Mb margin delimited by the dotted lines. b)
Number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, from a total of 954 orthologs.
c) k-mer completeness. The dashed line indicates the expected 50% completeness. d) Long-read coverage distribution over the
contigs.
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Table S1: Haploidy values computed by HapPy v0.1 for PacBio assemblies.

Assembler Processing Haploidy
Canu raw assemblies 0.59
Flye raw assemblies 0.85
NextDenovo raw assemblies 0.81
Ra raw assemblies 0.90
Raven raw assemblies 0.82
Shasta raw assemblies 0.83
wtdbg2 raw assemblies 0.90
Canu longest reads 0.62
Flye longest reads 0.85
NextDenovo longest reads 0.94
Ra longest reads 0.94
Raven longest reads 0.88
Shasta longest reads 0.96
wtdbg2 longest reads 0.90
Canu Filtlong 0.58
Flye Filtlong 0.86
NextDenovo Filtlong 0.88
Ra Filtlong 0.94
Raven Filtlong 0.90
Shasta Filtlong 0.85
wtdbg2 Filtlong 0.91
Canu HaploMerger2 0.84
Flye HaploMerger2 0.89
NextDenovo HaploMerger2 0.88
Ra HaploMerger2 0.92
Raven HaploMerger2 0.90
Shasta HaploMerger2 0.91
wtdbg2 HaploMerger2 0.92
Canu purge_dups 0.89
Flye purge_dups 0.89
NextDenovo purge_dups 0.90
Ra purge_dups 0.91
Raven purge_dups 0.90
Shasta purge_dups 0.90
wtdbg2 purge_dups 0.91
Canu purge_haplotigs 0.86
Flye purge_haplotigs 0.85
NextDenovo purge_haplotigs 0.87
Ra purge_haplotigs 0.88
Raven purge_haplotigs 0.80
Shasta purge_haplotigs 0.90
wtdbg2 purge_haplotigs 0.90
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Table S2: Haploidy values computed by HapPy v0.1 for PacBio assemblies.

Assembler Processing Haploidy
Canu longest reads + purge_haplotigs 0.87
Flye longest reads + purge_haplotigs 0.85
NextDenovo longest reads + purge_haplotigs 0.94
Ra longest reads + purge_haplotigs 0.92
Raven longest reads + purge_haplotigs 0.87
Shasta longest reads + purge_haplotigs 0.96
wtdbg2 longest reads + purge_haplotigs 0.90
Canu longest reads + purge_dups 0.91
Flye longest reads + purge_dups 0.90
NextDenovo longest reads + purge_dups 0.97
Ra longest reads + purge_dups 0.95
Raven longest reads + purge_dups 0.91
Shasta longest reads + purge_dups 0.97
wtdbg2 longest reads + purge_dups 0.92
Canu Filtlong + purge_haplotigs 0.56
Flye Filtlong + purge_haplotigs 0.86
NextDenovo Filtlong + purge_haplotigs 0.88
Ra Filtlong + purge_haplotigs 0.93
Raven Filtlong + purge_haplotigs 0.90
Shasta Filtlong + purge_haplotigs 0.85
wtdbg2 Filtlong + purge_haplotigs 0.94
Canu Filtlong + purge_dups 0.90
Flye Filtlong + purge_dups 0.90
NextDenovo Filtlong + purge_dups 0.93
Ra Filtlong + purge_dups 0.94
Raven Filtlong + purge_dups 0.92
Shasta Filtlong + purge_dups 0.92
wtdbg2 Filtlong + purge_dups 0.91

Table S3: Haploidy values computed by HapPy v0.1 for PacBio assemblies.

Assembler Processing Haploidy
Canu HaploMerger2 + purge_haplotigs 0.82
Flye HaploMerger2 + purge_haplotigs 0.89
NextDenovo HaploMerger2 + purge_haplotigs 0.88
Ra HaploMerger2 + purge_haplotigs 0.88
Raven HaploMerger2 + purge_haplotigs 0.83
Shasta HaploMerger2 + purge_haplotigs 0.88
wtdbg2 HaploMerger2 + purge_haplotigs 0.84
Canu purge_dups + HaploMerger2 0.91
Flye purge_dups + HaploMerger2 0.90
NextDenovo purge_dups + HaploMerger2 0.90
Ra purge_dups + HaploMerger2 0.92
Raven purge_dups + HaploMerger2 0.93
Shasta purge_dups + HaploMerger2 0.92
wtdbg2 purge_dups + HaploMerger2 0.92
Canu purge_dups + purge_haplotigs 0.88
Flye purge_dups + purge_haplotigs 0.89
NextDenovo purge_dups + purge_haplotigs 0.92
Ra purge_dups + purge_haplotigs 0.89
Raven purge_dups + purge_haplotigs 0.88
Shasta purge_dups + purge_haplotigs 0.90
wtdbg2 purge_dups + purge_haplotigs 0.91
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Table S4: Haploidy values computed by HapPy v0.1 for Nanopore assemblies.

Assembler Processing Haploidy
Canu raw assemblies 0.63
Flye raw assemblies 0.79
NextDenovo raw assemblies 0.72
Ra raw assemblies 0.90
Raven raw assemblies 0.83
Shasta raw assemblies 0.86
wtdbg2 raw assemblies 0.92
Canu longest reads 0.59
Flye longest reads 0.79
NextDenovo longest reads 0.72
Ra longest reads 0.95
Raven longest reads 0.89
Shasta longest reads 0.75
wtdbg2 longest reads 0.92
Canu Filtlong 0.67
Flye Filtlong 0.81
NextDenovo Filtlong 0.77
Ra Filtlong 0.97
Raven Filtlong 0.92
Shasta Filtlong 0.72
wtdbg2 Filtlong 0.87
Canu HaploMerger2 0.89
Flye HaploMerger2 0.87
NextDenovo HaploMerger2 0.89
Ra HaploMerger2 0.91
Raven HaploMerger2 0.88
Shasta HaploMerger2 0.90
wtdbg2 HaploMerger2 0.89
Canu purge_dups 0.92
Flye purge_dups 0.90
NextDenovo purge_dups 0.92
Ra purge_dups 0.93
Raven purge_dups 0.90
Shasta purge_dups 0.91
wtdbg2 purge_dups 0.93
Canu purge_haplotigs 0.86
Flye purge_haplotigs 0.79
NextDenovo purge_haplotigs 0.90
Ra purge_haplotigs 0.90
Raven purge_haplotigs 0.83
Shasta purge_haplotigs 0.86
wtdbg2 purge_haplotigs 0.91
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Table S5: Haploidy values computed by HapPy v0.1 for Nanopore assemblies.

Assembler Processing Haploidy
Canu longest reads + purge_haplotigs 0.85
Flye longest reads + purge_haplotigs 0.79
NextDenovo longest reads + purge_haplotigs 0.72
Ra longest reads + purge_haplotigs 0.95
Raven longest reads + purge_haplotigs 0.89
Shasta longest reads + purge_haplotigs 0.75
wtdbg2 longest reads + purge_haplotigs 0.91
Canu longest reads + purge_dups 0.89
Flye longest reads + purge_dups 0.91
NextDenovo longest reads + purge_dups 0.95
Ra longest reads + purge_dups 0.96
Raven longest reads + purge_dups 0.95
Shasta longest reads + purge_dups 0.93
wtdbg2 longest reads + purge_dups 0.92
Canu Filtlong + purge_haplotigs 0.90
Flye Filtlong + purge_haplotigs 0.81
NextDenovo Filtlong + purge_haplotigs 0.77
Ra Filtlong + purge_haplotigs 0.97
Raven Filtlong + purge_haplotigs 0.92
Shasta Filtlong + purge_haplotigs 0.72
wtdbg2 Filtlong + purge_haplotigs 0.89
Canu Filtlong + purge_dups 0.93
Flye Filtlong + purge_dups 0.91
NextDenovo Filtlong + purge_dups 0.94
Ra Filtlong + purge_dups 0.97
Raven Filtlong + purge_dups 0.96
Shasta Filtlong + purge_dups 0.94
wtdbg2 Filtlong + purge_dups 0.91

Table S6: Haploidy values computed by HapPy v0.1 for Nanopore assemblies.

Assembler Processing Haploidy
Canu HaploMerger2 + purge_haplotigs 0.89
Flye HaploMerger2 + purge_haplotigs 0.87
NextDenovo HaploMerger2 + purge_haplotigs 0.89
Ra HaploMerger2 + purge_haplotigs 0.91
Raven HaploMerger2 + purge_haplotigs 0.92
Shasta HaploMerger2 + purge_haplotigs 0.90
wtdbg2 HaploMerger2 + purge_haplotigs 0.90
Canu purge_dups + purge_haplotigs 0.91
Flye purge_dups + purge_haplotigs 0.90
NextDenovo purge_dups + purge_haplotigs 0.94
Ra purge_dups + purge_haplotigs 0.93
Raven purge_dups + purge_haplotigs 0.90
Shasta purge_dups + purge_haplotigs 0.91
wtdbg2 purge_dups + purge_haplotigs 0.92
Canu purge_dups + HaploMerger2 0.90
Flye purge_dups + HaploMerger2 0.88
NextDenovo purge_dups + HaploMerger2 0.90
Ra purge_dups + HaploMerger2 0.91
Raven purge_dups + HaploMerger2 0.51
Shasta purge_dups + HaploMerger2 0.90
wtdbg2 purge_dups + HaploMerger2 0.89
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Table S7: List of command lines used for each tool. Values L, M, H for purge_haplotigs cov were
selected for each assembly according to the histogram produced by purge_haplotigs hist.

Program Dataset Command lines
Filtlong - filtlong --target_bases 4092000000 --mean_q_weight 10 long_read_data
Canu PacBio canu -d out -p out genomeSize=100m useGrid=false -pacbio-raw pb_data
Canu Nanopore canu -d out -p out genomeSize=100m useGrid=false -nanopore-raw ont_data
Flye PacBio flye -o out -g 100m --pacbio-raw pb_data
Flye Nanopore flye -o out -g 100m --nano-raw ont_data
NextDenovo PacBio echo pb_data > input.fofn

seq_stat input.fofn -g 100Mb -d 150 > stats.txt
NextDenovo run.cfg

NextDenovo Nanopore echo ont_data > input.fofn
seq_stat input.fofn -g 100Mb -d 150 > stats.txt
NextDenovo run.cfg

Ra PacBio ra -x pb pb_data > assembly.fasta
Ra Nanopore ra -x ont ont_data > assembly.fasta
Raven - raven long_read_data > assembly.fasta
Shasta PacBio shasta --input pb_data --Reads.minReadLength 0 --assemblyDirectory out --Assembly.consensusCaller Modal --Kmers.k 12
Shasta Nanopore shasta --input ont_data --Reads.minReadLength 0 --assemblyDirectory out
wtdbg2 PacBio wtdbg2 -x rs -g 100m -i pb_data -fo out

wtpoa-cns -i out.ctg.lay.gz -o out.ctg.fa
minimap2 -x map-pb -a out.ctg.fa pb_data | samtools sort > out.ctg.bam
samtools view out.ctg.bam | wtpoa-cns -d out.ctg.fa -i - -fo assembly.fasta

wtdbg2 Nanopore wtdbg2 -x ont -g 100m -i ont_data -fo out
wtpoa-cns -i out.ctg.lay.gz -o out.ctg.fa
minimap2 -x map-ont -a out.ctg.fa ont_data | samtools sort > out.ctg.bam
samtools view out.ctg.bam | wtpoa-cns -d out.ctg.fa -i - -fo assembly.fasta

HaploMerger2 - samtools faidx assembly.fasta
BuildDatabase -name asm.db -engine ncbi assembly.fasta
RepeatModeler -engine ncbi -database asm.db
RepeatMasker -e ncbi -lib consensi.fa -xsmall assembly.fasta
run_all.batch

purge_dups PacBio echo pb_data > input.fofn
pd_config.py assembly.fasta input.fofn
run_purge_dups.py config.json purge_dups_bin species_id

purge_dups Nanopore echo ont_data > input.fofn
pd_config.py assembly.fasta input.fofn
run_purge_dups.py config.json purge_dups_bin species_id

purge_haplotigs PacBio minimap2 -ax map-pb assembly.fasta pb_data --secondary=no > aligned.bam
samtools sort -o ali.sorted.bam -T tmp.ali aligned.bam
samtools index ali.sorted.bam
samtools faidx assembly.fasta
purge_haplotigs hist -b ali.sorted.bam -g assembly.fasta
purge_haplotigs cov -i ali.sorted.bam -l L -m M -h H -o cov_stats.csv
purge_haplotigs purge -g assembly.fasta -c cov_stats.csv -o assembly.purged.fasta

purge_haplotigs Nanopore minimap2 -ax map-ont assembly.fasta ont_data --secondary=no > aligned.bam
samtools sort -o ali.sorted.bam -T tmp.ali aligned.bam
samtools index ali.sorted.bam
samtools faidx assembly.fasta
purge_haplotigs hist -b ali.sorted.bam -g assembly.fasta
purge_haplotigs cov -i ali.sorted.bam -l L -m M -h H -o cov_stats.csv
purge_haplotigs purge -g assembly.fasta -c cov_stats.csv -o assembly.purged.fasta

BBtools - reformat.sh in=long_reads_data out=subset_data samplebasestarget=number_of_bases
BUSCO - busco -i assembly.fasta -o busco_output -l metazoa_odb10 -m genome
KAT Illumina kat comp -o kat_output ’end1.fastq end2.fastq’ assembly.fasta
tinycov Nanopore minimap2 -x map-ont -a assembly.fasta ont_data | samtools sort > aligned.bam

tinycov covplot -r 20000 -t cov.txt aligned.bam
tinycov PacBio minimap2 -x map-pb -a assembly.fasta pb_data | samtools sort > aligned.bam

tinycov covplot -r 20000 -t cov.txt aligned.bam
HapPy Nanopore minimap2 -x map-ont -a assembly.fasta ont_data | samtools sort > aligned.bam

HapPy.py depth aligned.bam out_dir
HapPy.py estimate out_dir/aligned.bam.hist

HapPy PacBio minimap2 -x map-pb -a assembly.fasta pb_data | samtools sort > aligned.bam
HapPy.py depth aligned.bam out_dir
HapPy.py estimate out_dir/aligned.bam.hist

time - /usr/bin/time -v -o time_output.txt

Table S8: Long-read and short-read datasets used in the study.

Data type Minimum length Total data N50
PacBio - 23.5 Gb 11.6 kb

15 kb 4.7 Gb 17.6 kb
Nanopore - 17.5 Gb 18.8 kb

30 kb 5.7 Gb 51.8 kb
Illumina 2*250 bp 30 bp 11.4 Gb 250 bp

76



Chapter 3

Unzipping assembly graphs with long

reads and Hi-C

This chapter is a paper in preparation with Roland Faure (co-first author) and Jean-François Flot.

3.1 Introduction

The field of genomics is thriving and chromosome-level assemblies are now commonly achieved for all types

of organisms, thanks to the combined improvements of sequencing and assembly methods. Chromosome-

level assemblies are generally haploid, regardless of the ploidy of the genome. To obtain a haploid

assembly of a multiploid (i.e. diploid or polyploid) genome, homologuous chromosomes are collapsed into

one sequence. However, assemblers often struggle to collapse highly heterozygous regions, which leads to

breaks in the assembly and duplicated regions [200]. Furthermore, haploid assemblies provide a partial

representation of multiploid genomes: ideally, multiploid genomes should be phased rather than collapsed

if the aim is to grasp their whole complexity [247].

The combination of low-accuracy long reads, such as Oxford Nanopore Technologies (ONT) reads and

Pacific Biosciences (PacBio) Continuous Long Reads (CLRs), with proximity ligation (Hi-C) reads has

made chromosome-level assemblies accessible for all types of organisms. The latest development of PacBio,

high-accuracy long circular consensus sequencing (CCS) reads (a.k.a. HiFi), is now starting to deliver

highly contiguous phased assemblies [97, 110, 109]. Hi-C scaffolding is commonly used in genome assem-
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bly projects to obtain chromosome-level scaffolds. This approach relies on the interaction frequency in

the genome and these interactions are heightened between closer loci belonging to the same chromosome

[219]. Based on this principle, alleles can be associated using their interaction frequencies.

A first approach to phase assemblies is called trio-binning and uses sequencing data from the individual

and its parents to retrieve haplotypes [248]; yet this method is unavailable when the parents cannot be

identified, or for asexual species. Existing tools are able to use either long reads (Falcon-Unzip [96],

WhatsHap [250]) or Hi-C reads (Falcon-Phase [258], ALLHiC [257]) for phasing assemblies, but they

are limited to phasing local variants or well-identified haplotypes and are not suited for complex, highly

heterozygous genomes. WhatsHap takes as input a collapsed assembly and searches for alternative hap-

lotypes. As collapsing haplotypes can be too difficult for highly heterozygous regions, it seems more

intuitive to phase these assemblies de novo. FALCON-Unzip and FALCON-Phase offer this alternative,

yet they are dependant on the output of the FALCON assembler and cannot be combined with other

assemblers.

We present GraphUnzip, a new tool to phase assemblies using long reads and/or Hi-C. GraphUnzip

implements a radically new approach to phasing that starts from an assembly graph instead of a set of

linear sequences. In an assembly graph, heterozygous regions result in bubbles every time the assem-

bler is unable to collapse the haplotypes or to choose one of them. GraphUnzip "unzips" the graph,

meaning that it separates the haplotypes by duplicating homozygous regions that have been collapsed

and partitioning heterozygous regions into haplotypes. This tool is based on a simple principle that

was implemented in many scaffolders since SSPACE [160]: long-range data (mate-pair reads, long reads,

linked reads, proximity ligation...) provide information on the linkage between contigs that can be used

to group and orient them into scaffolds. As GraphUnzip takes as input and produces as output assembly

graphs, it only connects contigs that are actually adjacent in the genome and yields gap-less scaffolds, i.e.

supercontigs. GraphUnzip is compatible with any assembler that produces an assembly graph. We tested

GraphUnzip on the genomes of the human HG00733 and the potato Solanum tuberosum. GraphUnzip is

available at github.com/nadegeguiglielmoni/GraphUnzip.
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3.2 Methods

3.2.1 Inputs

GraphUnzip requires an assembly graph in GFA (Graphical Fragment Assembly) format. The Hi-C input

is a sparse matrix, such as the one obtained when processing the reads with hicstuff [260]. hicstuff also

provides a module to convert other file formats (e.g. cool, a common Hi-C format) to a sparse matrix.

The long reads are mapped to the assembly graph using GraphAligner [261].

3.2.2 Overview of GraphUnzip

In an assembly graph, contigs that are inferred to be adjacent or to overlap in the assembly are connected

with edges. However, some of these connections between contigs may be artefacts. To discriminate

correct edges from erroneous ones, GraphUnzip relies on long reads and/or Hi-C data. These data are

translated into interactions between contigs: the strength of interaction between two contigs is defined

as the number of long reads bridging both contigs when using long reads as input; and as the number of

Hi-C contacts between the two contigs when using Hi-C as input. In both cases, a strong interaction is

a sign of proximity on the genome.

GraphUnzip first builds one or two interaction matrices containing all pairwise interactions between con-

tigs, depending on whether long-read data, Hi-C data or both are provided (Figure 3.1). In the next step,

GraphUnzip iteratively reviews all contigs and their edges. The strength of an edge i is computed based

on the strength of interaction between the contigs it connects. A high strength supports the reality of

the link, while a low strength may signal an artefactual edge. When a contig has several edges at one of

its extremities, these edges are compared in a pairwise fashion. This comparison uses two user-provided

thresholds: the rejection threshold TR and the acceptance threshold TA, where TR < TA. Considering

two edges X and Y and their respective strengths i(X) and i(Y ), if i(X) < i(Y ), Y is considered strong;

if i(X)/i(Y ) < TR, then X is considered weak, else, if TR ≤ i(X)/i(Y ) < TA, X is flagged as dubious. X

is labelled as strong when i(X)/i(Y ) ≥ TA. The algorithm thereafter considers weak edges as artefacts

that do not actually exist in the genome, whereas strong edges represent true connections. If both long

reads and Hi-C input data are provided, strengths based on long reads are used first because they are

more reliable locally, and strengths based on Hi-C are only used if some edges are flagged as dubious.
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Edges identified as weak in the previous calculation are removed. Then, every contig that has more than

one strong edge and no dubious edge at one end is duplicated as many times as the number of these

strong edges. Such contigs are typically collapsed homozygous regions that need to be present in several

copies to be included in every haplotypes. All the copies retain the edges of the original contig at its

other end. This entails that the duplication of contigs creates many new (and potentially artefactual)

edges. Contigs that are unambiguously linked are merged in supercontigs that will be handled as regular

contigs thereafter.

When assessing the strength of two putative edges (S1,S2) and (S1,S3) connecting the supercontigs S1,

S2, and S3, the strength of these edges are calculated as the strength of interaction between contigs in

S1 and contigs present in S2 but not in S3 (and vice versa). For example, in the third step of Figure

3.1, when trying to associate supercontig a-b to either d-e or d’-f, only the interactions between the

supercontig a-b and the contigs e and f are considered. Interactions between the supercontig a-b and

the contigs d and d’ are not considered in the calculation because d and d’ actually originate from the

duplication of a collapsed region.

All contigs and edges are iteratively processed s times to phase the assembly, where s is a user-provided

parameter. Because extremely long contigs tend to share a significant number of Hi-C contacts even if

they are not adjacent, we observed that in extreme cases the algorithm could join two chromosomes by

their telomeric ends. The Hi-C matrix is used at the end of the process to detect such chimeric connec-

tions in the assembly graph, based on low Hi-C interactions, and break them.

3.2.3 Homo sapiens HG00733 assemblies

We used HiFi, ONT and Hi-C reads from [253]. HiFi reads were assembled using hifiasm with the param-

eter -l 0, and the resulting p_utg assembly graph was used for downstream analyses. All HiFi reads

and the ONT reads longer than 30 kb were mapped to the assembly using GraphAligner with the pa-

rameter -x vg. Hi-C reads were processed with hicstuff using the parameters --aligner bowtie2

--enzyme 200 --iterative. GraphUnzip was run with parameters -accept 0.10 -reject 0.05

--exhaustive --whole_match --minimum_match 0.8. All non-ambiguous paths in the GFA were

merged using Bandage. The assemblies were compared to the DipAsm reference [262] using QUAST

v5.0.2 [240] with the parameters -m 0 -eukaryote -large -min-identity 99.9.
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Figure 3.1: Description of GraphUnzip: workflow of the program (left), interaction matrix (top right), and overview of the
algorithm to discriminate links (bottom right). This example algorithm analyzes the potential links between the segments a, b, c,
d, e, f, g. The red arrows represent the intensity of interactions between the segments, computed based on the values in the matrix.
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3.2.4 Solanum tuberosum assemblies

HiFi, ONT and Hi-C reads published in [254] were retrieved from the NCBI Sequence Read Archive

with the Bioproject accession number PRJNA573826. The HiFi reads were assembled using hifiasm

with the parameter -l 0, and the p_utg assembly graph was used for downstream analyses. All HiFi

reads and the ONT reads longer than 25 kb were mapped to the assembly using GraphAligner with the

parameter -x vg. Hi-C reads were processed with hicstuff using the parameters --aligner bowtie2

--enzyme MboI --iterative. GraphUnzip was run with parameters -accept 0.40 -reject 0.10

--exhaustive --whole_match --minimum_match 0.8. All non-ambiguous paths in the GFA were

merged using Bandage. To check the output of GraphUnzip, we mapped the published assembly to the

assembly graph using GraphAligner. We used calN50 (available at github.com/lh3/calN50) to compute

the NG50 against the published assembly size of 1.67 Gb [254]. BUSCO v4 [30] was run with parameters

-m genome -long against the dataset viridiplantae odb10.

3.2.5 Computational performance

RAM usage and CPU time were measured with the command /usr/bin/time -v on a desktop computer

with 128 GB of RAM and a i9-9900X 3.5 GHz processor.

3.3 Results

3.3.1 Homo sapiens HG00733

Table 3.1: Assembly metrics of Homo sapiens HG00733 compared with the DipAsm reference.

Assembly GraphUnzip Size N50 NA50 Misassemblies CPU RAM
Reference - 5.9 Gb 27.8 Mb 27.8 Mb 84 - -
hifiasm - 5.5 Gb 397 kb 343 kb 9146 - -

ONT + Hi-C 6.2 Gb 1.5 Mb 1.2 Mb 8091 33min 46s 23.5 GB

We compared the hifiasm + GraphUnzip assembly of the human HG00733 genome with a published

reference obtained using DipAsm, based on the N50, the NA50 and the number of misassemblies. The

N50 represents the contiguity of the assembly: it is defined as the length of the largest contig for which

50% of the assembly size is contained in contigs of equal or greater length. The NA50 is the N50 of the
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assembly broken at every misassembly (compared to a reference). GraphUnzip increased the size of the

hifiasm assembly (from 5.5 Gb to 6.2 Gb), and the N50 rose as well (from 397 kb to 1.2 Mb) (Table 3.1).

