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Abstract

We provide the asymptotic distributional theory for the so-called General or Generalized Dynamic
Factor Model (GDFM), laying the foundations for an inferential approach in the GDFM analysis
of high-dimensional time series. Our results are exploiting the duality between common shocks
and dynamic loadings under a random cross-section approach to derive the asymptotic distribution
of a class of estimators for common shocks, dynamic loadings, common components, and impulse
response functions. An empirical application aimed at the construction of a “core” inflation indicator
for the U.S. economy is presented, empirically demonstrating the superiority of the GDFM-based
indicator over the most commonly adopted approaches, outperforming, in particular, the one based
on Principal Components.

Keywords: High-dimensional time series, Generalized Dynamic Factor Models, One-sided representa-
tions of dynamic factor models, Asymptotic distribution, Confidence intervals.

JEL subject classification : C0, C01, E0.

1 Introduction

This paper provides the asymptotic distribution theory, and hence the inferential method, for the esti-
mator recently proposed in Forni et al. (2015) (hereafter, FHLZ) for the so-called General or Generalized
Dynamic Factor Model (GDFM) introduced by Forni et al. (2000). Our approach combines the flexi-
bility of the GDFM in terms of dynamics with the possibility, bestowed by the Dynamic Factor Models
(DFMs) of Stock and Watson (2002a,b) and Bai and Ng (2002), of estimating the common shocks and
their impulse response functions (IRFs).

Under the GDFM, the statistical analysis of a countable family {xit| t ∈ Z}, i ∈ N of observable
stochastic processes is based on the decomposition of xit into

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + . . .+ biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1)

where ut = (u1t u2t . . . uqt)
′ is an unobservable q-dimensional vector of mutually orthogonal common

shocks driving {χit| t ∈ Z, i ∈ N} and bif (L), i ∈ N, f = 1, . . . , q, are square-summable filters (L, as
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usual, stands for the lag operator). The unobservable χit and ξit, for which identifying assumptions are
provided in Section 2, are called xit’s common and idiosyncratic components, respectively; at minimum,
it is assumed that the idiosyncratic components ξit are “weakly” cross-correlated (in a sense to be made
precise) and orthogonal at any lead and lag to the common shocks u1t, . . . , uqt driving the common
components χit.

The literature on DFMs is based on the assumption that the space spanned by the common compo-
nents {χit|i ∈ N} is, for any given t, finite-dimensional—with dimension r, say, independent of t. Under
that assumption, the decomposition (1) can be rewritten as

xit = λi1F1t + λi2F2t + . . .+ λirFrt + ξit,

Ft = (F1t . . . Frt)
′ = N(L)ut,

(2)

since the vector Ft of r static factors Fjt is loaded contemporaneously via scalar loadings λij , call
this a static representation. The factors Ft and the loadings λij can be estimated consistently (after
imposing adequate identification constraints) using the first r standard principal components (see Stock
and Watson, 2002a,b and Bai, 2003; see also Fan et al., 2013, 2015, 2016, 2017, 2021 where, in a finance
context, several refinements of the PCA approach are proposed). Inference based on these estimators can
be carried out thanks to Bai (2003), who establishes the asymptotic normality of the PCA estimators of
the DFM (2), together with consistent estimation of the corresponding asymptotic covariance matrices.
Bai and Ng (2002), among many others, also propose criteria to determine r consistently. Moreover,
the second equation in (2) is usually specified as a Singular Vector Autogression (SVAR), so that (2)
takes the form

xit = λi1F1t + λi2F2t + . . .+ λirFrt + ξit

D(L)Ft = (I−D1L−D2L
2 − . . .−DpL

p)Ft = Kut,
(3)

where the matrices Dj are r × r while K is r × q. Under (3), Amengual and Watson (2007) and Bai
and Ng (2007) provide consistent criteria to jointly determine q and r.

As already mentioned, an appealing consequence of the DFM decomposition (2) is that it readily
permits to derive the IRFs of the common shocks from the estimation of λi = (λi1, . . . , λir)

′, D(L),
and K. Identification of the matrix K by suitable restrictions allows for an interpretation of the shocks ut

as the structural common shocks while the simplicity of the finite-dimensional nature of (3) enhances
its use for out-of-sample forecasting (Forni et al., 2018).

The same finite-dimensional nature of (3), however, rules out a number of quite plausible dynamic
structure such as simple AR(1) models for the observables xit.1 Recognizing that the space spanned
by the common components of (1), in many applications, is likely to be infinite-dimensional (r = ∞),
hence cannot be recovered from a finite number of standard principal components, Forni et al. (2000)
use q principal components in the frequency domain (the dynamic principal components introduced
by Brillinger (2001)) to estimate the common components χit, where q can be obtained, for instance,
from the identification methods proposed by Hallin and Liška (2007) or Onatski (2009). However,
being based on dynamic principal components, their estimators involve two-sided filters acting on the
observations xit, hence do not allow to estimate the common shocks at the end of the observation period,
nor their IRFs: their methods thus are unsuitable for out-of-sample prediction.

1Simple cases like xit = ai(1− αiL)−1ut + ξit, that is q = 1, with white noise ut and AR coefficients αi admitting an
absolutely continuous distribution, are ruled out.
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FHLZ remedy this problem and bring together the virtues of the (infinite-dimensional) GDFM (1)
and the simplicity of the (finite-dimensional) DFM (3). Under the mild assumption of rationality of the
spectral density of the common components χit—that is, assuming that each filter bif (L) in (1) is a ratio
of finite-degree polynomials in L2—and elaborating upon results by Anderson and Deistler (2008a,b),
FHLZ prove that for generic values of the parameters in bif (L) (i.e. apart from a lower-dimensional
subset in the parameter space) χχχnt := (χ1t, χ2t, . . . , χnt)

′ in (1) admits a unique autoregressive repre-
sentation with block structure of the form

An(L)χχχnt = Rnut, (4)

where An(L) is a n×n block-diagonal matrix polynomial in L of bounded degree (as n→∞), consisting
of (q + 1)× (q + 1)-dimensional blocks, and Rn a n× q matrix of rank q.

Since χχχnt = xnt − ξξξnt with xnt := (x1t, x2t, . . . , xnt)
′ and ξξξnt := (ξ1t, ξ2t, . . . , ξnt)

′, the filtered
process znt := An(L)xnt satisfies

znt = Rnut + φnt (5)

with φnt := An(L)ξξξnt. Expression (5) is key because it shows how to represent the GDFM (1) with
infinite-dimensional factor space and observations xnt as a DFM (3) with finite-dimensional factor
space and observations Znt. Indeed, under our assumptions, it can be shown that φnt is idiosyncratic,
so that (5) is a representation of the form (3) with Dn(L) = In, Ft = ut, λi = Ri, the ith row of
Rn, and thus r = q. As explained below, a crucial advantage of (4) is that the high-dimensional VAR
operator An(L), thanks to its block-diagonality, is piecing together a set of k (with 1 ≤ k ≤ bn/(q+1)c)
(q + 1)-dimensional VARs A(k)(L). Our procedure does not run into curse of dimensionality problems
because q is finite, and typically small.

The FHLZ estimation of the GDFM decomposition (1) mainly consists of three steps which can be
summarized as follows.3 First, by means of Hallin and Liška (2007) and dynamic PCA, estimate q and
the spectral density matrix of χχχnt. Second, by Fourier inversion, derive the corresponding autocovariance
matrices and the Yule-Walker estimators of the (q + 1) × (q + 1) blocks of An(L) in (4). This yields
an estimated znt, hence, up to estimation errors, allowing us to switch from the dynamic to the static
representation (5) of the GDFM. Third, exploiting the finite-dimensional nature of (5), apply static
PCA to the estimated znt.

Challenges arise, however, when one needs to carry out inference. Indeed, one cannot rely on the
asymptotic results of Bai (2003) because, unlike xnt in (3), znt in (5) is unobserved and one can only
consider its sample counterpart, which depends on estimators of the filter An(L). This makes the
existing limiting theory for estimators of DFM (3) invalid.

The objective of this paper is to fill that theoretical gap and provide, for the FHLZ estimation of
the GDFM (1) with infinite-dimensional factor space, the analogous type of results as Bai (2003) does
for the PCA estimator of the loadings and factors in (3).

In Sections 2 and 3, we formalize the general assumptions needed for the GDFM setup and its
static representation (5), and the reinforcements of these assumptions required for our distributional
results. The FHLZ estimation procedure is described in Section 4 and its limiting statistical properties

2Namely, bif (L) = cif (L)/dif (L) where cif (L) and dif (L) are finite-degree polynomials in L.
3Strictly speaking, a consistent reconstruction of χit, ξit or the shocks ut is not an estimation since χit, ξit, and ut are

not parameters, but we consistenly will indulge in this convenient abuse of terminology.
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are established in Section 5. Section 6 presents the Monte Carlo experiments, and Section 7 illustrates
the empirical application. Section 8 concludes. Technical proofs are relegated to the final Appendix.

