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Abstract

We provide the asymptotic distributional theory for the so-called General or Generalized Dynamic
Factor Model (GDFM), laying the foundations for an inferential approach in the GDFM analysis
of high-dimensional time series. Our results are exploiting the duality between common shocks
and dynamic loadings under a random cross-section approach to derive the asymptotic distribution
of a class of estimators for common shocks, dynamic loadings, common components, and impulse
response functions. An empirical application aimed at the construction of a “core” inflation indicator
for the U.S. economy is presented, empirically demonstrating the superiority of the GDFM-based
indicator over the most commonly adopted approaches, outperforming, in particular, the one based

on Principal Components.

Keywords: High-dimensional time series, Generalized Dynamic Factor Models, One-sided representa-

tions of dynamic factor models, Asymptotic distribution, Confidence intervals.

JEL subject classification : C0, C01, EO.

1 Introduction

This paper provides the asymptotic distribution theory, and hence the inferential method, for the esti-
mator recently proposed in Forni et al. (2015) (hereafter, FHLZ) for the so-called General or Generalized
Dynamic Factor Model (GDFM) introduced by Forni et al. (2000). Our approach combines the flexi-
bility of the GDFM in terms of dynamics with the possibility, bestowed by the Dynamic Factor Models
(DFMs) of Stock and Watson (2002a,b) and Bai and Ng (2002), of estimating the common shocks and
their impulse response functions (IRFs).

Under the GDFM, the statistical analysis of a countable family {z;|t € Z}, i € N of observable

stochastic processes is based on the decomposition of x; into
Tt = Xit + &t = bit (L)urg + bin(L)uge + ... + big(L)ugt + &, 1 €N, t€Z, (1)

where u; = (ugy ugt ... uqt)' is an unobservable g-dimensional vector of mutually orthogonal common

shocks driving {x|t € Z, i € N} and b;f(L),i € N, f =1,...,q, are square-summable filters (L, as
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usual, stands for the lag operator). The unobservable x;; and &, for which identifying assumptions are
provided in Section 2, are called x;;’s common and idiosyncratic components, respectively; at minimum,
it is assumed that the idiosyncratic components &;; are “weakly” cross-correlated (in a sense to be made
precise) and orthogonal at any lead and lag to the common shocks uy, ..., uq driving the common
components x;z.

The literature on DFMs is based on the assumption that the space spanned by the common compo-
nents {x;:|¢ € N} is, for any given ¢, finite-dimensional—with dimension r, say, independent of ¢t. Under

that assumption, the decomposition (1) can be rewritten as

Tit = MNaFie+ NioFor + oo+ Nip Fry + &t

(2)
Ft = (Flt N Frt)/ = N(L)ut,

since the vector F; of r static factors Fj; is loaded contemporaneously via scalar loadings A;j, call
this a static representation. The factors F; and the loadings \;; can be estimated consistently (after
imposing adequate identification constraints) using the first r standard principal components (see Stock
and Watson, 2002a,b and Bai, 2003; see also Fan et al., 2013, 2015, 2016, 2017, 2021 where, in a finance
context, several refinements of the PCA approach are proposed). Inference based on these estimators can
be carried out thanks to Bai (2003), who establishes the asymptotic normality of the PCA estimators of
the DFM (2), together with consistent estimation of the corresponding asymptotic covariance matrices.
Bai and Ng (2002), among many others, also propose criteria to determine r consistently. Moreover,
the second equation in (2) is usually specified as a Singular Vector Autogression (SVAR), so that (2)
takes the form
it = Nin b + XioFor + oo+ Aip B + &t

(3)
D(L)F; = (I— DL — DyL2 — ... — D,LP)F, = Ku,,

where the matrices D; are r x r while K is  x ¢. Under (3), Amengual and Watson (2007) and Bai
and Ng (2007) provide consistent criteria to jointly determine ¢ and r.

As already mentioned, an appealing consequence of the DFM decomposition (2) is that it readily
permits to derive the IRFs of the common shocks from the estimation of A; = (A\j1,..., \i)/, D(L),
and K. Identification of the matrix K by suitable restrictions allows for an interpretation of the shocks uy
as the structural common shocks while the simplicity of the finite-dimensional nature of (3) enhances
its use for out-of-sample forecasting (Forni et al., 2018).

The same finite-dimensional nature of (3), however, rules out a number of quite plausible dynamic
structure such as simple AR(1) models for the observables z;;.! Recognizing that the space spanned
by the common components of (1), in many applications, is likely to be infinite-dimensional (r = c0),
hence cannot be recovered from a finite number of standard principal components, Forni et al. (2000)
use ¢ principal components in the frequency domain (the dynamic principal components introduced
by Brillinger (2001)) to estimate the common components y;;, where ¢ can be obtained, for instance,
from the identification methods proposed by Hallin and Liska (2007) or Onatski (2009). However,
being based on dynamic principal components, their estimators involve two-sided filters acting on the
observations z;, hence do not allow to estimate the common shocks at the end of the observation period,

nor their IRFs: their methods thus are unsuitable for out-of-sample prediction.

1Simple cases like z;; = a;(1 — aiL)_lut + &it, that is ¢ = 1, with white noise u; and AR coefficients a; admitting an
absolutely continuous distribution, are ruled out.



FHLZ remedy this problem and bring together the virtues of the (infinite-dimensional) GDFM (1)
and the simplicity of the (finite-dimensional) DFM (3). Under the mild assumption of rationality of the
spectral density of the common components y;;—that is, assuming that each filter b;f(L) in (1) is a ratio
of finite-degree polynomials in L?—and elaborating upon results by Anderson and Deistler (2008a,b),
FHLZ prove that for generic values of the parameters in b;f(L) (i.e. apart from a lower-dimensional
subset in the parameter space) Xnt = (X1t, X2t,---, Xnt) 0 (1) admits a unique autoregressive repre-

sentation with block structure of the form
An(L)Xnt = Rnutv (4)

where A,,(L) is a n xn block-diagonal matrix polynomial in L of bounded degree (as n — o0), consisting
of (¢+ 1) x (¢ + 1)-dimensional blocks, and R,, a n X ¢ matrix of rank g.
Since Xnt = Xpt — &nt With X 1= (214, @1, ..., xne) and & = (&14, &0ty - -+, Ene)’, the filtered
process zp := A, (L)x,; satisfies
Znt = R + @y (5)

with ¢ := A, (L)€, Expression (5) is key because it shows how to represent the GDFM (1) with
infinite-dimensional factor space and observations x,; as a DFM (3) with finite-dimensional factor
space and observations Z,;. Indeed, under our assumptions, it can be shown that ¢, is idiosyncratic,
so that (5) is a representation of the form (3) with D, (L) = I,,, F; = us, A; = R, the ith row of
R, and thus r = ¢. As explained below, a crucial advantage of (4) is that the high-dimensional VAR
operator A, (L), thanks to its block-diagonality, is piecing together a set of k (with 1 < k < [n/(q+1)])
(¢ + 1)-dimensional VARs A(k)(L). Our procedure does not run into curse of dimensionality problems
because ¢ is finite, and typically small.

The FHLZ estimation of the GDFM decomposition (1) mainly consists of three steps which can be
summarized as follows.? First, by means of Hallin and Ligka (2007) and dynamic PCA, estimate ¢ and
the spectral density matrix of x,:. Second, by Fourier inversion, derive the corresponding autocovariance
matrices and the Yule-Walker estimators of the (¢ + 1) x (¢ + 1) blocks of A, (L) in (4). This yields
an estimated zy;, hence, up to estimation errors, allowing us to switch from the dynamic to the static
representation (5) of the GDFM. Third, exploiting the finite-dimensional nature of (5), apply static
PCA to the estimated z,;.

Challenges arise, however, when one needs to carry out inference. Indeed, one cannot rely on the
asymptotic results of Bai (2003) because, unlike x,; in (3), z,; in (5) is unobserved and one can only
consider its sample counterpart, which depends on estimators of the filter A, (L). This makes the
existing limiting theory for estimators of DFM (3) invalid.

The objective of this paper is to fill that theoretical gap and provide, for the FHLZ estimation of
the GDFM (1) with infinite-dimensional factor space, the analogous type of results as Bai (2003) does
for the PCA estimator of the loadings and factors in (3).

In Sections 2 and 3, we formalize the general assumptions needed for the GDFM setup and its
static representation (5), and the reinforcements of these assumptions required for our distributional

results. The FHLZ estimation procedure is described in Section 4 and its limiting statistical properties

*Namely, bi;(L) = cif(L)/dis (L) where c;;(L) and d;f(L) are finite-degree polynomials in L.
3Strictly speaking, a consistent reconstruction of x;¢, &+ or the shocks u; is not an estimation since xi¢, &it, and uy are
not parameters, but we consistenly will indulge in this convenient abuse of terminology.



are established in Section 5. Section 6 presents the Monte Carlo experiments, and Section 7 illustrates

the empirical application. Section 8 concludes. Technical proofs are relegated to the final Appendix.

2 GDFM: General Representation

We assume throughout that all stochastic variables in this paper belong to the Hilbert space Lo(£2, F, P)
where (€, F, P) is some common probability space. We study double-indexed zero-mean stochastic
processes of the form x := {zi|i € N, ¢t € Z}, of which we only observe a finite n x T' realiza-
tion {zy| 1 <i <mn, 1<t <T}. Denoting by x, the n-dimensional subprocess {zi;|i =1,...,n, t € Z},
the lag-k autocovariance matrix of x,,; is defined as I';, , 1= Cov(xp¢, Xp 1), With Ty, := T, o = Var(x,)

for simplicity. On x, the basic GDFM assumptions are as follows.

Assumption (A0) (GDFM). (a) The process x is second-order stationary with respect to time;
(b) for alln € N, x5, admits the spectral density matriz
1 (e o]
¥.00) = — T,oe % 0el[—n, 7]
27 ’
k=—o0
where v = v/—1, with jth largest eigenvalue A\,;(0), j =1,...,n;
(¢) the number q := min{j : imsup,,_, o, SUPge[_x ] Anj(0) < 00} —1 of diverging eigenvalues of 3, (0)

is finite.

Under Assumption (A0), it can be shown (see, e.g. Forni and Lippi, 2001; Hallin and Lippi, 2013)

that each element of x decomposes into the sum
zit = Xit +&t, 1EN, t€Z, (6)

of an unobserved common component x;+ and an unobserved idiosyncratic component &; where, denot-
ing by I‘f;k and Fi,k the lag-k autocovariance matrices of the n-dimensional subprocesses x, and &,
of x :={xit|i €N, t € Z} and & := {&]i € N, t € Z}, the spectral density matrices 3% (6) and X5,(6)
exist, with eigenvalues )\zj(e) and )\ij (0) satisfying
nh_}rgo AXg(0) =00 and liTILILsOL;p )\fﬂ(ﬂ) < oo f-a.ein [—m, . (7)
The common component process x, moreover, is driven by a ¢-dimensional second-order white noise of
common shocks, that is,
q oo
Xit = Y bijrtje—k, €N, tE€Z, (8)
j=1 k=0
for some square-summable loadings b;;, 7 € N, 1 < j < ¢ and some g¢-dimensional second-order
white noise {u; = (u1,...,uq)|t € Z}, which implies that XY ,,(0) = 0 6-a.e. in [~7,7]. In vector
notation, (6) takes the form

Xnt = Xnt + Entv nec N7 te Z7 (9)

with obvious definitions of the common and idiosyncratic subprocesses xn: and &,t.



If distributional results are to be obtained, however, these properties need to be reinforced; on top

of Assumption (A0) and its consequences, we assume the following.

Assumption (A1)(GDFM+). (a) The process x is stricly stationary with respect to time;

(b) The q diverging eigenvalues /\zj(é?) diverge at rate n and are well separated, that is,
forall j =1,...,q, there exist two strictly positive continuous functions 6 — a?‘(ﬁ) and 0 — B;‘(O)
from [—m, ] to R such that, for all 6 € [—m, 7|,

X X

a;-((ﬁ) < liminf = < lim sup < B;
n—o00 n n—00 n

(©)

with BJX(H) < a;‘_l(e) forallj=2,...,q;

(c) the common shocks {u; := (u1r---ug)'|t € Z} are g-dimensional i.i.d. white noise, with positive
definite covariance Eluguy] = IT'; moreover, for all j =1,...,q and all t € Z, E[|uj|P] < M, for
some p > b5 and some finite constant M, > 0;

(d) the idiosyncratic components are such that, for alli € N and t € Z,

it = Z Z Bij kMjt—k> (10)

7j=1k=0

where {ny = (Mt nae---)'|t € Z} is an infinite-dimensional i.i.d. zero-mean stochastic process;
moreover, for all i € N, E[nin;e] =0 fori # j, E[nZ] = 1, and E[|ni|P] < M,, for some p > 5 and
some finite constant M, > 0;
(e) {w} and {m} are mutually independent at all leads and lags;
(f) forallieN, j=1,...,q, and z € C, bj;(z) := > 7, bmkzk is of the form c¢;j(2)/d;;(z) where
(i) cij(2) = 3Ly cijr2® for some positive integer si, with || < BX for some real BX > 0
independent of © and j;
(ii) dij(z) = > 32 dij k2" for some positive integer so, and is such that all the roots of d;j(z) = 0
satisfy |z| > ¢ > 1 for some ¢ > 0 independent of i and j;
(9) for alli,j € N and k € Z*, |Bijx| < Bijp*, with p € [0,1), 322, B;; < B, and > 51 Bij < B for
some finite real B > 0 independent of i and j.