The NA50 was improved while the number of misassemblies decreased in the GraphUnzip supercontigs.

Notably, the reference assembly size is only 5.9 Gb, while the GraphUnzip assembly reaches 6.2 Gb,

which is the expected size for a phased human genome.

We also tried an assembly of the HiFi reads with Flye, but the draft assembly was only 2.9 Gb, little

below half the expected size, which indicates that the haplotypes were nearly completely collapsed. A

good candidate assembly for GraphUnzip should have uncollapsed heterozygous regions, as GraphUnzip

is not able to retrieve a missing haplotype in collapsed heterozygous regions and can only duplicate the

collapsed region, leading in that case to a suboptimal result.

3.3.2 Solanum tuberosum

Table 3.2: Assembly metrics of Solanum tuberosum. The NG50 values were computed based on an
estimated genome size of 1.67 Gb.

Assembly GraphUnzip Size NG50 BUSCO CPU RAMSingle Dup.
Reference - 1.67 Gb 66.1 Mb 21.6% 76.9% - -
hifiasm - 1.51 Gb 2.2 Mb 21.2% 77.9% - -

HiFi 1.69 Gb 3.7 Mb 7.1% 91.5% 16s 0.2 GB
ONT 1.67 Gb 3.4 Mb 6.8% 92.2% 52s 0.2 GB
Hi-C 1.69 Gb 5.6 Mb 7.8% 91.5% 38min 27s 11.5 GB
HiFi + Hi-C 1.69 Gb 4.9 Mb 9.4% 89.4% 39min 59s 11.5 GB
ONT + Hi-C 1.73 Gb 5.9 Mb 7.3% 91.8% 39min 10s 11.5 GB

We tested GraphUnzip on the diploid genome of the potato Solanum tuberosum RH89-039-16, for which

a phased assembly of 1.67 Gb [254] was recently published. We assembled the HiFi reads with hifiasm

and then ran GraphUnzip using the HiFi, ONT and/or Hi-C reads. The draft assembly was 1.51 Gb,

and after phasing with GraphUnzip, the assembly size rose to 1.67-1.73 Gb (Table 3.2). In this case,

we compared the NG50s, a value similar to N50 but based on a reference genome size rather than the

assembly size. GraphUnzip increased the contiguity: from 2.2 Mb, the NG50 reached 3.4 to 5.9 Mb. The

combination of both ONT and Hi-C reads yielded the highest NG50. Hi-C reads improved the contiguity

better than long reads. The overall BUSCO completeness of the GraphUnzip supercontigs was slightly

improved compared to the reference: 98.6-99.3% against 98.5% for the reference, and the number of

duplicated BUSCO features was higher as well (89.4-92.2% against 76.9%). We mapped the published

assembly to the GraphUnzip assembly graph obtained when using Hi-C and ONT reads. We found that
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there were no differences in phasing between the two assemblies. However, some regions that were phased

by hifiasm and GraphUnzip were collapsed in the published assembly. This result, in conjunction with

the higher number of duplicated features, indicates that GraphUnzip led to an improved phased assembly.

3.3.3 Computational performance

For both the human and Solanum tuberosum genomes, GraphUnzip required limited computational re-

sources as it ran in less than 1 hour on a single thread and used up to 23.5 GB of memory. For Solanum

tuberosum, the run time was also shorter when using only long reads (less than a minute). The longer

run time when using Hi-C reads was due to the building of the interaction matrix. As this interaction

matrix is outputted by the program, this file can be reused for other runs, which will consequently finish

faster. Therefore, users can try several sets of parameters to optimize the result, with short runtimes.

3.4 Conclusion

GraphUnzip is a flexible tool that can phase assemblies of high-accuracy long reads with long reads

and/or Hi-C. A limitation of GraphUnzip is that it does not necessarily reach chromosome-level assem-

blies like most Hi-C scaffolders, but it aims instead to produce more contiguous gap-less supercontigs by

fully exploiting assembly graphs. As genome projects now usually include long reads and Hi-C to obtain

chromosome-level assemblies, GraphUnzip can easily be integrated in assembly projects after assembly

to obtain de novo phased assemblies for non-model organisms.
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Chapter 4

Scaffolding assemblies with Hi-C

Recent genome assembly projects generally aim to achieve chromosome-level scaffolds, and Hi-C scaffold-

ing is a major step to reach this goal. This method has been included successfully in many studies for

bacteria, yeasts, plants, animals, and is part of assembly pipelines for several consortia, such as the Ver-

tebrate Genome Project [263] and the Darwin Tree of Life [35]. instaGRAAL is an overhauled, improved

version of GRAAL [184], a Hi-C scaffolder inspired by Gibbs sampling, a MCMC-based approach, to itera-

tively test and ponder arrangements of DNA fragments until the resulting organization converges towards

an assembly with a higher likelihood based on contact frequencies. Two main aspects were improved:

first, instaGRAAL, through the use of sparse contact maps, is more computationally efficient, enabling it

to handle larger genomes (over 1 Gb); second, it introduces a module to automatically refine the scaffolds

based on the input contigs, and reduce local misassemblies. In the following paper, instaGRAAL was

used to assemble the brown algae Desmarestia herbacea and Ectocarpus sp., and benchmarked against

SALSA2 [189] on a human; it systematically yielded chromosome-level scaffolds.

I contributed to testing instaGRAAL, in particular regarding its application to the human genome. I

also improved the documentation to make it more accessible for new users, and contribute since then to the

maintenance of the program on the github account of Romain Koszul’s lab github.com/koszullab/instaGRAAL.
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Abstract

Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs
during genome assembly, resulting in chromosome-level assemblies. Because few
robust programs are available for this type of data, we developed instaGRAAL, a
complete overhaul of the GRAAL program, which has adapted the latter to allow
efficient assembly of large genomes. instaGRAAL features a number of improvements
over GRAAL, including a modular correction approach that optionally integrates
independent data. We validate the program using data for two brown algae, and
human, to generate near-complete assemblies with minimal human intervention.

Keywords: Ectocarpus, Hi-C scaffolding, Hi-C, genome assembly, MCMC, GPU,
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Background
Continuous developments in DNA sequencing technologies aim at alleviating the tech-

nical challenges that limit the ability to assemble sequence data into full-length chro-

mosomes [1–3]. Conventional assembly programs and pipelines often encounter

difficulties to close gaps in draft genome assemblies introduced by regions enriched in

repeated elements. These assemblers efficiently generate overlapping sets of reads (i.e.,

contiguous sequences or contigs) but encounter difficulties linking these contigs to-

gether into scaffolds. At the chromosome level, these programs often incorrectly orient

DNA sequences or predict incorrect numbers of chromosomes [4]. The development

of long-read sequencing technology and accompanying assembly programs has consid-

erably alleviated these difficulties, but some gaps remain nevertheless in genome scaf-

folds, notably at the level of long repeated/low-complexity DNA sequences. In

addition, long-read-based assemblies are associated with increased error rate among

long reads, which can result in misassemblies [3]. Consequently, many currently

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
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permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.
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available genomes still contain structural errors, as well as gaps that need to be bridged

to reach a chromosome-level structure.

These limitations have been partially addressed thanks to active support from the

community and competitions such as GAGE [5] or the Assemblathon [6]. However,

there is as yet no systematic, reliable workflow of producing near-perfect genome as-

semblies of guaranteed optimal best quality without a considerable amount of empiric

parameter adjustment and manual post-processing evaluation and correction [7].

Recent sequencing projects have typically relied on a combination of independently

obtained data such as optical mapping, long-read sequencing, and chromosomal con-

formation capture (3C, Hi-C) to obtain large genome assemblies of high accuracy. The

latter procedure derives from techniques aiming at recovering snapshots of the higher-

order organization of a genome [8, 9]. When applied to genomics, Hi-C-based methods

are sometimes referred to as proximity ligation approaches, as they quantify and exploit

physical contacts between pairs of DNA segments in a genome to assess their collinear-

ity along a chromosome, and the distance between the segments [10]. Early studies

using control datasets demonstrated that Hi-C can be used to scaffold and/or correct a

wide range of eukaryotic DNA regions [11–14], i.e. stretches of bp, whether they be

small-scale contigs or full chromosomes. The Hi-C scaffolder GRAAL (Genome Re-

Assembly Assessing Likelihood from 3D) is a probabilistic program that uses a Markov

Chain Monte Carlo (MCMC) approach. This tool was able to generate the first

chromosome-level assembly of an incomplete eukaryote genome [13] by permuting

DNA segments according to their contact frequencies until the most likely scaffold was

reached (see also [15]). Since these proof of concept studies, the assemblies of many ge-

nomes of various sizes from eukaryotes [16–18] and prokaryotes [19] have been signifi-

cantly improved using scaffolding approaches exploiting Hi-C data.

Although GRAAL was effective on medium-sized or small (< 100Mb) eukaryotic ge-

nomes such as that of the fungus Trichoderma reesei [20], scalability limitations were

encountered when tackling genomes whose complexity and size required significant

computer calculation capacity. Furthermore, as was also observed with other Hi-C-

based scaffolders, the raw output of GRAAL includes a number of caveats that need to

be corrected manually to obtain a finished genome assembly. To overcome these limi-

tations, we developed instaGRAAL, an enhanced, open-source program optimized to

reduce the computational load of chromosome scaffolding and that includes a misas-

sembly “correction” module installed alongside the scaffolder. Moreover, instaGRAAL

can optionally exploit available genetic linkage data.

We applied instaGRAAL to three genomes of increasing size: in the first two runs,

and in order to demonstrate its added value, we applied the program to the 214-Mb

and 500-Mb haploid genomes of the brown alga Ectocarpus sp. [21, 22] and Desmares-

tia herbacea (unpublished), respectively. Brown algae are a group of complex multicel-

lular eukaryotes that have been evolving independently from animal and land plants for

more than a billion years. Ectocarpus sp. was the first species within the brown algal

group to be sequenced (reference v1 assembly [22]), as a model organism to investigate

multiple aspects of brown algal biology including the acquisition of multicellularity, sex

determination, life cycle regulation, and adaptation to the intertidal [22–25]. A range of

genetic and genomic resources have also been established for Ectocarpus sp. including

a dense genetic map generated with 3588 SNP markers (v2 assembly) [26], which was
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used to comprehensively validate both a GRAAL (v3) and the instaGRAAL (v4) assem-

blies. In a third run, we benchmarked instaGRAAL using the human genome, to con-

firm that our software readily scales to larger (Gb-sized) and more complex assemblies,

an important requirement to tackle the next era of assembly projects.

Results
From GRAAL to instaGRAAL

The core principles of GRAAL and instaGRAAL are similar: both exploit a MCMC ap-

proach to perform a series of permutations (insertions, deletions, inversions, swapping,

etc.) of genome fragments (referred to here as “bins,” see the “Material and methods”

section) based on an expected contact distribution [13]. The parameters (A, α, and δ)

that describe this contact distribution are first initialized using a model inspired by

polymer physics [27]. This model describes the expected contact frequency P(s) be-

tween two loci separated by a genomic distance s (when applicable):

P sð Þ ¼ max A � s−α; δð Þ : ∈tracontacts
δ : intercontacts

�

The parameters are then iteratively updated directly from the real scaffolds once their

sizes increase sufficiently [13]. Each bin is tested in several positions relative to putative

neighboring fragments. The likelihood of each arrangement is assessed from the simu-

lated or computed contact distribution, and the arrangement is either accepted or

rejected [13]. This analysis is carried out in cycles, with a cycle being completed when

all the bins of the genome have been processed in this way. Any number of cycles can

be run iteratively, and the process is usually continued until the genome structure

ceases to evolve, as measured by the evolution of the parameters of the model. The

core functions of the program use Python libraries, as well as the CUDA programming

language, and therefore necessitate a NVIDIA graphics card with at least 1 Gb of

memory.

The technical limitations of GRAAL were (1) high memory usage when handling Hi-

C data for large genomes (i.e. over 100Mb), (2) difficulties when installing the software,

and (3) the need to adjust multiple ad hoc parameters to adapt to differences in gen-

ome size, read coverage, Hi-C contact distribution, specific contact features, etc. insta-

GRAAL (https://github.com/koszullab/instaGRAAL) addresses all these shortcomings.

First, we rewrote the memory-critical parts of the program, such as permutation sam-

pling and likelihood calculation, so that they are computed using sparse contact maps.

We reduced the software’s dependency footprint and added detailed documentation,

deployment scripts, and containers to ease its installation. Finally, we opened up mul-

tiple hard-coded parameters to give more control for end-users while improving the

documentation on each of them and selecting relevant default parameters that can be

implemented for a wide range of applications (see options online and the “Discussion”

section). Overall, these upgrades result in a program that is lighter in resources, more

flexible, and more user-friendly.

Other problems encountered with the original GRAAL program included (1) the

presence of potential artifacts introduced by the permutation sampler, such as spurious

permutations (e.g. local inversions) or incorrect junctions between bins; (2) difficulties

with the correct integration of other types of data such as long reads; and (3) difficulties
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with handling sequences that were either too short, highly repeated, or with low cover-

age. We addressed these points by identifying and putting aside these problematic se-

quences during a filtering step. These sequences are subsequently reinserted into the

final scaffolds, whenever possible (see the “Material and methods” section), with the

help of linkage data when available. Overall, when compared to the raw GRAAL out-

put, the resulting “corrected” instaGRAAL assemblies were significantly more complete

and more faithful to the actual chromosome structure.

Scaffolding of the Ectocarpus sp. chromosomes with instaGRAAL

To test and validate instaGRAAL, we generated an improved assembly of the genome

of the model brown alga Ectocarpus sp. A v1 genome consisting of 1561 scaffolds gen-

erated from Sanger sequence data is available [22]. A Hi-C library was generated from

a clonal culture of a haploid partheno-sporophyte carrying the male sex chromosome

using a GC-neutral restriction enzyme (DpnII). The library was paired-end sequenced

(2 × 75 bp—the first ten bases were used as a tag and to remove PCR duplicates) on a

NextSeq apparatus (Illumina). Of the resulting 80,521,968 paired-end reads, 41,288,678

read pairs were aligned unambiguously along the v1 genome using bowtie2 (quality

scores below 30 were discarded), resulting in 2,554,639 links bridging 1,806,386 restric-

tion fragments (Fig. 1a) (see the “Material and methods” section for details on the ex-

perimental and computational steps). The resulting contact map in sparse matrix

format was then used to initialize instaGRAAL along with the restriction fragments

(RFs) of the reference genome (Fig. 1a, b) (see Additional file 1: Table S1 for an ex-

ample of sparse file matrix).

Given the probabilistic nature of the algorithm, we evaluated the program’s

consistency by running it three times with different resolutions. Briefly, we filtered out

RFs that were shorter than 50 bp and/or whose coverage was one standard deviation

below the mean coverage. Then, we sum-pooled (or binned) the sparse matrix by

groups (or bins) of three RFs five times, recursively (Fig. 1a, b). Each recursive instance

of the sum-pooling is subsequently referred to as a level of the contact map. A level de-

termines the resolution at which permutations are being tested: the higher the level,

the lower the resolution, the longer the sequences being permuted and, consequently,

the faster the computation. The binning process is shown in Fig. 1b. Regarding Ectocar-

pus sp., we found that level 4 (bins of 81 RFs) was an acceptable balance between high

resolution and fast computation on a desktop computer with a GeForce GTX TITAN

Z graphics card. Moreover, whether instaGRAAL was run at level 4, 5, or 6 (equivalent

to bins of 81, 243, and 729 RFs, respectively), all assemblies quickly (~ 6 h) converged

towards similar genome structures (Fig. 2a).

We plotted the evolution of the log-likelihood and of model parameters as a function

of the number of arrangements performed (iterations) (Fig. 2b). The interquartile

ranges (IQR, used to indicate stability in Marie-Nelly et al. [13]) of all parameters de-

creased to near-zero values at the end of each scaffolding run, indicating that they all

stably converged and that the final structures oscillated near the final values in negli-

gible ways. More qualitatively, each run led to the formation of 27 main scaffolds

(Fig. 2a) with the 27th largest scaffold being more than a hundred times longer than

the 28th largest one (Fig. 3, Additional file 1: movie S1). Each of the 27 scaffolds was
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between four and ten times longer than the combined length of the remaining se-

quences (Fig. 3). This strongly suggests that the 27 scaffolds correspond to chromo-

somes, a number consistent with karyotype analyses [28]. Taken together, these results

indicate that instaGRAAL successfully assembled the Ectocarpus sp. genome into

chromosome-level scaffolds. As the supplementary movie suggests, scaffold-level con-

vergence is visible after only a few cycles, indicating that instaGRAAL is able to quickly

determine the global genome structure most likely to fit the contact data. The remain-

der of the cycles is devoted to intra-chromosomal refinement.

Correcting the chromosome-level instaGRAAL assembly of the Ectocarpus sp. genome

instaGRAAL also includes a number of procedures that aim to correct some of the

modifications introduced into the input contigs from the original assembly by the Hi-C

scaffolding (Fig. 4). We implemented it as a separate “correction” module that is auto-

matically installed alongside the scaffolder.

These modifications principally involve discrete inversions or insertions of DNA seg-

ments (typically corresponding to single bins or RFs) (see also [13]). Such alterations

are inherent to the statistical nature of instaGRAAL, which will occasionally improperly

permute neighboring bins because of the high density of contacts between them. How-

ever, we reasoned that input contigs from the original assembly, especially those

Fig. 1 Matrix generation and binning process. a From left to right: (i) the input data to be processed, and
paired-end reads to be mapped onto the Ectocarpus. sp. reference v1 genome assembly; (ii) raw contact
map before binning—each pixel is a contact count between two restriction fragments (RF); and (iii) raw
contact map after binning—each pixel is a contact between a determined number of RFs (see b). b
Schematic description of one iteration of the binning process over 10 restriction fragments (arrows). From
left to right: (i) initial contact map, each pixel is a contact count between two RFs; (ii) filtering step—RFs
either too short or presenting a read coverage below one standard deviation below the mean are
discarded; (iii) binning step (1 bin = 3RFs)—adjacent RFs are pooled by three, with sum-pooling along all
pixels in a 3 × 3 square; and (iv) binning step (1 bin = 9 RFs)—adjacent RFs are pooled by nine
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generated for Ectocarpus sp. with Sanger sequencing, were unlikely to contain misas-

semblies. Therefore, we decided to favor input contigs’ structure whenever local con-

flicts arose. These are part of a broader set of assembly errors that we detected by

aligning the v1 assembly on the instaGRAAL scaffolds and analyzing the mapping re-

sults using QUAST. The v1 assembly was used as a reference by QUAST to identify

potential errors introduced by instaGRAAL when scaffolding the v1 assembly. We cor-

rected these errors as follows: first, all bins processed by instaGRAAL that

Fig. 2 Evolution of the Ectocarpus sp. contact map, the parameters of the polymer model, and the log-
likelihood of the contact map. a The raw contact map before (upper part) and after (bottom part)
scaffolding using instaGRAAL. Scaffolds are ordered by size. b Evolution of three parameters of the polymer
model (exponent, pre-factor, mean trans-contacts) and the log-likelihood as a function of iterations

Fig. 3 Size distribution (log scale) of the final Ectocarpus sp. scaffolds after 250 instaGRAAL iterations. After
filtering, and prior to correction, 27 main scaffolds (red bars) or putative chromosomes were obtained. The dotted
green horizontal line represents the proportion of the filtered genome that was not integrated into the main 27
scaffolds and represents less than 0.6% of the initial assembly. Each scaffold presents, after normalization, a high-
quality Hi-C profile with features that are typical of eukaryotic genomes (Additional file 1 Fig. S1)
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belonged to the same input contig were constrained to their original orientation

(Fig. 4). If an input contig was split across multiple scaffolds, the smaller parts of this

contig were relocated to the largest one, respecting the original order and orientation of

the bins. Then, we reinserted whenever possible sequences that had been filtered out prior

to instaGRAAL processing (e.g., contig extremities with poor read coverage; see the

“Material and methods” section and Marie-Nelly et al. [13]) into the chromosome-level

scaffold at their original position in the original input contig. 3,832,980 bp were reinserted

into the assembly this way. These simple steps alleviated artificial truncations of input

contigs observed with the original GRAAL program.

Some filtered bins had no reliable region to be associated with post-scaffolding, be-

cause their initial input contig had been completely filtered before scaffolding. These

sequences, which were left as-is and appended at the end of the genome, were included

into 543 scaffolds spanning 3,141,370 bp, i.e., < 2% of the total DNA. Together, these

steps removed all the misassemblies detected by QUAST.

To further validate the assembly, we exploited an assembly generated by combining

genetic recombination data and the Sanger assembly [21, 26] (“linkage group [LG] v2

assembly”) as well as an assembly generated by running the original GRAAL program

on the original reference v1 genome assembly (“GRAAL v3 assembly”).

We searched for potential translocations between scaffold extremities between the link-

age group v2 assembly and the v3 or v4 assemblies. This comparison, which was imple-

mented as a separate module installed alongside the scaffolder, detected such events in

the uncorrected v3 GRAAL assembly but none in the corrected v4 instaGRAAL assembly.

The corrected instaGRAAL v4 assembly is therefore fully consistent with the genetic re-

combination map data, confirming the efficiency of the approach.

Comparisons with previous Ectocarpus sp. assemblies and validation of the instaGRAAL

assembly

We compared the corrected instaGRAAL v4 assembly with the three earlier assemblies

of the Ectocarpus sp. genome mentioned above (Table 1 and Additional file 1: Table

Fig. 4 Step-by-step correction procedure. Correction procedure (top to bottom): (i) in silico restriction of
the genome and binning, yielding a set of bins; (ii) reordering of all bins into scaffolds without taking into
account their input contig of origin; typically, groups of bins from the same input contig naturally
aggregate, but some bins get scattered to other scaffolds (e.g., bin 13, pink arrow), while others will be
“flipped” with respect to the original assembly (e.g., bin 4, red arrows); (iii) reconstruction of the original
input contigs by relocating scattered bins next to the biggest bin group; and (iv) bins in the original input
contigs are oriented according to their original consensus orientation

Baudry et al. Genome Biology          (2020) 21:148 Page 7 of 22
CHAPTER 4. SCAFFOLDING ASSEMBLIES WITH HI-C

92



S2): (1) the original v1 genome assembly generated using Sanger sequencing data [22],

which was assumed to be highly accurate but fragmented (1561 scaffolds); (2) the link-

age group [LG] v2 assembly; and (3) the original GRAAL program v3 assembly.

We aligned the corrected instaGRAAL (v4), LG (v2), and GRAAL (v3) assemblies

onto the original v1 assembly to detect misassemblies and determine whether the gen-

ome annotations (362,919 features) were conserved. We then validated each assembly

using genetic linkage data (see the “Material and methods” section). For each assembly,

we computed the following metrics: the number of misassemblies, ortholog complete-

ness, and cumulative length/Nx distributions (Table 1). These assessments were carried

out using BUSCO [29] for ortholog completeness (Additional file 1: Fig. S1) and

QUAST-LG’s validation pipeline [30] to search for misassemblies introduced in the

scaffolds. QUAST-LG is an updated version of the traditional QUAST pipeline specific-

ally designed for large genomes and is a state-of-the-art software for assembly evalu-

ation and comparison. We used QUAST to verify that annotations transferred

successfully from the reference v1 assembly to the instaGRAAL v4 assembly and that

no structural discrepancy (a.k.a. misassemblies) was found in the instaGRAAL v4 as-

sembly with respect to the reference v1 assembly. We followed the terminology used by

both programs, such as the BUSCO definition of ortholog and completeness, as well as

QUAST’s classification system of contig and scaffold misassemblies.

The corrected instaGRAAL assembly was of better quality than both the LG v2 and

GRAAL v3 assemblies (Table 1 and Additional file 1: Fig. S2). The corrected assembly

incorporated 795 of the v1 genome scaffolds (96.8% of the sequence data) into the 27

chromosomes based on the high-density genetic map [21], compared to 531 for the LG

v2 assembly (90.5% of the sequence data). Moreover, this assembly contained fewer

misassemblies and was more complete in terms of BUSCO ortholog content. For some

metrics, the differences were marginal, but always in favor of the corrected insta-

GRAAL v4 assembly. BUSCO completeness was similar (76.2%, 76.9%, and 77.6% for

the GRAAL v3 assembly, LG v2, and corrected instaGRAAL v4 assemblies, respect-

ively) (Additional file 1: Fig. S2) and an improvement over the 75.9% of the v1 assem-

bly. These absolute numbers remain quite low, presumably because of the lack of a set

of orthologs well adapted to brown algae.