2 GDFM: General Representation

We assume throughout that all stochastic variables in this paper belong to the Hilbert space L2(Ω,F , P )

where (Ω,F , P ) is some common probability space. We study double-indexed zero-mean stochastic
processes of the form x := {xit| i ∈ N, t ∈ Z}, of which we only observe a finite n × T realiza-
tion {xit| 1 ≤ i ≤ n, 1 ≤ t ≤ T}. Denoting by xn the n-dimensional subprocess {xit| i = 1, . . . , n, t ∈ Z},
the lag-k autocovariance matrix of xnt is defined as Γn,k := Cov(xnt,xn,t−k), with Γn := Γn,0 = Var(xnt)

for simplicity. On x, the basic GDFM assumptions are as follows.

Assumption (A0) (GDFM). (a) The process x is second-order stationary with respect to time;
(b) for all n ∈ N, xn admits the spectral density matrix

Σn(θ) :=
1

2π

∞∑
k=−∞

Γn,k e
−ιkθ, θ ∈ [−π, π]

where ι =
√
−1, with jth largest eigenvalue λnj(θ), j = 1, . . . , n;

(c) the number q := min{j : lim supn→∞ supθ∈[−π,π] λnj(θ) <∞}−1 of diverging eigenvalues of Σn(θ)

is finite.

Under Assumption (A0), it can be shown (see, e.g. Forni and Lippi, 2001; Hallin and Lippi, 2013)
that each element of x decomposes into the sum

xit = χit + ξit, i ∈ N, t ∈ Z, (6)

of an unobserved common component χit and an unobserved idiosyncratic component ξit where, denot-
ing by Γχn,k and Γξn,k the lag-k autocovariance matrices of the n-dimensional subprocesses χn and ξn
of χ := {χit| i ∈ N, t ∈ Z} and ξ := {ξit| i ∈ N, t ∈ Z}, the spectral density matrices Σχ

n(θ) and Σξ
n(θ)

exist, with eigenvalues λχnj(θ) and λξnj(θ) satisfying

lim
n→∞

λχnq(θ) =∞ and lim sup
n→∞

λξn1(θ) <∞ θ-a.e in [−π, π]. (7)

The common component process χ, moreover, is driven by a q-dimensional second-order white noise of
common shocks, that is,

χit =

q∑
j=1

∞∑
k=0

bij,kuj,t−k, i ∈ N, t ∈ Z, (8)

for some square-summable loadings bij,k, i ∈ N, 1 ≤ j ≤ q and some q-dimensional second-order
white noise {ut = (u1t, . . . , uqt)|t ∈ Z}, which implies that λχn,q+1(θ) = 0 θ-a.e. in [−π, π]. In vector
notation, (6) takes the form

xnt = χnt + ξnt, n ∈ N, t ∈ Z, (9)

with obvious definitions of the common and idiosyncratic subprocesses χnt and ξnt.
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If distributional results are to be obtained, however, these properties need to be reinforced; on top
of Assumption (A0) and its consequences, we assume the following.

Assumption (A1)(GDFM+). (a) The process x is stricly stationary with respect to time;
(b) The q diverging eigenvalues λχnj(θ) diverge at rate n and are well separated, that is,

for all j = 1, . . . , q, there exist two strictly positive continuous functions θ 7→ αχj (θ) and θ 7→ βχj (θ)

from [−π, π] to R such that, for all θ ∈ [−π, π],

αχj (θ) ≤ lim inf
n→∞

λχnj(θ)

n
≤ lim sup

n→∞

λχnj(θ)

n
≤ βχj (θ)

with βχj (θ) < αχj−1(θ) for all j = 2, . . . , q;
(c) the common shocks {ut := (u1t · · ·uqt)′| t ∈ Z} are q-dimensional i.i.d. white noise, with positive

definite covariance E[utu
′
t] = Γu; moreover, for all j = 1, . . . , q and all t ∈ Z, E [|ujt|p] ≤ Mu for

some p > 5 and some finite constant Mu > 0;
(d) the idiosyncratic components are such that, for all i ∈ N and t ∈ Z,

ξit =

∞∑
j=1

∞∑
k=0

βij,kηj,t−k, (10)

where {ηt := (η1t η2t · · · )′| t ∈ Z} is an infinite-dimensional i.i.d. zero-mean stochastic process;
moreover, for all i ∈ N, E[ηitηjt] = 0 for i 6= j, E[η2

it] = 1, and E[|ηit|p] ≤Mη for some p > 5 and
some finite constant Mη > 0;

(e) {ut} and {ηt} are mutually independent at all leads and lags;
(f) for all i ∈ N, j = 1, . . . , q, and z ∈ C, bij(z) :=

∑∞
k=0 bij,kz

k is of the form cij(z)/dij(z) where
(i) cij(z) =

∑s1
k=0 cij,kz

k for some positive integer s1, with |cij,k| ≤ Bχ for some real Bχ > 0

independent of i and j;
(ii) dij(z) =

∑s2
k=0 dij,kz

k for some positive integer s2, and is such that all the roots of dij(z) = 0

satisfy |z| ≥ φ > 1 for some φ > 0 independent of i and j;
(g) for all i, j ∈ N and k ∈ Z+, |βij,k| ≤ Bijρk, with ρ ∈ [0, 1),

∑∞
i=1Bij ≤ B, and

∑∞
j=1Bij ≤ B for

some finite real B > 0 independent of i and j.

Parts (a)–(e) are reinforcing the traditional GDFM Assumption (A0) by requiring, among others,
stationarity rather than second-order stationarity, and mutually independent strong white noises ut

and ηt rather than mutually orthogonal second-order white noises. Finite fifth moments and i.i.d.-
ness of the common and idiosyncratic innovations are needed in order to control the degree of physical
dependence (Wu, 2005) of the common and idiosyncratic components, hence of each xit. This is what
allows us to consistently estimate the spectral density matrix (Wu and Zaffaroni, 2018; Zhang and
Wu, 2021; see also Proposition 5 in Forni et al., 2017). Part (b) is a classical reinforcement (Forni
et al., 2000) of the pervasiveness of common shocks assuming linearly diverging and well-separated
common eigenvalues, which avoids the uninteresting difficulties related with asymptotically multiple
eigenvalues. Linear divergence rates, moreover, are the only ones compatible with the fact that cross-
sectional ordering is completely arbitrary, hence should remain irrelevant—see the stochastic approach
in Section 3 for further justification.

The idiosyncratic MA(∞) representation (10) in part (d) along with part (g) also entail square-
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summability of the idiosyncratic filters, both along the time and the cross-sectional dimensions. This,
in turn, implies limited (lagged) cross-sectional dependence among idiosyncratic components. Indeed,
letting σξij(θ) denote the (i, j)th entry of the idiosyncratic spectral density matrix Σξ

n(θ), it filliws from
parts (d) and (g) of Assumption (A1) that

sup
θ∈[−π,π]

sup
j∈N

∞∑
i=1

|σξij(θ)| ≤ sup
θ∈[−π,π]

sup
j∈N

∞∑
i=1

∞∑
s=0

|βis(e−ιθ)βjs(eιθ)|

≤ sup
θ∈[−π,π]

sup
j∈N

1

(1− ρ)2

∞∑
i=1

∞∑
s=0

BisBjs ≤
B2

(1− ρ)2
= Bξ, say. (11)

This immediately implies (see Forni et al., 2017, Proposition 1)

sup
θ∈[−π,π]

sup
n∈N

λξn1(θ) ≤ Bξ, (12)

which is in line with the second part of (7), which (d) and (g), thus, are reinforcing. Part (f) entails
rational filters and, therefore, rational spectral density matrices Σχ

n(θ), as well as square-summability
of the common filters along the time dimension. Furthermore, a simple application of Weyl’s inequality,
allows us to show that part (b) of Assumption (A1), together with (12), imply

αχj (θ) ≤ lim inf
n→∞

λnj(θ)

n
≤ lim sup

n→∞

λnj(θ)

n
≤ βχj (θ), (13)

and
sup
n∈N

sup
θ∈[−π,π]

λn,q+1(θ) ≤ Bx

for some positive real Bx (see Forni et al., 2017, Proposition 1).

3 GDFM: VAR representation

3.1 VAR representation and a duality issue

Let Assumptions (A0) and (A1) hold. For any s ∈ N and t ∈ Z, consider the (q + 1)-dimensional sub-
vector χ(s)

t := (χ(s−1)(q+1)+1,t · · ·χs(q+1),t)
′ of χt. Forni et al. (2015) prove that the following property is

satisfied for generic values of the parameters cij,k and dij,k in Assumption 2(f). Turning this property into
an assumption, thus, only places an extremely mild restriction on the actual data-generating process.

Assumption (A2)(VAR representation). For all s ∈ N and all t ∈ Z, there exist a unique (q + 1)-
dimensional VAR filter A(s)(L) = Iq+1−

∑ps
k=1 A

(s)
k Lk and a (q+ 1)× q-dimensional matrix R(s) such

that
A(s)(L)χ

(s)
t = R(s)ut, t ∈ Z (14)

where
(a) ps ≤ S := qs1 + q2s2 < ∞ and all the roots of the determinant equation det

(
A(s)(z)

)
= 0, z ∈ C,

are such that |z| > 1;
(b) R(s) has maximal rank q.
Moreover, denoting by Cχ

s the S(q + 1)× S(q + 1) covariance matrix of (χ
(s)′
t · · ·χ(s)′

t−S)′, for all s ∈ N,
(c) |det(Cχ

s )| ≤ d for some finite positive real d.
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Denote by A(L) the infinite-dimensional block-diagonal matrix with diagonal blocks A(s)(L), s ∈ N
and define R := (R(1)′ R(2)′ · · · )′ with (q+1) rows and infinitely many columns. Considering, without
loss of generality, n such that n = m(q + 1) for some integer m, let

An(L) :=


A(1)(L) 0 . . . 0

0 A(2)(L) . . . 0
...

...
. . .