Parts (a)-(e) are reinforcing the traditional GDFM Assumption (A0) by requiring, among others,
stationarity rather than second-order stationarity, and mutually independent strong white noises u;
and 7, rather than mutually orthogonal second-order white noises. Finite fifth moments and i.i.d.-
ness of the common and idiosyncratic innovations are needed in order to control the degree of physical
dependence (Wu, 2005) of the common and idiosyncratic components, hence of each x;;. This is what
allows us to consistently estimate the spectral density matrix (Wu and Zaffaroni, 2018; Zhang and
Wu, 2021; see also Proposition 5 in Forni et al., 2017). Part (b) is a classical reinforcement (Forni
et al., 2000) of the pervasiveness of common shocks assuming linearly diverging and well-separated
common eigenvalues, which avoids the uninteresting difficulties related with asymptotically multiple
eigenvalues. Linear divergence rates, moreover, are the only ones compatible with the fact that cross-
sectional ordering is completely arbitrary, hence should remain irrelevant—see the stochastic approach
in Section 3 for further justification.

The idiosyncratic MA(co) representation (10) in part (d) along with part (g) also entail square-



summability of the idiosyncratic filters, both along the time and the cross-sectional dimensions. This,
in turn, implies limited (lagged) cross-sectional dependence among idiosyncratic components. Indeed,
letting afj(e) denote the (7, j)th entry of the idiosyncratic spectral density matrix 22(9), it filliws from
parts (d) and (g) of Assumption (A1) that

sup supz:\aZJ ) < sup supzzww —0y )Bis(e (e)]

oe[—m,m] jJEN i— pe[—m,m] JEN i=1 s—0
B?
< sup sup ———; BisBjs < ———— = B%, say. (11)
be[—mx jeN (1 — p)? ;; isHjs = (1—p)2

This immediately implies (see Forni et al., 2017, Proposition 1)

sup sup )\21(9) < Bf, (12)

oe[—m,m] neEN
which is in line with the second part of (7), which (d) and (g), thus, are reinforcing. Part (f) entails
rational filters and, therefore, rational spectral density matrices XX(6), as well as square-summability
of the common filters along the time dimension. Furthermore, a simple application of Weyl’s inequality,

allows us to show that part (b) of Assumption (A1), together with (12), imply

X < J < TN < BX
% (9) hgn inf - hTILn sup < ﬁj (), (13)
and

sup sup )\n,q+1(‘9) < B*
neN fe[—n 7]

for some positive real B* (see Forni et al., 2017, Proposition 1).

3 GDFM: VAR representation

3.1 VAR representation and a duality issue

Let Assumptions (A0) and (A1) hold. For any s € N and ¢t € Z, consider the (¢ + 1)-dimensional sub-
vector ng) = (X(s=1)(g+1)+1,t " Xs(q+1),t) of X¢- Forni et al. (2015) prove that the following property is
satisfied for generic values of the parameters ¢;; 5, and d;; in Assumption 2(f). Turning this property into

an assumption, thus, only places an extremely mild restriction on the actual data-generating process.

Assumption (A2)(VAR representation). For all s € N and all t € 7Z, there exist a unique (q + 1)-
dimensional VAR filter A®) (L) =T, — i A,(:)Lk and a (q+ 1) x g-dimensional matriz R") such
that

AN =RE, tez (14)
where
(a) ps < S := qs1 + ¢*sa < oo and all the roots of the determinant equation det (A(s)(z)) =0, z € C,

are such that |z| > 1;

(b) R has mazimal rank q.
Moreover, denoting by C¥ the S(q+ 1) x S(¢+ 1) covariance matriz of (x . Xt S) for all s € N,
(c) |det(CY)| < d for some finite positive real d.



Denote by A (L) the infinite-dimensional block-diagonal matrix with diagonal blocks A(*)(L), s € N
and define R := (R R’ ...} with (¢+1) rows and infinitely many columns. Considering, without

loss of generality, n such that n = m(q + 1) for some integer m, let

AM(L) 0o ... 0 R
0 A@@) ... 0 R

AH(L) = . . . . , Rnp:= . ) (15)
0 0 . AL R

which are the upper n x n and upper n x ¢ sub-matrices of A(L) and R/, respectively. Then, from

Assumption (A2), the common component x,; admits the finite AR representation
A, (L)Xt = Rpuy, neN, tezZ, (16)
so that, with B,,(L) = (by(L)---b, (L)) := [A.(L)]!,
Xnt = Bn(D)us = [A (L) '"Ryu;, neEN, telZ. (17)
Now, letting R,, := (Ry1---R;---R,,)’, in view of (9), we obtain
Znt = An(L)Xnt = Roty + An(L)€nt =: Pt + P, nEN, L €L (18)

Let us show that (18) is a static factor model for z,; in the sense of Bai (2003). For any given n

and T € N, consider

T11 vt Tir o Tpl Xp1
X, o= , - / —(1... il ”) (19)
nT ‘= T 0 Ty o Tnt = Xt =\&r X7 -T7),
- PR /
rir - IT TnT XoT

with tth tow Xpt = (214 2nt)’ (an n-dimensional vector) and ith column x% = (z;1 - zy7) (a T-
dimensional column vector), respectively, and the T'x ¢ matrix of common shocks U7 := (uy - --uy - - -ug)’,
with tth row u} (a g-dimensional vector). Recall that the n x ¢ matrix R,, := (R;---R;---R,) has

¢-dimensional rows R/. Similarly define the idiosyncratic 7' X n matrix

D, = (Pn1 Pt 1) = (90%“"'903“"'30%),

with tth row @, = (é11- - ¢nt) (an n-dimensional vector) and ith column @k = (¢i1 -+~ ¢ir) (a T-
dimensionalvector). With this notation, the static representation (18) of the GDFM, henceforth the

static model, takes the form of a matrix representation
ZnT = (An(L)X;T)I = UTR;L -+ q)nT =: ‘I’nT -+ (I)nTv (20)

where Z,7 is T X n, with rows z/,, and columns 2%, and LX/ ;= L(Xp1 - Xp1) = (Xno - * - Xn.7—1)-



The same matrix representation (20) can be written under (transposed) row-vector form (cross-

sectional projection), which, denoting by er; the tth column of the 7' x T identity matrix Ip, yields

(I) Znt = (An(L)X)7) ey = Rouy + G, neN, tezZ (21)

(that is, the static factor model (18)) or, denoting by e,; the ith column of the n x n identity matrix I,,,

under the column-vector form (temporal projection)

(IT) Z% = (An(L) %T)Iem‘ =UTR; + ‘P%"v i €N, TeN. (22)

These two forms are kind of dual static factor model representations, with the time- and cross-sectional-

/

dimensions changing roles—that is, X,

+ replacing X,,7. In (21), time-indexed g-dimensional random
vectors u; are deterministically loaded at time ¢ while, in (22), cross-sectionally indexed ¢-dimensional
deterministic vectors R; are randomly loaded by cross-sectional item 4; the role of the matrix of common
components is played by ¥, in (21), by ¥/ . in (22); the role of the matrix of idiosyncratic components
is played by ®,,7 in (21), by ®/ . in (22).

As we shall see, both representations have their advantages, and both will be used in the sequel.
An essential difference remains, however: u; in (21) is random, while R; in (22) so far is deterministic.
As a consequence, while, under second-order stationarity (Assumption (AOa)), the law of large numbers
implies that, for any fixed n € N, %‘I’ZT@nT converges in probability to some n xn matrix I‘ﬁ asT — oo,
no such property holds for %‘I’HT‘I';LT as n — 0o. The duality between (21) and (22), thus, is imperfect

or incomplete.

3.2 A stochastic cross-section approach

This imperfect duality issue is easily palliated if a stochastically generated cross-section scheme is
adopted. Under that approach, it is assumed that the stochastic process x is generated via a two-step
random mechanism: (A) the stochastic selection, via some unspecified distribution P, of the distri-
butional features® of x as a time-indexed stochastic process, followed by (B) a realization over time
of the selected process x, of which a finite n x T realization is observed, and along which time-series
asymptotics will be considered as T" — oo.

The distribution P in step (A) of that mechanism plays the role of a nuisance. Statistical practice
in such cases consists in conducting inference on the realization observed in step (B) conditional on the
(unobserved) result of step (A): see, e.g., Lehmann and Romano (2006, Chapter 10), so that P needs
no further description. Under such conditional approach, the distributional features of the stochastic
process x of which the observed panel is a finite realization are treated as unknown but fixed, which
is precisely what the deterministic approach is doing. An important feature of step (A), however, is
that its result should be a cross-sectionally exchangeable process x, i.e., the distributions of any of the
resulting n x T subprocesses should remain invariant under cross-sectional permutations. The cross-
sectional ordering, indeed, is completely arbitrary and should not play any role in the analysis.

This random cross-section approach is the one we are adopting in the sequel; the assumptions we are
making (along, for some results, with Assumptions (S(e)), (S(f1) ), and (S(f2)), which are postponed

to Sections 3.3 and 5) under that approach are summarized as follows.

“That includes a spectral density 3, satisfying Assumption (A0), hence spectral densities =% and ¢, coefficients bij i
and [k, the VAR filters A, (L), a representation of the form (18), etc. The densities of u; and 7¢, however, remain
unspecified within the class of densities satisfying the requirements in Assumption (Al).



Assumption (S)(Random cross-section). (a) Conditional on the result of the random mechanism
generating the distributional features of x, Assumptions (A0), (A1), and (A2) are satisfied;
(b) for alln and T, the distribution of X, 1, hence also the distributions of Znr, (Y1, ®nr), ete. are
cross-sectionally exchangeable, i.e., invariant under column permutations;
(¢c) {R; = (Ri1--- Rig)'|i € N} is a g-dimensional i.i.d. stochastic process independent of {u;}, such
that, for alli € N and allj =1,...,q, , somep > 5 and some finite constant Mg, E[|R;;|P] < Mg;
(d1) for any fixred n € N, there exists a positive definite n X n matriz I‘ﬁ, such that, as T — 00,

:cx)(j%); (23)

(d2) for any fired T € N, there exists a positive definite T xT matrix G? with constant diagonal entries

1
n

L ®nr

T Fﬁ

and constant off-diagonal entries such that, as n — oo,

0 (). (24)

Part (d) of the assumption is analogue to the requirements in (Bai, 2003, Assumption C). In par-

T -G

1 || ®nr®,
n

ticular, the existence (not the positiveness) of a limit matrix T'y in part (df) is, under the randomly
generated cross-section approach, quite natural and mild in view of stationarity and the existence of
moments. As for part (d2), the special form of G? follows from the cross-sectional exchangeability for
all n of ®, 7. Note also that the linear rate of divergence of exploding eigenvalues in Assumption 2(b),
under this approach, is the only rate compatible with cross-sectional exchangeability.

Under Assumption (S), the duality between representations (21) and (22) is reinforced: both now
have the form of static factor model representations, with random vectors u; loaded at time t by cross-
sectional item i via random loadings R, in (21) and random vectors R; loaded by cross-sectional item ¢
at time t via random loadings U7 in (22). Both u; and R; are i.i.d. white noises, the only difference
being that u; is simply i.i.d. while R; also is exchangeable.

Now, the differences between the random cross-section approach (Assumption (S)) and the deter-
ministic cross-sectional approach is tenuous. If (on top of Assumptions (A0)-(A2)) we impose

(a) the deterministic sequence % Yo, R;R tends to a ¢ x ¢ positive definite matrix SR asn — oo
and
(b) (23) and (24), but for the deterministic sequence ®,7, with O (i) and O (ﬁ) convergence

VT
instead of Op (%) and Op (ﬁ),
then, the random cross-section approach based on Assumption (S) yields, P-a.s. conditionally on step (A)
the same results as the deterministic approach based on Assumptions (A0)-(A3). The main benefit of
Assumption (S), thus, is to provide a justification of Assumption (A3) (including the special form of G?)

and the linear divergence of exploding eigenvalues which otherwise would be brutally imposed.