Table 1 Comparison of Nx, NGx (i.e., Nx with respect to the original reference v1 genome
assembly; in bp), and BUSCO completeness for the different assemblies (linkage group v2, GRAAL
v3, and corrected instaGRAAL v4) of the Ectocarpus sp. genome

Reference v1
assembly

Linkage group v2
assembly

v3
GRAAL

v4 corrected
instaGRAAL

N50 497,380 6,528,661 6,867,074 6,813,345

NG50 497,380 6,528,661 6,725,743 6,813,345

N75 233,412 5,613,161 5,693,784 5,686,617

NG75 233,412 5,613,161 5,672,622 5,686,617

L50 118 12 11 11

LG50 118 12 12 11

L75 258 19 18 19

LG75 258 19 19 19

BUSCO completeness
(%)

75.9 76.9 76.24 77.56
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All quantitative metrics, such as N50, L50, and cumulative length distribution, in-

creased dramatically when compared with the reference genome v1 assembly (Table 1).

N50 increased more than tenfold, from 496,777 bp to 6,867,074 bp after the initial scaf-

folding and to 6,942,903 bp after the correction steps. 99.4% of the sequences in the

1018 contigs were integrated into the 27 largest scaffolds after instaGRAAL processing.

Overall, the analysis indicated that many of the rearrangements found in the LG v2 as-

sembly were potentially errors and that both GRAAL and instaGRAAL were efficient at

placing large regions where they belong in the genome, albeit less accurately for

GRAAL and in the absence of correction. These statistics underline the importance of

the post-scaffolding correction steps and the usefulness of a program that automates

these steps.

Comparison between the Ectocarpus sp. instaGRAAL and linkage group assemblies

Compared to the LG v2 assembly, the corrected instaGRAAL v4 assembly lost 23 scaf-

folds but gained 287 that the genetic map had been unable to anchor to chromosomes

(Additional file 1: Table S2). We observed few conflicts between the two assemblies,

and the linkage markers are globally consistent with the instaGRAAL scaffolds

(Additional file 1: Fig. S3). One major difference is that instaGRAAL was able to link

the 4th and 28th linkage groups (LG) that were considered to be separate by the gen-

etic map [26] because of the limited number of recombination events observed. The fu-

sion in the instaGRAAL v4 assembly is consistent with the fact that the 28th LG is the

smallest, with only 54 markers over 41.8 cM and covering 3.8Mb. The 28th LG has a

very large gap which might reflect uncertainty in the ordering of the markers. Interest-

ingly, this gap is located at one end of the group, precisely where instaGRAAL now de-

tects a fusion with the 4th LG. In addition, the fact that there is no mix between the

4th and 28th LGs on the merged instaGRAAL (pseudo) chromosome but rather a sim-

ple concatenation suggests that the genetic map was unsuccessful in joining those two

LGs, but that instaGRAAL correctly assembled the two LGs (see Additional file 1:

Table S3 for correspondences between LGs and instaGRAAL super scaffolds).

instaGRAAL was also more accurate than the genetic map in orienting scaffolds

(Additional file 1: Table S2). Among the scaffolds that were oriented in the LG v2 as-

sembly, about half of the “plus” orientated were actually “minus” and vice versa. The

limited number of markers detected in the scaffolds anchored to the genetic map was

likely the reason for this high level of incorrect orientations.

Scaffolding of the Desmarestia herbacea genome

To test and validate instaGRAAL on a second, larger genome, we generated an assem-

bly of the haploid genome of D. herbacea, a brown alga that had not been sequenced

before. We set up the assembly pipeline and subsequent scaffolding from raw sequen-

cing reads to assess the robustness of instaGRAAL with de novo, non-curated data.

The pipeline proceeded as follows: first, we acquired 259,556,174 short paired-end

shotgun reads (Illumina HiSeq2500 and 4000) as well as 1,353,202 long reads generated

using PacBio and Nanopore (about 150× short reads and 15× long reads). Sequencing

reads were processed using the hybrid MaSuRCA assembler (v3.2.9) [31], yielding 7743

contigs representing 496Mb (Table S4). We generated Hi-C data following a protocol
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similar to that used for Ectocarpus sp. (see the “Material and methods” section). Briefly,

101,879,083 reads were mapped onto the hybrid assembly, yielding 7,649,550 contacts

linking 1,359,057 fragments. We then ran instaGRAAL using similar default parameters

to that used for Ectocarpus sp., for the same number of cycles. We corrected the result-

ing scaffolds. The scaffolding process resulted in 40 scaffolds larger than 1Mb

(Additional file 1: Fig. S4, S5, S6), representing 98.1% of the initial, filtered scaffolding

and 89.3% of the total initial genome after correction and reintegration. The exact

number of chromosomes in D. herbacea is unknown but was estimated to be ~ 23, and

possibly up to 29, based on cytological observations [32]. Most (35) of the scaffolds

generated by instaGRAAL were syntenic with the 27 Ectocarpus sp. scaffolds. Among

the remaining five scaffolds, one corresponded to the genome of an associated bacter-

ium, and two to large regions with highly divergent GC content (37 and 40% vs. 48%

for the rest of the genome) and no predicted D. herbacea genes. Overall, instaGRAAL

successfully scaffolded the D. herbacea genome, although the final number of scaffolds

remained slightly higher than the estimated number of chromosomes in this species.

Comparisons with existing methods

To date, only a limited number of Hi-C-based scaffolding programs are publicly avail-

able, and as far as we can tell, no detailed comparison has been performed between the

existing programs to assess their respective qualities and drawbacks. In an attempt to

benchmark instaGRAAL, we ran SALSA2 [33] and 3D-DNA on the same Ectocarpus

sp. v1 and Desmarestia herbacea reference genome and Hi-C reads. 3D-DNA is a scaf-

folder that was hallmarked with the assembly of Aedes aegypti, and SALSA2 is a recent

program with a promising approach that directly integrates Hi-C weights into the as-

sembly graph. For Ectocarpus sp., SALSA2 ran for nine iterations and yielded 1042

scaffolds, with an N50 of 6,552,506 (L50 = 11). Its BUSCO completeness was 77.6%, a

level identical to that obtained with instaGRAAL. Overall, the metrics were satisfactory

but SALSA2 was outperformed by instaGRAAL post-correction. The contact map of

the resulting SALSA2 assembly displayed noticeably unfinished scaffolds (Add-

itional file 1 Fig. S7 and S8). This, coupled with a lower N50 value, suggests that insta-

GRAAL is more successful at merging scaffolds when appropriate.

We computed similar size and completeness statistics for the final instaGRAAL D.

herbacea assembly and compared these to the values obtained with SALSA2 and 3D-

DNA. We also mapped the Hi-C reads onto all three final assemblies in order to quali-

tatively assess the chromosome structure. The results are summarized in Table S4.

Briefly, statistics across assemblies were similar; the corrected instaGRAAL assembly

had 73% BUSCO completeness, consistent with the values of 73.6% and 70.3% obtained

for SALSA2 and 3D-DNA, respectively. However, the Lx/Nx metrics diverged signifi-

cantly; the instaGRAAL assembly N50 was 12.4Mb, similar to SALSA2 (12.8) and

much larger than 3D-DNA (0.2Mb). However, visual inspection of the contact maps

indicated that neither SALSA2 nor 3D-DNA succeeded in fully scaffolding the genome

of Desmarestia herbacea (Additional file 1: Fig. S7). Notably, SALSA2 created a number

of poorly supported junctions to generate chromosomes, whereas 3D-DNA failed to

converge towards any kind of structure. In contrast, although the instaGRAAL final

assembly still contains input contigs that are incorrectly positioned, a coherent
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structure corresponding to 40 scaffolds (including contaminants) emerged (Add-

itional file 1: Fig. S4). One possibility is that the de novo MaSuRCA assembly was low

quality, likely due to the low coverage of long reads, which would have resulted in

alignment errors that disrupted the contact distribution and subsequent Hi-C scaffold-

ing. Another possible explanation for these differences is that it remains difficult to dis-

sect all the options and tunable parameters of these scaffolders, and therefore that we

did not find the optimal combination with respect to the D. herbacea draft assembly.

Nevertheless, these results highlight the robustness of instaGRAAL which was able to

scaffold the D. herbacea genome using default parameters.

Scaffolding the human genome

To confirm that instaGRAAL scaffolds larger (Gb scale) genomes in a reasonable time,

we ran it on the GRCh38 human genome sliced into 300-kb segments (artificial assem-

bly), using a Hi-C dataset generated with an Arima Genomics Hi-C kit (see the

“Material and methods” section). instaGRAAL was run for 15 cycles, with the param-

eter --levels sets to 5, and the scaffolds were subsequently corrected with instaGRAAL-

polish. We obtained a total of 1302 scaffolds, out of which 24 have a length ranging

from 18 to 239Mb. These 24 chromosome-level scaffolds are represented in the con-

tact map in Additional file 1: Fig. S9. These scaffolds have an N50 and an NGA50 of

143Mb, close to the 145Mb obtained for the reference genome (Table 2; the results

from [33] using SALSA2 are included). The dot plot similarity map between the insta-

GRAAL scaffolds and reference genome assembly (Additional file 1: Fig. S10) shows

that the 22 autosomes and the X chromosome were recovered by instaGRAAL (al-

though a few relocations and inversions remain visible). In addition, a 24th scaffold is

visible composed of sequences also in contacts with the other scaffolds, corresponding

to repeated sequences clustering together. instaGRAAL produced scaffolds with a lower

contiguity than those of SALSA2: while their N50 are comparable, the N75 of insta-

GRAAL is significantly lower. However, the number of complete genomic features in

the instaGRAAL scaffolds is largely improved compared to the input fragments, while

SALSA2 only slightly increased this score. These results suggest that although the scaf-

folds of instaGRAAL are less contiguous, they are of better quality. Since these scaffolds

were obtained after only 15 cycles, increasing the number of cycles is very likely to im-

prove the N75. All in all, and though additional work is needed to polish such an out-

put as with all assembly projects, these results confirm that instaGRAAL can efficiently

scaffold large genomes.

Benchmarking of the system requirements

To quantify the improvements made over the original GRAAL program, we ran both

GRAAL and instaGRAAL over the Ectocarpus sp. v1 genome separately and measured

the peak memory load, the graphics card memory load taken by the contact maps, and

the per-cycle runtime as averaged from 20 cycles. The results are summarized in Table

S5. As expected, the memory load on the graphics card is an order of magnitude

smaller for instaGRAAL, while the peak RAM and runtime are several times smaller.

The shrinkage of memory requirements is predicted by the use of sparse data struc-

tures and the fact that our original dataset for Ectocarpus sp. is relatively lean when
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compared to the size of the genome. The origin of the accelerated runtime is less clear

and could be due to multiple contributions to the program, including the use of sparse

data structures but also external contributions (e.g., porting to Python 3, upgraded li-

braries, or more recent CUDA versions).

It is important to note, however, that these results are highly specific to the hardware

and data used here, and due to the many different factors involved, any comparison

should stick to orders of magnitude. Nevertheless, this confirms that instaGRAAL’s im-

provements over GRAAL are very substantial and make it suitable for modern, large

genome assembly projects.

Discussion
instaGRAAL is a Hi-C scaffolding program that can process large eukaryotic genomes.

Below, we discuss the improvements made to the program, its remaining limitations,

and the steps that will be needed to tackle them.

Refinement/correction step

An important improvement of instaGRAAL compared to GRAAL relates to post-

scaffolding corrections. Local misassemblies, e.g., local bin inversions or disruptive

insertions of small scaffolds within larger ones, are an inevitable consequence of the al-

gorithm’s most erratic random walks. These small misassemblies are retained because

flipping a bin does not markedly change the relative distance of an RFs relative to its

neighbors, and because small scaffolds typically carry less signal and therefore exhibit a

greater variance in terms of acceptable positions. Depending on the trust put in the ini-

tial set of contigs, one may be unwilling to tolerate these changes as well as “partial

translocations,” i.e., the splitting of an original contig into two scaffolds. The prevalence

of such mistakes can be estimated by comparing the orientation of bins relative to their

neighbors in the instaGRAAL v4 assembly vs. the original assembly (v1 assembly). Our

assumption is that if a single bin was flipped or split by instaGRAAL, this was likely a

Table 2 Comparison of Nx, NGx (i.e., Nx with respect to the original human reference genome
assembly; in bp), and other QUAST statistics for the different assemblies (artificial assembly,
corrected instaGRAAL, and SALSA2) of the Homo sapiens genome

Reference genome assembly Artificial assembly instaGRAAL SALSA2

N50 145,138,636 300,000 143,373,745 152,389,473

NG50 145,138,636 300,000 143,373,745 152,389,473

N75 107,043,718 300,000 89,477,166 130,103,422

NG75 107,043,718 300,000 82,128,910 103,672,000

L50 9 5165 9 9

LG50 9 5454 9 9

L75 15 7747 15 15

LG75 15 8181 17 17

No. of genomic features 3,625,295
+ 305 part

3,411,473
+ 44,299 part

3,456,227
+ 3836 part

3,415,115
+ 44,127 part

Genome fraction (%) 100.0 94.6 94.6 94.5

No. of misassemblies 9 0 776 438
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mistake that needed to be corrected. Consequently, we chose to remain faithful to the

input contigs of the original v1 assembly, given that the initial Ectocarpus sp. v1 (refer-

ence) genome sequence was based on Sanger reads. Our correction therefore aims at

reinstalling the initial contig structure and orientation while preserving to a maximum

extent the overall instaGRAAL scaffold structure.

In addition, our correction reintegrates into the assembly the bins removed during

the initial filtering process according to their position along the original assembly con-

tigs. Most filtered bins corresponded to the extremities of the original contigs, because

their size depended on the position of the restriction sites within the contig, or because

they consisted of repeated sequences with little or no read coverage. The tail filtering

correction step inserts these bins back at the extremities of these contigs in the insta-

GRAAL assembly.

The combination of a probabilistic algorithm with a deterministic correction step

provides robustness to instaGRAAL. First, the MCMC step identifies, with few prior as-

sumptions, a high-likelihood family of genome structures, almost always very close to

the correct global scaffolding. The correction step combines this result with prior as-

sumptions made about the initial contig structures generated through robust, estab-

lished assembly programs, refining the genomic structure within each scaffold. To give

the user a fine-grained degree of control over our correction procedures, the imple-

mentation into instaGRAAL is split into independent modules that each assume about

the initial contig structure necessary to perform the correction: the “reorient” module

assumes that the initial contigs do not display inversions, and the “rearrange” module

assumes that there are no relocations within contigs.

We underline that despite the improvements brought about by these new proce-

dures, instaGRAAL assemblies remain perfectible, notably because of the reliance

on the quality of the input contigs used for correction. For instance, the D. herba-

cea genome heavily relies on contigs generated from a de novo hybrid assembly,

and the contact maps in Additional file 1: Fig. S4, S5, and S6 show some extrane-

ous signal that may point at misassemblies. Analogous observations may be made

with respect to Ectocarpus sp. in Additional file 1: Fig. S11. In addition, inherent

limits to Hi-C technology such as the restriction fragment size mean that there are

going to be false junctions between fragments or bins. This is only a problem if

one chooses not to reconstruct every input contig within a newly formed scaffold

with our correction procedure, i.e., one is distrustful of the initial input contigs.

This was not the case for Ectocarpus sp. but could be argued for D. herbacea,

where the de novo contigs generated from 15× coverage may be of poor quality.

Sparse data handling

The implementation of a sparse data storage method in instaGRAAL allows much

more intense computation than with GRAAL. Because the majority of map regions are

devoid of contacts, instaGRAAL essentially halves the order of magnitude of both algo-

rithm complexity and memory load, i.e., they increase roughly linearly with the size of

the genome instead of geometrically. This improvement potentially allows the assembly

of Gb-sized genomes in 4 to 5 days using a laptop (i.e., much faster with more compu-

tational resources).
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Filtering

Variations in GC% along the genome, and/or other genomic features, can lead to vari-

ation in Hi-C read coverage and impair interpretation of the Hi-C data. Correction and

attenuation procedures that alleviate these biases are therefore commonly used in Hi-C

studies [34–36]. However, these procedures are not compatible with instaGRAAL’s es-

timation of the contact distribution (for more details, see [37]). A subset of bins will

therefore diverge strongly from the others, displaying little if no coverage. A filtering

step is needed to remove these bins as they would otherwise impact the contact distri-

bution and the model parameter estimation. These disruptive bins represent a negli-

gible fraction of the total genome (< 3% of the total genome size of Ectocarpus sp., for

instance) and are reincorporated into the assembly during correction. On the other

hand, a subset of bins representing small, individual scaffolds are not reinserted during

correction and are added to the final assembly as extra-scaffolds (as in all sequencing

projects). Additional analyses and new techniques such as long or linked reads are

needed to improve the integration of these scaffolds into the genome.

Resolution

The binning procedure will influence the structure of the final assembly as well as its

quality. For example, low-level binning (e.g., one bin = three RFs) will lead to an in-

creased number of bins and a large, sparse contact map with a low signal-to-noise ratio,

where many of the bins display poor read coverage as on average they will have fewer

contacts with their immediate neighbors. Because of the resulting low signal-to-noise

ratio, an invalid prior model will be generated, and when referring to this model, the al-

gorithm will fail to scaffold the bins properly, if at all. Moreover, due to its probabilistic

nature, the algorithm will generate a number of false positive structural modifications

such as erroneous local inversions or permutations of bins. The numerous bins will

create more genome structures to explore to handle all the potential combinations, and

exploring this space until convergence will take longer and be computationally

demanding.

On the other hand, one of the advantages of instaGRAAL is its ability to scaffold

fragments or bins instead of contigs themselves. This has two main effects: First, it

dodges the size bias issue whereby larger contigs will feature more contacts and will

need to be normalized. Second, it allows for greater flexibility when exploring genome

space, potentially uncovering misassemblies within input contigs. This is more relevant

in the case of large contigs generated with long reads. And even if we assume that the

initial contigs are completely devoid of misassemblies, this flexibility is useful when the

contact distribution is disrupted by extraneous signals and the scaffolder needs to de-

cide between two regions of similar affinity. The correction tool subsequently recon-

structs the initial contigs from these rough arrangements, as discussed above

(reference-based correction).

An optimal resolution is therefore a compromise between the bin size, the coverage,

and the quality of the input contigs from the original assembly. Although a machine

powerful enough operating on an extremely contact-rich matrix would be successful at

any level, it is unclear whether such resources are necessary. Our present assemblies

(e.g., 1 bin = 81 RFs for both; see the “Material and methods” section) had good quality
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metrics after a day’s worth of calculation on a standard desktop computer for Ectocar-

pus sp. and D. herbacea. Moreover, convergence was qualitatively obvious after a few

cycles. This suggests that more computational power yields diminishing returns and

therefore that appropriate correction procedures are a more efficient approach for

remaining misassemblies.

Binning

The fragmentation of the original assembly used to generate the initial contact map has

a substantial effect on the quality of the final scaffolding. Because binning cannot be

performed beyond the resolution of individual input contigs, however small they may

be, there is a fixed upper limit to the scale at which a given matrix can be binned. A

highly fragmented genome with many small input contigs will necessarily generate a

high-noise, high-resolution matrix. Attempts to reassemble a genome based on such a

matrix will run into the problems discussed above (resolution). This limitation can be

alleviated, to some extent, by discarding the smallest contigs, with the hope that the

remaining contigs will cover enough of the genome. The input contigs that are re-

moved can be reintegrated into the final scaffold during the correction steps. This en-

sures an improved Nx metric while retaining genome completeness. It should be noted,

however, that the size of the input contigs is important as they need to contain suffi-

cient restriction sites, and each of the restriction fragments must have sufficient cover-

age. The choice of enzyme and the frequency of its corresponding site are thus crucial.

For instance, with an average of one restriction site every 600 to 1000 bp for DpnII, in-

put contigs as short as 10 kb may contain enough information to be correctly reas-

sembled. The restriction map therefore strongly influences both the minimum limit on

N50 and genome fragmentation.

Benchmarking

In order to test our tool against existing programs, we ran two scaffolders available on-

line (SALSA2 and 3D-DNA) on our two genomic datasets. In all instances, insta-

GRAAL proved more successful at scaffolding both genomes. However, we have not

extensively tested all the combinations of parameters of both programs, and acknow-

ledge the difficulty in designing and implementing Hi-C scaffolding pipelines with ex-

tensive dependencies that compound the initial complexity of the task and add yet

more configurable options to know in advance. Finding the correct combination of

CUDA and Python dependencies to install instaGRAAL on a given machine can be

challenging as well. Therefore, our benchmarking attempt should be rather seen as a

way to stress the importance of implementing sensible default parameters that readily

cover as many use cases as possible for the end user. There is almost no doubt that

both 3D-DNA and SALSA2, with the appropriate parameters and correction steps,

would produce satisfying scaffolding; on the other hand, knowing which input parame-

ters has to be specified in advance is a non-trivial task, especially given the computa-

tional resources needed for a single scaffolding run. With instaGRAAL, we wish to

combine the simplicity of a default configuration that works in most instances, with the

flexibility offered by the power of MCMC methods.
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Choosing your parameters

In the benchmarking, we have discussed why some parameters are crucial and why

we took care, through trial-and-error, to implement sensible defaults for future

similar assembly projects. On the other hand, it is crucial that such defaults be not

the result of overfitting for the assemblies we tested. However, none of what we

outlined previously assumes anything specific about the genomes at hand beyond

very broad metrics such as their total size or N50. The parameters of the program

scale intuitively with such metrics. For larger genomes, one may simply increase

the size of the bins so that the contact map does not grow too large, which is

what we did for the human genome. The N50 sets the resolution limit in that it is

often desirable to be able to break down contigs into many bins of roughly equal

size so as not to run into the aforementioned size bias and also to be able to give

more flexibility to the program. For instance, an N50 close to 100 kb should not

feature bins larger than 50–60 kb. Oftentimes, however, such minutiae is not neces-

sary, and for most genome projects ranging across 107–109 bp, instaGRAAL will

typically work out of the box with default parameters. For instance, we kept the

same parameters for both algae and only switched to a lower resolution (higher

bin size) for the human genome to scale with its size. When needed, through these

simple rules of thumb, one may adapt the defaults to other genomes with more ex-

treme metrics.

Handling diploid genomes

As assembly projects have grown more complex and exhaustive, expectations have in-

creased as well. Assembling diploid, if not polyploid, genomes with well-characterized

haplotypes is a stumbling block in the field. Moreover, such problems are more likely

to be encountered as the low-hanging fruit gets picked. Typical projects involve assem-

bling many individual complete human genomes with haplotypes, or the sequencing

and scaffolding of even larger and more complex genomes such as that of plants. In this

context, instaGRAAL in particular (and Hi-C in general) is relatively agnostic, as its

success or failure will hinge on the reference genome being properly haplotyped in the

first place. While it may prove intractable to phase haplotypes directly from only Hi-C

data, instaGRAAL will conserve such information when provided in the first place. This

is because the scaffolder is robust to local disruptions like haplotype-induced mapping

artifacts. It has been shown that GRAAL and by extension instaGRAAL will eventually

resolve such disruptions even when the distribution is noisy, as long as the general

three-parameter model (and power law) still holds globally [13, 19, 20]. In other words,

even though instaGRAAL cannot “guess” whether a given reference sequence is hom-

ologous or heterozygous without considerable difficulty, it can still cleanly scaffold

chromosome pairs from clear contig pairs because the global 3D intra-signature from a

given contig is too strong to be confused with mapping artifacts in a pair. Should such

information be missing, the scaffolder will likely interlace all regions into a giant link-

age group. In that respect, instaGRAAL could interface well with diploid classical as-

semblers and is suitable for any pipeline integration involving diploid genomes. More

work is needed in that direction so that the scaffolder does not rely that strongly on

the quality of the input contigs to work out haplotypes.
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Integrating information from the Hi-C analysis with other types of data

Aggregating data from multiple sources to construct a high-quality genome se-

quence remains a challenging problem with no systematic solution. As long-read

technologies become more affordable, there is an increasing demand to reconcile

the scaffolding capabilities of Hi-C-based methods with the ability of long reads to

span regions that are difficult to assemble, such as repeated sequences. The most

intuitive approach would be to perform Hi-C scaffolding on an assembly derived

from high-coverage and corrected long reads, as was done for several previous as-

sembly projects [16, 38]. Alternative approaches also exist, such as generating Hi-

C- and long-read-based assemblies separately and merging them using programs

such as CAMSA [39] or Metassembler [40]. Pipelines such as PBJelly [41] have

proven successful at filling existing gaps in draft genomes, regardless of their ori-

gin, with the help of long reads. Lastly, with assembly projects involving both long

and short reads, hybrid assemblies and hybrid polishing have become an important

focus. Polishers such as Racon [42] or Pilon [43] are widely used, and new tools

such as HyPo are also emerging [44]. Yet the question of which kind of pipeline to

use (e.g., Racon to Hi-C scaffolding to Pilon, or Racon to Pilon to Hi-C scaffolding,

etc.) along which hybrid assembler (Masurca, Alpaca, hybridSPAdes, etc.) [31, 45,

46] can prove cumbersome, and often finding the process yielding the most satisfy-

ing output in terms of metrics involves much trial-and-error with different configu-

rations. InstaGRAAL shows that high-quality metrics can still be attained without

the help of long reads, but long-read polishing may still be necessary in order to

get rid of the lingering errors we mentioned. Long reads are not the only type of

data that can be used to improve assemblies. Linkage maps, RNA-seq, optical map-

ping, and 10X technology all provide independent data sources that can help im-

prove genome structure and polish specific regions. The success of future assembly

projects will hinge on the ability to process these various types of data in a seam-

less and efficient manner.