...
0 0 . . . A(m)(L)

 , Rn :=


R(1)

R(2)

...
R(m)

 , (15)

which are the upper n × n and upper n × q sub-matrices of A(L) and R′, respectively. Then, from
Assumption (A2), the common component χnt admits the finite AR representation

An(L)χnt = Rnut, n ∈ N, t ∈ Z, (16)

so that, with Bn(L) = (b1(L) · · ·bn(L))′ := [An(L)]−1,

χnt = Bn(L)ut = [An(L)]−1Rnut, n ∈ N, t ∈ Z. (17)

Now, letting Rn := (R1 · · ·Ri · · ·Rn)′, in view of (9), we obtain

znt := An(L)xnt = Rnut + An(L)ξnt =: ψnt + φnt, n ∈ N, t ∈ Z. (18)

Let us show that (18) is a static factor model for znt in the sense of Bai (2003). For any given n
and T ∈ N, consider

XnT :=



x11 · · · xi1 · · · xn1

... · · ·
... · · ·

...
x1t · · · xit · · · xnt
... · · ·

... · · ·
...

x1T · · · xiT · · · xnT


=



x′n1
...

x′nt
...

x′nT


=
(
x1
T · · ·xiT · · ·xnT

)
, (19)

with tth row xnt = (x1t · · ·xnt)′ (an n-dimensional vector) and ith column xiT = (xi1 · · ·xiT )′ (a T -
dimensional column vector), respectively, and the T×q matrix of common shocks UT := (u1 · · ·ut · · ·uT )′,
with tth row u′t (a q-dimensional vector). Recall that the n × q matrix Rn := (R1 · · ·Ri · · ·Rn)′ has
q-dimensional rows R′i. Similarly define the idiosyncratic T × n matrix

ΦnT = (φn1 · · ·φnt · · ·φnT )′ =
(
ϕ1
T · · ·ϕiT · · ·ϕnT

)
,

with tth row φ′nt = (φ1t · · ·φnt) (an n-dimensional vector) and ith column ϕiT = (φi1 · · ·φiT )′ (a T -
dimensionalvector). With this notation, the static representation (18) of the GDFM, henceforth the
static model, takes the form of a matrix representation

ZnT := (An(L)X′nT )′ = UTR′n + ΦnT =: ΨnT + ΦnT , (20)

where ZnT is T × n, with rows z′nt and columns ziT , and LX
′
nT = L(xn1 · · ·xnT ) = (xn0 · · ·xn,T−1).
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The same matrix representation (20) can be written under (transposed) row-vector form (cross-
sectional projection), which, denoting by eTt the tth column of the T × T identity matrix IT , yields

(I) znt =
(
An(L)X′nT

)
eTt = Rnut + φnt, n ∈ N, t ∈ Z (21)

(that is, the static factor model (18)) or, denoting by eni the ith column of the n×n identity matrix In,
under the column-vector form (temporal projection)

(II) ziT = (An(L)X′nT )′eni = UTRi +ϕiT , i ∈ N, T ∈ N. (22)

These two forms are kind of dual static factor model representations, with the time- and cross-sectional-
dimensions changing roles—that is, X′nT replacing XnT . In (21), time-indexed q-dimensional random
vectors ut are deterministically loaded at time t while, in (22), cross-sectionally indexed q-dimensional
deterministic vectors Ri are randomly loaded by cross-sectional item i; the role of the matrix of common
components is played by ΨnT in (21), by Ψ′nT in (22); the role of the matrix of idiosyncratic components
is played by ΦnT in (21), by Φ′nT in (22).

As we shall see, both representations have their advantages, and both will be used in the sequel.
An essential difference remains, however: ut in (21) is random, while Ri in (22) so far is deterministic.
As a consequence, while, under second-order stationarity (Assumption (A0a)), the law of large numbers
implies that, for any fixed n ∈ N, 1

T Φ′nTΦnT converges in probability to some n×nmatrix Γφn as T →∞,
no such property holds for 1

nΦnTΦ′nT as n→∞. The duality between (21) and (22), thus, is imperfect
or incomplete.

3.2 A stochastic cross-section approach

This imperfect duality issue is easily palliated if a stochastically generated cross-section scheme is
adopted. Under that approach, it is assumed that the stochastic process x is generated via a two-step
random mechanism: (A) the stochastic selection, via some unspecified distribution P, of the distri-
butional features4 of x as a time-indexed stochastic process, followed by (B) a realization over time
of the selected process x, of which a finite n × T realization is observed, and along which time-series
asymptotics will be considered as T →∞.

The distribution P in step (A) of that mechanism plays the role of a nuisance. Statistical practice
in such cases consists in conducting inference on the realization observed in step (B) conditional on the
(unobserved) result of step (A): see, e.g., Lehmann and Romano (2006, Chapter 10), so that P needs
no further description. Under such conditional approach, the distributional features of the stochastic
process x of which the observed panel is a finite realization are treated as unknown but fixed, which
is precisely what the deterministic approach is doing. An important feature of step (A), however, is
that its result should be a cross-sectionally exchangeable process x, i.e., the distributions of any of the
resulting n × T subprocesses should remain invariant under cross-sectional permutations. The cross-
sectional ordering, indeed, is completely arbitrary and should not play any role in the analysis.

This random cross-section approach is the one we are adopting in the sequel; the assumptions we are
making (along, for some results, with Assumptions (S(e)), (S(f1) ), and (S(f2)), which are postponed
to Sections 3.3 and 5) under that approach are summarized as follows.

4That includes a spectral density Σn satisfying Assumption (A0), hence spectral densities Σχ
n and Σξ

n, coefficients bij,k
and βij,k, the VAR filters An(L), a representation of the form (18), etc. The densities of ut and ηt, however, remain
unspecified within the class of densities satisfying the requirements in Assumption (A1).
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Assumption (S)(Random cross-section). (a) Conditional on the result of the random mechanism
generating the distributional features of x, Assumptions (A0), (A1), and (A2) are satisfied;

(b) for all n and T , the distribution of XnT , hence also the distributions of ZnT , (ΨnT ,ΦnT ), etc. are
cross-sectionally exchangeable, i.e., invariant under column permutations;

(c) {Ri := (Ri1 · · ·Riq)′| i ∈ N} is a q-dimensional i.i.d. stochastic process independent of {ut}, such
that, for all i ∈ N and all j = 1, . . . , q, , some p > 5 and some finite constant MR, E[|Rij |p] ≤MR;

(d1) for any fixed n ∈ N, there exists a positive definite n× n matrix Γφn, such that, as T →∞,

1

n

∥∥∥∥Φ′nTΦnT

T
− Γφn

∥∥∥∥ = OP

(
1√
T

)
; (23)

(d2) for any fixed T ∈ N, there exists a positive definite T×T matrix Gφ
T with constant diagonal entries

and constant off-diagonal entries such that, as n→∞,

1

T

∥∥∥∥ΦnTΦ′nT
n

−Gφ
T

∥∥∥∥ = OP

(
1√
n

)
. (24)

Part (d) of the assumption is analogue to the requirements in (Bai, 2003, Assumption C). In par-
ticular, the existence (not the positiveness) of a limit matrix Γφn in part (d1) is, under the randomly
generated cross-section approach, quite natural and mild in view of stationarity and the existence of
moments. As for part (d2), the special form of Gφ

T follows from the cross-sectional exchangeability for
all n of ΦnT . Note also that the linear rate of divergence of exploding eigenvalues in Assumption 2(b),
under this approach, is the only rate compatible with cross-sectional exchangeability.

Under Assumption (S), the duality between representations (21) and (22) is reinforced: both now
have the form of static factor model representations, with random vectors ut loaded at time t by cross-
sectional item i via random loadings Rn in (21) and random vectors Ri loaded by cross-sectional item i

at time t via random loadings UT in (22). Both ut and Ri are i.i.d. white noises, the only difference
being that ut is simply i.i.d. while Ri also is exchangeable.

Now, the differences between the random cross-section approach (Assumption (S)) and the deter-
ministic cross-sectional approach is tenuous. If (on top of Assumptions (A0)-(A2)) we impose
(a) the deterministic sequence 1

n

∑n
i=1 RiR

′
i tends to a q × q positive definite matrix ΣR as n→∞

and
(b) (23) and (24), but for the deterministic sequence ΦnT , with O

(
1√
T

)
and O

(
1√
n

)
convergence

instead of OP

(
1√
T

)
and OP

(
1√
n

)
,

then, the random cross-section approach based on Assumption (S) yields, P-a.s. conditionally on step (A)
the same results as the deterministic approach based on Assumptions (A0)-(A3). The main benefit of
Assumption (S), thus, is to provide a justification of Assumption (A3) (including the special form ofGφ

T )
and the linear divergence of exploding eigenvalues which otherwise would be brutally imposed.