3.3 Common components

From part (¢) of Assumption(Al) and the Weak Law of Large Numbers, it immediately follows that

7w = —p ', as T — oo, (25)



where T'" is a finite ¢ x ¢ positive definite matrix. This is the same as Assumption A in Bai (2003).
Similarly, from part (b) of Assumption (A2), part (¢) of Assumption (S), and the Weak Law of Large

Numbers, there exists a finite ¢ x ¢ positive definite matrix X% such that
1 « R,R
“3Y RRj=""—p B as n— oo, (26)
n 4 n

which is the classical condition of factor pervasiveness made in static factor models; in particular, this is
the same as Assumption B in Bai (2003), but in the case of random loadings. Moreover, the convergence
rates in (25) and (26) are VT and /n, respectively (see Lemma 1 in the Appendix).

Now, from Assumption (S(d;)) and (25),

Z)wZyr  RUTUTR,, . @ ®,r

T = T T top(l) —p R.TYR, +T¢, as T — . (27)

Letting ugj denote the j largest eigenvalue of R, T'“R],, because of (26) and since I'" is positive definite,
for all j =1,...,q, there exist two positive reals a?’ and ,B;b such that

ne e
w < p-liminf — < p-limsup — < Bw (28)

n—oo N n—o00 n

This is similar to Assumption 6 in Forni et al. (2017). Likewise, from Assumption (S(dz)) and (26),

ZurZyy _UrRG Ry | By
n

+op(1) —p UrSUL + G2, as n — . (29)
n n

Letting V% denote the j largest eigenvalue of UrZFU, because of (25) and since T is positive
definite, for all j =1,...,q, there exist two positive reals 'y;-p and 5;[} such that

1/1 1/)
'yw < p- hm mf 5 < p-lim sup L < 5#} (30)

T Tooo T
In fact, by the Strong Law of Large Numbers, (25) and (26) hold also almost surely and weak
convergence in Lemma 1 in the Appendix could be replaced by almost sure statements with convergence
rates T/27¢ and n'/?2~¢ for some ¢ > 0. As a consequence, the eigenvalue properties (28) and (30)

could be shown to hold with probability one, as in the classical factor models literature.

Consistent estimation of eigenvectors, however, requires the usual assumption of asymptotic sepa-

ration of eigenvalues—a slight reinforcement of (28) and (30).

Assumption (S (¢))(Random cross-section, continued). With P-probability one, conditional on the result

of the random mechanism generating the distributional features of x,
(e) forj=1,...,(¢—1), B;ﬂ_l <a (mdéjJrl <’yf

= Oa.s, (log\l/c’%gT) and H% — ERH = Oa.s. (loglogn).

. .- . uLu
®More precisely, it is possible to show that H TTT -
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3.4 Idiosyncratic components

Turning to idiosyncratic components, let Zﬁ(@) = An(e_LG)E%(H)Aﬁl(e“’), and denote by Aﬁ(@)
the n x n diagonal matrix of the eigenvalues Aﬁj(ﬂ) of £%(0). Let P?(6), with (i,7)th entry pf}(&),
be the corresponding n X n matrix of orthonormal eigenvectors: then, $4(6) = P&(0)A%L(0)PS(6)

where P%' stands for the transposed complex-conjugate of PY. We have

sup sup )\il(H) < sup sup )\fll(é’)Afl(G) < B*D? =: B?, say, (31)
oe[—m,m] neEN oe[—m,m] neEN
where A2, (6) is the largest eigenvalue of A,,(e~*)A’ (e'?), which is finite because of Assumptions (A2a)
and (A2c). Moreover, because of (31), the diagonal entries of Eﬁ(&) are such that

sup sup aﬁ(@) = sup Supz |sz %(0) < B? (32)
oe[—m,m] €N oe[—m,m] zeN

since eigenvectors are normalized. Notice that 0?;(6) is real and positive. Similarly, the off-diagonal
entries of 3% (6) satisfy

sup sup ’Uzy( )| < sup sup Z ]pzk i(ﬁ)])\gk(ﬁ) < sup sup Z ]pzk )?’B? < B® (33)
oe[—m,m] i,5€EN oe[—m,x] ,]ENk 1 oe[—m,x] ,jGNk 1
because of (31) and the Cauchy-Schwarz inequality.
Now, from Assumption (S(d)), we have that Ty = limp_, + ST El@nidy] = E[dni L] because of
stationarity, while Gﬁf} = limy, 00 % Sr Elpbel] = ElpteY] because of exchangeability. Therefore,
for any b,, = (by - - - by,)’ such that b/,b,, = 1,

n

sup b, by, = sup b, E[¢n ¢ |bn = sup >  bib; / of(0)do
neN neN neN ; ij=1 -7

< sup Z |b;b; \/ loi;(6)|do < supz |bi|*2n B = 27 B, (34)

i =1 neN

and for any c¢r = (¢1 - - - er)’ such that ¢per =1,

n
sup crGher = sup ¢y {nh_golo - ZE Py } er = sup Z cics lim — Z {/ (t‘s)(’de}

TeN TeN

n

T
1 ™
< S| lim = ()] e 40
_;UPE jeres| lim > {/ I

€Ny =1 i=1 \V T

T

™

< sup Z |crcs] sup {/ |0 (0)] ]e‘(t_s)elde} < sup Z c;|*2nB? = 27 B?. (35)
TeN =

TGNtS 1 —7

11



This implies that the largest eigenvalues of I'% and G‘é’ﬂ satisfy

sup |[T?|| = sup max b/, T'%b, < 27B? and (36)
neN neN  bn
b, bp=1
sup HG‘%H = sup max c’TG?;cT < 27B?, (37)
TeN TeN , °T
crer=1

respectively. Following a similar reasoning, it is straightforward to show that also Assumptions C1
and C3 of Bai (2003) hold.

d column eigenvectors, associated with the ¢ largest

4 Estimation

In order to estimate the common component we need to estimate the common filters, i.e., the impulse
response functions, B, (L) = [A,(L)] 'R, and the common factors u;. That estimation proceeds in
two steps: first we estimate A,, (L) and then, by considering the static representation (18) of the GDFM,
we estimate u; and R, by a principal component analysis of the filtered data z,; = A, (L)xy,;. This
section describes the estimators while Section 5 is devoted to their asymptotic properties.

First, notice that we can consistently determine the number ¢ of factors by applying the Hallin and
Liska (2007) information criteria to the observed data matrix X, 7. The resulting estimator ¢ converges
in probability to ¢ as n,T — oo. Since ¢ is integer, this means that, for any e > 0, there exist n*(e)
and T™(e) such that, P(g=¢q) > 1 — € for all n > n*(¢) and T" > T*(¢). Hence, in this section and the

next one, we can safely assume that ¢ is known.

4.1 Estimation of A(L)

Without loss of generality we keep assuming n = m(q + 1) for some finite integer m (we discuss below

what to do in practice if this is not the case). To start with, we compute the lag-window estimator

T-1
~ 1 k kO A wh
Zn(eh) = 27 E K <BT> € kahrn,kv 9h = BT’ ’h‘ < BT7 (38)

s
k=—T+1

/
n,t—|k|
sample autocovariance matrix and K(+) is a suitable kernel with bandwidth B (see Assumption (K) in
Section 5.1).

Then, we estimate the spectral density matrix of the common component by dynamic principal

of the spectral density matrix of the observables; here fnk =71 ZtT:| k|41 XntX is the usual lag-k

component analysis. Specifically, we collect the normalized column eigenvectors associated with the ¢
largest eigenvalues of gn(Gh) into the n x ¢ matrix f’n(Qh), and the corresponding eigenvalues into
the ¢ x g diagonal matrix ./AXn (01). Our estimator of the spectral density matrix of the common component
is defined as

SX(0n) = P (00) A (01) P, (61),

where P},(6;,) is the transposed complex-conjugate of Py, (6;).

By computing the inverse Fourier transform of 3% (6}), we can estimate the autocovariance matrices

12



of the common component:

Br
~ T 0, &
LY, = yem E eROn 33X (6),), |k| < Br.
h=—Brp

Consider the m diagonal (¢ + 1) x (¢ + 1) blocks f‘f(s) of the fi,k’s For each block, estimate,
via the Yule-Walker method, the coefficients of a (¢ + 1)-dimensional VAR model (order determined
via AIC or BIC). This yields, for the s-th diagonal block, an estimator A(S)(L) of the autoregressive
filter A®)(L) appearing in Assumption (A2).° By combining the m estimators for the m diagonal
blocks AM(L),..., A(™)(L), we obtain an estimator KH(L) of the VAR filter A, (L) as defined in (15).

Three important remarks about estimation of A, (L) are in order here.

Remark 1. The cross-sectional ordering of the panel has an impact on the selection of the diagonal
blocks when estimating A,,(L). Each cross-sectional permutation of the panel, thus, would lead to dis-
tinct estimators—all sharing the same asymptotic properties. In line with the exchangeability property
Assumption (S(b)), a Rao-Blackwell argument (see Forni et al., 2017 for details) suggests aggregating
these estimators into a unique one by simple averaging (after obvious reordering of the cross-section)
of the resulting estimated shocks. Although averaging over all n! permutations is clearly unfeasible,
as explained by Forni et al. (2017) and verified empirically also in Forni et al. (2018), a few of them
are enough, in practice, to deliver stable averages, well-approximating the infeasible average over all n!

permutations.

Remark 2. Although we assumed for simplicity that n = m(q + 1) for some integer m, this might not
be the case in practice. When n is not an integer multiple of (¢ + 1), we can consider [n/(¢+1)] — 1
blocks of size (¢ + 1) and a last one of size (¢+ 1) +n — [n/(¢+1)](¢ + 1) larger than (¢ + 1) but
smaller than 2(¢+1). Since the arguments from Forni et al. (2017) used in the next section apply to any
partition into blocks of size (¢ + 1) or larger, nothing changes for the asymptotic theory that follows.

Remark 3. It is known that, as ps increases, the estimation of a singular VAR via Yule-Walker methods
may become unstable, since it requires inversion of a ps(¢+ 1) X ps(q+ 1) Toeplitz matrix. To tame this
potential issue, Hormann and Nisol (2020) have proposed a regularized approach, aimed at stabilizing
the estimates K(S)(L). Empirically, this seems to be an important step—to be taken only when py is

much larger than 1, though.

4.2 Estimation of Uy and R,

Letting Zng = Al (L)X, we propose to estimate the static model (18) by (static) principal component
of Z,1 twice. The reason for this is that we aim at getting estimators of both R,, and U7 as linear
projections, instead of getting one as a projection and the other as the normalized eigenvectors of a
sample covariance matrix (as in Forni et al. (2015, 2017)). This is made possible by exploiting the duality
between the two representations (21) and (22) of the static model. This double estimation procedure is
the key to the derivation, in Section 5 below, of the asymptotic distributions of the estimators, while the

asymptotics of normalized eigenvectors of sample covariance matrices are considerably more intricate.

SFor example, in the VAR(1) case, i.c., ps = 1, we have A®) (L) = I,11 — A® L with A®) := TY® Ty )1,
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Let us start with the estimation of Up. Consider the n X n sample covariance matrix

of the z,;’s. Collect the normalized column eigenvectors associated with the ¢ largest eigenvalues of f‘fL
into the n X ¢ matrix f’fl and the corresponding eigenvalues into the ¢ x g diagonal matrix be Then,

for the estimation of U, construct a preliminary estimator of R, as

y . o o~ s~ \1/2

Ry = (Ra-Ry) = P: (A2) (39)
Next consider the submatrix of R, consisting of a selection of 7 rows with 7 < n. Without loss of

generality, we can assume that the first n rows are selected, and define

R = (Ri--R,) =P (R2)7, (40)

where l?’% is the n x ¢ submatrix of f’;’s first 7 rows. Note that each entry of Ry continues to be
function of n and T only; in particular the matrix of eigenvalues KZ does not depend on 7.
Then, let ZﬁT = (2% -+ 21t) be the T x fn matrix of znT’s first 7 columns. We estimate Up as the

cross-sectional linear projection Ur of the z4s onto Ry namely,
~ R A oo -1
Up = (G- G- tr) = Znr R (Rﬁnﬁ)
o N2 i N2 o 172\ T
= ZorP: (A;) <<A;§> PPz (A;’;) >
~1/2

— 7Pz (Kn)

This (not Uy defined in (42) below) is the estimator we are proposing for U

Turning to the estimation of R, consider the T' x T" sample covariance matrix

of the E'Lf’s. Collect the normalized column eigenvectors associated with the g largest eigenvalues of C:"fp
into the n x ¢ matrix Iz , and the corresponding eigenvalues into the ¢ X ¢ diagonal matrix IA@ Then,

for the estimation of R, construct a preliminary estimator Urp of Up as
. , ~ s~ \1/2
Ur = (a - ap) = 2 (LT) . (42)

Next consider the submatrix of Uz consisting of a selection of T rows with T < T. Without loss of

generality, we can assume that the first T rows are selected, and define

. 3 LU Al (=12
Uy = (w-up) =05 (L7)
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where ﬁZT is the T x ¢ submatrix of ﬁ%’s first T rows. Note that each entry of I;lT continues to be
function of n and T only; in particular the matrix of eigenvalues ifp does not depend on T.
Then, let ZnT = (Zn1 -+ 2,7) be the T x n matrix of Z,r’s first T rows. We estimate R, as the

time-series linear projection ﬁn of the Z,;’s onto Up: namely,
. ~ ~ ~ \/ 5 Sy -1
R, = <R1 Ry Rn) =7 Uy (uTuT)
7' Tz (T2 1/2 Tz 1/2 2172 [ T2 1/2 -
= 72,7117 (LT) (LT) 7117 <LT>
7! 172 z -1/2
- 2400 (L5) (43)

This (not R, defined in (39) above) is the estimator we are proposing for R.,.