Material and methods
Preparation of the Hi-C libraries

The Hi-C library construction protocol was adapted from [8, 47]. Briefly, partheno-

sporophyte material was chemically cross-linked for 1 h at RT using formaldehyde

(final concentration, 3% in 1× PBS; final volume, 30 ml; Sigma-Aldrich, St. Louis,

MO). The formaldehyde was then quenched for 20 min at RT by adding 10 ml of

2.5 M glycine. The cells were recovered by centrifugation and stored at − 80 °C

until use. The Hi-C library was then prepared as follows. Cells were resuspended

in 1.2 ml of 1× DpnII buffer (NEB, Ipswich, MA), transferred to a VK05 tubes

(Precellys, Bertin Technologies, Rockville, MD), and disrupted using the Precellys

apparatus and the following program ([20 s—6000 rpm, 30 s—pause] 9× cycles).

The lysate was recovered (around 1.2 ml) and transferred to two 1.5-ml tubes. SDS

was added to a final concentration of 0.3%, and the 2 reactions were incubated at

65 °C for 20 min followed by an incubation of 30 min at 37 °C. A volume of 50 μl

of 20% Triton-X100 was added to each tube, and incubation was continued for 30

min. DpnII restriction enzyme (150 units) was added to each tube, and the
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reactions were incubated overnight at 37 °C. Next morning, reactions were centri-

fuged at 16,000×g for 20 min. The supernatants were discarded, and the pellets

were resuspended in 200 μl of NE2 1× buffer and pooled (final volume = 400 μl).

DNA extremities were labeled with biotin using the following mix (50 μl NE2 10×

buffer, 37.5 μl 0.4 mM dCTP-14-biotin, 4.5 μl 10 mM dATP-dGTP-dTTP mix, 10 μl

Klenow 5 U/μl) and an incubation of 45 min at 37 °C. The labeling reaction was

then split in two for the ligation reaction (ligation buffer—1.6 ml, ATP 100 mM—

160 μl, BSA 10 mg/ml—160 μl, ligase 5 U/μl—50 μl, H2O—13.8 ml). The ligation

reactions were incubated for 4 h at 16 °C. After addition of 200 μl of 10% SDS,

200 μl of 500 mM EDTA, and 200 μl of proteinase K 20 mg/ml, the tubes were in-

cubated overnight at 65 °C. DNA was then extracted, purified, and processed for

sequencing as previously described (Lazar-Stefanita et al. [47]). Hi-C libraries were

sequenced on a NextSeq 550 apparatus (2 × 75 bp, paired-end Illumina NextSeq

with the first ten bases acting as barcodes; Marbouty et al. [15]).

Contact map generation

Contact maps were generated from reads using the hicstuff pipeline for process-

ing generic 3C data, available at https://github.com/koszullab/hicstuff. The back-

end uses the bowtie2 (version 2.2.5) aligner run in paired-end mode (with the

following options: --maxins 5 –very-sensitive-local). Alignments with mapping

quality lower than 30 were discarded. The output was in the form of a sparse

matrix where each fragment of every chromosome was given a unique identifier

and every pair of fragments was given a contact count if it was non-zero.

Fragments were then filtered based on their size and total coverage. First, fragments

shorter than 50 bp were discarded. Then, fragments whose coverage was less than one

standard deviation below the mean of the global coverage distribution were removed

from the initial contact map. A total of 6,974,350 bp of sequences was removed this

way. An initial contact distribution based on a simplified a polymer model [27] with

three parameters was first computed for this matrix. Finally, the instaGRAAL algorithm

was run using the resulting matrix and distribution.

For the Ectocarpus sp. genome, instaGRAAL was run at levels 4 (n = 81 RFs), 5 (n =

243 RFs), and 6 (n = 729 RFs). Levels 5 and 6 were only used to check for genome

stability and consistency in the final chromosome count. Level 4 was used for all subse-

quent analyses. All runs were performed for 250 cycles. The starting fragments for the

analysis were the reference genome scaffolds split into restriction fragments. The same

parameters were used for the D. herbacea genome. The same parameters were used for

the human genome, except we used level 6 instead of 4.

Correcting genome assemblies

The assembled genome generated by instaGRAAL was corrected for misassemblies

using a number of simple procedures that aimed to reinstate the local structure of the

input contigs of the original assembly where possible. Briefly, bins belonging to the

same input contig were juxtaposed in the same relative positions as in the original as-

sembly. Small groups of bins were preferentially moved to the location of larger groups

when several such groups were present in the assembly. The orientations of sets of bins
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that had been regrouped in this manner were modified so that orientation was consist-

ent and matched that of the majority of the group, re-orientating minority bins when

necessary. Both steps are illustrated in Fig. 4. Finally, fragments that had been removed

during the filtering steps were reincorporated if they had been adjacent to an already

integrated bin in the original assembly. The remaining sequences that could not be

reintegrated this way were appended as non-integrated scaffolds.

Validation metrics

Original and other assembly metrics (Nx, GC distribution) were obtained using

QUAST-LG [30]. Misassemblies were quantified using QUAST-LG with the minimap2

aligner in the backend. Ortholog completeness was computed with BUSCO (v3) [29].

Assembly completeness was also assessed with BUSCO. The evolution of genome met-

rics between cycles was obtained using instaGRAAL’s own implementation.

Validation with the genetic map

The validation procedure with respect to linkage data was implemented as part of

instaGRAAL. Briefly, the script considers a set of linkage group where regions are sepa-

rated by SNP markers and a set of Hi-C scaffolds where regions are bins separated by

restriction sites. It then finds best-matching pairs of linkage groups/scaffolds by count-

ing how many of these regions overlap from one set to the other. Then, for each pair,

the bins in the Hi-C scaffold are rearranged so that their order is consistent with that

of the corresponding linkage group. Such rearrangements are parsimonious and try to

alter as little as possible. Since there is not a one-to-one mapping from restriction sites

to SNP markers, some regions in the Hi-C scaffolds are not present in the linkage

groups, in which case they are left unchanged. When the Hi-C scaffolds are altered this

way, as was found in the case of the raw GRAAL v3 assembly, the script acts as a cor-

rection. When the scaffolds are unchanged, as was the case with the instaGRAAL cor-

rected v4 assembly, the script acts as a validation.

Benchmarking with other assemblers

For each genome, the 3D-DNA program was run using the run-assembly-pipeline.sh

entry point script with the following options: -i 1000 --polisher-input-size 10000 --split-

ter-input-size 10000. The Hi-C data was prepared with the Juicer pipeline as

recommended by 3D-DNA’s documentation. The SALSA2 program was run with the –

cutoff=0 option, and misassembly correction with the –clean=yes option. No expected

genome size was provided. The program halted after 9 iterations for Ectocarpus sp. and

18 iterations for D. herbacea. Hi-C data was prepared with the Arima pipeline as rec-

ommended by SALSA2’s documentation. The similarity dot plot between corrected

instaGRAAL and SALSA scaffolds was generated with minimap2.

Benchmarking with the human genome

We followed a procedure similar to the benchmark analysis detailed in [33]. Briefly, the

GRCh38 reference genome was cut into 300-kb fragments. The Hi-C library generated

using an Arima Genomics kit was aligned against the genome (SRA: SRR6675327).

instaGRAAL was run on the resulting contact map, using the same default parameters
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as for the algae genomes, except we increased the resolution level to 6 (from 4). The

similarity dot plot between instaGRAAL and SALSA scaffolds was generated with mini-

map2, with the options -DP -k19 -w19 -m200.

Software tool requirements

The instaGRAAL software is written in Python 3 and uses CUDA for the computation-

ally intensive parts. It requires a working installation of CUDA with the pycuda library.

CUDA is a proprietary parallel computing framework developed by NVIDIA and re-

quires a NVIDIA graphics card. The scaffolder also requires a number of common sci-

entific Python libraries specified in its documentation. The instaGRAAL website lists

computer systems onto which the program was successfully installed and run.
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Table S1: Example of a sparse matrix.

id_frag_a id_frag_b n_contacts
0 0 1368
0 1 21
0 2 7
0 3 3
0 4 5
0 7 5
0 8 1
0 9 1
0 12 2
0 15 1
0 22 1
0 23 1
0 26 1
0 27 1
0 33 2
0 36 2
0 37 1
0 51 1
0 69 1
0 74 2
0 76 1
0 97 1
0 99 1
0 107 1

Table S2: Comparison of the integrated sequences between the different assemblies and the v1 assembly
for Ectocarpus sp.

v1 assembly linkage group corrected instaGRAAL
v2 assembly v4 assembly

Scaffolds integrated into linkage 325 531 793
groups (out of 1561)
Percent sequence data integrated 70.10% 90.50% 96.80%
into linkage groups
Integrated oriented scaffolds in 12% 49% 100%
the linkage groups
Number of linkage groups 34 28 27
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Table S3: Correspondences between instaGRAAL super scaffolds and linkage groups from the v2 assembly
for the Ectocarpus sp. genome.

instaGRAAL Linkage group
v4 assembly v2 assembly

1 1
2 21
3 4 & 28
4 5
5 13
6 6
7 12
8 7
9 27
10 26
11 3
12 2
13 8
14 14
15 10
16 11
17 19
18 16
19 9
20 15
21 18
22 20
23 24
24 23
25 17
26 25
27 22

Table S4: Metrics of Desmarestia herbacea assemblies using three different programs.

De novo original assembly 3D-DNA SALSA2 instaGRAAL
N50 (bp) 184,092 175,000 12,780,148 12,444,485
L50 697 545 11 17
Contig count 7,743 5,385 4,827 4,304
BUSCO % 72.6 70.7 73.6 73.0

Table S5: Performance of GRAAL and instaGRAAL at scaffolding the Ectocarpus sp. genome.

GRAAL instaGRAAL
Peak memory load (Gb) 2.5 1.1
Memory used in graphic card 113 (Mb) 11
Per-cycle runtime (avg. over 20 min) 13 4
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Figure S1: Normalized contact map of the Ectocarpus sp. genome scaffolded using instaGRAAL (bin = 200 kb). The colour
scale represents the normalized interaction frequencies. No large-scale rearrangements are clearly apparent in the interchromosomal
contacts. On the right the linkage groups indices from the v2 assembly are indicated.

Figure S2: Estimates of BUSCO completeness for the three Ectocarpus sp. assemblies and the reference genome v1 assembly.
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Figure S3: Linkage markers vs. scaffold positions for all linkage groups/chromosomes (chromosome 3 is made up of linkage groups 4
and 28). The initial contig borders within each chromosome have been underlined. Linkage marker positions are always monotonous
(only increasing, or only decreasing) within an initial contig.
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Figure S4: The 40 main scaffolds of Desmarestia herbacea after instaGRAAL scaffolding.
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Figure S5: Contact maps of the first twenty newly formed scaffolds/putative chromosomes of Desmarestia herbacea, generated
after scaffolding at a 20-kb resolution.
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Figure S6: The last twenty newly formed scaffolds/putative chromosomes of Desmarestia herbacea post-scaffolding at a 20-kb
resolution.
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Figure S7: Normalized contact map of the Ectocarpus sp. genome scaffolded using instaGRAAL (bin = 200 kb). The colour
scale represents the normalized interaction frequencies. No large-scale rearrangements are clearly apparent in the interchromosomal
contacts. On the right the linkage groups indices from the v2 assembly are indicated.
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Figure S8: Similarity dotplot of the SALSA2 vs. instaGRAAL 27 scaffolds for Ectocarpus sp. large-scale structural discrepancies
have been underlined in green. The contact maps suggest instaGRAAL solutions are more likely.
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Figure S9: Contact map of the Homo sapiens genome, fragmented in 300 kb sequences, after scaffolding with instaGRAAL, at
5-Mb resolution.
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Figure S10: Similarity dotplot of the instaGRAAL vs. reference scaffolds for the GRCh38 human genome. Relocations are visible
but the one-to-one mapping between the 23 first scaffolds is preserved.
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Figure S11: All 27 newly formed scaffolds/putative chromosomes of Ectocarpus sp. post-scaffolding at a 50-kb resolution. Cen-
tromere patterns are clearly apparent in all chromosomes, but some errors (potentially due to mapping issues) linger, such as
chromosome 10 or 17.
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Chapter 5

Hi-C scaffolding of the bdelloid rotifer

Adineta vaga

Bdelloid rotifers have been drawing interest due to their suspected unusual ancient asexuality. A first

diploid assembly of Adineta vaga was published in 2013 [264], with a total length of 218 Mb and a N50

of 260 kb. The genome was described at the time as "incompatible with conventional meiosis", for the

surprising non-colinear structure of homologous sequences. In the following paper, the genome of Adineta

vaga was assembled de novo using PacBio CLR, Nanopore, Illumina and Hi-C reads. Three assemblies

were produced: a collapsed haploid assembly using all types of reads; and two diploid assemblies, one us-

ing PacBio CLR obtained with FALCON and FALCON-Unzip, and the second one using Illumina reads

with Bwise. All these assemblies were scaffolded using Hi-C by the program instaGRAAL [186], and

converged to 6 haploid chromosomes (collapsed assembly) or 12 phased chromosomes (FALCON-Unzip

and Bwise assemblies). These results show that the genome of Adineta vaga is: diploid, with 6 pairs

of chromosomes; a paleotetraploid, as it has homoeologous, colinear chromosomes (pairs 1, 2 and 3 are

homoeologous to pairs 4, 5, 6 respectively); and thus compatible with meiosis.

I contributed to this study in the assembly and Hi-C scaffolding of the collapsed haploid assembly.
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Bdelloid rotifers are notorious because they represent a speciose and ancient1

clade comprising only asexual lineages. In addition, most bdelloid species2

withstand complete desiccation and ionizing radiation, being able to repair3

their highly fragmented DNA. Producing a well-assembled reference genome4

is a critical step to unlock the understanding of the effects of long-term asexu-5

ality and DNA breakage on genome evolution. Here, we present the first high-6

quality chromosome-level genome assemblies for the bdelloid species Adineta7

vaga, composed of six pairs of homologous chromosomes (i.e. diploid), with8

a footprint of paleotetraploidy. The observed large-scale losses of heterozy-9

gosity are signatures of recombination between homologous chromosomes, ei-10

ther during mitotic DNA double-strand break repair or when resolving pro-11

grammed DNA breaks during a modified meiosis. Dynamic subtelomeric re-12

gions harbor more structural diversity (e.g. chromosome rearrangements,13

transposable elements, haplotypic divergence). Our results trigger the reap-14

praisal of potential meiotic processes in bdelloid rotifers and help unravel their15

long-term asexual evolutionary success.16

Introduction17

Sexual reproduction and recombination are prevalent throughout the eukaryotes, despite the18

substantial evolutionary costs such as the two-fold cost of males or the cost of recombination19

that breaks up co-adapted gene combinations (1, 2)). Several eukaryotic species appear to have20

evolved adaptations that reduce these costs of males, for example by producing males only fac-21

ultatively as in cyclical parthenogens (e.g. Brachionus plicatilis (3)), or by retaining a modified22

meiosis rescuing diploidy without fertilization by males (e.g. Diploscapter pachys (4)). Very23

few however appear to have renounced to sex and recombination completely, in which males24
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and meiosis are abolished. Theory predicts that in the absence of recombination during meio-25

sis, the physical linkage among loci reduces the effectiveness of selection upon individual loci,26

resulting in a decreased rate of adaptation and the accumulation of mildly deleterious muta-27

tions (5). Obligate asexuals are therefore suitable model systems to gain general insights into28

the long term consequences of the lack of recombination and sexual reproduction.29

Bdelloid rotifers are notorious ancient asexual animals. Indeed, the longevity (>60 My) of30

the bdelloid rotifer clade and their diversity (>400 morphospecies) challenge the expectation31

that obligatory asexual animal lineages, in which recombination and outcrossing are absent,32

are evolutionary dead-ends. Historical observations (or lack thereof) had produced a consen-33

sus that bdelloid rotifers do not produce male or hermaphrodite individuals (6), that they are34

strictly parthenogenetic without any meiosis (7, 8) and that the initial description of the struc-35

ture of Adineta vaga genome, lacking colinear homologous scaffolds, was irreconcilable with36

meiosis (9). A draft genome assembly of the closely-related bdelloid species Adineta ricciae37

found colinearity between homologous regions but could not verify it at chromosome-scale (10),38

which was also the case for previous studies based on a handful of genomic regions (11–13).39

The presence or the absence of an ameiotic structure in bdelloids therefore remained unresolved40

and a chromosome-scale assembly appeared critical.41

Besides its asexual evolution, the bdelloid rotifer A. vaga also became a model species for its42

extreme resistance to desiccation, freezing and ionizing radiation, with implications for space43

research (14, 15). Both prolonged desiccation, encountered in their ephemeral limno-terrestrial44

habitats, and ionizing radiation induce oxidative stress and massive genome breakage that A.45

vaga seems to handle, maintaining high survival and fecundity rates while efficiently repairing46

DNA damage (15–17). Maintaining such long-term survival and genome stability following47

DNA fragmentation likely requires the use of homologous recombination (HR) at least in the48

germ cells. Given the supposed absence of homologous chromosomes in A. vaga (9), the exact49
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nature of their double-strand break (DSB) repair mechanism remains elusive.50

Recent studies have provided evidence for recombination in bdelloid rotifers. These in-51

clude a drop of linkage disequilibrium (LD) with increasing distance between genomic loci in52

A. vaga (13), signatures of gene conversion (9, 12), heterozygosity levels within the range of53

those reported for sexual metazoans (9, 10, 18), and reports of allele sharing between bdelloid54

individuals from the wild (13, 19–21). While recombination likely takes place in bdelloid ro-55

tifers, its underlying mechanisms remain unknown. Recombination might theoretically occur56

in a mitotic or meiotic cellular context, involve short genomic regions or canonical chromo-57

some pairing, and take place between homologous or non-homologous loci (i.e. ectopic). The58

interpretation of these recombination events have yet to be reconciled with the long-standing59

apparent absence of males and meiosis in bdelloid rotifers (6) and to account for their ubiquity60

in semi-terrestrial habitats where frequent desiccation occurs, inducing DNA DSBs (14,15,17).61

Here, we present a high quality chromosome-level genome assembly of A. vaga. This new62

genome is pivotal to tackle these contradictions between its putative ameiotic structure and the63

footprints of recombination, possibly associated to DSB repair and desiccation. We combined64

the use of short reads (Illumina), long reads (ONT and PacBio) and chromosome conformation65

capture data (Hi-C) with three assembly methods, to successfully assemble A. vaga genome.66

We provide the first telomere-to-telomere assemblies of a parthenogenetic lineage, both haploid67

and phased, paving the way to study genome evolution in an asexual clade. Using a newly devel-68

oped and publicly available tool, Alienomics, we annotated candidate horizontal gene transfers69

(HGTc) and confirmed that A. vaga possesses the highest number of HGTc across all animals.70

Interestingly, A. vaga has a diploid genome made of six pairs of homologous chromosomes,71

refuting the ameiotic structure previously described for this genome (9) and challenging the72

complete absence of meiosis in one of the most striking asexual animal clade. In addition, by73

observing large tracks of heterozygosity losses (LOH), we show that large-scale recombination74

4

CHAPTER 5. HI-C SCAFFOLDING OF THE BDELLOID ROTIFER ADINETA VAGA

124



between homologous chromosomes occurs in A. vaga. The possibility of chromosome pairing75

in A. vaga, during a mitotic or meiotic-like process, allows for the re-interpretation of the sig-76

natures of LD decay and allele sharing. Until now, the lack of chromosome-scale assemblies77

of parthenogenetic genomes hampered the investigation of the impact of meiosis, recombina-78

tion, outcrossing, or their absence, on entire genomes. Moreover, characterizing homologous79

chromosomes as potential templates for DNA repair through HR in A. vaga is an important land-80

mark in the understanding of bdelloid extreme resistance. This high-quality genome assembly81

of A. vaga (AV20) is also timely for comparative biology within rotifers and protostomians,82

extending the list of chromosome-level genomes in overlooked phyla.83

Results and discussion84

A diploid genome with a tetraploid past Distinct independent genome assembly procedures,85

relying on different assumptions regarding ploidy levels (Bwise (22), NextDenovo (23) and86

Falcon (24)), were first used on a combination of short and long sequencing reads. These87

assemblies were then scaffolded using Hi-C data and instaGRAAL (25), revealing similar88

chromosome-level assemblies and genome size estimations, consistent with flow cytometry89

measurements (Fig. 1A and Supp. Figs. 1 and 2). All pairwise alignments of the three inde-90

pendent assemblies (referred to as ”phased” without ploidy assumption, ”haploid” and phased91

”diploid”, see Fig. 1A) confirmed chromosome-level synteny and converged towards identical92

genome structure with the six longest scaffolds from the haploid assembly (hereafter named93

”AV20”) being each colinear to exactly two long scaffolds from the phased assembly (Fig. 1B,94

see also Supp. Figs. 3, 4 and 5). In order to validate these assemblies, we performed fluorescent95

in situ hybridization (FISH) analyses with three pairs of fluorescent probe libraries complemen-96

tary to separate parts of chromosomes 2, 5 and 6 from the AV20 assembly (Figure 1B, right97

side). For each pair of probes (one green and one red) two individual chromosomes were la-98

5
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belled with little or no overlap between both signals (Figure 1C). Chromosome painting on the99

karyotype of 12 chromosomes of A. vaga (26) was consistent with our chromosome-scale as-100

semblies showing that the A. vaga genome is diploid, being composed of six pairs of colinear101

homologous chromosomes.102

We compared our new AV20 assembly to the previously published draft genome assembly103

(hereafter named ”AV13” (9)). None of the previously described colinearity breakpoints and104

palindromes were retrieved in the new AV20 genome, indicating that these were likely assembly105

artefacts resulting from erroneous scaffolding of uncollapsed haplotypes (Supp. Figs. 6 and 7).106

Chromosome-level colinearity, albeit weaker than between homologous chromosomes, was also107

observed between pairs of homoeologous (or ohnologous) chromosomes in the AV20 genome,108

a signature confirming the previously reported paleotetraploidy of A. vaga (9,10,12) (grey links109

on Figure 1B). The three chromosome pairs 1, 2 and 3 are homoeologous to the three pairs110

4, 5 and 6, respectively. A. vaga is thus a diploid, paleotetraploid species in which the level111

of synteny between homoeologous chromosomes is high. Notably, 30.8% of the genes have a112

homoeologous copy within conserved synteny blocks (see Materials & Methods section) and113

with an average nucleotide divergence of about 13% (Supp. Fig. 8).114

Recombination between homologous chromosomes causes loss of heterozygosity The dis-115

covery of homologous chromosomes in the oldest known asexual animal clade represents a116

major shift for studies of ancient asexuals and leads us to reconsider the possibility for homol-117

ogous recombination in A. vaga. One potential genetic consequence of recombination between118

homologous chromosomes is large-scale loss of heterozygosity (LOH). We measured and com-119

pared heterozygosity along the chromosomes of three A. vaga samples cultured from a same120

ancestral laboratory strain that never underwent stresses causing recombinogenic DSBs and121

that were sequenced at three distinct timepoints (2009, 2015 and 2017, Fig. 2A, Supp. Ta-122
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ble S1). Mean single-nucleotide polymorphism (SNP) heterozygosity (i.e. divergence between123

homologous chromosomes) was around 1.7% (horizontal line on Fig. 2A, similar to previous124

reports (9, 10)). Interestingly, we observed large regions (from 100 kb to 4.5 Mb) that were125

fully homozygous, except for a few SNPs, in specific isolates while heterozygous in others126