3.3 Common components

From part (c) of Assumption(A1) and the Weak Law of Large Numbers, it immediately follows that

1

T

T∑
t=1

utu
′
t =

U ′TUT

T
−→P Γu, as T →∞, (25)
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where Γu is a finite q × q positive definite matrix. This is the same as Assumption A in Bai (2003).
Similarly, from part (b) of Assumption (A2), part (c) of Assumption (S), and the Weak Law of Large
Numbers, there exists a finite q × q positive definite matrix ΣR such that

1

n

n∑
i=1

RiR
′
i =

R′nRn

n
−→P ΣR, as n→∞, (26)

which is the classical condition of factor pervasiveness made in static factor models; in particular, this is
the same as Assumption B in Bai (2003), but in the case of random loadings. Moreover, the convergence
rates in (25) and (26) are

√
T and

√
n, respectively (see Lemma 1 in the Appendix).

Now, from Assumption (S(d1)) and (25),

Z ′nTZnT
T

=
RnU ′TUTR′n

T
+

Φ′nTΦnT

T
+ oP(1) −→P RnΓ

uR′n + Γφn, as T →∞. (27)

Letting µψnj denote the j largest eigenvalue of RnΓ
uR′n, because of (26) and since Γu is positive definite,

for all j = 1, . . . , q, there exist two positive reals αψj and βψj such that

αψj ≤ p-lim inf
n→∞

µψnj
n
≤ p-lim sup

n→∞

µψnj
n
≤ βψj . (28)

This is similar to Assumption 6 in Forni et al. (2017). Likewise, from Assumption (S(d2)) and (26),

ZnTZ
′
nT

n
=

UTR′nRnU ′T
n

+
ΦnTΦ′nT

n
+ oP(1) −→P UTΣRU ′T +Gφ

T , as n→∞. (29)

Letting νψTj denote the j largest eigenvalue of UTΣRU ′T , because of (25) and since ΣR is positive
definite, for all j = 1, . . . , q, there exist two positive reals γψj and δψj such that

γψj ≤ p-lim inf
T→∞

νψTj
T
≤ p-lim sup

T→∞

νψTj
T
≤ δψj . (30)

In fact, by the Strong Law of Large Numbers, (25) and (26) hold also almost surely and weak
convergence in Lemma 1 in the Appendix could be replaced by almost sure statements with convergence
rates T 1/2−ε and n1/2−ε for some ε > 0.5 As a consequence, the eigenvalue properties (28) and (30)
could be shown to hold with probability one, as in the classical factor models literature.

Consistent estimation of eigenvectors, however, requires the usual assumption of asymptotic sepa-
ration of eigenvalues—a slight reinforcement of (28) and (30).

Assumption(S(e))(Random cross-section, continued). With P-probability one, conditional on the result
of the random mechanism generating the distributional features of x,
(e) for j = 1, . . . , (q − 1), βψj+1 < αψj and δψj+1 < γψj .
5More precisely, it is possible to show that

∥∥∥U′
TUT

T
− Γu

∥∥∥ = Oa.s.

(
log log T√

T

)
and

∥∥∥R′
nRn

n
−ΣR

∥∥∥ = Oa.s.

(
log logn√

n

)
.
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3.4 Idiosyncratic components

Turning to idiosyncratic components, let Σφ
n(θ) := An(e−ιθ)Σξ

n(θ)A′n(eιθ), and denote by Λφ
n(θ)

the n × n diagonal matrix of the eigenvalues λφnj(θ) of Σφ
n(θ). Let Pφ(θ), with (i, j)th entry pφij(θ),

be the corresponding n × n matrix of orthonormal eigenvectors: then, Σφ
n(θ) = Pφ

n(θ)Λφ
n(θ)Pφ†

n (θ)

where Pφ†
n stands for the transposed complex-conjugate of Pφ

n. We have

sup
θ∈[−π,π]

sup
n∈N

λφn1(θ) ≤ sup
θ∈[−π,π]

sup
n∈N

λξn1(θ)λAn1(θ) ≤ BξDφ =: Bφ, say, (31)

where λAn1(θ) is the largest eigenvalue of An(e−ιθ)A′n(eιθ), which is finite because of Assumptions (A2a)
and (A2c). Moreover, because of (31), the diagonal entries of Σφ

n(θ) are such that

sup
θ∈[−π,π]

sup
i∈N

σφii(θ) = sup
θ∈[−π,π]

sup
i∈N

n∑
j=1

|pφij(θ)|
2λφnj(θ) ≤ B

φ (32)

since eigenvectors are normalized. Notice that σφii(θ) is real and positive. Similarly, the off-diagonal
entries of Σφ

n(θ) satisfy

sup
θ∈[−π,π]

sup
i,j∈N

|σφij(θ)| ≤ sup
θ∈[−π,π]

sup
i,j∈N

n∑
k=1

|pφik(θ)p̄
φ
jk(θ)|λ

φ
nk(θ) ≤ sup

θ∈[−π,π]
sup
i,j∈N

n∑
k=1

|pφik(θ)|
2Bφ ≤ Bφ (33)

because of (31) and the Cauchy-Schwarz inequality.
Now, from Assumption (S(d)), we have that Γφn = limT→∞

1
T

∑T
t=1 E[φntφ

′
nt] = E[φntφ

′
nt] because of

stationarity, while Gφ
T = limn→∞

1
n

∑n
t=1 E[ϕiTϕ

i′
T ] = E[ϕiTϕ

i′
T ] because of exchangeability. Therefore,

for any bn = (b1 · · · bn)′ such that b′nbn = 1,

sup
n∈N

b′nΓ
φ
nbn = sup

n∈N
b′nE[φntφ

′
nt]bn = sup

n∈N

n∑
i,j=1

bibj

∫ π

−π
σφij(θ)dθ

≤ sup
n∈N

n∑
i,j=1

|bibj |
∫ π

−π
|σij(θ)|dθ ≤ sup

n∈N

n∑
i=1

|bi|22πBφ = 2πBφ, (34)

and for any cT = (c1 · · · cT )′ such that c′TcT = 1,

sup
T∈N

c′TG
φ
TcT = sup

T∈N
c′T

{
lim
n→∞

1

n

n∑
i=1

E[ϕiTϕ
i′
T ]

}
cT = sup

T∈N

T∑
t,s=1

ctcs lim
n→∞

1

n

n∑
i=1

{∫ π

−π
σφii(θ)e

ι(t−s)θdθ

}

≤ sup
T∈N

T∑
t,s=1

|ctcs| lim
n→∞

1

n

n∑
i=1

{∫ π

−π
|σii(θ)| |eι(t−s)θ|dθ

}

≤ sup
T∈N

T∑
t,s=1

|ctcs| sup
i∈N

{∫ π

−π
|σii(θ)| |eι(t−s)θ|dθ

}
≤ sup

T∈N

T∑
t=1

|ct|22πBφ = 2πBφ. (35)
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This implies that the largest eigenvalues of Γφn and Gφ
T satisfy

sup
n∈N
‖Γφn‖ = sup

n∈N
max
bn

b′nbn=1

b′nΓ
φ
nbn ≤ 2πBφ and (36)

sup
T∈N
‖Gφ

T ‖ = sup
T∈N

max
cT

c′T cT=1

c′TG
φ
TcT ≤ 2πBφ, (37)

respectively. Following a similar reasoning, it is straightforward to show that also Assumptions C1
and C3 of Bai (2003) hold.

d column eigenvectors, associated with the q largest

4 Estimation

In order to estimate the common component we need to estimate the common filters, i.e., the impulse
response functions, Bn(L) = [An(L)]−1Rn, and the common factors ut. That estimation proceeds in
two steps: first we estimate An(L) and then, by considering the static representation (18) of the GDFM,
we estimate ut and Rn by a principal component analysis of the filtered data znt = An(L)xnt. This
section describes the estimators while Section 5 is devoted to their asymptotic properties.

First, notice that we can consistently determine the number q of factors by applying the Hallin and
Liška (2007) information criteria to the observed data matrix XnT . The resulting estimator q̂ converges
in probability to q as n, T → ∞. Since q is integer, this means that, for any ε > 0, there exist n∗(ε)
and T ∗(ε) such that, P(q̂ = q) > 1− ε for all n > n∗(ε) and T > T ∗(ε). Hence, in this section and the
next one, we can safely assume that q is known.

4.1 Estimation of A(L)

Without loss of generality we keep assuming n = m(q + 1) for some finite integer m (we discuss below
what to do in practice if this is not the case). To start with, we compute the lag-window estimator

Σ̂n(θh) :=
1

2π

T−1∑
k=−T+1

K

(
k

BT

)
e−ιkθhΓ̂n,k, θh =

πh

BT
, |h| ≤ BT , (38)

of the spectral density matrix of the observables; here Γ̂n,k := T−1
∑T

t=|k|+1 xntx
′
n,t−|k| is the usual lag-k

sample autocovariance matrix and K(·) is a suitable kernel with bandwidth BT (see Assumption (K) in
Section 5.1).