Summing up, we have two sets of estimators for U7, namely Z//\IT and U, and two sets of estimators
for R,,, namely 7A2n and R,,. For the purpose of inference, we will consider I:lT and ’ﬁ’,n because they are
constructed as least squares projections, thus involve averaging, which allows for deriving asymptotic
distributions (see Section 5). Instead, R, and U are (rescaled) eigenvector matrices the asymptotic
distributions of which are less obvious due to the latent nature of z,.

Combining these estimators yields two different estimators of the elements v;; of the static common
component W, such as f{;ﬁt and Rgﬁt. However, as discussed in Section 5.4 below, more efficient

estimators are convex linear combinations of the form
Vi = wpr R + (1 —wpr)Riy, i=1,...,n, t=1,...,T, (44)

where the weights wy,p are such that w,p =1/2ifn=T, w,r T 1if n/T | 0, and w,p | 0if T/n | 0.

5 Asymptotic properties

5.1 Asymptotics for A, (L)

The first step in our estimation procedure is the computation of a lag-window estimator (38) of the
spectral density matrix 3,,(0). This requires a kernel K(-) and a bandwidth By on which we make the

following standard assumptions.

Assumption (K)(Lag-window estimation). (a) the kernel K is even, bounded, with support [—1,1], and
(i) |[K(u) — 1] = O(Ju|®), as u — 0, for some positive real k;

(ii) [1, K>(u)du < oo;

(i) Y e 50pjs it [K(j10) — K(sw)| = O(1), as w — 0;
(b) the bandwidth By is such that a1T? < By < T for some 0 < § < 1 and positive reals ¢ and cs.

Let 0}5(0) and 5;;(0), i,j = 1,...,n, denote the (i,j)th entries of £X(f) and 3(0), respectively.

Building on recent results on the estimation of large spectral density matrices (Wu and Zaffaroni, 2018;
Zhang and Wu, 2021), Forni et al. (2017, Propositions 6 and 7) prove the following result (see also
Barigozzi et al., 2021, Lemma 4 and Proposition 1).

Proposition 1. Let ny,; ), := max (\/ BT;E)gT, TQ/pBT(l;gT)QH/p, Bﬂ) , where p is defined in parts (c)
T
and (d) of Assumption (A1), Br and k in Assumption (K). Then, under Assumptions (S) and (K), for
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any € > 0, there exist n(e), T*(e), and n*(€), all independent of i and j, such that

p [ e 1900) = i (0n)] > )| <e (45)

< 1

for all T > T*(e) and all n > n*(e).

The rate n7,., in (45) depends on (i) the kernel smoothness x, (ii) the bandwidth Bp which,
by Assumption (K), is such that By =< T°, and (iii) the minimum number p of moments we allow
to exist. Typical values for x are 1 for the Bartlett kernel, and 2 for the Parzen, Daniell, General
Tukey, Tukey-Hanning, Tukey-Hamming, and Bartlett-Priestley kernels (see Priestley, 1982, p. 463).
To determine the optimal rate, notice that 1y, , is the maximum of three terms. The first one is larger
than the third if § > ﬁ: hence, given the choice of a kernel among Bartlett, Parzen, Daniell, General
Tukey, Tukey-Hanning, Tukey-Hamming, and Bartlett-Priestley, we need to set either § > % or § > %
Moreover, the first term in 77, is always larger than the second one if § <1 — %. For p > 5, as per
Assumption (A1b) and (Alc), the choice of Kk = 2 and 6 = % yields a rate 0. p, = ﬁ, while the choice
of k =1and 6 = % yields n7.p = ﬁ Hereafter, we define (, 7 := max (nT;W, ﬁ), dropping for
simplicity the dependence on k and p.

Let Al .= (Ags)"-A,(fs)) and Al = (Ags)l&g)) for s = 1,...,m. Then, Forni et al. (2017,

Proposition 9) prove the following.
Proposition 2. Under Assumptions (S) and (K), for any s = 1,...,m, HAM — Al = Op(¢ur)

asn, T — co. .

5.2 Asymptotics for aT

Considering the spectral decomposition
R.TYR! = PYAYPY, (46)

where AZ is the ¢ X g diagonal matrix of R, TR, ’s eigenvalues and P%) the n X ¢ matrix with columns

the corresponding orthonormal eigenvectors, we make the following assumption.

Assumption (S(f1))(Random cross-section, continued). Let i < n be such that £ + 2 — 0 asn — oo
(that is, i — oo and n/n — 0 as n — oo). Then, for any t € Z,

fp$’¢ﬁt CSaN(O,PY) asn oo, (47)
n

where Py = limy,_,o0 %E[P%/qﬁm(b;ﬁPg{] is positive definite, and Q4 is a g-dimensional vector of zeros.

Note that P} is not lim,, o %P%/Ewmd)gt]P% since eigenvectors are random; so we must assume its
existence. A similar assumption is made also in Bai (2003, Assumption F3) in the case of non-random

eigenvectors.

Theorem 1. Denote by W* a q X q diagonal matriz, depending on n and T, with diagonal entries 1.

Then, for anyt=1,...,T and any n < n such that%qL%%O, as n,T — oo,
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(i) under Assumptions (S), (S(e)), and (K),
Hﬁt — W2 (%)~ /2 utH =Op <max (;ﬁ’ CnT>) ;
(11) under Assumptions (S), (S(e)), (S(f1)), and (K), with i such that

1
— + Vil —0, asn,T — oo, (48)
n

—~ ¥
and W? —p WU letting M" := plim,,_, %P%/Pg and L% = plim, s An

\/ﬁ (ﬁt - {7\\72 (I‘u)fl/Q ut) —sy N <0q’ WH (L:U)fl/Q (Mu)*l Ptu (M’u,)*l (L:’u,)*l/Q Wu)

where Py is defined in in part (f1) of Assumption ().

Remark 4. In terms of rate of convergence (part (i) of Theorem 1), for 7 = n, we have the rate ¢+
as already derived by Forni et al. (2017, Proposition 11). In particular, ours and Bai (2003) estimators
of u; converge at the same rate y/n when 7/(Brn) | 0, whereas when (nBr)/T | 0 we achieve a rate
of convergence /T/Br, which is slower than the rates /n or T (depending on whether /n/T | 0
or T/+/n | 0) in Bai (2003).

Remark 5. Condition (48) imposes only a marginally slower rate than (,7, which is the consistency

rate when 7 = n. For example we can assume 7 of the form n = CT:TQLA(C;%) for some slowly varying

at infinity function L(-) (this implies that n ~ n, hence is a viable choice). Note that 7 then depends
on both n and T'. In fact, by inspection of the proof of part (i), we can see that consistency holds with
a faster rate and we could relax (48) to %CnT — 0. However, since for deriving the properties of the

common component, we still need to impose (48), we stick with it also in Theorem 1.

Remark 6. When (48) does not hold, Theorem 1 states that, as n,T — oo,
Vi (ﬁt — W ()72 ut) ~ W2X, —p 0y,
for some random vector Xy ~ N (0g, (ﬁ“)_l/2 (ML PE (M)~ (L:u)—l/?)_

Remark 7. A consistent estimator of the asymptotic covariance matrix of v/f(t; — & (I‘“)_l/ Zuy) is

Az e Mo\~ ~u nasa 1 [ A2 e
(3] Geees) 2 (e " (B)

where P, is a consistent estimator of P}. This requires specific assumptions on the form of cross-

sectional dependence of the {¢;}. For instance, when the latter are cross-sectionally independent, then
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the approach of Section 5(a) in Bai (2003) can be adapted, providing”
~ 1<
E—Z“W&Qﬁﬁ, (49)
t=1
where cblt =Zz; — R/ 0, and p7’ is the ith row of PZ (defined in (40)).

5.3 Asymptotics for 7Aln

Thanks to the duality between (21) and (22), the asymptotics for R, follow along the same lines as

for aT. Consider the spectral decomposition
Ursiuly = LYY, (50)

where L% is the ¢ x ¢ diagonal matrix of UrXFU’s eigenvalues and H# the T' x ¢ with columns the

corresponding orthonormal eigenvectors. Similar to (47), we make the following assumption.

Assumption (S(f2))(Random cross-section, continued). Let T < T be such that % % - 0
as T — oco. Then,
T
\/ THW‘PT —a N(0,, PT) as T — oo (51)

where ’PR = limp_e0 TIE[Hw/LpTcp”Hw] 1s positive definite.

Here again, notice that ’PR is not limp_, THWIE[(,oTc,oT]1'[1é since eigenvectors are random; so we
must assume its existence. If eigenvectors were not random, its existence would follow from of Lemma 18
in the Appendix, for all T' € N. Moreover, P! is positive definite since it is a Toeplitz matrix containing
all autocovariances of the ith idiosyncratic component. A similar assumption is made also in Bai (2003,
Assumption F4); it is satisfied, for example, by all a-mixing processes.

The following then can be proved along the same lines as Theorem 1.

Theorem 2. Denote by W? aq q X q diagonal matriz, depending on n and T, with diagonal entries £1.
Then, for anyi=1,...,n and any T < T such that % + % — 0, asn,T — o0,

(i) under Assumptions (S), (S(e)), and (K),
on o))

(ii) under Assumptions (S), (S(e)), (S(f2)), and (K), with T such that

R - W= (=) R,

1 —
?—l—\/%CnT%O, asn,T — oo, (52)

¢
and W* —p WE letting Mg = plimy_o Tlel_[w, and Lg = plimp_, LTT,

\/%(ﬁZ W= (ER)‘l/Q Ri> —>dN(0q,WR (L:R)—l/? (MF) PR (M) (ER)_l/QWR)

7 Although 73: does not depend on ¢t we keep the index t to highlight the possibility of considering estimators of the
asymptotic covariance that allow for heteroskedasticity.
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where P is defined in in part (f2) of Assumption (S).

Remark 8. In terms of rates of convergence (part (i) of Theorem 2), in the case T = T, we obtain
the rate (T}} as already derived in Forni et al. (2017, Proposition 10). In particular, our estimator
of R; converges at rate \/T/Br when T/(Brn) | 0 whereas, when (nBr)/T | 0, we achieve the rate
of convergence \/n. Both rates are slower than the rate v/T or n depending on whether vT/n | 0
or n/v/T | 0 in Bai (2003) estimator, . This is because we need to estimate a spectral density before
running PCA. The best rates we can achieve are T2/ if we choose a quadratic kernel, i.e. k = 2,
with optimal bandwidth By = T5, or T3 if we choose a Bartlett kernel, i.e. xk = 1, with optimal
bandwidth By = T1/3,

Remark 9. Condition (52) imposes only a marginally slower rate than (,7, which is the consistency
rate when T = T. For example we can assume 7 of the form T = C;:,%L_l(gz%) for some slowly
varying at infinity function L(-) (this implies that T ~ T is a viable choice (neglecting the bandwidth
dependence)). Note that 7' then depends on both n and T'. In fact, by inspection of the proof of part (i),
we can see that consistency holds with a faster rate and we could relax (52) to %CnT — 0. However,
since we still need to impose (52) for deriving the properties of the common component, we stick with

it also in Theorem 2.

Remark 10. When (52) does not hold, Theorem 2 states that, as n, T — oo,
ﬁ <ﬁz N ﬁ\/z (ER)_I/Q RZ) - WZXt —P Oq7
for some Xy ~ N(0,, (£7) 7 (M) P (M) T ()7,

Remark 11. A consistent estimator of the asymptotic covariance matrix of VT (ﬁi—\/ﬂ\ﬁfp(ZR)*l/ ’R;) is

2\ /7 1 R/(T “Lpe T
T 52D - 52D T
<T> (TPZTP?‘) Pi (TP%PZT) <T> )

~R

where P; is a consistent estimator of PR, If we assume that {¢;} is not autocorrelated, we can use
=R ~zaszl T2
P = Zﬂ-t T it (53)

t=1

where ggit = Zy— ﬁ;ﬁz and 77’ is the tth row of ﬁzT To address idiosyncratic autocorrelation, a natural

choice is the usual HAC estimator used also in Bai (2003, Section 5(b)).