(numbered tokens in Fig. 2A). Note that a few homozygous tracks are associated with cover-127

age variation and could have been caused by a hemizygous deletion (when coverage drops by128

approximately 50%, e.g. event 5 on Fig. 2A) or by the high density of repeated sequences (e.g.129

event 13 on Fig. 2A). Given the genealogy of these laboratory lines, we argue that the large130

homozygous tracks that are associated with homogeneous median coverage are signatures of131

allelic recombination events causing LOH (Fig. 2B).132

These LOH appeared to accumulate through time as some are shared by two samples (e.g.133

event 12 on Fig. 2) while others appeared in only one of these two samples (e.g. event 2 on134

Fig.2). Noteworthy, no ancestral LOH was found that would be shared by all of the strains. This135

is likely because large LOH events increase the chance to expose recessive deleterious mutations136

and are thus likely selectively eliminated in nature, maintaining the relatively homogeneous het-137

erozygosity level in the ancestral laboratory strain (Fig. 2A). Observing LOH tracks on all six138

chromosome pairs in the three laboratory samples over a relatively short period of time (i.e.139

several years, Fig. 2B) might be due to the culturing conditions allowing for possible bottle-140

necks and relaxed selection. Recombination occurring along the entire chromosomes, instead141

of being restricted to the telomeres only (27), invalidates the hypothesis that an Oenothera-142

like meiosis underlies their reproductive mode (in agreement with a recent study (13)). Overall,143

these LOH tracks combined with the recently reported LD decay (13) represent a clear footprint144

that molecular processes involving recombination between homologous chromosomes occur in145

the germline of A. vaga.146
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Recombination could be accidental or programmed Theoretically, recombination between147

homologous chromosomes resulting in inheritable LOH can occur in the germline during mi-148

totic repair of accidental DSBs or when handling programmed DSBs during meiosis (potentially149

induced by Spo11 protein (9, 28)). DSBs can be repaired by different recombination pathways150

but LOH of large chromosome regions without coverage reduction (e.g. events 1, 6-9, 11, 12,151

Fig. 2) can primarily arise from two processes, break-induced replication (BIR) and the for-152

mation of crossing-over (CO). BIR is a mechanism of mitotic recombination characterized by153

replication fork progression over hundreds of kilobases on the repair template (29). When in-154

volving allelic loci, it causes LOH of the segment extending from the breakpoint site until the155

end of the chromosome. If a double BIR (dBIR) occurs, switching templates from the homolo-156

gous chromosome back to the sister or the original chromatid, a LOH tract, possibly long, that157

does not encompass the telomere is produced (30). Such LOH could also be generated by the158

recombinational repair of respectively one or two DSBs leading to CO (i.e. a reciprocal genetic159

exchange between chromosomes). Compared to BIR, CO is however a minor pathway in mitot-160

ically cycling cells (31) that preferentially takes place between sister chromatids and therefore161

remains genetically silent (32).162

Alternatively, programmed DSBs during meiosis can produce large LOH tracks by favoring163

CO formation between homologous chromosomes (31). LOH signatures in A. vaga genome164

could therefore be acquired through meiotically-induced recombination instead of during mi-165

tosis. Several mechanisms of meiotic parthenogenesis, globally referred to as automixis, have166

been described in various species such as in Daphnia pulex (33), Artemia parthenogenetica (34)167

or Apis mellifera capensis (35). If automixis occurs in A. vaga, the heterozygosity patterns ob-168

served here (Fig. 2) in which the maternal heterozygosity is conserved along chromosomes due169

to the non-segregation of homologous chromosomes while large LOH tracks (likely counter-170

selected in nature) could result from their CO recombination, is genetically equivalent to what171
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is referred to as central fusion automixis (34). Nevertheless, no cytological evidence of any172

meiotic process has been described so far in bdelloid rotifers. Whether recombination is a key173

feature of the reproductive mode of bdelloids (through programmed DSBs during a modified174

meiosis) or whether it is mainly driven by desiccation resistance mechanisms (through acciden-175

tal DSB repair in the germline), or both, remains an open question. Whichever mechanism is176

involved, recombination likely plays a major role in the long-term evolution of A. vaga genome.177

Dynamic subtelomeric regions We found a low amount of transposable elements (TEs) in178

A. vaga (Fig. 3, Supp. Fig. 9). By combining two approaches to annotate both TE-like el-179

ements, including repeated sequences, as well as canonical TEs (i.e. the EDTA and REPET180

pipelines) we detected 6.6% of TE-like elements and 1.9% of canonical TEs, predominantly181

located at subtelomeric regions (Fig. 3). In addition, rotifer-specific telomeric repeats (i.e.182

(TGTGGG)n (36)) were detected at the extremities of every scaffold of the AV20 assembly,183

indicating that they indeed correspond to telomeric and subtelomeric regions and that AV20184

reached a chromosome-level assembly (Supp. Fig. 10). Most consensus TE sequences were185

found at low copy numbers (i.e. 96% of canonical TEs consensus sequences are present in186

(≤ 5x) copies in AV20, see Supp. Fig. 9). Notably, terminal inverted repeats (TIRs) DNA trans-187

posons (i.e. Class-II) were quantitatively dominant ( 48% of all TEs) among the low amount of188

TEs in A. vaga genome (Supp. Figs. 9 and 11). These results are in line with previous stud-189

ies of TEs in bdelloids (9, 10, 37, 38). Using sequence similarity between a TE copy and their190

consensuses as a proxy for how recent this copy is, we found that Class-II TIRs and Class-I191

LINEs and LTRs had high average similarity to their consensus sequences suggesting that they192

have been at least recently active in A. vaga genome (Supp Fig. 12). Investigating putative193

endogenous viral elements (EVEs) in A. vaga revealed very few viral-like sequences (i.e. 94194

loci scattered along the 6 chromosomes, Fig. 3) with potential donor candidates belonging to195
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the group of large double stranded (ds) DNA viruses. None of these EVE candidates however196

had definitive viral origins as their similarity was not restricted to viral sequences and there was197

no conservation of viral gene synteny.198

Syntenic HGTc regions among non-homoeologous chromosomes are visible, mainly at sub-199

telomeric regions (violet links on Fig. 3) and may suggest chromosomal re-arrangements. Sub-200

telomeric regions are also the regions on which almost all divergent haplotypes (i.e. haplotigs201

corresponding to uncollapsed haplotypes during genome assembly process) were located (grey202

links on Fig. 3). Overall, these subtelomeric regions in A. vaga are enriched in canonical TEs,203

TE-like elements, HGTc, viral-like sequences but also retain a higher haplotypic divergence204

(i.e. uncollapsed haplotigs) and most chromosomal re-arrangements. When accounting for only205

coding sequences (CDS), no distinct increase or decrease of heterozygosity could however be206

observed at subtelomeric regions (Supp. Fig. 13). At this stage, it is therefore unclear whether207

homologous recombination rate covaries with telomeric proximity in A. vaga. Nevertheless, our208

results suggest that subtelomeric regions seem more prone to chromosomal re-arrangements, in-209

corporation of foreign DNA (TEs and HGTs) and structural variations such as putative allelic210

deletions (see LOH events 3 and 10 in Fig. 2), evolving faster than the rest of the genome.211

Horizontal gene transfers in A. vaga genome The acquisition of foreign DNA has been212

hypothesized to play an important role in bdelloid evolution (20). HGTs could be a way to213

circumvent some deleterious effects of the lack of sexual outcrossing, and the occasional inte-214

gration of foreign DNA could trigger adaptation (10,17,20,39,40). No automated tool existed to215

detect HGTc, therefore we developed Alienomics, an innovative pipeline to detect both HGTc216

and contaminants in a genome assembly. Alienomics combines several genomic parameters217

such as gene taxonomy, GC content, sequencing depth, but also taking into account gene inte-218

gration into the genome using synteny and expression data, to detect HGTc from non-metazoan219
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species. In contrast with the overall low amount of TEs, many candidate HGTc (2,679, about220

8.3% of all genes) were detected in the A. vaga AV20 genome assembly, confirming previous221

reports of the highest HGTc content among metazoans (9, 10, 41, 42). HGTc were enriched in222

subtelomeric regions as previously reported (41), although many HGTc were distributed along223

the chromosomes and two visible local hotspots were detected outside the subtelomeric regions224

(pink stars on Figure 3). Interestingly, one HGT hotspot is associated with a slight increase of225

interstitial telomeric repeats (Supp. Fig. 10) that could represent a signature of ancient chro-226

mosome fusion. Overall, the heterogeneity in HGTc density between subtelomeric regions and227

the rest of the genome could be explained either by varying rates of HGTs incorporation along228

the chromosomes or by varying successful integration of HGTs within the genome through229

selection.230

Using both MCScanX and Alienomics outputs, we measured that 257 foreign genes (9.6%231

of all HGTc) conserved their synteny across homoeologous chromosomes, including the HGTc232

hotspots notably visible in homoeologous chromosomes 1 and 4 (stars on Figure 3). These233

horizontal transfer events therefore occurred before the ancestral tetraploidization of modern234

bdelloids. This amount of ancient HGTc is however likely underestimated as any loss or translo-235

cation of an ancient HGTc copy would break the ancestral synteny. When looking specifically236

at these HGTc that occurred prior to the tetraploidization, we observed an enrichment of genes237

involved DNA recombination and DNA ligation involved in DNA DSB repair, among other238

enriched functional categories (see Supp. Table S2). These HGTc might have set bdelloids up239

to resist and overcome massive DNA breakage. When analyzing all HGTc, we found that they240

are enriched in genes involved in oxidation-reduction and carbohydrate metabolic processes (9)241

as well as in the response to nitrosative stress (see Supp. Table S2). Acquisition of HGTs242

might therefore be central in their resistance to extreme desiccation and towards more efficient243

homeostasis. Overall, these results are in line with previous studies suggesting that HGTs have244
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been continuously acquired within bdelloid rotifers, even before their tetraploidization (10,42).245

However, if bdelloids have the same low rate of HGT acquisition from other individuals of246

the same species than from non-metazoans (12.8 HGT/Myr), HGT is possibly insufficient to247

compensate for the plausible lack of outcrossing in bdelloid rotifers (40). Actually, a high rate248

of HGT acquisition from distinct species might be deleterious for A. vaga, which appears to249

rely on recombination between homologous chromosomes to maintain heterozygosity and/or250

genome structure.251

Reasoning on bdelloid rotifer reproductive mode Bdelloid rotifer species are both suppos-252

edly devoid of males and prone to integrate foreign DNA (through HGTs) into their genome. In253

this context, several reports of allele sharing between bdelloid individuals sampled from the wild254

triggered a debate whether they could exchange genetic content at all and whether this might be255

done through HGT or through sexual reproduction (13, 19–21, 43–45). At a first glance, show-256

ing that homologous chromosomes exist and recombine in A. vaga could be viewed as a support257

to the hypothesis that bdelloids might undergo meiotic sexual reproduction (13). However, this258

hypothesis has yet to be reconciled with the absence of both males and canonical meiosis in259

bdelloid rotifers and here we speculate on the mechanisms of homologous recombination in260

A. vaga. The three A. vaga lineages analyzed here (Fig. 2) were kept in hydrated conditions,261

leaving few opportunities for desiccation-induced, accidental DNA DSBs. Moreover, a much262

lower heterozygosity than for A. vaga has been observed in two obligate aquatic bdelloid rotifer263

species (i.e. Rotaria, upper limit of homologous divergence ranged between 0.033 and 0.075),264

also described as asexual and never experiencing dessication. Both these observations are com-265

patible with the hypothesis that homologous recombination in bdelloids could be caused by266

programmed DNA DSBs during a meiotic-like process. Frequent and programmed recombina-267

tion would cause LOH in A. vaga (Fig. 2) and would have lowered heterozygosity even in the268
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obligately aquatic Rotaria species.269

Whatever the underlying mechanism, the observed recombination signatures in bdelloid270

rotifers are compatible with the three hypotheses proposed to explain the previous reports of271

allele sharing patterns in bdelloid rotifers: i) allele sharing may be due to undetected contam-272

ination between cultures, either during colony culture itself or during sample preparation for273

sequencing (46–50); ii) allele sharing is the result of horizontal genetic transfers between bdel-274

loid individuals through unknown molecular mechanisms, possibly associated with desiccation275

(but not for the non-desiccating species) and potentially linked to the high propensity of bdel-276

loids to retain non-metazoan genes into their genomes (13, 17, 20, 40, 43, 51); iii) allele sharing277

is caused by cryptic sexual reproduction (52), with sex events being rare enough so that males,278

sperm, fertilization and meiosis were never observed, but sufficient to leave a distinctive foot-279

print in every population sample studied so far (13, 19, 21, 45). The mechanism behind the280

observed signatures of genetic exchanges between bdelloid individuals remains puzzling and281

therefore the significance of outcrossing in this asexual lineage remains unclear. We anticipate282

the chromosome-level genome assembly of A. vaga presented here will stimulate future popu-283

lation genomics studies that will help to determine the cause of these allele sharing patterns.284

Long-term asexual evolution This high-quality telomere-to-telomere assembly firmly estab-285

lishes A. vaga as a model system to study long-term asexual evolution. Homologous chromo-286

somes are present in the bdelloid species A. vaga and might well occur in all bdelloid rotifers,287

as colinear pairs of sequenced fosmids were found in two distinct bdelloid species A. vaga and288

Philodina roseola, with each colinear pair in one species resembling the colinear pair in the289

other species (12). The observed long LOH tracks indicate the existence of long-range homol-290

ogous recombination (Fig. 4), whether this occurs during a meiotic-like parthenogenetic mode291

of reproduction or in a mitotic context during frequent repair of accidental DNA DSBs remains292
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speculative. Recombination (mitotic or meiotic) could increase the rate of gene conversion in293

asexual lineages, a signature previously observed in A. vaga (9). Gene conversion, particularly294

when slightly biased, could correct deleterious mutations and reduce the rate of clonal dete-295

rioration (53), or even speed up the fixation of beneficial mutations (54). However, besides296

signatures of LOH representing allelic recombination, we also observed LOH via deletions in297

the genome of A. vaga. The random accumulation of LOH events could expose deleterious298

recessive mutations in asexuals through loss of complementation (55). This chromosome-scale299

genome assembly of asexual A. vaga therefore is a critical tool to be able to evaluate the rela-300

tive benefits of these recombination events on their long-term evolution and paves the way for301

studies on genome dynamics in A. vaga.302

In general, asexual populations suffer from the absence of gene shuffling with other individ-303

uals and the long-term evolutionary success of bdelloid rotifers in the absence of outcrossing304

therefore remains puzzling. It is important to try to discriminate between the consequences of305

the two aspects underlying sex: recombination and outcrossing. Theoretical work on popula-306

tion genetics showed that selection could be at least as efficient in automictic lineages than in307

sexuals under certain circumstances (e.g. effective population size, recombination rates (56)). It308

is therefore conceivable that the combination of potentially large populations, a relatively high309

level of heterozygosity (or mutation rate) and specific recombination rates might explain how A.310

vaga maintains a delicate balance between losing and accumulating heterozygosity, and how it311

adapts and persists in the long term. Unfortunately, critical knowledge about bdelloid biology is312

still missing (e.g. mutation and recombination rates) to determine whether they might circum-313

vent the lack of outcrossing through a genetic equivalent of automixis. Outcrossing through314

sexual reproduction might speed up adaptation by allowing the combination of independently315

evolved alleles within the same individual, but might not be essential for bdelloid rotifers, es-316

pecially if a high frequency of HGT is also taking place. Despite presenting the highest amount317
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of HGTc among animals, our results also suggest that bdelloid rotifers might have to balance318

the acquisition rate of HGTs, a source of functional novelties, with the maintenance of faithful319

homology between chromosomes for homologous recombination. Overall, our work reinforces320

the hypothesis that recombination is critical for lineage longevity. Ancient asexual animals321

without a minimal rate of recombination, programmed through meiotic processes and/or acci-322

dental through their life-style, might not exist at all.323

Materials and Methods324

Complete description of materials and methods can be found in Supplementary Materials.325

Genome sequencing and assembly Continuous cultures of A. vaga AD008 lab strain were326

processed in order to obtain the following sequencing data: about 350x coverage of WGS 250-327

bp paired-end Illumina reads, 200x coverage of PacBio RSII long reads, 125x coverage of328

ONT long reads and 75-bp paired-end Illumina reads of Hi-C libraries. Three independant329

genomes were assembled using Bwise (on Illumina short reads), NextDenovo (on ONT long330

reads) and Falcon (on Pacbio long reads). Uncollapsed haplotypes in the ONT-based assembly331

were then detected and discarded using purge dups. The resulting assembly was polished based332

on Illumina short reads and Pacbio long reads using HyPo, and is here referred to as ”AV20”333

genome assembly. All assemblies were then scaffolded using instaGRAAL (on Hi-C data).334

Ploidy level and genome size was confirmed using k-mers spectra using KAT, synteny analyses335

using MCScanX, nucmer and D-GENIES, flow cytometry measurements and FISH using three336

pairs of oligo datasets designed on three chromosomes.337

Genome annotation TE-like elements and canonical TEs consensus were build from the338

AV20 genome assembly using EDTA and TEdenovo pipeline, and AV20 genome was then339
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annotated using TEannot (part of the REPET pipeline). Genes were annotated using funanno-340

tate. For this, repeated elements previously annotated were masked using bedtools, part of the341

avalaible RNA-Seq reads were mapped onto the genome while the other part of RNA-Seq reads342

were used to produce a de novo assembled transcriptome which was subsequently aligned onto343

the genome as part of the PASA pipeline. Then a combination of PASA annotations, de novo as-344

sembled transcriptome, metazoan BUSCO database and the proteic Uniprot database within fu-345

nannotate predict function. This first produced ab initio predictions using Genemark-ES, which346

were then used along with transcripts and proteic data to train Augustus to generate a second set347

of annotations. Lastly, it used Evidence Modeler as a weighted approach to combine annota-348

tions from PASA, Genemark and high quality predictions from Augustus into an integrated gene349

annotation set. We then used InterProScan5 in order to produce functional annotations to the350

predicted genes which were then used in combination with busco metazoan database using the351

funannotate annotate function with default parameters. We used Alienomics, a newly designed352

pipeline, in order to detect HGTc. This approach combines GC content, coverage, blasts, taxo-353

nomic information, expression level and synteny information in order to detect both HGTc (i.e.354

alien genes integrated into host scaffolds) and potential contaminants (i.e. alien genes present355

on alien scaffold). Note that our approach can only detect transfers from alien source outside356

of a given clade (i.e. here, metazoa). Viral-like genes were detected by performing a diamond357

blastx search on AV20 scaffolds using all viral proteins extracted from the nr database of NCBI358

(February 2020) to the exception of Retroviridae and Hepadnaviridae.359

Genome analyses Coverage along AV20 scaffolds was computed using read mapping with360

bwa mem, and these alignements were used for genotyping three samples (i.e. GC047403,361

BXQF, ERR321927) using GATK (HaplotypeCaller function with -ERC GVCF option). The362

resulting gvcf files were combined (CombineGVCFs function) and were then jointly genotyped363
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(GenotypeGVCFs function). The variants were then filtered in order to only retain SNPs using364

custom bash and perl scripts. Divergence between homoeologous chromosomes was obtained365

by the production of a self-alignment of AV20 genome using nucmer, which was then filtered366

to only retain genomic alignments between homoeologous regions ranging from 500 to 10,000367

bp. MCScanX was used to detect synteny among HGTc, and custom scripts were used to368

detect strictly homoeologous HGTc synteny blocks stemming from the paelotetraploidization369

of bdelloids (i.e. ancient HGTc). GO terms from functional annotation were extracted for the370

2,422 recent HGTc and the 257 ancient HGTc were respectively compared to the entire gene set371

of the AV20 genome containing 32,378 proteins. Enrichment analyses were performed using372

topGO package with a fisher test and the ”elim” algorithm.373

Reapparaisal of AV13 genome assembly ONT reads were trimmed with porechop and were374

mapped onto the previous AV13 genome assembly using NGMLR. The AV20 and AV13 genome375

assemblies were aligned together using Sibelia. This alignement was used to detect putative376

breakpoint location which were then inspected using Tablet in order to evaluate whether ONT377

reads confirmed one of the assemblies. Synteny blocks from the Sibelia alignment between378

AV20 and AV13 were screened using a custom perl script (available at https://github.com/jnarayan81/huntPalindrome)379

and circos plots in order to evaluate the existence of palindromes in AV20 genome. No break-380

points or palindromes detected in the AV13 genome assembly could be found in the AV20381

genome assembly, nor be confirmed by ONT reads.382
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Figure 1: Genome structure of Adineta vaga is diploid. a) Outline of the three genome
assembly approaches underlined by different assumptions on genome ploidy with me-
dian read coverage for all sequencing technologies indicated on the left and estimated
with respect to the AV20 haploid genome assembly. The haploid genome size estimate
of A. vaga obtained by flow cytometry is given (under the assumption that the genome
is diploid) as well as the summary statistics of the genome assemblies. Number of chro-
mosomes corresponds to the number of scaffolds longer than 10 Mbp. Ploidy levels of
assemblies is indicated by the KAT plots of k-mers distribution (first and second peaks
corresponds to heterozygous and homozygous k-mers, respectively; red and purple in-
dicates haploidy and diploidy, respectively). b) Circos plot of the pairwise colinearity
between the haploid AV20 and the phased Bwise genome assemblies, depicted by colored
links and obtained using nucmer. Synteny blocks within AV20 genome (between homoe-
ologous copies) are depicted as grey links and were obtained using MCScanX. Coverage
along scaffolds of both AV20 and the phased assembly are depicted as grey histograms
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pairs 2, 5 and 6 highlighted by oligo painting using the FISH probe libraries depicted in
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Supplementary Materials540

Data generation541

Strain culture, library preparation and DNA sequencing We continuously cultivated A.542

vaga individuals from AD008 strain (i.e. same strain as in (9), COI sequence accession number543

is KM043184) since 2007 in Petri dishes using Spa water, feeding them with sterile extract of544

lettuce juice and stocking well-grown cultures at -80°C. A. vaga individuals were thawed before545

proceeding to DNA extraction using QIAGEN Gentra Puregene Tissue Kit. Genomics Core546

(UZLeuven) produced PCR-free 250-bp paired-end Illumina reads that were sequenced with a547

depth of approximately 350x on a HiSeq 2500 sequencing platform. The same procedure was548

followed in order to obtain high molecular weight DNA using Macherey-Nagel NucleoBond549

HMW procedure that was subsequently sent to the Genomics Core (UZLeuven) to generate a550

depth of 200x of PacBio RSII sequencing data. Around 30 µg of high molecular weight DNA551

was also extracted from living A. vaga individuals using the QIAGEN Gentra Puregene Tissue552

Kit and then sent to the Genoscope sequencing center (François Jacob Institute of Biology)553

which produced 5 ONT libraries, each starting from 2 to 5 µg of DNA, using the 1D ligation554

sequencing kit (SQ-LSK108) and R9.4 (or R9.4.1) flowcells. This resulted in a sequencing555

depth of 125x long-reads using Oxford Nanopore Technology (ONT). All samples ID and SRA556

accession numbers are detailed in Supp. Table S1.557

Chromosome conformation capture: Hi-C The Hi-C library construction protocol was558

adapted from (57, 58). Briefly, individuals from the A. vaga AD008 strain were chemically559

cross-linked for 20 min at room temperature and 30 min at 4°C (with gentle stirring) using560

formaldehyde (final concentration: 5% in milliQ water; final volume: 50 ml). After fixation the561

sample was centrifuged for 10 min at 4000 rpm at 4°C. The formaldehyde was then quenched562

for 5 min at RT and 15 min at 4°C (with gentle stirring) by adding 50 ml of 250mM glycine.563

The cells were recovered by centrifugation for 10 min at 4000rpm at 4°C, supernatant was re-564

moved and pellet stored at -80°C until use. The Hi-C library was then prepared as follows. Cells565

were resuspended in 1.2 mL of 1X DpnII buffer (NEB), transferred to a VK05 tubes (Precellys)566

and disrupted using the Precellys apparatus and the following program ([20 sec – 6000 rpm,567

30 sec – pause] 9x cycles). The lysate was recovered (around 1.2 mL) and transferred to two568

1.5 mL tubes. SDS was added to a final concentration of 0.3% and the 2 reactions were incu-569

bated at 65°C for 20 minutes followed by an incubation of 30 minutes at 37°C. A volume of 50570

µL of 20% triton-X100 was added to each tube and incubation was continued for 30 minutes.571