Then, we estimate the spectral density matrix of the common component by dynamic principal
component analysis. Specifically, we collect the normalized column eigenvectors associated with the q
largest eigenvalues of Σ̂n(θh) into the n × q matrix P̂n(θh), and the corresponding eigenvalues into
the q×q diagonal matrix Λ̂n(θh). Our estimator of the spectral density matrix of the common component
is defined as

Σ̂χ
n(θh) := P̂n(θh)Λ̂n(θh)P̂†n(θh),

where P̂†n(θh) is the transposed complex-conjugate of P̂n(θh).
By computing the inverse Fourier transform of Σ̂χ

n(θh), we can estimate the autocovariance matrices

12



of the common component:

Γ̂χn,k :=
π

BT

BT∑
h=−BT

eιkθhΣ̂χ
n(θh), |k| ≤ BT .

Consider the m diagonal (q + 1) × (q + 1) blocks Γ̂
χ(s)
k of the Γ̂χn,k’s. For each block, estimate,

via the Yule-Walker method, the coefficients of a (q + 1)-dimensional VAR model (order determined
via AIC or BIC). This yields, for the s-th diagonal block, an estimator Â(s)(L) of the autoregressive
filter A(s)(L) appearing in Assumption (A2).6 By combining the m estimators for the m diagonal
blocks A(1)(L), . . . ,A(m)(L), we obtain an estimator Ân(L) of the VAR filter An(L) as defined in (15).

Three important remarks about estimation of An(L) are in order here.

Remark 1. The cross-sectional ordering of the panel has an impact on the selection of the diagonal
blocks when estimating An(L). Each cross-sectional permutation of the panel, thus, would lead to dis-
tinct estimators—all sharing the same asymptotic properties. In line with the exchangeability property
Assumption (S(b)), a Rao-Blackwell argument (see Forni et al., 2017 for details) suggests aggregating
these estimators into a unique one by simple averaging (after obvious reordering of the cross-section)
of the resulting estimated shocks. Although averaging over all n! permutations is clearly unfeasible,
as explained by Forni et al. (2017) and verified empirically also in Forni et al. (2018), a few of them
are enough, in practice, to deliver stable averages, well-approximating the infeasible average over all n!

permutations.

Remark 2. Although we assumed for simplicity that n = m(q + 1) for some integer m, this might not
be the case in practice. When n is not an integer multiple of (q + 1), we can consider bn/(q + 1)c − 1

blocks of size (q + 1) and a last one of size (q + 1) + n − bn/(q + 1)c(q + 1) larger than (q + 1) but
smaller than 2(q+1). Since the arguments from Forni et al. (2017) used in the next section apply to any
partition into blocks of size (q + 1) or larger, nothing changes for the asymptotic theory that follows.

Remark 3. It is known that, as ps increases, the estimation of a singular VAR via Yule-Walker methods
may become unstable, since it requires inversion of a ps(q+ 1)×ps(q+ 1) Toeplitz matrix. To tame this
potential issue, Hörmann and Nisol (2020) have proposed a regularized approach, aimed at stabilizing
the estimates Â(s)(L). Empirically, this seems to be an important step—to be taken only when ps is
much larger than 1, though.

4.2 Estimation of UT and Rn

Letting Ẑ′nT := Â′n(L)X′nT , we propose to estimate the static model (18) by (static) principal component
of ẐnT twice. The reason for this is that we aim at getting estimators of both Rn and UT as linear
projections, instead of getting one as a projection and the other as the normalized eigenvectors of a
sample covariance matrix (as in Forni et al. (2015, 2017)). This is made possible by exploiting the duality
between the two representations (21) and (22) of the static model. This double estimation procedure is
the key to the derivation, in Section 5 below, of the asymptotic distributions of the estimators, while the
asymptotics of normalized eigenvectors of sample covariance matrices are considerably more intricate.

6For example, in the VAR(1) case, i.e., ps = 1, we have Â(s)(L) = Iq+1 − Â(s)L with Â(s) := Γ̂
χ(s)
1 (Γ̂

χ(s)
0 )−1.
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Let us start with the estimation of UT . Consider the n× n sample covariance matrix

Γ̂zn :=
1

T

T∑
t=1

ẑntẑ
′
nt =

Ẑ′nT ẐnT
T

.

of the ẑnt’s. Collect the normalized column eigenvectors associated with the q largest eigenvalues of Γ̂zn

into the n× q matrix P̂z
n and the corresponding eigenvalues into the q × q diagonal matrix Λ̂z

n. Then,
for the estimation of UT , construct a preliminary estimator of Rn as

Řn =
(
Ř1 · · · Řn

)′
:= P̂z

n

(
Λ̂z
n

)1/2
. (39)

Next consider the submatrix of Řn consisting of a selection of n̄ rows with n̄ ≤ n. Without loss of
generality, we can assume that the first n̄ rows are selected, and define

Řn̄ =
(
Ř1 · · · Řn̄

)′
:= P̂z

n̄

(
Λ̂z
n

)1/2
, (40)

where P̂z
n̄ is the n̄ × q submatrix of P̂z

n’s first n̄ rows. Note that each entry of Řn̄ continues to be
function of n and T only; in particular the matrix of eigenvalues Λ̂z

n does not depend on n̄.
Then, let Ẑn̄T = (ẑ1

T · · · ẑn̄T ) be the T × n̄ matrix of ẐnT ’s first n̄ columns. We estimate UT as the
cross-sectional linear projection ÛT of the ẑiT s onto Řn̄: namely,

ÛT = (û1 · · · ût · · · ûT )′ := Ẑn̄T Řn̄

(
Ř′n̄Řn̄

)−1

= Ẑn̄T P̂z
n̄

(
Λ̂z
n

)1/2
((

Λ̂z
n

)1/2
P̂z′
n̄ P̂z

n̄

(
Λ̂z
n

)1/2
)−1

= Ẑn̄T P̂z
n̄

(
Λ̂z
n

)−1/2
. (41)

This (not ǓT defined in (42) below) is the estimator we are proposing for UT .
Turning to the estimation of Rn, consider the T × T sample covariance matrix

Ĝz
T :=

1

n

n∑
i=1

ẑiT ẑ
i′
T =

ẐnT Ẑ′nT
n

.

of the ẑiT ’s. Collect the normalized column eigenvectors associated with the q largest eigenvalues of Ĝz
T

into the n× q matrix Π̂z
T , and the corresponding eigenvalues into the q× q diagonal matrix L̂zT . Then,

for the estimation of Rn, construct a preliminary estimator ǓT of UT as

ǓT = (ǔ1 · · · ǔT )′ := Π̂z
T

(
L̂zT

)1/2
. (42)

Next consider the submatrix of ǓT consisting of a selection of T̄ rows with T̄ ≤ T . Without loss of
generality, we can assume that the first T̄ rows are selected, and define

Ǔ T̄ = (ǔ1 · · · ǔT̄ )′ := Π̂z
T̄

(
L̂zT

)1/2
,
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where Π̂z
T̄

is the T̄ × q submatrix of Π̂z
T ’s first T̄ rows. Note that each entry of Ǔ T̄ continues to be

function of n and T only; in particular the matrix of eigenvalues L̂zT does not depend on T̄ .
Then, let ẐnT̄ = (ẑn1 · · · ẑnT̄ )′ be the T̄ × n matrix of ẐnT ’s first T̄ rows. We estimate Rn as the

time-series linear projection R̂n of the ẑnt’s onto ǓT : namely,

R̂n =
(
R̂1 · · · R̂i · · · R̂n

)′
:= Ẑ′nT̄ Ǔ T̄

(
Ǔ ′T̄ Ǔ T̄

)−1

= Ẑ′nT̄ Π̂z
T̄

(
L̂zT

)1/2
((
L̂zT

)1/2
Π̂z′
T̄ Π̂z

T̄

(
L̂zT

)1/2
)−1

= Ẑ′T̄ Π̂z
T̄

(
L̂zT

)−1/2
. (43)

This (not Řn defined in (39) above) is the estimator we are proposing for Rn.
Summing up, we have two sets of estimators for UT , namely ÛT and ǓT , and two sets of estimators

for Rn, namely R̂n and Řn. For the purpose of inference, we will consider ÛT and R̂n because they are
constructed as least squares projections, thus involve averaging, which allows for deriving asymptotic
distributions (see Section 5). Instead, Řn and ǓT are (rescaled) eigenvector matrices the asymptotic
distributions of which are less obvious due to the latent nature of znT .

Combining these estimators yields two different estimators of the elements ψit of the static common
component ΨnT , such as R̂′iǔt and Ř′iût. However, as discussed in Section 5.4 below, more efficient
estimators are convex linear combinations of the form

ψ̂it := ωnT Ř′iût + (1− ωnT )R̂′iǔt, i = 1, . . . , n, t = 1, . . . , T, (44)

where the weights ωnT are such that ωnT = 1/2 if n = T , ωnT ↑ 1 if n/T ↓ 0, and ωnT ↓ 0 if T/n ↓ 0.