5.4 Asymptotics for the static common component ;

Using the estimates of the loadings R; and the common shocks u; developed in the previous sections,
one can construct estimates of the static common components ;. Several approaches are possible.

Both R/u; and R}y, in fact, are consistent estimators of ;. In principle, one can also consider R}uy,
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although identification is not warranted due to the presence of the product of the two rotation ma-
trices W? (r*)~1/2 and W+ (27)=1/2 which are not necessarily identical. In contrast with this, R/t
and ﬁ;ﬁt both involve (V/\\fz)2 hence a product I,;. This is why the estimators 1@,5 we are proposing for
1y are of the form (44). These estimators could achieve an asymptotic efficiency gain with respect to
both R/u; and f{;ﬁt. Moreover, by setting 7 = T =: h, they avoid the slight technical difficulty of

combining estimators with different rates of convergence (see Bai, 2003, proof of Theorem 3).

Theorem 3. Set o =T = h. Then, foranyi=1,...,n andt=1,...,T, and any h < min(n,T) such
that%—i—#—)O, as n, T — o0,

min(n,T’)

(i) under Assumptions (S), (S(e)), and (K),

a0 o)

(i1) if also Assumptions (S(f1)) and (S(F2)) hold, and if h is such that

&;it - ¢it

1 _
7 + \/ECnT — 0, asn,T — oo, (54)

and W* —p WY, W+ —p WE then
— Ve O
S / it it
V(i = i) —>dN<o,w (Ci v )w)

. WnT
where w = lim,7_v00 ,
— WnT

o= R (T 2PWe (L) TR (M) TP (M) T (e TR W () PR,
Vil = (2 W (L) (M) TR (M) ()T W ()

Cy = R; (I\u)l/Q W (Eu)—l/Q (Mu)—l Q (MR)*l (E’R)*l/Q 1/2

W (2) ",

with P, MY, and L" as defined in Theorem 1, PR MR, and L as defined in Theorem 2,

and Qg i=Timy 70 (4L ) B[P o L)

Remark 12. Notice that, consistently with (26), we can always write (see the proof of Theorem 1)
1/2 B
Znt :Pg (A%> (I‘U) 1/2 ut+¢nt7 t= 17"'7T7
which implies R} = pg’/(Af)l/ 2(rv)~1/2. Moreover, by definition R} = p# (AZ)1/2 which, as shown

in the proof of Theorem 3, is a consistent estimator of R;(I‘“)l/ W, Therefore, a natural estimator
of Vi is, with 731; defined in (49),

Az —1/2 . o —-1/2
~ . Naga "L ~u /Mo~ \— .
new (B)  (heees) e (eee) ()
o (NS N su s s N
=npy (5P;P;) P/ (SPiP:) i,
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which does not depend on the unknown matrix I'* nor on the sign matrix W*. Similarly, we can always
write 12
2 =TI (L%) (R PR+, i=1,....n,

which implies u; = ﬂzp/(L%l/z(ZR)*l/Q (%Z’w the tth row of ﬁ;ﬁ) Moreover, by definition, we have
that u} = %f’(i;})lﬂ, which, as shown in the proof of Theorem 3, is a consistent estimator of u}(X7)/2WE,

~R
Therefore, a natural estimator of VIt is, with P; defined in (53),

-~ —1/2 R —1/2
VR o/ L% ! T's5.5. - SR (TS5, - L% / -
Vie =1y T fPTPT P ?PTPT T a
~u(T505. - SR (TS5, - =~z
=T 7; ?PTPT Pi fPTPT e

which does not depend on the unknown matrix 2 nor on the sign matrix W,

5.5 Asymptotics for the dynamic common component Y

Let C,(L) := [A,(L)]"! and notice that since A, (L) is block-diagonal, then also C,(L) is block-
diagonal. Denote as Z, := {{|{ = (s = 1)(¢ + 1) + 1,...,5(¢ + 1)}, the set of integers indicating the
series belonging to block s, where s = 1,...,m. Then, given a cross-sectional unit i € Z of A,,(L), its

dynamic common component y;; is defined as (see (17))

Xit = Cn(L)Rnut

oo q+1 oo q+1
! .
= E E Ci,js,kRjSut—k = E E Ci,js,ksz,t—ka 1€, 8s=1,....m, t € Z, (55)
k=0 js=1 k=0 js=1

where ¢; j, 1 is the (7, j5)th entry of C,, (L) and j, indicates the jth column of block s of C,, (L), i.e., the

jth element of Z;. Our estimator of y;; is then

K q+1

yitzzzé\i,js,kd)js,t—ka i1€Zsys=1,....m t=K+1,...,T, (56>
k=0 js=1

where K is a finite integer, ¢;;, » is the (7,js)th entry of Cn(L) := [An(L)]Y, and {ﬁ\js,t—k is the
estimator of the static common component defined in (44). Notice that in (56) we sum only over a finite
number of lags K, since the observed sample has always finite length. Moreover, since, by stationarity,
the coefficients of C,,(L) are decaying geometrically, K can always be chosen in such a way that the

contribution of the lags k > K is negligible.

Theorem 4. Set n = T = h. Then, for any s = 1,...,m, i € I,, and t = 1,....T and for
any h < min(n,T), such that % + % —0,asn,T — o
(i) under Assumptions (S), (S(e)), and (K),

~ 1
HXit - Xit” =Op (max (\/ngnT>> ;
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1) if also Assumptions 1)) an old, 1 W= —p WY, W —p and h is such that
(i) if also A D (S(f1)) and (S(f2)) hold, if W W W WE and h h th

1 —
7 + \/ﬁCnT — 0, asn, T — oo, (57)
then
— WY Gy
\/EA'—‘—>N0,w' u ’ w,
(th th) d ( ( Git Wzlt%
where w = limy, 7500 < wTZ > and, letting Ty = {i1,...,ig+1}, for a given finite integer
- WnT
lag K,
!/
R, (1)1/2 R, (0)1/2
it = ’/;+1 C; o L,K-s-l ® : Viik(Ci© L,K-s-l ® : Lg+1;
/ 1/2 / 1/2
R, . (T R, (T )]
/
()2 ()2
Wit =1 { Di© |ty ® : VI i 3 DiO [ty ® : LK1,
u; (B2 u) (B2 i
!/
R (1)1 ) (SR 1/2
Git =11 Ci O [ty ® : Oil...iq}l DO |ty ® : LK+1,
tot—
R’/qurl (Fu)1/2 u;_K(XR)l/Q

with ® and © the Kronecker and Hadamard products, respectively, txy1 a (K + 1)-dimensional

vector of ones, and tqy1 a (¢ + 1)-dimensional vector of ones,

/ / / /
Lq X €i1,0 ce Lq X Ci1K Lq ®ci10o  --- Lq & Cj g+1,0

/ / / /
bg @ Cigt1,0 -+ g ® Cigr1K Ly @Ci1K - Lg® Cigt1 K

Vi k= {Ten @ (W e 2 ey ey {Ten @ [ T e we

VL= e (W) ) P g [ e w]),
Ou sy 1= {Treer @ [W ()72 MO [} 0y {Tin (M) ()W
_ Pt bt / /
Pk = nlggo % £ {IK+1 © P%I} : : {IK+1 ® P%/} )
L d)ﬁt—K d)ﬁt—K
T 90% 90% / /
‘Pflgﬂ Qog‘zﬂ

M and L% as defined in Theorem 1, M and LT as defined in Theorem 2.
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Remark 13. To appreciate the formulas given in Theorem 4, let us consider a simple example.
Let g = 1, K =1, s =1, so that ¢ = 1,2 and js = 1,2. Then, if n < T so that w,r ~ 1, from

the proof of Theorem 4 we have

2

Vit = Vi Y {ensonRy, Bk —wei) | +op(1), (58)

k=0 js=1

which has asymptotic variance (notice that u; and R; are now scalars)

Wi = lim ﬁ(ciLOR%Var(ﬂt —u) + C%Q’OR%Var(iZt — uy)

n,T—00

+ ciLlR%Var(ﬂt_l —Up—1) + cimR%Var(ﬁt_l — U—1)

+ 2c¢11,0c1,20R1 RoVar(u; — ug) + 2c¢1.1,1¢1,21 R1RoVar(ug—1 — ui—1)
+ 2¢1,1,001,1,1 RICov (U — g, (U—1 — ue—1))

+ 2¢1,2,0¢1,2,1 R5Cov (U — ), (U1 — ue—1))

+ 2¢1,1,001,21 R1RoCov (g — we), (We—1 — ws—1))

+ 261200111 R1 RoCov (@ — w), (-1 — wi1) ) (59)

Similarly, if T < n so that w,pr ~ 0, from the same proof we have

ViR = xu) = Vh 21: 22: { C1j, kWi (f{js = Ry;)} +op(1), (60)

k=0 js=1
which has asymptotic variance
R_ 1 =( 2 2 ) 2 2 %)
Wit = lim T(cl Loui Var(Ry — Ry) + ¢f 9 guy Var(Ra — Ra)
7’L,T—>OO 1= 1<

+ cil’lu?_l\/ar(§1 —Ry)+ cizyluf_l\/ar(ﬁg — Ry)

+ 201,17001,171utut_l\/ar(]/%l —Ry) + 201,2700172,1utut_1\/ar(}A%z — Ry)

+ 2617170017270U?COV((§1 — Ry), (]/%2 — Rg))

+2¢111¢101u2_Cov((Ry — Ry), (Ra — Ro))

+ 201,1,001,2,1Utut—100V((El — Ry),(Ry — Ry))

+ 261,2,001,1,1Utut7100V((ﬁl — Ry), (Ry — RQ)))- (61)
The variances in (59) and (61) are given in Theorems 1 and 2, respectively, and the covariances are
easily derived along the same lines (for details, see the proof of Theorem 4). Clearly, if n ~ T', we should

also include covariances between the terms in (58) and those in (60), which contribute to the term G

in the expression of the asymptotic variance.
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6 Monte Carlo Simulations

We set ¢ = 1 and we consider the data-generating process (a slightly modified version of the one used
by Forni et al. (2017))
Tt = a;Bi(L)uy + &, (62)

where 3;(L) :== (1 — oy L)™' = (1 4+ oy L + (Jc?L2 +...). We generate u; and &; as i.i.d. standardized
normal variables, a; as normal variables with mean and variance both equal to one, and «; as i.i.d.
variables uniformly distributed over the interval [0.1,0.8]. Finally, each idiosyncratic component &;; is
rescaled so that the share of variance of z;; accounts for by &;; is ﬁ, with 8 = 0.5.

We simulate panels of size n = T € {100, 200, 300, 400,500} and we consider a total of B = 500

Monte Carlo replications. At each replication b, we compute an estimator )?(b) of the common compo-

i
nent X’Ef ) and its asymptotic variance. The main goal of this section is to check whether the asymptotic
distributions derived in Theorem 4 is empirically confirmed. However, because we simulate panels
with n = T, we estimate the dynamic common component as in (56), where the static common com-
ponent is estimated with weight w,7 = %, which is slightly different from the estimator used by Forni
et al. (2017), in which w,p = 1. Therefore, we begin the simulation exercise by looking at the properties
of the estimator in (56), setting K = 2, p; = 1 for all s, and considering |y/n| permutations in building
the m blocks.

Table 1 shows the Standardized Mean Squared Error (S-MSE)

n ~(b b))\ 2
25:1 diet Zthl (Xz(t) - th))

S-MSE := o2
B n T
Db i1 D=1 (Xit )

(63)

of the estimator of x;;. The results in Table 1 clearly show that the estimator in (56) works very well.
As n and T increase, the S-MSE monotonically decreases, to the point that, for n = T = 500, the
S-MSE is more than 70% lower than for n = T = 100.

Table 1: STANDARDIZE MEAN SQUARED ERRORS
COMMON COMPONENTS

T n S-MSE
100 100 0.30
200 200 0.17
300 300 0.12
400 400 0.09
500 500 0.08

Next, we turn to the asymptotic distribution of the same common component. To this end, for each

replication b and each (i,t), we compute
~1/2
b 1=, 1= (b b

which, according to Theorem 4, is asymptotically standard normal. Figure 1 shows, for four out of five
of the (n,T) couples considered in Table 1, histograms of {Zi(tb) ci=1,...,n,t=1,...,T,b=1,... B}.
These histograms show that, while struggling a little bit in the tails, the empirical distribution of Zi(tb )

24



is pretty close to the standard normal distribution (the red dashed line), well in line with Theorem 4.
The fatter than Normal tails are the price we are paying for estimating A,,(L). That price is nil in the

limit, but not for finite n and T

Figure 1: HISTOGRAMS OF THE SIMULATED Zi(tb)’s IN (64), FOR VARIOUS VALUES OF n AND T’
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7 Empirical Application: a “core” inflation indicator for the U.S.