DpnII restriction enzyme (150 units) was added to each tube and the reactions were incubated572

overnight at 37°C. Next morning, reactions were centrifuged at 16,000 x g for 20 minutes. The573

supernatants were discarded and the pellets were resuspended in 200 µL of NE2 1X buffer and574

pooled (final volume = 400 µL). DNA extremities were labelled with biotin using the following575

mix (50 µL NE2 10X buffer, 37.5 µL 0.4 mM dCTP-14-biotin, 4.5 µL 10mM dATP-dGTP-dTTP576

mix, 10 µL Klenow 5 U/µL) and an incubation of 45 minutes at 37°C. The labelling reaction577
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was then split in two for the ligation reaction (ligation buffer – 1.6 mL, ATP 100 mM – 160578

µL, BSA 10 mg/mL – 160 µL, ligase 5 U/µL – 50 µL, H2O – 13.8 mL). The ligation reactions579

were incubated for 4 hours at 16°C. After addition of 200 µL of 10% SDS, 200 µL of 500 mM580

EDTA and 200 µL of proteinase K 20 mg/mL, the tubes were incubated overnight at 65°C. DNA581

was then extracted, purified and processed for sequencing as previously described (57). Hi-C582

libraries were sequenced on a NextSeq 550 sequencer (2×75 bp, paired-end Illumina NextSeq583

with the first ten bases acting as barcodes).584

Genome size estimation The genome assemblies produced by all three methods (Bwise, Flye585

and Falcon) were markedly smaller than expected based on the generally admitted genome size586

of 0.25 pg per (non-reduced) oocyte (http://www.genomesize.com/result species.php?id=5369),587

equivalent to 244 Mbp for a diploid assembly or 122 Mbp for a haploid assembly. As there is588

considerable confusion in the literature considering the genome size of Adineta vaga (e.g. re-589

port of a nuclear DNA content of about 0.7 pg (59), nearly 3 times higher than in the Animal590

Genome Size database although the entry there refers to this article), we decided to perform591

an independent assessment of the genome size of Adineta vaga using flow cytometry, with592

Arabidopsis thaliana ecotype Colombia (for which a haploid genome size of 157 Mbp was pre-593

viously measured (60) as a genome-size standard for comparison. Nuclei from both species594

were isolated according to the protocol from the Cystain Pi absolute T (SYSMEX #05- 5023)595

kit. Briefly, we chopped them together in the same extraction buffer (500 µL), after which the596

material was filtered through a 30 µm nylon membrane. After RNAse treatment (80 µg/ml),597

the DNA was labeled for 1h in the dark with 2 ml of staining buffer containing 120 µL of598

propidium iodide. The labeled nuclei were then analyzed on the CyFlow Space flow cytome-599

ter (Sysmex) of the research unit ”Evolutionary Biology & Ecology” of the Université libre de600

Bruxelles (ULB). We used a blue laser with an excitation wavelength of 488 nm. The whole601

procedure was performed three times on different days, using different batches of rotifers and602

leaves from different A. thaliana plants every time, and the .FCS files were analyzed using the603

FlowJo v10.6.2 software. The estimated haploid genome size is presented in Supp. Fig. 1.604

Chromosome painting (FISH) To assess the colinearity between two chromosomal mark-605

ers, FISH experiments were performed on samples containing well resolved condensed chro-606

mosomes. As bdelloids are eutelic, such condensed chromosomes are only found in embryos607

undergoing nuclear divisions. Particularly, young embryos containing only few nuclei usually608

exhibit the nicest karyotypes (61). To collect young, ideally one-cell, embryos, about 200 ro-609

tifers bearing a single egg were first isolated in a petri dish containing a 1% agarose pad and610

ice-cold Spa® spring water. The agarose pad avoids the embryos to stick at the bottom of the611

plate and ease their isolation. The rotifers were starved for 24 hours at 4°C and, the next day,612

about half of the water was removed and replaced by the same volume of fresh water at RT613

containing lettuce filtrate. Rotifers were incubated at 25°C and, about 3 hours later, all individ-614

uals were laying eggs almost synchronously. Immediately after laying, the eggs were collected615

and fixed in methanol (Merck Millipore®, 1070182511): acetic acid glacial (VWR™, 20104-616
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243) (3:1) solution on ice. After isolation of all eggs, they were collected by centrifugation617

(14,000 rpm, 2 min, RT), fixed again with methanol: acetic acid glacial (3:1) and stored at 4°C618

until slide preparation. About 100 embryos bearing one or few nuclei can be collected by this619

method. For the FISH probe synthesis, we used the Oligopaint strategy that consists in the use620

of libraries of short single-stranded oligonucleotides (oligos) that are fluorescently labeled to621

visualize megabases (Mbs) of genomic regions (62). The design of the probes was performed622

using the OligoMiner pipeline (63) that selects for oligos having similar parameters such as623

melting temperature (Tm) or the absence of secondary structures. The selected oligos have624

a 30-42 nt region of genomic homology with a Tm of 42°C flanked by constant nongenomic625

sequences at the 5’ end (5’-ccc-gcg-tta-acc-ata-cac-cg-3’) and at 3’ end (5’-ggt-agc-cac-acg-ctt-626

cga-tg-3’). These sequences are necessary for the labeling and the amplification of the libraries627

by PCR (see below). We ordered 6 libraries from GenScript®: (i) library 1 (9.2k oligos) targets628

the chromosomes 2a/b from 13 to 16 Mbs; (ii) library 2 (7.7k oligos) targets the chromosomes629

2a/b from 2 to 6 Mbs; (iii) library 3 (7.7k oligos) targets the chromosomes 6a/b from 2 to 6630

Mbs; (iv) library 4 (8.0k oligos) targets the chromosomes 6a/b from 8 to 12 Mbs; (v) library631

5 (7.9k oligos) targets the chromosomes 5a/b from 3 to 7 Mbs; and (vi) library 6 (7.8k oligos)632

targets the chromosomes 5a/b from 9 to 13 Mbs. The probes were labeled and amplified ac-633

cording to the ’One-day’ probe synthesis protocol using lambda exonuclease described in (64)634

(https://oligopaints.hms.harvard.edu/protocols). The oligo libraries were first amplified and la-635

beled by PCR. Twenty-four PCR reactions (24 x 50 µl) were performed with 1 U of Q5 high-636

fidelity polymerase (New England Biolabs®, M0491), 200 µM dNTPs, 0.5 µM of fluorescently637

labeled forward primer (5’-/Fluo/ccc-gcg-tta-acc-ata-cac-cg-3’), 0.5 µM of phosphorylated re-638

verse primer (5’-/Phos/cat-cga-agc-gtg-tgg-cta-cc-3’), and 1.25 ng of Oligopaint library. The639

primers were ordered from IDT®. To perform the two-color FISH experiments, libraries 1,640

3 and 5 were labeled with 5Atto488N (green) and the libraries 2, 4, and 6 were labeled with641

Atto565N (red). The PCR reactions were incubated at 98°C for 5 min, followed by 40 cycles of642

30 sec at 98°C, 30 sec at 56°C, and 15 sec at 72°C, and a final extension at 72°C for 5 min. The643

PCR reactions were then collected and concentrated using the Zymo DNA clean concentrator644

kit (Zymo research®, D4032). The concentration was performed according to the manufacturer645

protocol and the libraries were eluted in 2,800 µl of RNase/DNase free water. Lambda ex-646

onuclease (New England Biolabs®, M0262) was then used to hydrolyze the 5’-phosphorylated647

strand of the double-stranded amplicons. DNA eluant (2,200 µl) was processed by 250 U of648

lambda exonuclease at 37°C for 30 min, and then stopped by incubation at 75°C for 10 min.649

The single-stranded labeled probes were finally cleaned up using the Monarch PCR & DNA650

cleanup kit (New England Biolabs®, T1030) following the oligonucleotide cleanup protocol.651

Probes were eluted in 20 µl of RNase/DNase free water and stored protected from light at652

-20°C until use. The hybridization of the probes on embryos was adapted from previous proto-653

cols (61,65). At least 100 embryos stored in methanol: acetic acid glacial were dropped onto an654

uncoated and clean microscope slide (VWR™, 631-1550) and let dry on a wet paper for 30 min.655

Then, a cover slip (VWR™, 631-1572) was placed over the embryos and they were squashed656

by gentle pressure on the slide. All following treatments of embryos on slides were conducted657
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in Coplin jars. Embryos were permeabilized in 0.1% saponin (Sigma-Aldrich®, 47036)/0.1%658

triton X-100 (Sigma-Aldrich®, T8787) in PBS (Lonza®, 17516Q) for 10 min, followed by 2659

washes of 5 min in PBS. Samples were incubated for 20 min in PBS containing 20% of glyc-660

erol (Carl Roth®, 7530.1) and washed again 2 times in PBS. Slides were incubated for 5 min661

in 2x SSC (SSC 20X, Invitrogen 15557-036) supplemented with 0.1% of Tween-20 (Sigma-662

Aldrich®, P1379) (i.e., 2x SSCT), and then for 5 min in 2x SSCT supplemented with 50% of663

formamide (Sigma-Aldrich®, 47671). The slides were then put on top of a thermoblock at 92°C664

for 2.5 min and transferred in a Coplin jar containing 2x SSCT-50% formamide at 60°C for 20665

min. The jar was then removed from 60°C and placed at RT for 1 hour. The hybridization mix-666

ture (50 µl) composed of 2x SSC, 50% formamide, 1 ul of RNAse A (Sigma-Aldrich®, R4642),667

10% dextran sulfate (Sigma-Aldrich®, S4030), and 10 µl of each labeled oligo libraries, was668

placed on a clean cover slip and the slide containing the embryos was inverted onto this cocktail669

of hybridization. For the two-colors FISH, the oligo library 1 (green) was mixed with the oligo670

library 2 (red), the oligo library 3 (green) was mixed with the oligo library 4 red), and the oligo671

library 5 (green) was mixed with the oligo library 6 (red). The cover slip was sealed with rubber672

cement and let dry for 5 min at RT. The mounted slide was denatured at 92°C for 2.5 min on a673

thermoblock, transferred to a dark humidified chamber, and incubated O/N at 37°C. The next674

day, the cover slip was removed carefully from the slides. The slides were then washed in 2x675

SSCT at 60°C for 15 min, and in 2x SSCT at RT for 10 min. Chromosomes were counterstained676

for 20 minutes with 1 µg/ml DAPI (4’,6-diamidino-2-phenylindole; ThermoFisher Scientific,677

D3571) in 2x SSC. Slides were washed twice in 2× SSC for 10 min, and mounted under a 24678

× 32 mm cover slip in Mowiol 40-88 (Sigma-Aldrich®, 324590). Chromosomes and FISH679

signals were observed under a Leica TCS SP5 fluorescence confocal microscope using the 488680

nm laser to capture the green signal, the 561 nm laser for the red signal and the 405 nm laser681

line for the DAPI signal. Images were captured in Z-stacks with the LAS AF software and they682

were finally processed and analyzed with Fiji (ImageJ, version 2.0.0).683

Chromosome-level genome assemblies684

Phased assembly: Bwise The Bwise assembler v0.1 (https://github.com/Malfoy/BWISE)685

was used on high-coverage Illumina data (sample ID GC047403, see Supp. Table 1) to pro-686

duce a draft phased genome assembly. We selected a Kmer size parameter of 63 (-k 63) as this687

produced the most contiguous assembly over the range of tested Kmer sizes: 63, 73, 101, 201.688

Other parameters were left as default. Bwise rests on a different paradigm than most assem-689

blers: it starts by generating a de Bruijn graph from the reads to assemble (66), then cleans690

the graph by removing tips caused by sequencing errors (67), remaps the initial reads on this691

corrected de Bruijn graph (68), transforming them in super-reads (69). Finally, the resulting692

super-reads are assembled in a greedy fashion whenever they overlap unambiguously by one693

or several unitigs. This approach was devised in order to produce an assembly that reflects694

faithfully the unknown ploidy level of the organism sequenced. Therefore, Bwise will produce695

haploid assemblies whenever the organism sequenced is haploid, diploid assemblies whenever696
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the organism sequenced is diploid, triploid... etc.697

AV20 Haploid assembly: NextDeNovo Reads quality control was performed with FastQC698

v0.11.8, seqkit v0.11.0 stats and MultiQC v1.7. PacBio reads (GC032883699

∼ 235x) were scanned for SmartBells adapters that remained in the .fastq files with the mod-700

ule removesmartbells.sh from bbmap v38.73. Then modules rmdup and rename701

from seqkit v0.11.0 were used to rename duplicated read names. PacBio reads were sep-702

arated in two sets: Assembly (AS) and Polishing (PS). AS reads were filtered with filtlong703

v0.2.0 on length and cropped on quality. Length threshold was set at 42Kbps, quality704

thresholds (min mean q ≤ 9 and min window q ≤ 8) were chosen based on the FastQC705

v0.11.8 stats. PS reads were filtered and cropped using the same parameters except for the706

length threshold that was set at 5 Kbps. In both AS and PS, the worst 10% reads were dis-707

carded. After filtering: 0.3x remained in AS and 208.5x in PS. Oxford Nanopore minion reads708

(BXQ F∼ 175x) were used only for assembly. Reads were filtered with filtlong v0.2.0709

on length and cropped on quality. Length threshold was set at 42Kbps, quality thresholds710

(min mean q ≤ 16 and min window q ≤ 15) were chosen based on the FastQC v0.11.8711

stats. Since ∼ 114x Illumina HiSeq 2x240bp was also available for this biosample, the 16-mer712

spectrum from these reads was used to crop and split long reads using filtlong parameters713

split 250 and trim. The worst 10% reads were discarded. After filtering: 38.3x remained.714

Illumina HiSeq2500 reads (GC047403 ∼ 357x) were not filtered nor cropped. The sequencing715

facility (GenomicsCore KUL) provided pre-processed sequences without adapters. Assem-716

bly was performed with https://github.com/Nextomics/NextDenovo, using AS reads (PacBio717

and ONT). Many parameters were adjusted empirically, see the provided configuration file for718

details. After this step, all assembly files between each step were sorted and renamed us-719

ing the funannotate v1.5.0-12dd8c7 sort module. The raw assembly contained720

uncollapsed diploid sequences called haplotigs. Haplotigs were removed with purge dups721

v1.0.0 (70) using PacBio PS (GC032883 ∼ 208x). The configuration file was modified to722

skip the facultative BUSCO and KCM steps. The obtained purged assembly was self aligned723

with minimap2 v2.17-r941 -DP (71) and then visualized with dgenies (72) to find724

haplotype alignments. Haplotigs were not visible compared to the unpurged assembly. The725

purged assembly was then polished using HyPo v1.0.3 (73) with Illumina (GC047403 ∼726

357x) and PacBio reads from the polishing set (GC032883 ∼ 208x). PacBio long reads align-727

ments were performed using minimap2 v2.17-r941. Illumina reads were mapped using728

bwa mem v0.7.17-r1188 (74) and bam indexing and sorting was done with samtools729

v1.10 (75). Illumina coverage estimates for HyPo was done using the average coverage of the730

mapping file computed with sambamba v0.6.8 depth base (76) (106x) and expected731

haploid genome size (96m) was set based on the last available flow cytometry genome size732

estimations results.733

Diploid assembly: FALCON The de novo assembly of Adineta vaga genome was carried out734

with diploid-aware long-read assembler FALCON version 0.7.0, FALCON-Unzip and partial735

32

CHAPTER 5. HI-C SCAFFOLDING OF THE BDELLOID ROTIFER ADINETA VAGA

152



FALCON-Phase (only FALCON-Phase Workflow steps 1, 2 and 3) (24). Prior to the assem-736

bly, Canu error correction module (77) was used for read error correction based on raw PacBio737

reads. The FALCON software is highly optimised for eukaryote genomes, and uses hierarchical738

genome assembly process (HGAP). More specifically, reads longer than 15 kb were selected by739

Falcon as ”seed” reads to generate consensus sequences with high accuracy. The pre-assembly740

steps in FALCON uses DALigner to do all-by-all alignments of the corrected PacBio reads.741

Long reads were then trimmed at regions of low coverage with FALCON sense parameters (-742

minidt 0.70 -mincov 4 -maxnread 200) and sensitive DALigner parameters were selected (-h60743

-e.96 -l500 -s1000) for pre-assembly process. The FALCON pre-assembly resulted in 331 pri-744

mary contigs of total length 125 Mb, contig N50 of 6 Mb and an additional 36 Mb of “associate745

contigs” that represent divergent haplotypes in the genome. FALCON-unzip was then used to746

phase the pre-assembly, producing contiguous leading contigs (named ”primary”) and associ-747

ated contigs (i.e. phased, alternate haplotypes). The genome assembly was polished as part of748

the FALCON-Unzip pipeline using haplotype-phased reads. The haplotigs contain one of the749

two allelic copies of the heterozygous regions; in this respect, the haplotigs serve as phasing in-750

formation for the haploid representation. The FALCON-Unzip assembly had 241 primary con-751

tigs and 999 haplotigs. FALCON-Phase (https://github.com/phasegenomics/FALCON-Phase)752

was developed to resolve haplotype switching in diploid genome assemblies. The FALCON-753

Phase haplotig placement defines phased blocks in the FALCON-Unzip assembly. The Falcon-754

Phase Workflow steps 1 and 2 were used to place the haplotigs along primary contigs. Once the755

haplotig placement file and phase block pairings are done, the primary contigs are cut up into756

very small pieces at phase block boundaries with Falcon-phase workflow step 3.757

Assemblies scaffolding: instaGRAAL Hi-C contact maps were generated from paired-end758

reads using the hicstuff pipeline (78) for processing generic 3C data, available at759

https://github.com/koszullab/hicstuff. The backend uses bowtie2 (79) in paired-end mode (with760

the following options: -{}-maxins 5 -{}-very-sensitive-local). We discarded alignments with761

mapping quality lower than 30. The remainder was converted to a sparse matrix representing762

contacts between each pair of DpnII restriction fragments. The instaGRAAL program (25)763

was used in conjunction with the contact maps to scaffold the genomes. Prior to running it,764

restriction fragments are filtered based on their size and total coverage. Fragments shorter than765

fifty base pairs are discarded. Then, fragments with coverage lesser than one standard deviation766

below the mean of the global coverage distribution are also removed from the initial contact767

map. These fragments were reintegrated later after the scaffolding step. The instaGRAAL768

scaffolder uses a Markov Chain Monte Carlo (MCMC) method: briefly, the contact data is769

fitted on a simple three-parameter polymer model. The 3D contacts are exploited and used by770

the program to infer the relative 1D positions of the sequences and thus the genome structure.771

To do so, the program attempts to perform a number of operations between each sequence and772

one of its neighbours (e.g. flipping, swapping, merging or splitting contigs) and the operation773

is either accepted or rejected with a certain probability depending on the likelihood shift. The774

model parameters are then also updated and a new iteration begins. A set of computations775
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whereby every sequence of the genome has been iterated over this way is called a cycle. The776

scaffolder was run for 100 cycles on the phased and the diploid genome and was run for 50777

cycles on the AV20 haploid genome, after which convergence in both genome structure and778

model parameters was evidently apparent. The scaffolded assemblies were then refined using779

instaGRAAL’s instaPolish module, with the aim of correcting the small artefactual inversions780

sometimes produced by instaGRAAL. The resulting contact map can be seen in Supp. Fig. 2.781

Post-treatment of scaffolded assemblies Post-treatment of the diploid assembly (Falcon):782

we used the repeat-aware finisherSC tool (80) to upgrade the de novo phased genome assem-783

bly of Adineta vaga. Final round of polishing were performed with the Pilon corrector using784

Illumina data (sample ID GC047403, see Supp. Table 1). Post-treatment of the phased as-785

sembly (Bwise): : to resolve a remaining fragmentation of one single chromosome (i.e. chro-786

mosome 5B) after scaffolding with instaGRAAL based on Hi-C data, we established a novel787

comparative approach that incorporates computational methods to transform fragmented con-788

tigs into near-chromosome fragments. First, Bwise contigs were aligned against themselves789

using NUCmer v4.0 (81). Ploidy pairing was evaluated using the online visualization tool,790

DOT (https:/dnanexus.github.io/dot/) and we were able to anchor fragmented contigs into a791

single chromosome using its homologous template (i.e. chromosome 5A).792

AV20 genome annotation793

Transposable elements annotation TE-like elements, including transposable elements (TEs),794

were predicted using a combination of two complementary tools: EDTA v1.7.8 (82) and TEde-795

novo (part of the REPET pipeline) (83, 84). The former relies on structure-based programs796

allowing for the detection of even single-copy elements, while the latter relies on sequence re-797

peatedness. The TE-like elements consensus sequences they both produced were then merged798

and subsequently filtered by performing a basic annotation of the genome with TEannot from799

the REPET pipeline, and retrieving only consensus sequences with at least one full length copy800

annotated and discarding sequences corresponding to potential host genes. The 521 retained801

consensus sequences (293 from EDTA, 124 from TEdenovo) were then used as input for the802

subsequent genome annotation with TEannot. This resulted in a draft annotation of 8,590 TE-803

like elements covering 6.57% of the genome. A series of filters were then applied to these804

annotations using in-house script: i) conserving only retro-transposons and DNA-transposons;805

ii) with minimal copy length of 250 bp; iii) with minimum identity with consensus of 85%;806

iv) with a minimal proportion of the consensus overlapped of 33%; v) resolving overlapping807

annotation. These filtering steps resulted in a final annotation of 841 putative canonical TEs808

covering 1.98% of the genome. Proportions of TE-like sequences and TEs are shown in Supp.809

Fig. 9.810

Gene annotation Gene prediction and annotation of AV20 genome were done according to811

current integrative approaches based on several independent lines of evidence. We first dis-812
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carded scaffolds shorter than 1000 bp using funannotate clean function (85). Repeats in the813

genome were then soft-masked using bedtools (86) maskfasta function using the draft annota-814

tion of repeated elements as described above. RNA-Seq data from several cultured clones (see815

Supp. Table 1) were used to produce de novo a transcriptomic assembly with trimmomatic (87)816

and trinity (88) both under default parameters. This transcriptomic assembly as well as addi-817

tional RNA-Seq data directly mapping on the genome (see Supp. Table 2) were used as input818

for the funannotate train function that wrap the PASA pipeline (89) which relies on RNA-Seq819

to produce high quality annotations. Then, we used a combination of PASA annotations, de820

novo assembled transcriptome, metazoan BUSCO database and the proteic Uniprot database821

within funannotate predict function. This first produced ab initio predictions using Genemark-822

ES (90), which were then used along with transcripts and proteic data to train Augustus to823

generate a second set of annotations. Lastly, it used Evidence Modeler as a weighted approach824

to combine annotations from PASA, Genemark and high quality predictions from Augustus into825

an integrated gene annotation set. We then used InterProScan5 in order to produce functional826

annotations to the predicted genes (91) which were then used in combination with busco meta-827

zoan database using the funannotate annotate function with default parameters. In addition,828

Ribosomal RNA genes were predicted from the AV20 genome assembly using barrnap (92)829

(parameters: –kingdom euk). Note that the number of genes annotated differs greatly from830

the number of genes annotated previously (9). This is mainly due to the structure of the two831

genome assemblies: the AV13 genome was phased (many pairs of annotated genes correspond832

to alleles) while the genome assembly we present here is haploid.833

Detecting HGTc with a new tool: Alienomics We used a newly developed tool, named834

Alienomics, in order to detect Horizontal gene transfers candidate (HGTc). This tool is be-835

ing submitted and described in detail elsewhere. Briefly, its approach first integrates several836

lines of quantitative evidence into a score for every predicted gene. This gene score is based837

on several blast results (i.e. against Uniref50 database, a user-defined set of closely-related838

reference genomes, bacterial rRNA database, BUSCO database) as well as on read coverage839

and GC content. It represents how ”alien” or ”self” a given gene is. Note that when con-840

sidering blast results the taxonomy of multiple best-hits are parsed and evaluated in order to841

determine whether the query origin belong to ”self” orto ”alien”. We then superimpose this842

qualitative synteny information to the quantitative gene score in order to discriminate if alien843

genes stemmed from contaminant or from HGT. For this, scaffolds are being given a score844

based on the integration of all the gene scores, slightly modified using expression level based845

on RNA-Seq (in order not to penalize scaffolds including many true HGTs). This scaffold score846

represents whether it originated from a contaminant or from the genome under study. Syn-847

teny is then taken into account by comparing gene scores to their respective scaffold scores to848

validate a HGTc. For example, an ”alien” gene on a ”self” scaffold corresponds to a HGTc849

while an ”alien” gene on an ”alien” scaffold is a contaminant. Alienomics is available here:850

https://github.com/jnarayan81/Alienomics. Within Alienomics, results for each criteria (e.g.851

blast bitscores, GC content, coverage) are transformed into criteria scores ranging from -1 to852
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+1. Criteria scores from blast results are turned into negative values if the taxon id from the best853

representative match among all hits do not belong to a user-defined clade (such as ”metazoa”).854