5 Asymptotic properties

5.1 Asymptotics for An(L)

The first step in our estimation procedure is the computation of a lag-window estimator (38) of the
spectral density matrix Σn(θ). This requires a kernel K(·) and a bandwidth BT on which we make the
following standard assumptions.

Assumption (K)(Lag-window estimation). (a) the kernel K is even, bounded, with support [−1, 1], and
(i) |K(u)− 1| = O(|u|κ), as u→ 0, for some positive real κ;
(ii)

∫ 1
−1 K2(u)du <∞;

(iii)
∑

j∈Z sup|s−j|≤1 |K(jw)−K(sw)| = O(1), as w → 0;
(b) the bandwidth BT is such that c1T

δ ≤ BT ≤ c2T
δ for some 0 < δ < 1 and positive reals c1 and c2.

Let σχij(θ) and σ̂ij(θ), i, j = 1, . . . , n, denote the (i, j)th entries of Σχ(θ) and Σ̂(θ), respectively.
Building on recent results on the estimation of large spectral density matrices (Wu and Zaffaroni, 2018;
Zhang and Wu, 2021), Forni et al. (2017, Propositions 6 and 7) prove the following result (see also
Barigozzi et al., 2021, Lemma 4 and Proposition 1).

Proposition 1. Let ηT ;κ,p := max

(√
BT log T

T , T
2/pBT (log T )2+2/p

T , 1
BκT

)
, where p is defined in parts (c)

and (d) of Assumption (A1), BT and κ in Assumption (K). Then, under Assumptions (S) and (K), for

15



any ε > 0, there exist η(ε), T ∗(ε), and n∗(ε), all independent of i and j, such that

P

 max
|h|≤BT

|σ̂ij(θh)− σij(θh)|

max
(
ηT ;κ,p,

1√
n

) ≥ η(ε)

 ≤ ε (45)

for all T > T ∗(ε) and all n > n∗(ε).

The rate ηT ;κ,p in (45) depends on (i) the kernel smoothness κ, (ii) the bandwidth BT which,
by Assumption (K), is such that BT � T δ, and (iii) the minimum number p of moments we allow
to exist. Typical values for κ are 1 for the Bartlett kernel, and 2 for the Parzen, Daniell, General
Tukey, Tukey-Hanning, Tukey-Hamming, and Bartlett-Priestley kernels (see Priestley, 1982, p. 463).
To determine the optimal rate, notice that ηT ;κ,p is the maximum of three terms. The first one is larger
than the third if δ ≥ 1

2κ+1 : hence, given the choice of a kernel among Bartlett, Parzen, Daniell, General
Tukey, Tukey-Hanning, Tukey-Hamming, and Bartlett-Priestley, we need to set either δ ≥ 1

3 or δ ≥ 1
5 .

Moreover, the first term in ηT ;κ,p is always larger than the second one if δ ≤ 1 − 4
p . For p > 5, as per

Assumption (A1b) and (A1c), the choice of κ = 2 and δ = 1
5 yields a rate ηT ;κ,p = 1

T 2/5 , while the choice

of κ = 1 and δ = 1
3 yields ηT ;κ,p = 1

T 1/3 . Hereafter, we define ζn,T := max
(
ηT ;κ,p,

1√
n

)
, dropping for

simplicity the dependence on κ and p.
Let A[s] := (A

(s)
1 · · ·A

(s)
ps ) and Â[s] := (Â

(s)
1 · · · Â

(s)
ps ) for s = 1, . . . ,m. Then, Forni et al. (2017,

Proposition 9) prove the following.

Proposition 2. Under Assumptions (S) and (K), for any s = 1, . . . ,m, ‖Â[s] − A[s]‖ = OP(ζn,T )

as n, T →∞. .

5.2 Asymptotics for ÛT

Considering the spectral decomposition

RnΓ
uR′n = Pψ

nΛψ
nPψ′

n , (46)

where Λψ
n is the q× q diagonal matrix of RnΓ

uR′n’s eigenvalues and Pψ
n the n× q matrix with columns

the corresponding orthonormal eigenvectors, we make the following assumption.

Assumption (S(f1))(Random cross-section, continued). Let n̄ ≤ n be such that 1
n̄ + n̄

n → 0 as n→ ∞
(that is, n̄→∞ and n̄/n→ 0 as n→ ∞). Then, for any t ∈ Z,√

n

n̄
Pψ′
n̄ φn̄t −→d N (0q,Pu

t ) as n→∞, (47)

where Pu
t := limn→∞

n
n̄E[Pψ′

n̄ φn̄tφ
′
n̄tP

ψ
n̄ ] is positive definite, and 0q is a q-dimensional vector of zeros.

Note that Pu
t is not limn→∞

n
n̄Pψ′

n̄ E[φn̄tφ
′
n̄t]P

ψ
n̄ since eigenvectors are random; so we must assume its

existence. A similar assumption is made also in Bai (2003, Assumption F3) in the case of non-random
eigenvectors.

Theorem 1. Denote by Ŵz a q× q diagonal matrix, depending on n and T , with diagonal entries ±1.
Then, for any t = 1, . . . , T and any n̄ ≤ n such that 1

n̄ + n̄
n → 0, as n, T →∞,
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(i) under Assumptions (S), (S(e)), and (K),∥∥∥ût − Ŵz (Γu)−1/2 ut

∥∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
;

(ii) under Assumptions (S), (S(e)), (S(f1)), and (K), with n̄ such that

1

n̄
+
√
n̄ ζnT → 0, as n, T →∞, (48)

and Ŵz −→P Wu, letting Mu := plimn→∞
n
n̄Pψ′

n̄ Pψ
n̄ and Lu = plimn→∞

Λψ
n
n ,

√
n̄
(
ût − Ŵz (Γu)−1/2 ut

)
−→d N

(
0q,W

u (Lu)−1/2 (Mu)−1 Pu
t (Mu)−1 (Lu)−1/2 Wu

)
where Pu

t is defined in in part (f1) of Assumption (S).

Remark 4. In terms of rate of convergence (part (i) of Theorem 1), for n̄ = n, we have the rate ζ−1
nT

as already derived by Forni et al. (2017, Proposition 11). In particular, ours and Bai (2003) estimators
of ut converge at the same rate

√
n when T/(BTn) ↓ 0, whereas when (nBT )/T ↓ 0 we achieve a rate

of convergence
√
T/BT , which is slower than the rates

√
n or T (depending on whether

√
n/T ↓ 0

or T/
√
n ↓ 0) in Bai (2003).

Remark 5. Condition (48) imposes only a marginally slower rate than ζnT , which is the consistency
rate when n̄ = n. For example we can assume n̄ of the form n̄ = ζ−2

nTL
−1(ζ−1

nT ) for some slowly varying
at infinity function L(·) (this implies that n̄ ' n, hence is a viable choice). Note that n̄ then depends
on both n and T . In fact, by inspection of the proof of part (i), we can see that consistency holds with
a faster rate and we could relax (48) to n̄√

n
ζnT → 0. However, since for deriving the properties of the

common component, we still need to impose (48), we stick with it also in Theorem 1.

Remark 6. When (48) does not hold, Theorem 1 states that, as n, T →∞,

√
n̄
(
ût − Ŵz (Γu)−1/2 ut

)
− ŴzX t −→P 0q,

for some random vector X t ∼ N (0q, (Lu)−1/2 (Mu)−1 Pu
t (Mu)−1 (Lu)−1/2).

Remark 7. A consistent estimator of the asymptotic covariance matrix of
√
n̄(ût−Ŵz (Γu)−1/2 ut) is(

Λ̂z
n

n

)−1/2 (n
n̄

P̂z′
n̄ P̂z

n̄

)−1
P̂
u

t

(n
n̄

P̂z′
n̄ P̂z

n̄

)−1
(

Λ̂z
n

n

)−1/2

,

where P̂
u

t is a consistent estimator of Pu
t . This requires specific assumptions on the form of cross-

sectional dependence of the {φit}. For instance, when the latter are cross-sectionally independent, then
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the approach of Section 5(a) in Bai (2003) can be adapted, providing7

P̂
u

t =

n∑
i=1

p̂zi p̂
z′
i

{
1

T

T∑
t=1

φ̂ 2
it

}
, (49)

where φ̂it = ẑit − Ř′iût and p̂z′i is the ith row of P̂z
n (defined in (40)).

5.3 Asymptotics for R̂n

Thanks to the duality between (21) and (22), the asymptotics for R̂n follow along the same lines as
for ÛT . Consider the spectral decomposition

UTΣRU ′T = Πψ
TL

ψ
TΠψ′

T , (50)

where LψT is the q × q diagonal matrix of UTΣRU ′T ’s eigenvalues and Πψ
T the T × q with columns the

corresponding orthonormal eigenvectors. Similar to (47), we make the following assumption.

Assumption (S(f2))(Random cross-section, continued). Let T̄ ≤ T be such that 1
T̄

+ T̄
T → 0

as T →∞. Then, √
T

T̄
Πψ′
T̄
ϕiT̄ −→d N (0q,PR) as T →∞ (51)

where PR
i := limT→∞

T
T̄
E[Πψ′

T̄
ϕi
T̄
ϕi′
T̄
Πψ
T̄

] is positive definite.