Headline (or total) PCE price inflation, the measure chosen by the Federal Reserve to target its 2%
target inflation objective, is highly volatile. Therefore, economists and policymakers have suggested
alternative measures, which the literature calls “core” inflation indicators, to reduce the variance of the
measured inflation, thus better distinguishing transitory from persistent movements. This Section uses
the one-sided GDFM considered in this paper to estimate a new “core” inflation indicator for the U.S.®

Nowadays, the notion of core inflation in the U.S. is mainly associated with inflation excluding food
and energy. The rationale for this indicator is that both food and energy prices are very volatile and
often driven by idiosyncratic shocks (such as weather for food or OPEC decisions for energy). Thus, not
only they do not provide a useful signal for inflation going forward, but also they are not controllable by
the Federal Reserve (Blinder, 1997). However, the literature has proposed alternative ways of measuring

core inflation, such as trimmed means and factor model-based estimates.?

8 Altissimo et al. (2009) estimate a dynamic factor model, on disaggregated inflation data, that represents an over-
simplified case of our setting, as it is assumed that the common components follow AR(1) processes with iid idiosyncratic
components. This simplification allows to use a different estimation method. Unlike us, they estimate their model on euro
area data.

9The rationale for the use of trimmed means as core inflation indexes is that a trimmed mean is a robust estimator of
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The idea of considering (low-dimensional) factor models to estimate core inflation dates back to
Bryan and Cecchetti (1993), while Cristadoro et al. (2005) and Amstad et al. (2017) more recently
have used high-dimensional dynamic factor models, similar to the GDFM, with the same objective.'?
The rationale for considering factor models on the estimation of core inflation is that central banks are
particularly interested in identifying movements in inflation that are driven by common (macroeconomic)
shocks, so to avoid responding to changes in inflation due to sector-specific shocks, or, even worse,
measurement error.

The dataset we are analyzing here consists of n = 148 PCE price inflation rates from January 1995 to
December 2019 (T' = 300).!! Specifically, the dataset contains headline PCE price inflation, which is the
target chosen by the Federal Reserve for their inflation stability objective, PCE price inflation excluding
food and energy, and 146 disaggregated PCE prices. These 146 disaggregated PCE prices represent
a particular disaggregation of PCE prices in which each disaggregated price index is constructed from
a distinct data source. Indeed, most disaggregated PCE prices are measured using a corresponding
index from the CPI, a few of them are measured using PPIs, and some others are imputed. As a
result, some disaggregated PCE prices are based on the same CPI (or PPI) series, which means that
some disaggregated PCE price indexes are identical (or nearly so). For the complete list of prices and
detailed information on the data sources, we refer the reader to Luciani (2020).

The upper-left charts in Figures 2 and 3 show our estimate of core inflation based on the estimated
common component of headline PCE price inflation, as defined in (56) (the red line), where the shaded
area around our estimate is the + one standard deviation confidence band, together with headline
PCE price inflation (the black line).'? Let P}* denote the headline PCE price index: Figure 2 shows

h
month-over-month inflation in the PCE price index, i.e., 7' = 100 x (Pjif — 1), while Figure 3 shows
t—1
h
year-over-year inflation in the PCE price index, i.e., ' = 100 x ( P};f —1). The former is the target of
t—12

forecasters following inflation, and the latter is what policymaker care about and, consequently, what
newspaper tends to comment on. Note that the model is estimated over month-over-month inflation
rates, and then the estimated common component is computed by converting the month-over-month
estimate into an year-over-year estimate.!

From simple visual inspection of the upper-left charts in Figures 2 and 3, we immediately see that
our measure of core inflation is doing what it is supposed to do: tracking the trend of headline PCE price
inflation while reducing the variance. Moreover, the confidence band seems to be quite well calibrated,
as monthly headline PCE price inflation is outside the confidence band 27% of the time (as a reference,

the &+ one standard deviation interval of a standardized normal excludes 32% of the observations).

the location of a fat-tailed distribution, while a weighted mean (like the total inflation index, or the index excluding food
and energy) typically is not.

100ther papers have used high-dimensional factor models for constructing inflation indicators, though with a different
goal. For example, Reis and Watson (2010) estimate an index of equiproportional changes in disaggregated PCE price
inflation, while Luciani (2020) disentangles the effects of common versus idiosyncratic shocks in PCE price inflation
excluding food and energy.

"Because n < T, to estimate Ur and R.,,, and therefore the common component and the asymptotic variances, we set
WnT = 1.

12The specification used in this section features one common shock, one lag in the VAR, and the number of autocovari-
ances used to estimate the spectral density is set to [Tl/ 3.

13 As for the asymptotic variance, we took a shortcut for year-over-year estimates. Indeed we compute the variance for
year-over-year estimates as 12x the asymptotic variance over the month-over-month estimates. However, in doing so we
are neglecting the autocorrelations, hence we can say that the confidence bands shown in Figure 3 are an approximation,
which, most likely, are slightly tighter than they should be.
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In all charts, the red line is our estimate, while the shaded area is the + one standard deviation confidence band.

The other charts in Figures 2 and 3 compare our estimate with other core PCE price inflation
estimates. Starting with the upper-right charts, our estimate of core inflation is quite similar to PCE
price inflation excluding food and energy (the blue line), but less volatile. Indeed, our estimate is not
affected by well-known idiosyncratic shocks such as the (down-up) spikes in September-October 2001 or
the large decline in March 2017, which not surprisingly are 3 of the 15 (out of 300) dates in which PCE
price inflation excluding food and energy is lying outside the confidence band of our estimate of core
inflation.!* Moreover, as shown in Figure 4, our estimate of core inflation captures primarily fluctuations
with periods longer than six months, while a large share of fluctuations in PCE price inflation excluding
food and energy is accounted for by fluctuations with periods shorter than six months. Finally, as can
be clearly seen in Figure 3, our measure of core inflation points towards higher inflation at the end of
the 1990s, which is in line with the literature indicating that the U.S. economy was very tight before
the dot com bubble burst (see, e.g., Hasenzagl et al., 2020; Barigozzi and Luciani, 2020).

Next, the lower-left charts in Figures 2 and 3 compare our estimate of core inflation with the Dallas
Fed Trimmed Mean PCE price inflation proposed by Dolmas (2005) (the slate-grey line), a measure

that is highly considered by officials at the Federal Reserve and by newspapers.!> Our measure and

4The 2001 swing in core PCE price inflation was driven by the price index for life insurance, which plunged 55 percent
in September 2001 and jumped 121 percent in October 2001 as a result of the 9/11 terrorist attacks. The March 2017
decline in core PCE price inflation was largely due to the plunge in the price index for wireless telephone services (52%
at an annual rate). The plunge was due to both a methodological change in the measurement of wireless services in the
CPI and the fact that in late February of 2017 both Verizon and AT&T (which in March 2017 accounted for nearly 70%
of wireless subscriptions in the US) brought back unlimited data plans.

5The Dallas Fed Trimmed Mean PCE price inflation estimates core inflation by taking the weighted trimmed mean of
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Figure 3: “CORE” PCE PRICE YEAR-OVER-YEAR INFLATION
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In all charts, the red line is our estimate, while the shaded area is the + one standard deviation confidence band.

Figure 4: SPECTRAL DENSITY PCE PRICE INFLATION
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The spectral densities are standardized so that the integral below the curve is
equal to one. The z-ticks stands for frequencies corresponding to periods of “5
years”, “2 years”, “1 year”, and “6 months.” Points on the right of a given z-tick
denote fluctuations with period shorter than the z-tick.

the Dallas trimmed mean are remarkably similar, and they also capture similar frequencies. However,

our measure performs better in capturing the decline in inflation during recessions, where the Dallas

a dataset of disaggregated PCE price inflation similar to the one used in this paper. As currently computed, this measure
is computed by trimming out 24 percent from the lower tail of the distribution of monthly price changes and 31 percent
from the upper tail.
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trimmed mean is a bit lagging, as is evident when looking at Figure 3.

Finally, the lower-right charts in Figures 2 and 3 show the comparison with a principal component
estimate. This is the estimate of core inflation that comes from a high-dimensional static factor model.
By looking at the two charts, it is clear that a static factor model does not do a good job in estimating
core inflation, as the estimate is very volatile, thus failing to achieve one of the goals a core inflation
indicator is supposed to achieve. Even more so, the PCA estimate is very similar to the headline index
itself. This demonstrates the importance of considering dynamic (GDFM) rather than static (DFM)

loadings when constructing a core inflation indicator.

8 Conclusion

Factor models, in the past decades, have emerged as the most efficient tool in the analysis and prediction
of high-dimensional time series (high-dimensional panel data). Several factor models have been proposed
in the literature, the most flexible of which is the so-called Generalized Dynamic Factor Model (GDFM)
where common shocks are loaded via filters—as opposed to the Dynamic Factor Model (DFM) where
shocks are loaded in a static way. While complete results on the asymptotic behavior of DFM estimators
are available (Bai, 2003), the corresponding theory for estimators of the GDFM is still incomplete. This
paper fills that gap by deriving the asymptotic distributions of the GDFM estimators (common shocks,
loadings, and common components).

Our results paves the way for inferential applications of the GDFM of great interest to macro and
applied economists, such as asymptotic confidence intervals in prediction and in the construction of
economic indicators. We illustrate the use of our methodology with an application to the construction
of “core” inflation indicators for the U.S. economy. The GDFM-based indicator appears to provide much
stable results than the current methods—it also outperforms its DFM-based counterpart, which appears

to be much more volatile.

APPENDIX

This Appendix collects the proofs of the main results. For simplicity, we throughout assume that
Assumptions (S) (from (a) through (f)) and (K) hold—even though most results are valid under a

subset thereof.

A Proof of Theorem 1

A.1 Preliminary lemmas

Lemma 1. Asn,T — oo,

:OP(\/:LT>,CLST—>OO; (i1) ‘ :OP<\/15),CL$TL—>OO.

Proof. Part (i) follows from parts (a) and (¢) of Assumption (S) and (26); part (ii) follows from part (a)
of Assumption (S) and (25). O

) Uy
_ ]_"u
0 H t

R/TLR’N _ ER
n
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Lemma 2. For any given t and any n < n such that % + % — 0 asn— o0,

1
% |Z7: — zael| = Op(Car) asn,T — oo.

Proof. Without loss of generality, set n = m(q+ 1), implying m ~ cn. Then, because of Proposition 2,

[Zae = 2]l = || (An(L) = An(L)) a0

p m . N\ /~,. X . 1/2
<3 (S0 (- A0) (0 - A0) 2,

g+1 g+1

(Z ( *) (Z Z Z (ajiahiﬂ' - aji,hqz,r)2

i=1 =1 7i=1h;=1
1/4
4) /

m
( (xx(2,) ) (a+1° D ||AD - A
r i=1 i=1
=Op (\/ﬁCnT> ;
where p = max,—1,.. mDs, and aj, p, » and @;, p, » arve the (j, h)th entries of Ay(j) and of Kq(«i), respectively.
See also (D.8) in the proof the Lemma 11 in Forni et al. (2017), which in turn follows from Lemmas 8

Mws

I
o

T

M"S
||'M3.