Gene scores result from the combination of criteria scores and correspond to the hyperbolic tan-855

gent of the sum of criteria scores multiplied by a ratio that depends on the number of informative856

criteria (e.g. number of criteria for which the value is different from ”0”). Scaffold scores result857

from the combination of gene scores (with the addition of expression score based on RNA-Seq858

data) and correspond to the hyperbolic tangent of the sum of gene scores multiplied by the859

square root of the number of genes and normalized by gene lengths. Coverage information860

was computed from raw ONT reads using minimap2 (parameters as follows: -ax map-ont -c861

-Y). Alienomics was run here under the following parameters: level upto = metazoa; gc filter862

= 26:38 ; evalue = 1e-01; qcovper = 0; bitscoreCutoff = 150; coverage = 100; ignoretaxid =863

104782—10195—96448—249248—1813166—104781—4513—112509—9606—7574—42192—29159—283909—7739.864

HGTc were categorized as such under the following default thresholds: genescore = 0.5; scaf-865

foldscore = 0.5.866

Endogenous viral elements detection Sequences showing similarity to viral genes were867

searched in the AV20 genome assembly by performing a diamond (93) blastx search (options: –868

max-target-seqs 1 –range-culling –min-score 40 –more-sensitive -F 15) using AV20 scaffolds as869

queries all viral proteins extracted from the nr database of NCBI (February 2020). Proteins from870

two viral families were excluded from this database (i.e. Retroviridae and Hepadnaviridae) to871

avoid false-positive blast hits corresponding to the reverse-transcriptases of A. vaga retrotrans-872

posons. All A. vaga sequences showing similarity to a viral sequence were then used as queries873

to perform a reciprocal diamond blastx search against the entire NCBI nr protein database. All874

sequences aligning with a higher score to a viral sequence than to a non-viral sequence were875

annotated as viral-like sequence.876

AV20 genome analyses877

Ploidy, synteny and colinearity among the three A. vaga genome assemblies Genome as-878

sembly tools rely on various assumptions including the ploidy level of the organism under879

study. In order to circumvent potential impact of such ploidy assumptions on genome struc-880

ture, we compared our three new genome assemblies. First we evaluated the classical genome881

assembly statistics using in-house script (see Figure 1A). We then used the illumina reads (i.e.882

GC047403, see Supplementary Table 1, as input for the comp function of the KAT software (94)883

which uses k-mers distribution in order to explore ploidy levels of A. vaga genomes (see 1A).884

Genomes were aligned pairwise using nucmer 3.1 (using –maxmatch option) (95), the results885

of which were converted into paf format using minimap2 paftools script (71). We then used the886

online tool D-GENIES (72) to visualise the three pairwise alignment as dotplots (see Supp. Fig.887

3, 4 and 5).888
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Read depth and heterozygosity Average coverage on AV20 genome assembly was computed889

independently for the Illumina PE reads, ONT reads and PacBio reads, on 100 Kbs windows.890

The mapping was performed with bwa mem 0.7.17 (74) on default settings for the short-reads891

reads. Heterozygosity analysis was performed using GATK 4.1.0.0 (96) on Illumina PE reads892

for genotyping all sites (HaplotypeCaller function with -ERC GVCF option). This was done893

for all samples analyzed (i.e. GC047403, BXQF, ERR321927). The resulting gvcf files were894

combined (CombineGVCFs function) and were then jointly genotyped (GenotypeGVCFs func-895

tion) (97). Distribution of heterozygous sites are shown on Figure 2A.896

Homoeologous divergence The self alignment of AV20 genomic sequences obtained using897

nucmer 3.1 (–maxmatch option, see methods on synteny and colinearity above) (95) was re-898

used in order to evaluate the genomic divergence between homoeologous chromosomes. The899

paf alignment file was filtered using custom script in order to only retain genomic alignments900

between homoeologous regions ranging from 500 to 10,000 bp (see Supp. Fig 8). Note that901

the divergence between homoeologues (and alleles) measured here are much lower than the902

measures previously reported (9). This is because we aligned genomic regions at the nucleotide903

level using nucmer. On the contrary, previous study aligned CDS at the proteic level using MC-904

ScanX which then guided corresponding alignment at the nucleotide level, producing additional905

indels due to the existence of frameshifts.906

Detecting gene synteny Protein sequences from annotated genes were used as input for MC-907

ScanX (98) in order to detect blocks of gene synteny (parameters: -s 5 -b 1). Home-made908

script was used in order to only retain genes that composed syntenic blocks between homoe-909

ologous chromosomes. Among the 31,582 annotated proteins in A. vaga, 9,726 of them had910

a proteic counterpart in a synteny block on their respective homoeologous chromosome (i.e.911

30.79% of proteins). Note that the number of gene existing prior to the tetraploidyzation of912

the genome is very likely larger than this estimate, as any gene loss, translocation or structural913

re-arrangements would break gene synteny. All synteny blocks are depicted as grey links on914

Figure 1B. The same procedure was followed to detect colinear blocks of synteny using only915

the 2,679 HGTc (corresponding synteny blocks are depicted as colored links on Figure 3).916

Gene enrichment analyses GO terms from functional annotation of the haploid genome917

were extracted from gene annotation (see gene annotation section above). The 2,422 recent918

HGTc and the 257 ancient HGTc were respectively compared to the entire gene set of the AV20919

genome containing 32,378 proteins. Enrichment analyses were performed using topGO pack-920

age with a fisher test and the ”elim” algorithm (99). Results are presented in Supplementary921

Table 2.922
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Re-appraisal of the AV13 Genome923

Investigating AV13 Breakpoints The previously identified synteny breakpoints in the genome924

of A. vaga 2013 (AV13 (9)) were verified by mapping the ONT reads (median size: 4,149 kb;925

max size: 353,147 kb) produced in this study onto the AV13 genome according to the following926

procedure: i) ONT reads were filtered with Porechop (100) to discard long reads containing927

adapters. This discarded 1,202 out of the 1,634,477 reads; ii) Reads were mapped onto the928

AV13 genome using NGMLR (101) with default parameters. This tool was selected for its929

accuracy when aligning long reads in a context of structural variation; iii) The scaffold of inter-930

est (i.e. scaffold1 from AV13) was aligned against the rest of the AV13 genome using Sibelia931

v3.0.7 (102) with the following parameters: ’-s loose -m 10000 --gff’. iv) The new932

AV20 haploid genome assembly was aligned against the AV13 genome using the same proce-933

dure as in the previous step; v) Synteny block from Sibelia were used to determine the genomic934

windows containing the putative breakpoints described previously (9). These regions were man-935

ually screened using Tablet (103) to visualize the alignment of ONT reads. We notably checked936

for the presence of clipped regions. Every window contained at least one clipped region (i.e. a937

position that is not supported by a single long read) which we reported as screenshots in Supp.938

Fig. 6.939

Investigating AV13 Palindromes Palindromes previously reported in the AV13 genome were940

investigated in the light of our new AV20 assembly. We first de novo determined the location941

of palindromes in AV13 by filtering ONT long reads, mapping them onto AV13 genome using942

NGMLR (101) with default parameters and subsequently detecting the palindromic breakpoints943

(PBR) using a in-house tool, huntPalindrome (available at944

https://github.com/jnarayan81/huntPalindrome). Each PBR location was extended by 2.5 kbp945

on both sides to produce PBR windows within which we checked for clipped long reads us-946

ing in-house script. Additionally, we used the alignment between AV13 and AV20 genomes (as947

described in the previous paragraph) to show how these 20 palindromes from AV13 were assem-948

bled in AV20 (see Supp. Fig. 7). All these palindromes were collapsed into non-palindromic949

regions in the new AV20 genome assembly.950
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Supplementary Figure S1: Genome size estimation. Flow cytometry measurement of the
genome size of Adineta vaga (Av) by comparison to Arabidopsis thaliana cultivar Colombia
(At). Genome size length of A. thaliana 1C is 157 Mbp. Assuming A. vaga is diploid, the ratio
between the two species (i.e. Av/At) is about 0.61, leading to the estimation that A. vaga 1C
genome size is 96.3 Mbp
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Supplementary Figure S2: AV20 contact map. Proximity ligation sequencing data (Hi-C) con-
tact map on AV20 assembly after scaffolding using instaGRAAL and instapolish.
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Supplementary Figure S3: Haploid versus phased genome dotplot. Pairwise alignment of the
haploid assembly (AV20) against the phased assembly (B-WISE), visualised using D-GENIES.
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Supplementary Figure S4: diploid versus phased genome dotplot. Pairwise alignment of the
diploid assembly (Falcon) against the phased assembly (BWISE), visualized using D-GENIES.
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Supplementary Figure S5: Haploid versus diploid genome dotplot. Pairwise alignment of
the haploid assembly (AV20) against the diploid assembly (FALCON), visualized using D-
GENIES.
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Supplementary Figure S6: Invalidating AV13 breakpoints. a) Schematic view of AV13
genome synteny depicting five putative colinear breakpoints on the scaffold av1 and its
homologous counterparts (adapted from (9)). b) Schematic view of synteny alignment
between the scaffold av1 from AV13 and the new AV20 genome. The 5 putative colinear
breakpoints corresponding to panel a are also depicted. Red stars indicate genomic region
in AV13 assembly that are not supported by long reads, while white stars indicate regions
supported by long reads. Note that regions supported by long-reads in scaffold av1 (white
stars 2, 3 and 5) systematically corresponded to a red star in their homologous counterparts
in AV13 (red stars on other AV13 scaffolds), indicating that the colinear breakpoint was,
in fact, not supported. c) Screenshots of the alignment of long-reads on AV13 assembly
(using Tablet) depicting clipped regions at the location of putative colinearity breakpoints.
These cases correspond to the red stars depicted on panel b.
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Supplementary Figure S7: Invalidating AV13 palindromes. Alignment of the AV13
genome assembly (9) against the new AV20 genome assembly shows the total absence
of previously reported palindromes. Orange bars represent scaffolds from 2013 assem-
bly and green bars represents chromosomes assembled in the present study. Palindromic
regions in 2013 assembly are shown in dark grey.
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Supplementary Figure S8: Genomic divergence between homoeologous chromosomes.
Chromosome pairwise alignments length and identity percentage for every pair of ho-
moeologous chromosomes (i.e. chromosomes 1 and 4, 2 and 5, 3 and 6). Median identity
percentage between homoeologous chromosome is indicated on each plot (i.e. vertical
dotted blue line). Alignments shorter than 500 bp (i.e. horizontal dotted black line) and
longer than 10,000 bp were discarded.
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Supplementary Figure S9: Repeated and transposable elements. Proportion of the genome
covered by each TE order for: a) draft annotation including all repeated elements likely to be
related to transposable elements; b) filtered annotation, including only putative canonical TEs.
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Supplementary Figure S10: Telomeric repeats and HGTc distribution. Telomeric repeats (blue)
are mostly found in telomeres and subtelomeric regions. Note the small increase of telomeric
repeats colocalizing with local hotspot of HGTc (red) on chromosome 4.
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Chapter 6

Genome assembly of the coral

Astrangia poculata

6.1 Introduction

The species Astrangia poculata [265], also called the Northern star coral, is a temperate hard coral

distributed across a wide range of latitudes in the western Atlantic ocean [266]. It belongs to the class

Anthozoa, a division of cnidarians that includes hard corals, soft corals, and sea anemones. Along with

its adaptation to temperature variations, this coral has a facultative symbiosis with algae from the family

Symbiodiniaceae, making it a compelling model to study coral response to environmental changes. To

this end, we assembled its genome which will constitute a resource for downstream analysis. The genome

had previously been assembled with a combination of Illumina and Hi-C reads; although this first version

was highly contiguous, its size was excessively small compared to the expected genome size, and the draft

had a poor completeness. I assembled the genome de novo with newly sequenced Nanopore reads, which

I combined with Illumina and Hi-C reads to produce an improved reference sequence.
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6.2 Material & Method

6.2.1 Sequencing data

High-molecular-weight DNA was extracted by Dovetails Genomics. The sample was further purified with

AMPure XP beads and fragments were selected on their size with Circulomics Short Reads Eliminator

XS.

A Nanopore library was prepared with the Ligation Sequencing Kit LSK109, starting with 2.1 µg of

DNA, and yielded 1.4 µg of DNA. The library was sequenced with a MinION on a R9.4 flowcell, with

fast Guppy v4 basecalling. The flowcell was washed and reloaded three times (281 ng of DNA for the

first load, 187 ng for subsequent loads) and ran for 89 hours. A total output of 6.79 Gb was obtained

with an N50 of 18 kb and an N90 of 5 kb (Table 6.1). Adaptors were removed using Porechop [267] with

default parameters. After trimming, the dataset reached 6.77 Gb.

Dovetails Genomics produced two shotgun Illumina datasets of paired-end 150 bp reads: one with 414 mil-

lion reads and an estimated insert size of 395 bp, and the second with 235 million reads and an estimated

insert size of 484 bp (Table 6.1). Adaptors were removed using cutadapt github.com/marcelm/cutadapt.

Dovetails Genomics also provided three Hi-C libraries with 198 million, 266 million and 257 million

paired-end 150 bp reads (Table 6.1). The reads were trimmed of the adaptors with cutadapt.

Table 6.1: Astrangia poculata sequencing datasets.

Reads Length N50 Size

Hi-C 2*150 bp - 217 Gb

Illumina 2*150 bp - 195 Gb

Nanopore - 18 kb 7 Gb

6.2.2 Genome size estimation

Dovetails Genomics estimated the genome size to 462 Mb. I estimated the genome size using the second

shotgun Illumina dataset of 235 million reads and the module kmercount.sh from BBtools [236]; the tool

predicted a haploid size of 453 Mb, a ploidy of 2, and 40.95% of repeats.
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6.2.3 Genome assembly

Five assemblers were tested with default parameters: Canu [95], Ra [103], Raven [104], Flye [97], wtdbg2

[108]. Purge Haplotigs [146] was run on the wtdbg2 assembly with default parameters, using the full

shotgun Illumina datasets mapped with bowtie2 [268]. The wtdbg2 assembly was polished with HyPo

[138], using the full shotgun Illumina datasets mapped with bowtie2. Hi-C reads were mapped to the

wtdbg2 assembly and processed using hicstuff [260], available at github.com/koszullab/hicstuff, with the

parameters --enzyme DpnII --iterative --aligner bowtie2. The draft assembly was then scaffolded using

instaGRAAL [186], with default parameters (--levels 4 --cycles 100 --coverage-std 1, --neighborhood 5).

The output was refined with the module instaGRAAL-polish.

6.2.4 Assembly evaluation

BUSCO v4 [30] was run against metazoa odb10 (954 features) without the parameter --long. k -mer

completeness was calculated by running KAT comp v2.4.2 [238] with the full shotgun Illumina datasets.

The contact map was built using the hicstuff pipeline, with the three Hi-C libraries, and hicstuff view

with the parameter --binning 200.

6.3 Results

The assembly provided by Dovetails Genomics had chromosome-level scaffolds, but one of its major flaws

was that its total size only reached 252 Mb (Table 6.2) whereas the genome size was estimated to 462

Mb by Dovetails Genomics and to 453 Mb by BBtools.
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Table 6.2: Basic statistics of Astrangia poculata assemblies, presenting the strategies that were used for
each assembly (purging haplotigs, assembly polishing, scaffolding), assembly size, number of contigs, N50,
number of BUSCO single complete features and BUSCO duplicate complete features.

Assembler Purging Polishing Scaffolding Assembly # contigs N50
BUSCO

size single dup.

Dovetails - - - 252 Mb 7848 16.8 Mb 60.0% 0.2%

Canu × × × 597 Mb 8317 97 kb 56.0% 7.9%

Flye × × × 719 Mb 7259 167 kb 67.9% 8.9%

Ra × × × 271 Mb 2851 115 kb 43.9% 0.3%

Raven × × × 400 Mb 2912 172 kb 52.3% 0.4%

wtdbg2 × × × 476 Mb 4423 439 kb 55.1% 0.3%

X × × 452 Mb 2995 475 kb 54.6% 0.3%

X X × 458 Mb 2995 480 kb 87.7% 2.4%

X X X 458 Mb 488 31.0 Mb 89.1% 1.2%

Ra and Raven both produced smaller assemblies than expected, with the Ra assembly size close to the

one of Dovetails Genomics. Canu and Flye both produced assemblies quite larger than expected, which

is likely due to uncollapsed haplotypes, as is shown by the increased percentages of duplicated BUSCO

complete features. wtdbg2 produced the most convincing draft, with an assembly size close to expecta-

tions and the highest N50. Purge Haplotigs reduced the number of contigs from 4423 to 2995 and slightly

increased the N50 from 439 kb to 475 kb. After polishing, the overall number of complete BUSCOs

went from 54.9% to 90.1%. Scaffolding with instaGRAAL yielded 14 chromosome-level scaffolds, with

sizes ranging from 21.1 Mb to 54.8 Mb. The final assembly contains 14 scaffolds and, after removing

small sequences, has a size of 455 Mb and a BUSCO completeness of 90.4%. The KAT plot shows two

peaks, as the species is diploid 6.2. Low multiplicity (or erroneous) k -mers are absent from the assembly,

as expected. A part of heterozygous k -mers are represented once in the assembly and the rest are not,

as only one haplotype is represented for heterozygous regions in collapsed haploid assemblies. The ma-

jority of homozygous k -mers are represented once, although there are some missing and duplicated k -mers.
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Figure 6.1: Contact map representing the 14 chromosome-level scaffolds of the final assembly (combining wtdbg2, Purge Haplotigs,
HyPo and instaGRAAL).
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Figure 6.2: k-mer analysis of the chromosome-level scaffolds of Astrangia poculata.

6.4 Discussion

The initial assembly of Astrangia poculata reached a high contiguity, but its small size and completeness

indicated that the assembly was incomplete. The new assembly has a size and a number of chromosome-

level scaffolds within the expected range, as well as high BUSCO and k -mer completeness. This demon-

strates that, although Hi-C scaffolding is a robust method to achieve chromosome-level assemblies, the

quality of the input contigs is crucial. In this case, the small size of the initial assembly may result from

the high repetitive content (estimated to 40.95%) which is typically poorly handled by short reads; repeats

are better resolved by long reads as their length can cover full repetitive regions [49]. Interestingly, a low

coverage of long reads (about 15X) was sufficient to yield an assembly with a size close to the estimated

genome size, and polishing with a high-coverage short read dataset further improved the completeness.

Among assemblies of anthozoan genomes, only a few reached chromosome-level scaffolds: Acropora mille-

pora, Xenia sp., and the assembly of Astrangia poculata presented here (Table 6.3). The most recent

version of Acropora millepora combines long reads, linked reads and genetic maps, while Xenia sp. and
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Astrangia poculata were both obtained with long reads, short reads, and Hi-C. One genome was scaf-

folded with an alternative in vitro Hi-C protocol, called CHICAGO, but this approach led to a poor

contiguity, and regular Hi-C should be favored for chromosome-level assemblies. Many genomes of hard

corals (Scleractinia) were assembled with Illumina reads and scaffolded with mate pairs, and particularly

for a large genomic analysis of their adaptation to elevated temperatures [269]. All these assemblies have

a size around 400 Mb, an overall BUSCO completeness over 88% with few duplicated BUSCO features,

and several have an N50 over 1 Mb. These assemblies, although obtained with short reads only, do

not have the same flaws as the initial assembly of Astrangia poculata, suggesting that short reads are

still relevant to yield high-quality draft assemblies when combined with efficient assemblers (Platanus, in

this case). Besides, the contiguity and completeness of the short-read only assemblies are comparable or

higher compared to assemblies that included long reads. Hi-C scaffolding could be highly beneficial for

the study of these genomes, as species of the genus Acropora have an endosymbiosis with zooxanthellae

and Hi-C scaffolding can tell apart these different genomes.

The quality of the assembly of Astrangia poculata makes it a new reliable reference among anthozoan

genomes for downstrean analysis and comparison with other species.
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Table 6.3: Comparison of assembly statistics with other genomes of the class Anthozoa.

Subclass Order Species Reads technology Assembly N50 BUSCO
size single dup.

Hexacorallia Scleractinia Astrangia poculata Illumina, Nanopore, Hi-C 455 Mb 31 Mb 89.2% 1.2%
Acropora acuminata [269] Illumina, mate pair 395 Mb 1.0 Mb 93.3% 0.7%
Acropora awi [269] Illumina, mate pair 429 Mb 1.1 Mb 89.0% 0.3%
Acropora cytherea [269] Illumina, mate pair 426 Mb 1.1 Mb 88.6% 2.9%
Acropora digitifera [270] 454, Illumina, mate pair 447 Mb 484 kb 67.7% 5.0%
Acropora digitifera [269] Illumina, PacBio 416 Mb 1.9 Mb 91.6% 0.6%
Acropora echinata [269] Illumina, mate pair 401 Mb 1.9 Mb 88.2% 0.3%
Acropora florida [269] Illumina, mate pair 443 Mb 751 kb 89.1% 1.7%
Acropora gemmifera [269] Illumina, mate pair 401 Mb 1.1 Mb 87.3% 0.7%
Acropora hyacinthus [269] Illumina, mate pair 447 Mb 1.6 Mb 91.4% 1.6%
Acropora intermedia [269] Illumina, mate pair 417 Mb 577 kb 90.6% 1.8%
Acropora microphthalma [269] Illumina, mate pair 384 Mb 1.1 Mb 88.6% 1.4%
Acropora millepora [271] Illumina, mate pair 387 Mb 495 kb 92.3% 0.7%
Acropora millepora [272] Illumina, mate pair, Hi-C 387 Mb 22.6 Mb 91.7% 0.7%
Acropora millepora [206] PacBio, linked reads, genetic map 475 Mb 19.8 Mb 91.9% 1.5%
Acropora muricata [269] Illumina, mate pair 421 Mb 575 kb 87.4% 1.7%
Acropora nasuta [269] Illumina, mate pair 416 Mb 1.1 Mb 89.4% 2.5%
Acropora selago [269] Illumina, mate pair 393 Mb 657 kb 87.8% 1.3%
Acropora tenuis [269] Illumina, mate pair 403 Mb 1.2 Mb 91.6% 0.8%
Acropora yongei [269] Illumina, mate pair 438 Mb 3.0 Mb 89.9% 1.2%
Montipora cactus [269] Illumina, mate pair 653 Mb 899 kb 89.4% 0.9%
Montipora capitata [273] PacBio 886 Mb 541 kb 75.7% 16.9%
Montipora capitata [274] Linked reads 615 Mb 186 kb 79.7% 0.5%
Montipora efflorescens [269] Illumina, mate pair 643 Mb 1.1 Mb 88.4% 0.9%
Orbicella faveolata [275] Illumina, mate pair 486 Mb 1.6 Mb 82.7% 2.3%
Pocillopora damicornis [276] Illumina, CHICAGO 234 Mb 326 kb 88.5% 0.4%
Stylophora pistillata [277] Illumina, mate pair 400 Mb 457 kb 87.6% 0.5%

Actiniaria Actinia equina [278] PacBio 409 Mb 493 kb 65.1% 29.5%
Actinia tenebrosa [279] Illumina, mate pair 238 Mb 189 kb 91.4% 0.6%
Exaiptasia pallida [280] Illumina, mate pair 256 Mb 442 kb 84.0% 2.6%
Nematostella vectensis [281] Sanger 357 Mb 473 kb 91.7% 1.8%

Corallimorpharia Amplexidiscus fenestrafer [282] Illumina, mate pair 370 Mb 510 kb 84.4% 0.5%
Discosoma sp. [282] Illumina, mate pair 444 Mb 772 kb 85.2% 2.1%

Octocorallia Alcyonacea Dendronephtya gigantea [283] Illumina, PacBio 286 Mb 1.4 Mb 84.3% 8.3%
Paramuricea clavata [284] Illumina, Nanopore 607 Mb 24 kb 72.5% 1.3%
Xenia sp. [223] Illumina, Nanopore, Hi-C 223 Mb 14.8 Mb 85.1% 2.1%

Pennatulacea Renilla muelleri [285] Illumina, PacBio 172 Mb 71 kb 85.2% 3.1%
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Chapter 7

Genome assembly of a chaetognath

7.1 Introduction

Chaetognaths, commonly known as arrow worms, are transparent marine predators widely distributed at

various depths in all oceans, though low depth remains the favorite habitat of most species [286]. They

are characterized by a transparent and elongated body, with one or two pairs of lateral fins, a caudal

fin, a head with hooks, and range in size from a few millimeters to several centimeters [287]. Current

chaetognath species are divided into two orders depending on the presence of transversal muscles, or

phragms: Phragmophora and Aphragmophora [288]. The whole phylum now encompasses about 150

species. They form an enigmatic clade whose phylogenetic position is still discussed. Chaetognaths were

initially considered as deuterostomians, due to their development, but analyses of 18S rDNA rejected this

hypothesis [289, 290] and further brought support to the Phragmophora and Aphragmophora branches

[291]. Later, Nielsen suggested that chaetognaths belonged to the clade Gnathifera [292], which gathers

Gnathostomulida, Micrognathozoa and Rotifera. This hypothesis was supported by a recent transcrip-

tome analysis of ten chaetognath species [293].