Here again, notice that PR
i is not limT→∞

T
T̄

Πψ′
T̄
E[ϕi

T̄
ϕi′
T̄

]Πψ
T̄
since eigenvectors are random; so we

must assume its existence. If eigenvectors were not random, its existence would follow from of Lemma 18
in the Appendix, for all T ∈ N. Moreover, PR

i is positive definite since it is a Toeplitz matrix containing
all autocovariances of the ith idiosyncratic component. A similar assumption is made also in Bai (2003,
Assumption F4); it is satisfied, for example, by all α-mixing processes.

The following then can be proved along the same lines as Theorem 1.

Theorem 2. Denote by Ŵ z a q× q diagonal matrix, depending on n and T , with diagonal entries ±1.
Then, for any i = 1, . . . , n and any T̄ ≤ T such that 1

T̄
+ T̄

T → 0, as n, T →∞,
(i) under Assumptions (S), (S(e)), and (K),∥∥∥R̂i − Ŵ z

(
ΣR
)−1/2

Ri

∥∥∥ = OP

(
max

(
1√
T̄
, ζnT

))
;

(ii) under Assumptions (S), (S(e)), (S(f2)), and (K), with T̄ such that

1

T̄
+
√
T̄ ζnT → 0, as n, T →∞, (52)

and Ŵ z −→P WR, letting MR := plimT→∞
T
T̄

Πψ′
T̄

Πψ
T̄
, and LR := plimT→∞

LψT
T ,√

T̄
(
R̂i − Ŵ z

(
ΣR
)−1/2

Ri

)
−→d N

(
0q,W

R
(
LR
)−1/2 (MR

)−1 PR
i

(
MR

)−1 (LR
)−1/2

WR
)

7Although P̂
u

t does not depend on t we keep the index t to highlight the possibility of considering estimators of the
asymptotic covariance that allow for heteroskedasticity.
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where PR
i is defined in in part (f2) of Assumption (S).

Remark 8. In terms of rates of convergence (part (i) of Theorem 2), in the case T̄ = T , we obtain
the rate ζ−1

nT as already derived in Forni et al. (2017, Proposition 10). In particular, our estimator
of Ri converges at rate

√
T/BT when T/(BTn) ↓ 0 whereas, when (nBT )/T ↓ 0, we achieve the rate

of convergence
√
n. Both rates are slower than the rate

√
T or n depending on whether

√
T/n ↓ 0

or n/
√
T ↓ 0 in Bai (2003) estimator, . This is because we need to estimate a spectral density before

running PCA. The best rates we can achieve are T 2/5 if we choose a quadratic kernel, i.e. κ = 2,
with optimal bandwidth BT = T 1/5, or T 1/3 if we choose a Bartlett kernel, i.e. κ = 1, with optimal
bandwidth BT = T 1/3.

Remark 9. Condition (52) imposes only a marginally slower rate than ζnT , which is the consistency
rate when T̄ = T . For example we can assume T̄ of the form T̄ = ζ−2

nTL
−1(ζ−1

nT ) for some slowly
varying at infinity function L(·) (this implies that T̄ ' T is a viable choice (neglecting the bandwidth
dependence)). Note that T̄ then depends on both n and T . In fact, by inspection of the proof of part (i),
we can see that consistency holds with a faster rate and we could relax (52) to T̄√

T
ζnT → 0. However,

since we still need to impose (52) for deriving the properties of the common component, we stick with
it also in Theorem 2.

Remark 10. When (52) does not hold, Theorem 2 states that, as n, T →∞,√
T̄
(
R̂i − Ŵ z

(
ΣR
)−1/2

Ri

)
− Ŵ zX t −→P 0q,

for some X t ∼ N (0q,
(
LR
)−1/2 (MR

)−1 PR
i

(
MR

)−1 (LR
)−1/2

).

Remark 11. A consistent estimator of the asymptotic covariance matrix of
√
T̄ (R̂i−Ŵz

T (ΣR)−1/2Ri) is(
L̂zT
T

)−1/2(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1

P̂
R

i

(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1
(
L̂zT
T

)−1/2

,

where P̂
R

i is a consistent estimator of PR
i . If we assume that {φit} is not autocorrelated, we can use

P̂
R

i :=
T∑
t=1

π̂zt π̂
z′
t φ̂

2
it, (53)

where φ̂it = ẑit− ǔ′tR̂i and π̂z′t is the tth row of Π̂z
T . To address idiosyncratic autocorrelation, a natural

choice is the usual HAC estimator used also in Bai (2003, Section 5(b)).

5.4 Asymptotics for the static common component ψ̂it

Using the estimates of the loadings Ri and the common shocks ut developed in the previous sections,
one can construct estimates of the static common components ψit. Several approaches are possible.
Both Ř′iût and R̂′iǔt, in fact, are consistent estimators of ψit. In principle, one can also consider R̂′iût,
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although identification is not warranted due to the presence of the product of the two rotation ma-
trices Ŵz(Γu)−1/2 and Ŵ z(ΣR)−1/2 which are not necessarily identical. In contrast with this, Ř′iût

and R̂′iǔt both involve (Ŵz)2 hence a product Iq. This is why the estimators ψ̂it we are proposing for
ψit are of the form (44). These estimators could achieve an asymptotic efficiency gain with respect to
both Ř′iût and R̂′iǔt. Moreover, by setting n̄ = T̄ =: h̄, they avoid the slight technical difficulty of
combining estimators with different rates of convergence (see Bai, 2003, proof of Theorem 3).

Theorem 3. Set n̄ = T̄ = h̄. Then, for any i = 1, . . . , n and t = 1, . . . , T , and any h̄ < min(n, T ) such
that 1

h̄
+ h̄

min(n,T ) → 0, as n, T →∞,
(i) under Assumptions (S), (S(e)), and (K),∥∥∥ψ̂it − ψit∥∥∥ = OP

(
max

(
1√
h̄
, ζnT

))
;

(ii) if also Assumptions (S(f1)) and (S(F2)) hold, and if h̄ is such that

1

h̄
+
√
h̄ζnT → 0, as n, T →∞, (54)

and Ŵz →P Wu, Ŵ z →P WR, then

√
h̄
(
ψ̂it − ψit

)
−→d N

(
0,ω′

(
V u
it Cit

Cit V R
it

)
ω

)
,

where ω := limnT→∞

(
ωnT

1− ωnT

)
,

V u
it := R′i (Γu)1/2 Wu (Lu)−1/2 (Mu)−1 Pu

t (Mu)−1 (Lu)−1/2 Wu (Γu)1/2 Ri,

V R
it := u′t

(
ΣR
)1/2

WR
(
LR
)−1/2 (MR

)−1 PR
i

(
MR

)−1 (LR
)−1/2

WR
(
ΣR
)1/2

ut,

Cit := R′i (Γu)1/2 Wu (Lu)−1/2 (Mu)−1 Ωit

(
MR

)−1 (LR
)−1/2

WR
(
ΣR
)1/2

ut,

with Pu
t , Mu, and Lu as defined in Theorem 1, PR

i , MR, and LR as defined in Theorem 2,
and Ωit := limn,T→∞

(√
nT
h̄

)
E[Pψ′

n̄ φn̄tϕ
i′
T̄
Πψ
T̄

].

Remark 12. Notice that, consistently with (26), we can always write (see the proof of Theorem 1)

znt = Pψ
n

(
Λψ
n

)1/2
(Γu)−1/2 ut + φnt, t = 1, . . . , T,

which implies R′i = pψ′i (Λψ
n)1/2(Γu)−1/2. Moreover, by definition Ř′i = p̂z′i (Λ̂z

n)1/2 which, as shown
in the proof of Theorem 3, is a consistent estimator of R′i(Γ

u)1/2Wu. Therefore, a natural estimator
of V u

it is, with P̂
u

t defined in (49),

V̂ u
it := Ř′i

(
Λ̂z
n

n

)−1/2 (n
n̄

P̂z′
n̄ P̂z

n̄

)−1
P̂
u

t

(n
n̄

P̂z′
n̄ P̂z

n̄

)−1
(

Λ̂z
n

n

)−1/2

Ři

= n p̂z′i

(n
n̄

P̂z′
n̄ P̂z

n̄

)−1
P̂
u

t

(n
n̄

P̂z′
n̄ P̂z

n̄

)−1
p̂zi ,
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which does not depend on the unknown matrix Γu nor on the sign matrix Wu. Similarly, we can always
write

ziT = Πψ
T

(
LψT

)1/2 (
ΣR
)−1/2

Ri +ϕiT , i = 1, . . . , n,

which implies u′t = πψ′t (LψT )1/2(ΣR)−1/2 (π̂ψ′t the tth row of Π̂ψ
T ). Moreover, by definition, we have

that ǔ′t = π̂z′t (L̂zT )1/2, which, as shown in the proof of Theorem 3, is a consistent estimator of u′t(Σ
R)1/2WR.

Therefore, a natural estimator of V R
it is, with P̂

R

i defined in (53),

V̂ R
it := ǔ′t

(
L̂zT
T

)−1/2(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1

P̂
R

i

(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1
(
L̂zT
T

)−1/2

ǔt

= T π̂z′t

(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1

P̂
R

i

(
T

T̄
P̂z′

T̄ P̂z
T̄

)−1

π̂zt ,

which does not depend on the unknown matrix ΣR nor on the sign matrix WR.