Il
o

through 10, which entail uniformity over 4 for ||K7(}) - Asni)H. O
Lemma 3. Collect the q largest eigenvalues of f‘fL = % in the ¢ X q diagonal matriz 1~XfL and the

corresponding normalized eigenvectors in f’fl Then, as n,T — o0,
(i) LIA; — ALl = Op (max (L, ;)) :
(ii) there exists agxq diagonal matriz Wf with entries &1 such that, for any n < n such that %+% -0
as n — oo, |PZ — PYW3| = Op (%max (L l))

T'n

Proof. From Assumption (S(d1)), (36), and Lemma 1(i) it follows that, as n, T — oo,

11~ 1 uu L)
~|F - RaRy || = | R, IRy, 4 SALE R DR,
1 uu d P
~ IR, T 'R - R, TR, “nT 0T
n N T
1 <1><27TB¢+O<1>
n VT) = n P\VT
1 1
:O — —
(e (F73))
which implies
1 Az up/ 1 1
ﬁHAn_ —'R,nI‘ Rn :OP max ﬁ’ﬁ .

hence part (i) of the claim. Turning to (i), by the Davis-Kahn sin-0 Theorem (see also Yu et al., 2015,
Theorem 2) there exists a ¢ x ¢ diagonal matrix Wf with entries +1 such that

23/2 /g% — R, TR/ 1 1
ValTs, nll | _ Op <max ( ))

|B: - Pywi

T min(uly — plhy, g — B g1 VT'n
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where uxj are the eigenvalues of R,I'R, (satisfying (28) and Assumption (S(e)), uﬁo = 00,
and M:f,qﬂ = 0. Similarly, for n < n,
5 = 23/2,/q|T% — R:IR;, 7 11
[Bi - pawi]| « 2B T oy (nae (). o)
min(fig — [ g = Hig41) n VT n
which completes the proof. U

Lemma 4. Collect the q largest eigenvalues of ffL = ZorZnT G the q X q diagonal matrix jAXfL and the

corresponding normalized eigenvectors in 132 Then, as n,T — o0,
(i) 51A; = ALl = Op(Car);
(11) there exists a gxq diagonaimatm’x W3 with entries 1 such that, for any n < n such that %—l—% —0
and i — o0 as n — oo, |PE — PEWi3|| = OP(%CnT)'

~

Proof. From Lemma 2 it immediately follows that % ‘ I — f‘fl = Op(Cnr), which implies

1)~ ~ 1a, =
=& & < 2 |7 - T = or ),
n n

hence part (i) of the claim. Now, from Lemma 3(i), with probability tending to one as n,T" — oo, there

exists a positive real ¢ such that

>,j:q—|—1,...,n.

SERS

I

g/~

1 1 1,
, <cmax<\/f,n>,j:1,...,q and n‘,uflj‘<cmax<
Thus, from (28), with probability tending to one as n,T — oo,

unjzlu’nj_cmax ﬁvﬁ Znaj_ca.]:]-a'”qu

and ﬁfm <¢ j=q+1,...,n. Therefore, for n > 4—@, with probability tending to one as n,T" — oo, it
a
J
holds that v
2c a;
~ -~ () — ¥ J
/’qu — ,uf“qﬂ > na; — 2c = na; (1 — o/z’n> > n7
J

Then, by the Davis-Kahn sin-0 Theorem again, there exists a g X ¢ diagonal matrix \/7\\75 with entries +1
such that

23/ /q|T% — T

1 ~z 5z . 5z
min (47, — fing Prg — /~Ln,q+1)

<

Hﬁ; _PEW; = Op (Gur),

where ﬁfw are the eigenvalues of f‘fl and (17 := oo. It follows that, for any n <n,

|P; - Piw3

= Op (=6ur) - O
n
Lemma 5. Asn,T — oo,
(i) 1A% = ALl = O (Gur);
(ii) for any i < n such that 2 +2 — 0 as n — oo, Pz — P%WZH = Op(2¢ar), with W2 = VV{WZ,

where V/\\/'f is defined in Lemma 3 and \/7\\75 wn Lemma 4.
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Proof. From Lemmas 3(i) and 4(i) it holds that

1~ i~ ~ 1 1~
e e R ) L

= Op(Car) + Op <maX (\}T, ;)) .

Part (i) of the claim follows, since % and 1 are O((yr). From Lemmas 3(ii) and 4(ii), and since

HW;H = 1, we obtain

|P; - PrWiW;

< |P:-Piws

AR SATATE

< Op(Gur) + || P2 - PEWE | W3]

= Op(Cur) + Op <HlaX (\}T, i)) .

Since % and 1 are O((yr), this concludes the proof. O

Lemma 6. There exists a positive definite ¢ X q diagonal matriz L* such that

AL y
— —p L as n — o0o.
n

Proof. The Lemma is an immediate consequence of (28). O

-1 —~ —
TP (A
Lemma 7. (i) — =0p(l) asn—o0; (i7) —= =0p(l) asn,T — co.
n n
Proof. Part (i) follows from (28), part (ii) from Lemma 5(i) and part (i). O

Lemma 8. Denoting by e,; the ith column of 1,

1
=0Op <> as n — oo.

max
i=1,...,n

Proof. Since P} = (R, T*“R.,)PY(AY) L, we have

eiw-Plf

a1 = o (\}ﬁ) |

Indeed, e/, R,T*R.,|| = Op(v/n), |[P4] = 1, and [|(AL)"| = Op(n~1), because of Lemma 7(i)
(which, actually, only requires Assumption (S)). O

max ‘
i=1,...,n

< max el RaT“R, | [Py
i=1,...,n

Lemma 9. For any n <n such that%—k%—)O as n — oo,

(i) Pyl =Op (\/i) and (i) |Py'Py|| = Op (%)

Proof. It follows from Lemma 8 that

2 n
F_Z’

2
< n max
i=1,...,n

n e;u'PZ e;u'Pﬁ

2 2 7
s < s =0 ()
n

32



Moreover,
Pt
|Pie;

< [¥ =0 (3)- )

Lemma 10. For any t € Z and any n < n such that % + % — 0 as n — oo,

n /
\/;szﬁ dat|| = Op(1) asn — oo.

Proof. Recall that BHPWPQPH = Op(1), because of Lemma 9(ii). Therefore, for the kth column of P¥,
denoted as p k> it holds that "p%{pnk =Op(1). Let p p ok = pnk/\/p:fkp:fk, so that p:fkpwk = 1. Let p, pik

denote the ith entry of p p - and let Pd} be the matrix with columns p pnl, e ,pnn Due to normalization

c_

of p pﬁk and Lemma 8, there exists a finite positive real ¢ such that max;—1  _, maxj—1,_ 4 ]pij\ < N

-----

with probability one. Then, denoting by ¢tz a n-dimensional column vector of ones, for any t € Z,

— 2 _ _
~ 2 q n B g n 0 s
E [HP% Prt ] =E Z <Zpi11ﬁ¢it> = ZZZE[piﬁpﬁ@t%t]
k=1 \i= k=11i=1 j=1

9 A P
39 o

k=1 i=1 j=1
< gc’ o \f [¢nt¢nt]\/> < ¢ G max b.Tob;,

b br=1

< ¢é® max sup max b I‘¢b < qé*27B?,

k=1,..¢pheN  ba
b.br=1

in view of (36). Hence, it follows from Chebychev’s inequality that Hf’g(pmﬂ = Op(1) and, there-
fore, |\P%/¢m|| is Op <\/§> O

A.2 Proof of Theorem 1

Let Xnt, Znt, Znt, Pt denote the first 7 elements of Xp¢, Zng, Znt, P, respectively. Then, from (41)
w= ((3)"BiRs (7)) (R) B = (R2) " (P1P) B
_ ((K;)l/ () 2) (P:P;)  Pizn
+(ar)” ((13;’13;)_1 - (prg'png)*) Bz
+ (Aﬁ) U (WZPgP%WZ) - (13;’ — VAVZPg') 7
(az) "W (P%’P%)‘l P (Rn(L) ~ An(L)) 3
+ (A ) 2w (Pw Pw) PY 2

=T+ 11+ 1IT+1V +V, say. (66)
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For I, since

()= )™) = (680" () ) () 7 (0)™)
— (fxfl)_l (ay-4z) (Aﬁ)_l <(Ki)_1/z+ (Aﬁ>_1/2>_ NG

and because of (67) and Lemmas 5(i) and 7, the norm of I is bounded from above by

&) ()" (a) ™)

— Op (nﬂﬁcﬂﬁgﬁ) (68)

since |[Zn¢|| = Op(v/A1) by Lemma 2, and ||(PZPZ)~ 1Pz || = Op(y/%) by Lemma 9(i) and 9(ii). This

yields I = Op (Cf)

For I1, first notice that from Lemma 5(ii),

Y Az D2 Pz 15
n An (Pﬁ Pﬁ) Pﬁ

|27

|(a)”

|Pew — Bz = 0p (Béur). (69)

Then,

((ﬁz’fﬂ) o (szg/f»xw/z)l)

_ (ﬁg’fﬂ) : < WPY' PYW* — f);’f);) (\TVZP%'P?LVVZ)_I

= (B;B;) (WePy (PuW: —B3) + (WY —B;) P;) (WPYPIW:)
and, because of (69) and Lemma 9,

(0" o) Yo (fitert) o (i)

Because of (70), and Lemmas 2, 7(i), and 9(i), the norm of I is bounded from above by

H —-1/2

(fﬂ’fﬂ) ' (WZP¢ waz )’

=0Op (\/ﬁ\/;CnT\/iﬁ) = Op (\/iCnT) ; (71)
yielding IT = Op (ﬁgﬂ).

By (69) and Lemmas 2, 7(1), and 9(i), one immediately gets II] = Op (\/égnT) and IV = Op (CT)
Finally, consider term V. Recall that, from Assumption (S(d1)), (36), (46), and Lemma 1(i)
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any n € N, as T — oo,
1 X
= D 2y —p Ral'R;, + T = PUAJP) + T

(see also the proof of Lemma 3). Considerin/g the upper-left i x . submatrix RzT'“R. = P%A%P%/
1/2
of R,T“R] , it follows that zz; = P% (Aﬁ) (l"“)_l/2 u; + ¢7¢. Collecting terms,

_ _ ~1/2 , -1,
G — W= (T V20 = T+ IT+ IIT + IV + W* (A}f) (pg Pg) PY dns. (72)

Recalling that HVVﬂ] =1, it follows from (72) that, in view of Lemmas 7(i), 9(ii), and 10,
[ - 2 ()12 < H (A7) H ” (PUPY) ” [P ]| + 0 ([@ﬁ
1 n /n n 1 n
= OP <\/E’FL\/;> + OP (\/;CnT) - OP (m&X (\/ﬁv \/;CTLT>> .

¥
Now, by (28), there exists a ¢ x g positive definite diagonal matrix £, such that % —p LY

This proves consistency.

as n — oo. Similarly, by Lemma 9(ii), there exists a ¢ X ¢ positive definite matrix M, such that,
as n — 0o, %P%,P% —p M. Therefore, by Assumption (S(f1)), as n,T — oo,

NG (at — W (T2 ut) — /A W* (Ag)*m (P}flP%)il PY ¢y + op(1)

AY -z N
= W < o ) (%Pﬁ Pﬁ) \/; (Pﬁ ¢ﬁt) +0P(1)
—ra N (04, W (L) T2 (M) T P (M) (e 2w

since V¢, — 0, because of (48). O

B Proof of Theorem 2

B.1 Preliminary lemmas

Z

Lemma 11. Collect the q largest eigenvalues of Gz = %Z"T m i% and the corresponding normalized

etgenvectors in II7.. Asn,T — oo,

0 452 2] -0r o)
(ii) there exists a q x q diagonal matriv W§ with entries £1 such that, for any T < T such
that%—}—% — 0asT — oo, Hﬁ%—ﬂ?ﬁ\/f = Op (Tmax<ﬁ,%)>.
Proof. The claim follows along the same lines as for Lemma 3 but using Assumption (S(d2), (37), and
Lemma 1(ii) instead of Assumption (S(d1), (36), and Lemma 1(i). O

Lemma 12. Collect the q largest eigenvalues of Gz = % i the ¢ X q diagonal matrix i% and

the corresponding normalized eigenvectors in I17.. As n,T — oo,
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(i) HIE5 — L3 = Op(Gur): 7
(i1) there exists a q X q diagonal matric W{ with entries £1 such that, % =+ % — 0, as T — o0, such
that T — oo, ||fIZT - ﬁ%ﬁ\’fﬂ = Op(Lar).

Proof. The claim follows along the same lines as for Lemma 4 but using Lemma 12 and (30). O

Lemma 13. Asn,T — oo,
(i) 7117 — Lyl = Op(Gur); N ] -
(ii) for any T < T such that 1 +% — 0 as T — oo, |15 ~TLW?|| = Op(LCur), with W* = WiW53,
where W{ is defined in Lemma 11 and W3 in Lemma 12.

Proof. Same as Lemma 5 but using Lemmas 11 and 12. O

Lemma 14. There exists a positive definite g X g diagonal matriz Lg such that —>p LrasT — oo.

Proof. This Lemma is an immediate consequence of (30). O
-1 N
LY L;
Lemma 15. (i) (;) =O0p(1) as T — oo; (ii) (;) =O0p(1) as n, T — oc.
Proof. Part (i) follows from (30), part (ii) from Lemma 13(i) and part (i). O

Lemma 16. Denoting by e, the tth column of Ip,

1
| = T oo,
s, fortg =00 () w7
Proof. Same as the proof of Lemma 8 but using Lemma 15(i). O

Lemma 17. For any T < T such that % + % —0asT — oo,

: T g T
() Ty = Op (\/T> Gy = oe (7).
Proof. Same as Lemma 9 but using Lemma 16. (]

Lemma 18. For anyi € N and any T < T such that%+%—>0 as T — oo,

R i = 0p().