To this day, there is no genome assembly available for the whole phylum Chaetognatha, despite the fact

that such a resource could help resolve and refine their phylogenetic position. Within the framework of

the IGNITE consortium and my PhD project, I therefore tackled the assembly of a chaetognath genome,

provisionally identified as Flaccisagitta enflata (see below). This species was first described by Grassi

in 1881; it belongs to the order Aphragmophora and the family Sagittidae. It is epipelagic and present
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across all oceans in warmer waters [294]. This species was selected based on specimen sizes (up to 2.5

cm), to avoid pooling individuals for sequencing and running into more haplotyping complexity, and its

moderate genome size, estimated at 0.71 pg [295].

7.2 Material & Method

7.2.1 Collection and fixation

Chaetognaths were collected by Mark Vermeij around the island of Curaçao after sunset from October

29th to November 2nd 2019. A total of 30 individuals were sampled: eleven were crosslinked in 3%

formaldehyde for 30 to 45 minutes, quenched in 250 mM glycine, then frozen at -80°C; twelve were

preserved in absolute ethanol and kept at 4°C; seven were preserved in RNAlater and kept at 4°C. All

samples used for DNA, RNA and Hi-C sequencing were collected on November 2nd 2019 in Snake Bay.

7.2.2 High-molecular-weight DNA extraction

One 2-cm individual preserved in ethanol was incubated in 180 µL of CTAB buffer (described in Table

7.1) and 25 µL of proteinase K for 3 hours at 60°C and 300 rpm. The lysed sample was purified with

phenol-chloroform-isoamyl alcohol 25:24:1, chloroform-isoamyl alcohol 24:1 and with AMPure XP beads.

I obtained 2.5 µg of DNA with OD260/280 = 1.95 and OD260/230 = 1.95.

Table 7.1: Composition of the cetyltrimethylammonium bromide (CTAB) buffer.

Solution Stock concentration Volume for 2.45 mL

Polyvinylpyrrolidone (PVP) 10% 500 µL

Tris(hydroxymethyl)aminomethane-HCl 1 M 250 µL

Ethylenediaminetetraacetic acid (EDTA) 500 mM 125 µL

NaCl 5 M 1 mL

H2O - 75 µL

CTAB 10% 500 µL

β-mercaptoethanol - 25 µL
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7.2.3 Whole-genome sequencing

The library for Nanopore sequencing was prepared with the Nanopore SQK-LSK109 Ligation sequencing

kit. This library was loaded four times in the PromethION flow cell with nuclease flushes in between.

The flow cell (with pore proteins R9.4.1) ran for 72 hours and gave an output of 40.5 Gb with an N50

= 6.1 kb. Basecalling was done with Guppy v4. 168 Gb of paired-end 150-bp Illumina reads were also

sequenced by Novogene.

7.2.4 Hi-C sequencing

One 1.5-cm individual crosslinked in 3% formaldehyde was used to prepare a Hi-C library with the Arima

Hi-C kit (including the restriction enzymes DpnII and HinfI), and resulted in 466 ng of DNA. The DNA

was fragmented with a Covaris (300 bp) and biotinylated fragments were selected with streptavidin beads.

The library was prepared for Illumina sequencing using Invitrogen TM Collibri TM PS DNA Library Prep

Kit and following manufacturer instructions. Sequencing by Novogene resulted in 489 millions pairs of

reads of 150 bp.

7.2.5 Pre-assembly analysis

The genome size was estimated with BBtools [236] using the script kmercountexact.sh and the shotgun

Illumina reads. As this tool is based on k -mers, three values of k were tested with k = {27, 29, 31}. A

k -mer histogram of the Illumina dataset was built using KAT hist v2.4.2 (with k = 27).

7.2.6 Genome assembly

The Nanopore reads were trimmed using Porechop [267] with default parameters, then they were as-

sembled de novo with several assemblers: Canu [95], Flye [97], Ra [103], Raven [104] and wtdbg2 [108].

The assemblies were polished with HyPo [138] and remaining uncollapsed haplotypes were purged with

purge_dups [145] and Purge Haplotigs [146]. I also tried preprocessing the reads by filtering them using a

length threshold or the tool Filtlong with the parameters --keep_percent 52.0 --min_length 2000.

Assembly pipelines were defined following the strategies identified in Chapter 2. Two assemblies were

selected as candidates for Hi-C scaffolding:

– FEv1: Ratatosk + Canu + purge_dups x2

– FEv2: Raven + HyPo + purge_dups + Purge Haplotigs
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7.2.7 Hi-C scaffolding

Hi-C reads were mapped to the draft assemblies using hicstuff [260] with the parameters --enzyme

DpnII,HinfI --aligner bowtie2 --iterative. instaGRAAL was run with the parameters --level

5 --cycles 150. The scaffolds were post-processed with instaGRAAL-polish to reduce misassemblies

and 10 Ns were added as gaps.

7.2.8 Gap filling

Gaps in the scaffolded assemblies were filled by TGS-GapCloser [197] using the Ratatosk-corrected

Nanopore reads for FEv1 and the Nanopore reads for FEv2. FEv1 was further polished using HyPo.

7.2.9 Assembly evaluation

Assemblies were assessed using BUSCO v4 against the lineage metazoa odb10 without the parameter

--long and using KAT comp 2.4.2 against the Illumina dataset (with k = 27. Contact maps were built

for scaffolded assemblies using the hicstuff pipeline as described previously and hicstuff view with the

parameter --binning 2000.

7.3 Results

7.3.1 Species identification

Morphological characteristics were registered in living and fixed individuals in order to identify the species:

– length up to 2.5 cm;

– body transparent, soft and inflated-looking;

– 8-10 hooks (Figure 1.A1);

– no collarette;

– anterior position of the ganglion (Figure 1.A2);

– pair of lateral fins;

– short rounded fins;

– ovaries not extending till the anterior fins (Figure 1.B3);
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– round vesicles close to the tail (Figure 1.B4).

Figure 7.1: A chaetognath specimen fixed in 3% formaldehyde. This individual was used for Hi-C sequencing.

The specimens were all provisionally identified as Flaccisagitta enflata using the identification key pro-

vided in Michel [294].

7.3.2 Whole-genome assembly

The haploid genome size was estimated to 695-699 Mb, which matches the estimation available on the

Animal Genome Size Database [295] of 0.71 picograms (approximately 694 Mb), measured with Feulgen

densitometry. The k -mer histogram shows two distinct peaks, one around 85X, for heterozygous k -

mers, and a second around 172X, for homozygous k -mers, thus the genome is diploid (Figure 7.2).

The homozygous peak is strikingly small compared to the heterozygous peak, indicating a high level of

heterozygosity.

Most initial assemblies had a size larger than the expected genome size (Table 7.2), due to the high

heterozygosity of the genome that leads to artefactual duplications, as described in Chapter 2. Canu and

Flye tend to retain uncollapsed haplotypes; Flye yielded an assembly about twice the expected haploid

size when using all raw Nanopore reads (1.45 Gb), suggesting a diploid assembly, but surprisingly Canu

produced a smaller assembly than expected (614 Mb). These behaviors were reversed with the Ratatosk-

corrected Nanopore dataset: the Canu assembly was likely diploid (1.48 Gb), while the Flye assembly

was close to the haploid genome size (849 Mb). However, the poor BUSCO score of the Ratatosk-Flye

assembly suggested that it was not a good candidate. Two rounds of purge_dups greatly improved the

Canu-Ratatosk and Flye-HyPo assemblies, as the number of duplicated BUSCO features were reduced in

favor of single-copy BUSCO features. The Ratatosk-Canu-purge_dups assembly (designated as FEv1)

was selected for scaffolding based on its high BUSCO score, low duplicated features and contiguity.

The Ra assembly of raw Nanopore reads longer than 5 kb was the closest to the expected genome
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Figure 7.2: k-mer analysis of the Illumina dataset.
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Table 7.2: Assembly statistics. purge_dups and Purge Haplotigs are respectively designated as PD and
PH.

Assembly Read Hybrid Polishing Haplotig Assembly # contigs N50 Largest BUSCO
selection correction purging size contig single dup.

Canu 5 kb × × × 614 Mb 24038 44 kb 497 kb 27.6% 2.7%
× Ratatosk × × 1.48 Gb 13385 195 kb 1.2 Mb 28.3% 66.0%
× Ratatosk × PD x2 946 Mb 9288 215 kb 1.2 Mb 85.4% 7.1%

Flye × × × × 1.45 Gb 31205 264 kb 1.6 Mb 61.1% 12.3%
× Ratatosk × × 849 Mb 40273 50 kb 967 kb 43.9% 47.1%
× × HyPo × 1.45 Gb 31205 263 kb 1.6 Mb 35.0% 58.8%
× × HyPo PD x2 985 Mb 9508 277 kb 1.6 Mb 71.2% 19.8%

Ra 5 kb × × × 728 Mb 7706 110 kb 509 kb 42.9% 1.3%
5 kb × HyPo × 730 Mb 7706 111 kb 510 kb 68.8% 11.6%

Filtlong × × × 684 Mb 7507 106 kb 498 kb 39.7% 0.6%
Raven × × × × 1.10 Gb 7656 185 kb 1.2 Mb 60.0% 6.0%

5 kb × × × 1.01 Gb 6901 180 kb 864 kb 37.8% 0.9%
Filtlong × × × 1.01 Gb 6741 186 kb 1.0 Mb 36.3% 1.3%

× × HyPo × 1.10 Gb 7656 186 kb 1.2 Mb 61.1% 30.9%
× × HyPo PD + PH 929 Mb 6612 191 kb 1.2 Mb 78.9% 11.6%

wtdbg2 × × × × 965 Mb 13558 219 kb 2.0 Mb 19.3% 0.2%
× × HyPo × 987 Mb 13558 224 kb 2.1 Mb 71.5% 13.1%

size (728 Mb), yet the BUSCO score after polishing is low (80.4% single-copy and duplicated features).

The Raven assembly of all raw reads was oversized, and after polishing the BUSCO score pointed at

a large amount of duplications (30.9% duplicated features). A combination of purge_dups and Purge

Haplotigs diminished the number of duplicated features (11.6%) and increased the single-copy BUSCO

score (78.9%); this assembly was selected for scaffolding as FEv2. The wtdbg2 assembly had a moderate

amount of duplications, but its BUSCO completeness after polishing was still lower than FEv1 and FEv2.

The mapping rate of Hi-C reads was low for both FEv1 and FEv2: only 37% of the reads aligned

unambiguously. Scaffolding with instaGRAAL yielded 9 chromosome-level scaffolds (Table 7.3, Figure

7.3) that were retained for the final assemblies, to discard contamination from bacteria and plankton in

the digestive tube. The cumulative sizes of the 9 scaffolds are close to the expected genome size, yet still

slightly higher (794 Mb for FEv1, 745 Mb for FEv2). The scaffolds are notably larger in FEv1 than in

FEv2, but the contact maps are similar. FEv1 has the lowest number of Ns in gaps, and its BUSCO

score is higher as well. As for the k -mer spectra (Figure 7.4), both FEv1 and FEv2 have some remaining

duplicated k -mers in the homozygous peak. Nevertheless, most homozygous k -mers are represented once,

part of heterozygous k -mers are represented once, and the rest are not included in the assembly, as is

expected for a collapsed assembly of a diploid genome. There is yet fewer missing homozygous k -mers in

FEv1 than in FEv2.
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Table 7.3: Comparison of scaffolded assemblies.

Assembly
Assembly Chromosomes

N count
BUSCO

size lengths overall single dup.

FEv1 794 Mb 71-112 Mb 23,555 93.3% 86.9% 6.4%

FEv2 745 Mb 59-105 Mb 84,572 87.6% 83.3% 4.3%

Figure 7.3: Contact maps of chromosome-level scaffolds for the two Hi-C scaffolded assemblies.

Figure 7.4: k-mer analysis of chromosome-level scaffolds for the two Hi-C scaffolded assemblies.
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7.4 Discussion

The genome of Flaccisagitta enflata posed a challenge on several aspects. The amount of DNA that could

be extracted from one specimen was too low to run all analysis on a single individual, but it was however

sufficient to avoid pooling individuals for long-read sequencing or for Hi-C sequencing. First analysis

showed that it was even more desirable to assemble the contigs from only one individual as the genome

has a high heterozygosity; thus, a pool of highly divergent individuals would have further hindered the

assembly. Using a second individual for Hi-C sequencing is a likely cause for the low mapping rate, due

to the variability from one specimen to another. Besides, the collapsed assembly only represents one

haplotype for all heterozygous regions; as this genome has a high heterozygosity, many Hi-C reads may

fail to map to the missing haplotypes. Considering the level of heterozygosity, a diploid assembly would

have been a more complete representation. Such assembly is possible when combining short and long

reads, as for the Ratatosk-Canu assembly, but phasing with Hi-C is impossible in this case as the datasets

were generated from different specimens.

Despite these difficulties, the FEv1 and FEv2 assemblies reached high contiguity and completeness. The

draft long-read assemblies had a relatively small N50, which may be to the numerous heterozygous regions

causing unresolved bubbles in the assembly graphs and leading to breaks. Still, Hi-C scaffolding with

instaGRAAL brought these assemblies to chromosome level; although no karyotype is available for this

species, FEv1 and FEv2 both converged towards 9 chromosome-level scaffolds. The assembly is currently

under annotation, and will subsequently be analyzed to bring insights into the phylogeny of chaetognaths.

This study will serve as a basis for chaetognath genomics, since this is the first chaetognath assembly.

Future phylogenomic analyses may shed light on the puzzling position of this clade, and bring insights

into its evolution. In addition, the methods used for this project should facilitate new chaetognaths

assemblies as it provides resources for high-molecular-weight DNA extraction, Nanopore sequencing, Hi-

C sequencing, and assembly.
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Discussion & Conclusion

8.1 Genome assemblies of non-vertebrate animals

Genomic resources are constantly growing, however, animal genome projects have been biased towards

vertebrates. The wide diversity of non-vertebrate animals brings equal possibilities and difficulties, as

protocols and assembly strategies need to be adapted for each project. The genome assemblies presented

in this thesis contribute to filling the gap in genomic resources for several clades of non-vertebrate animals.

The new genome assembly of Adineta vaga is the first chromosome-level assembly of a rotifer species, and

is additionally a first instance of Nanopore and Hi-C sequencing for this group; the genome of Adineta

ricciae [296] was assembled with PacBio CLR but remained heavily fragmented. As for the chaetognath

Flaccisagitta enflata, there is not yet any nuclear genome assembly available for the whole phylum. Coral

genomes were published recently, which included long reads and Hi-C (the hard coral Acropora millepora

[206, 272] and the soft coral Xenia sp. [223]), and the genome of Astrangia poculata will further enrich

coral genomics. As these assemblies have reached chromosome-level scaffolds using Hi-C data, the main

scaffolds should be devoid of contaminations, making them robust references for downstream analysis.

Annotated genome assemblies represent complete gene sets which can be compared between species to

identify orthologs and specific genes. The coral Astrangia poculata may have genes that exempt it from

symbiosis and make it adaptable to a wide range of temperatures, unlike other corals from the genus Acro-

pora. These chromosome-level assemblies also enable structural analyses of these genomes. The rotifer

Adineta vaga was already identified as a paleotetraploid, and the genome of Flaccisagitta enflata may

have similar features, as a prior of study of the transcriptome of the chaetognath Spadella cephaloptera

suspected a whole-genome duplication event [297].
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8.2 Combining long reads and Hi-C for chromosome-level assem-

blies

Long reads and Hi-C technologies became in recent years the winning combination, with short-read se-

quencing, to reach chromosome-level assemblies with high completeness. Long-read sequencing is still

more laborious than short reads, due to its requirement for high-molecular-weight DNA, yet long-read

assemblies are generally favored for their higher contiguity and better resolution of repeats. However,

long reads are often not sufficient to assemble eukaryote genomes into chromosome-level contigs, and a

scaffolding step often remains necessary. Increasing the sequencing depth may improve the contiguity

to a certain extent, but long-read assemblers do not seem able to take advantage of huge sequencing

depths (up to 230X of PacBio CLR and 170X of Nanopore reads in the case of Adineta vaga) to fully

solve assemblies. Scaffolding is therefore needed, and Hi-C has emerged as the most robust method to

bring assemblies to chromosome level. The popularity of Hi-C has stimulated the release of protocols,

commercial kits and programs, providing researchers with a variety of options to adapt to their genome

projects. The genomes presented here, Adineta vaga, Astrangia poculata and Flaccisagitta enflata, were

assembled with a mix of short reads, long reads and Hi-C, and all reached chromosome-level scaffolds

with high completeness. The genome assembly of Flaccisagitta enflata was the most challenging out of

the three due to: its moderate size (694-699 Mb); its high heterozygosity; the low N50 of Nanopore reads;

the poor Hi-C mapping rate. Nevertheless, the quality of the final assembly further demonstrates the

robustness of the combination of long reads and Hi-C.

The amount of Hi-C data and the mapping rates are highly variable among projects (Table 8.1). The

differences in mapping rates cannot be attributed to read length as the Hi-C reads for Adineta vaga are

only 66 bp-long (against 150 bp for Astrangia poculata and Flaccisagitta enflata), but Adineta vaga has

the highest mapping rate (83%). In addition, most Hi-C reads of Adineta vaga (72%) were mapped in the

first round of iterative mapping, using only 20 bases. The low mapping rate for Flaccisagitta enflata may

be attributed to the high heterozygosity of the genome and to the use of a different individual rather than

the one used for Illumina and Nanopore sequencing. It is unclear what would be the necessary amount

of reads for Hi-C scaffolding to obtain chromosome-level scaffolds. The company Arima Genomics rec-

ommends 200 millions pairs of Hi-C reads for a ∼1-Gb genome. This raw estimation does not take into

account the mapping rate nor the fragmentation of the genome, and a thorough review of Hi-C scaffolding
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Species # Hi-C pairs Mapping rate
Adineta vaga 55 millions 83%
Astrangia poculata 723 millions 67%
Flaccisagitta enflata 489 millions 37%

Table 8.1: Overview of Hi-C datasets.

should consider these factors to find optimal Hi-C sequencing depths depending on the genome projects.

Furthermore, Hi-C reads are generated for scaffolding in genome projects, but they can also be used

to explore the 3D architecture of the corresponding genome. As chromosome-level assemblies and Hi-C

datasets are accumulating for a wide variety of species, these resources could be compiled into an evo-

lutionary analysis based on the 3D genomes. For instance, the tool Chromosight was used to detect

chromatin 3D structures in bacteria, yeasts, and 11 animals [298]. Furthermore, a recent study investi-

gated the mechanisms underlying genome folding in 27 species of animals, fungi and plants [272]. This

analysis targeted eukaryotes in general; it surveyed 20 animals, including 6 vertebrates, and disregarded

several metazoan phyla. Recently published non-vertebrate genomes with Hi-C data, such as the sponge

Ephydatia muelleri [232], the echinoderm Lytechinus variegatus [225], the nematode Caenorhabditis re-

manei [229], the slug Arion vulgaris [299], and the ones presented here, could be integrated in a large

study of the 3D genomes of animals.

8.3 Defining a new benchmark dataset: Adineta vaga

New assembly tools are typically benchmarked against the genomes of bacteria or model organisms with

a low heterozygosity, such as Drosophila melanogaster, Caenorhabditis elegans, Homo sapiens, and up to

a heterozygosity of 1% for Arabidopsis thaliana. Testing new programs on the human genome is how-

ever often a requirement for publication (as was the case for GRAAL [184] and instaGRAAL [186]), as

large sequencing datasets of all types are available and this genome is the closest to a perfect assembly,

evermore since the release of a gap-less reference [300]. Therefore, these programs are often tuned for

low-heterozygosity genomes and can only poorly handle higher levels of heterozygosity. The benchmark

of long-read assemblers (Chapter 2) shed light on the limitations of these assemblers on a non-model

genome, Adineta vaga, with a mixture of low-heterozygosity and high-heterozygosity regions. Long-read

assemblers showed distinct behaviors on the same long-read datasets. wtdbg2 yields contigs with few

duplications as it eliminates alternative haplotypes in the assembly graph by identifying and removing

bubbles, i.e. regions where one homozygous sequence can be connected to several sequences, correspond-
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ing to the different haplotypes for one heterozygous region. By contrast, Canu has a more conservative

approach to separate repetitions and haplotypes, leading to uncollapsed assemblies. However, all these

assemblers can produce high-quality haploid assemblies when combined with pre-assembly filtering or

post-assembly haplotig purging.

The genome of Adineta vaga now has a reliable reference and large PacBio CLR, Nanopore, Illumina,

and Hi-C datasets, making it a compelling example for benchmarks of new assembly tools on a mid-

heterozygosity genome. These assembly strategies are not exclusive to Adineta vaga, and some were

used for Astrangia poculata and Flaccisagitta enflata. Implementing this methodology into an assembly

pipeline, including evaluation steps to identify well-collapsed candidate assemblies, would facilitate as-

sembly projects.

8.4 Decreasing long-read sequencing depth

wtdbg2 emerged as the most cost-effective assembler, reaching a size close to the expected genome size

with as little as a 10X long-read dataset, and with small variations with increasing sequencing depth.

This result on Adineta vaga was further confirmed with the genome of Astrangia poculata: wtdbg2 yielded

the best draft assembly using a 15X Nanopore dataset. Besides, wtdbg2 requires small computational

resources compared to other assemblers. The capacity of wtdbg2 to accommodate low-depth long-read

datasets demonstrates that the limiting factor is not sequencing depth but long-read assemblers. The

cost of sequencing and assembly is crucial as it will determine the feasibility of a genome project, thus

adapting assemblers to low sequencing depth (around 10 to 20X) would decrease the financial burden of

genome assembly and increase accessibility for any research team.

8.5 Phasing assemblies

Since chromosome-level assemblies have become the target of sequencing projects, the challenge of genome

assembly is now moving on to another step: phasing assemblies. This goal brings new difficulties: phasing

is incompatible with pooling individuals (unless they are clones), and the necessary sequencing depth is

multiplied by the ploidy of the genome at hand. GraphUnzip offers an approach for phasing genomes

with long reads and Hi-C. It requires an uncollapsed assembly rather than trying to call variants from
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a collapsed assembly, thus it is adequate for non-model genomes, with large heterozygous genomes and

sometimes hemiploidy. However, GraphUnzip needs additional tests to evaluate the correct association of

haplotypes from one heterozygous region to another. PacBio HiFi reads are opening new possibilities for

phased assemblies thanks to their low error rate, hence we can expect full haplotype-resolved assemblies

to become common in the next years.

8.6 Reproducibility in genome projects

As more and more genomes are being released, protocols are published in parallel which circumvent the

challenges posed by a given species, and these methods can be applied for genome projects of similar

species. Many genome projects have recourse to private companies, providing a service for high-molecular-

weight DNA extraction, long-read sequencing, and Hi-C sequencing. As a result, the protocols are not

publicly available; while having these chromosome-level assemblies is essential, they do not bring clues for

new genome projects. This is the case for the genome of Astrangia poculata, as we performed Nanopore

sequencing, but high-molecular-weight DNA extraction and Hi-C sequencing were done by Dovetails Ge-

nomics, and other stony coral projects cannot build upon our work. For Adineta vaga and Flaccisagitta

enflata however, the methods are publicly available and can be reproduced. In addition, sequencing

platforms use in-house tools; some are open source (e.g. the PacBio CLR assembler Falcon, the PacBio

HiFi assembler IPA for Pacific Biosciences), whereas others are not (the Hi-C assembler HiRise, for Dove-

tails Genomics, only has a non-user-friendly and outdated version online). These programs may often

result in high-quality assemblies, yet, depending on the genome, some open-source alternatives such as

instaGRAAL may be more adequate.

Genome assemblies presented in Chapter 1 were surveyed on the National Center for Biotechnology In-

formation (NBCI) database [2], which provides information on genome size, contig N50 and scaffold N50.

Not all assemblies found in publications were available on this website, and in some cases, the assembly

statistics in the paper did not match the ones on the database. For most projects, sequencing datasets

were associated with a BioProject number, but these datasets were sometimes incomplete or missing.

The absence of these sequencing datasets prevents reusability, reproducibility, or independant analyses.

The metadata also lack information on the tools used for assembly; comprehensive records of assembly

methods would help evaluate assembly programs.
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