Proof. Recall that, in view of Lemma 17(ii) L H]Té/l'[%H = Op(1). Therefore, for the kth column of 1'.[1/—’

P! _ =Y —
denoted as 7 Tk, it holds that L TerTer Op(1). Let 7, : TK'Tk/\/Tl'TkTFTk, so that Ter Tk =1

Let ?r'lﬁ be the ith entry of 7 ﬂ-T and denote by Hw the matrix with columns Tr;b,l, .. 71';/};7—, Due to
normalization of 7 7'&'Tk and Lemma 16, there exists a ﬁmte positive real ¢ such that
~ c
max  max |7} < ——

t=1,.., T j=1,.nq U
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with probability one. Then, denoting by ¢7 the T-dimensional column vector of ones, for any i € N,

g [T 2 g T T
} E DAY Bt | | =D D EF 74 bidi]
k=1 \t=1 k=1 t=1 s=1
T
NP

1 t=

~_ .12
e[Jyer

¥

[i 7] Lt

M=
'ﬂl\ g

E[¢idis] < q¢” max —T;
(A ’LS] ’ g
2 / i il

¢ max max czE|pspkles
q px, & T [‘PT‘PT} T

/ —
cper=1

IN
wM’Q

IN
-
vl
I
-

=2
< g¢® max max sup — g R[5l
— T T T
k=l,...¢ T peNTl
crep=1

2

< g¢” max sup max CTG¢C <ch27qu5
k=l,...apen , ©T
crer=l1

because of (37) and since G? = limp o0 + iy E[p%@%]. From Chebychev’s inequality, Hﬁ? @]l = Op(1)

and, therefore, HH% @k|| = Op (ﬁ) 0

B.2 Proof of Theorem 2

The proof is entirely the same as for Theorem 1, with Lemmas 11-18 replacing Lemmas 3-10. (]

C Proof of Theorem 3
Proof. First, for any ¢ = 1,...,n, we have, from the proof of Theorem 1, R} = p/ (A¢)1/2(I‘“) 172,
Therefore, from the definition of R} in (39),

R;_R;(I\u)l/QW B (Az) ﬂ—pf” (A ) 1/2 Wz_’\zl (Az> /2_p;/1/‘/7‘\7z <A$)1/2
= oW (R - a0) " 4 (57 - p W) (a2) 7 (57 - b W) (Bs - ap)

=I+I11+11I, say. (73)

Term [ is Op((,7) because of Lemmas 5(i) and 8, term 7 is Op (\/%QnT) because of of Lemmas 5(ii)
and 8 (see also the arguments in Lemma 6 in Forni et al., 2017), and term II7 is op((,r). From (73),
we get

| R - R (02 W

= OP(CnT) (74)

which, combined with Theorem 1(i), gives

|RG, — Riw|| = Op (max (;ﬁ gnT>) _ Oy (max (;E gnT>) . (75)

Following a reasoning similar to (73), since, from the proof of Theorem 2, for any ¢t = 1,...,T we
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have u) = ¢ (L%)Y/2(XR)~1/2, the definition of @, in (42) and Lemmas 13 and 16 imply that

|

which, combined with Theorem 2(i), yields

orfom () o).

Part (i) of the theorem filliws from (75) and (77).

o - (=7 W

= Op(Cn1)

A ) /

Now, from the proof of Theorems 1 and 2 and using (74) and (76)
R4, = R/ 1N/ 20z (o arz (puy—1/2 =/ ! (pu\1/2 Xx7
= R,u + Rz (F ) W*(u — W (I‘ ) u; | + R R (F ) W? ) u;

— Rlu, + R, (T%) /2 W* (Aﬁ>_1/2 (P%’P@_1 PY s + (R; ~ R/ ()2 \Tv) Tr + Op(Car)

_ ~1/2 ~1
— Rju, + R, (0 W* (A2) 7 (PE'PY) PV + Op(Gur), (78)

and

@R, = wR; +u, (57 W (R, - W (z7)"/? Ri> + (1 - (=) W) R,

—~ —-1/2 —
= /R +u; () W (L) / (H#’H%) Iy ) + () — v (uR)"? W*) R; + Op(Gur)
_ ~1/2 -
= /R +u; () W (L) (H?’H#) 1Yk + Op (Cur),

(79)
since ||G¢|| = Op(1) and |R;|| = Op(1).

From Theorem 1, (78), and because of (57), as n,T — oo

- —~ —1/2 -1
Vi (RfG, ~ Rjuy) = VAR ()2 W (A7) (PUPE) PV + 0p(1)
AY e n -1 /n
_ R (Tv\/2\Wwz | A Dpibpd 2 (PY -
—ra N (04 R (TP W ()7 (M) T Py (ML) TP W () Ry )

where W = plim,, 700 W* as defined in Theorem 1

Likewise, from Theorem 2, (79), and because of (57), as n,T — oo

ﬁ (ﬁ;ﬁz _ ung) _ \/%u; (ER)l/Q wW* (Lq/;> 1/2 (H%’H?) Y i

7 PT + OP(l)

v\ /2 -1
1/2 oy L T ) ") T P g
=u; (ZF) "W <TT> <THT/HT) V7 <HT/<,0T> + op(1)
—a N (04,0 (R) AW (£7) 72 (MB) PR (M) T (eR) W (2R) )

where W = plim,, 7500 W? as defined in Theorem 2
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Moreover, defining

n T

Q= lim <”"T>E[Pw’¢m¢g’nﬂ.

asn,T — oo, when h=n="T,
\/ﬁpg@‘zt + ZI_Iri‘;,%’iT —d N (0g, P + P+ Qi + Q) .
n T
Therefore, as n, T — oo,
Vi ((wnTR;at . wnT)ﬁ;f{i> - R;ut) 4 N (0,w?V + (1 — w)2ViE + 2w(1 — w)Cy) ,
where

# — R; (FU)l/Q WwW¢ (ﬁu)*1/2 (Mu)fl P;L (Mu)fl ([’u)fl/Z WH (Fu)l/Z R,
VE =l (ER) 12 \WER (ER)*l/2 (MR)*l pL (MR)*l (ﬁR)*1/2 WR (ZR) 1/2 us,
Cy = R; <I\U)1/2 WU (Eu)—l/Q (Mu)—l Qi (MR)—I (ER)—1/2 WR (ER)1/2 . 0

D Proof of Theorem 4
Let C,(L) := [A,(L)]7! and an(L) = [KH(L)]’l. Then, for any i =1,...,nand t =1,...,T,
Xit — Xit = €; (an(L)TZnt - Cn(L)¢nt)
= eg (an(L) - Cn(L)) Yt + e;Cn(L) ({p\nt - 'ant) + e; (671([/) - Cn(L)) ('J)\nt - "pnt)
=1+ II+11I, say, (80)

where e; denotes the ¢th column of I,,.
From Proposition 2, we have, for any s = 1,...,m, js = 1,...,(¢+ 1), and hy = 1,...,(¢ + 1),

asn, T — oo,

2
= Op(Chr); (81)

a 2 A ls] [s]
max max jy hot — Ujg hst) < HA —A
0=1,....ps js,hszl,...,(qul)( Joolts ol )

where a;_ ¢ and @j, p, ¢ are the (j, h)th entries of Aéi) and of Kéi), respectively.

Without loss of generality, let us assume p; = 1 for all s = 1,...,m, so that A, (L) =1, — A, L
and A, (L) =L, — A, L. Thus, C,(L) = S Ak and Cn(L) = Y o A* Then, for any i = 1,...,n,
there exists an s € {1,...,m} such that x; is an element of the sth (¢ + 1)-dimensional subvector ng)
of xnt. Let ¢; ;. k and ©; j, . denote the (i, js)th entries of A% and 112, respectively (here js indicates
the jth column of block s of A¥ and Aﬁ)

Assumption (A2(a)), which holds with probability one in view of Assumption (S(a)) implies summa-

bility of the autoregressive coefficients, forany i =1,...,nandt =1,...,T and, forany ¢ > O and n > 0,
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the existence of a constant K = K (e,n) independent of 4, js, s, and ¢ such that
q+1 0
PLUIY. D @ik = Cigor) Yisik| >0 | <e

je=1k=K+1

Hence, we can select K such that

q+1 00
Z Z (Cijok = Cijok) Yjat—k| = 0P (Car)-
jem1 k=K 41

Then, the norm of I is such that

1/2

K q+1
e; <Cn(L) - Cn(L)) ¢nt S Z Z (/C\i,js,k - Cz’,jS,k)2 wjzs,t—k + OP(CnT)
k=0 \js=1
K [ q+1 VA /0 1/4
S Z Z l/};;s,t*k Z (/C\Ljs,k - Ci,js,k)4 + OP(CnT)
=0 \Js=1 js=1
= Op(Cn1), (82)

because of (81) and the continuous mapping theorem.

Similarly, for the norm of II and because of Assumption (A2(a)), we can select K such that

g+l oo
Z Z Cija.k ({/}\js,t—k - %’S,t—k) = op(Car) (83)
jeml k=K 41

and, therefore, by Theorem 3, when h =n =T,
1/2

¢;Cn(L) (@m - ¢nt>‘ < i ik (@js,t—k - ¢js,t—k:>2 + op (Gar)
e

- 4
Gk Z (sz,t—k —j, ,t—k) + op(Car)

Js=1 Js=1

<q+1 V47 g1 L/4

(84)

I
S
o)
7N
=
Q
»
7 N
[
=
g
S
N———
N———
_|_
)
3
KN
2

Obviously 111 = op({,r). Therefore, substituting (82) and (84) into (80), we prove consistency.
Now, from Theorem 1, for any finite k¥ € N such that k < T and any t =k+1,...,7, asn,T — oo,

ﬁt Uy
\/ﬁ - HdN(Oqlw z..t—kz) ) (85)

Uk Uk
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where
Vi = {Le [ween 2w e {nee (e e we )

and

!/

Pt Dt
Py = lim ? E {Ik ® Pg’} : : {Ik o Pg’}/

n—oo 1
Prit—k Prt—k

Similarly, from Theorem 2, for any finite £ € N such that {i1,...,i} C {1,...,n}, asn,T — oo,

Ril R’i1
ﬁ - —d N (Oq£7vz}'?...i2) ) (86)

ﬁie Rie

where
vﬁ...ig _ {Ig ® [WR (LR)—l/Q (MR)_l] } ,Pﬁ i {Ig ® [(MR)—l (L:R)—l/Z WR]}
and
- g e e [ ][] eomy)
et @

For any i = 1,...,n, define the (¢ + 1) x ¢(K + 1) matrix

/ /
Ly & €i1,0 .. Ly K Ci1K
!/ /
Ly @D Cigt1,0 -+ g Cigr1 K
and the (K 4 1) x ¢(q + 1) matrix
/ /
Ly KCi10 .- Ly X Cig+1,0
/ /
Lq KC1K .- Lg R Cjg+1,K
where ¢, is a g-dimensional vector of ones. For giveni =1,...,n, let jo be the row of R, corresponding
S

to the jsth series in block s, which is the block to which series ¢ belongs. Then, from (80), (85), (86),
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and given K as defined in (83), for any i =1,...,nand t =1,...,T, as n,T — oo,

K q+1
\/E(S(\zt th h Z Z Cijs,k <¢js,t k — Q;Z)]g,t k) + OP(l)

k=0 js=1
K q+1

=Vh Z Z Cijok (wnTR;J_S u g+ (1— wnT)uff,kRijs — R;],S ut_k) + op(1)
k=0js=1

_ K q+1 R

= h Z Z {wnT Ci,js,kjos (ﬁt—k — ut,k> + (1 - wnT) ciyjs,kuéfk <Rijs — Rijs>} + Op(l)

k=0 js=1

—g N [0, Wi Gi w
Git Wi?

. WnT
where w = lim, 700 ,
1-— WnT

Fu 1/2 Ril(FU)I/Q
Wit =111 Ci O |t ® F ik 4CiO |tk ® : Lgt1,
1/2 1/2
Zq+1 Pu / R’/Lq+1 (I‘u) /
(SR (SR !
W ”K-{-l +1 ® Vﬁ gt D; © ”i]—i—l & LK+1,
ZR 1/2 uéiK(zR)1/2
Fu 1/2 u;(zR)1/2 !
Git = L;J,_l C © LK+1 & Oil...iq}? D; o I’:H-l ® LK+1,
t..t—
z +1 Im 1/2 uliK(ER)l/Z
with

/

Oil...iq+1 _ {IK+1 ® W (Eu)—l/Q (Mu)—l} Qil...iq.H {Iq+1 ®WR (ﬁR)—l/Q (MR)—I} 7

tot—K tot—K
. /
\/7 Pt ‘szl ,
/ . . /
o= e o} ||| freemy]
Pit—K ‘P;iﬁl
and ¢tx 1 and ¢441 the vectors of ones with dimensions K + 1 and g + 1, respectively. (]
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