5.5 Asymptotics for the dynamic common component χ̂it

Let Cn(L) := [An(L)]−1 and notice that since An(L) is block-diagonal, then also Cn(L) is block-
diagonal. Denote as Is := {` | ` = (s − 1)(q + 1) + 1, . . . , s(q + 1)}, the set of integers indicating the
series belonging to block s, where s = 1, . . . ,m. Then, given a cross-sectional unit i ∈ Is of An(L), its
dynamic common component χit is defined as (see (17))

χit = Cn(L)Rnut

=
∞∑
k=0

q+1∑
js=1

ci,js,kR
′
jsut−k =

∞∑
k=0

q+1∑
js=1

ci,js,kψjs,t−k, i ∈ Is, s = 1, . . . ,m, t ∈ Z, (55)

where ci,js,k is the (i, js)th entry of Cn(L) and js indicates the jth column of block s of Cn(L), i.e., the
jth element of Is. Our estimator of χit is then

χ̂it =
K∑
k=0

q+1∑
js=1

ĉi,js,kψ̂js,t−k, i ∈ Is, s = 1, . . . ,m, t = K + 1, . . . , T, (56)

where K is a finite integer, ĉi,js,k is the (i, js)th entry of Ĉn(L) := [Ân(L)]−1, and ψ̂js,t−k is the
estimator of the static common component defined in (44). Notice that in (56) we sum only over a finite
number of lags K, since the observed sample has always finite length. Moreover, since, by stationarity,
the coefficients of Cn(L) are decaying geometrically, K can always be chosen in such a way that the
contribution of the lags k > K is negligible.

Theorem 4. Set n̄ = T̄ = h̄. Then, for any s = 1, . . . ,m, i ∈ Is, and t = 1, . . . , T and for
any h̄ ≤ min(n, T ), such that 1

h̄
+ h̄

min(n,T ) → 0, as n, T →∞
(i) under Assumptions (S), (S(e)), and (K),

‖χ̂it − χit‖ = OP

(
max

(
1√
h̄
, ζnT

))
;
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(ii) if also Assumptions (S(f1)) and (S(f2)) hold, if Ŵz →P Wu, Ŵ z →P WR and h̄ is such that

1

h̄
+
√
h̄ζnT → 0, as n, T →∞, (57)

then √
h̄ (χ̂it − χit) −→d N

(
0,ω′

(
W u
it Git

Git WR
it

)
ω

)
,

where ω := limn,T→∞

(
ωnT

1− ωnT

)
and, letting Is = {i1, . . . , iq+1}, for a given finite integer

lag K,

W u
it := ι′q+1

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2



Vu

t...t−K

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2




′

ιq+1,

WR
it := ι′K+1

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2



VR

i1...iq+1

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2




′

ιK+1,

Git := ι′q+1

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2



Oi1...iq+1

t...t−K

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2




′

ιK+1,

with ⊗ and � the Kronecker and Hadamard products, respectively, ιK+1 a (K + 1)-dimensional
vector of ones, and ιq+1 a (q + 1)-dimensional vector of ones,

Ci :=


ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,1,K

...
. . .

...
ι′q ⊗ ci,q+1,0 . . . ι′q ⊗ ci,q+1,K

 , Di :=


ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,q+1,0

...
. . .

...
ι′q ⊗ ci,1,K . . . ι′q ⊗ ci,q+1,K

 ,

Vu
t...t−K :=

{
IK+1 ⊗

[
Wu (Lu)−1/2 (Mu)−1

]}
Pu
t...t−K

{
IK+1 ⊗

[
(Mu)−1 (Lu)−1/2 Wu

]}
,

VR
i1...iq+1

:=
{

Iq+1 ⊗
[
WR

(
LR
)−1/2 (MR

)−1
]}

PR
i1...iq+1

{
Iq+1 ⊗

[(
MR

)−1 (LR
)−1/2

WR
]}

,

Oi1...iq+1

t...t−K
:=
{

IK+1 ⊗
[
Wu (Lu)−1/2 (Mu)−1

]}
Ωi1...iq+1

t...t−K

{
Iq+1 ⊗

[(
MR

)−1 (LR
)−1/2

WR
]}

,

Pu
t...t−K := lim

n→∞

n

n̄
E

{IK+1 ⊗Pψ′
n̄

}
φn̄t
...

φn̄t−K




φn̄t
...

φn̄t−K


′ {

IK+1 ⊗Pψ′
n̄

}′ ,

PR
i1...iq+1

:= lim
T→∞

T

T̄
E

{Iq+1 ⊗Πψ′
T̄

}
ϕi1
T̄
...

ϕ
iq+1

T̄




ϕi1
T̄
...

ϕ
iq+1

T̄


′ {

Iq+1 ⊗Πψ′
T̄

}′ ,
Mu and Lu as defined in Theorem 1, MR and LR as defined in Theorem 2.
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Remark 13. To appreciate the formulas given in Theorem 4, let us consider a simple example.
Let q = 1, K = 1, s = 1, so that i = 1, 2 and js = 1, 2. Then, if n � T so that ωnT ' 1, from
the proof of Theorem 4 we have

√
h̄(χ̂1t − χ1t) =

√
h̄

1∑
k=0

2∑
js=1

{
c1,js,kR

′
js

(
ût−k − ut−k

)}
+ oP(1), (58)

which has asymptotic variance (notice that ut and Ri are now scalars)

W u
it = lim

n,T→∞
n̄
(
c2

1,1,0R
2
1Var(ût − ut) + c2

1,2,0R
2
2Var(ût − ut)

+ c2
1,1,1R

2
1Var(ût−1 − ut−1) + c2

1,2,1R
2
2Var(ût−1 − ut−1)

+ 2c1,1,0c1,2,0R1R2Var(ût − ut) + 2c1,1,1c1,2,1R1R2Var(ût−1 − ut−1)

+ 2c1,1,0c1,1,1R
2
1Cov

(
(ût − ut), (ût−1 − ut−1)

)
+ 2c1,2,0c1,2,1R

2
2Cov

(
(ût − ut), (ût−1 − ut−1)

)
+ 2c1,1,0c1,2,1R1R2Cov

(
(ût − ut), (ût−1 − ut−1)

)
+ 2c1,2,0c1,1,1R1R2Cov

(
(ût − ut), (ût−1 − ut−1)

))
. (59)

Similarly, if T � n so that ωnT ' 0, from the same proof we have

√
h̄(χ̂1t − χ1t) =

√
h̄

1∑
k=0

2∑
js=1

{
c1,js,ku

′
t−k

(
R̂js −Rjs

)}
+ oP(1), (60)

which has asymptotic variance

WR
it = lim

n,T→∞
T̄
(
c2

1,1,0u
2
tVar(R̂1 −R1) + c2

1,2,0u
2
tVar(R̂2 −R2)

+ c2
1,1,1u

2
t−1Var(R̂1 −R1) + c2

1,2,1u
2
t−1Var(R̂2 −R2)

+ 2c1,1,0c1,1,1utut−1Var(R̂1 −R1) + 2c1,2,0c1,2,1utut−1Var(R̂2 −R2)

+ 2c1,1,0c1,2,0u
2
tCov

(
(R̂1 −R1), (R̂2 −R2)

)
+ 2c1,1,1c1,2,1u

2
t−1Cov

(
(R̂1 −R1), (R̂2 −R2)

)
+ 2c1,1,0c1,2,1utut−1Cov

(
(R̂1 −R1), (R̂2 −R2)

)
+ 2c1,2,0c1,1,1utut−1Cov

(
(R̂1 −R1), (R̂2 −R2)

))
. (61)

The variances in (59) and (61) are given in Theorems 1 and 2, respectively, and the covariances are
easily derived along the same lines (for details, see the proof of Theorem 4). Clearly, if n ' T , we should
also include covariances between the terms in (58) and those in (60), which contribute to the term Git

in the expression of the asymptotic variance.

23



6 Monte Carlo Simulations

We set q = 1 and we consider the data-generating process (a slightly modified version of the one used
by Forni et al. (2017))

xit = aiβi(L)ut + ξit, (62)

where βi(L) := (1 − αiL)−1 = (1 + αiL + α2
iL

2 + . . .). We generate ut and ξit as i.i.d. standardized
normal variables, ai as normal variables with mean and variance both equal to one, and αi as i.i.d.
variables uniformly distributed over the interval [0.1, 0.8]. Finally, each idiosyncratic component ξit is
rescaled so that the share of variance of xit accounts for by ξit is θ

(1−θ) , with θ = 0.5.
We simulate panels of size n = T ∈ {100, 200, 300, 400, 500} and we consider a total of B = 500

Monte Carlo replications. At each replication b, we compute an estimator χ̂(b)
it of the common compo-

nent χ(b)
it and its asymptotic variance. The main goal of this section is to check whether the asymptotic

distributions derived in Theorem 4 is empirically confirmed. However, because we simulate panels
with n = T , we estimate the dynamic common component as in (56), where the static common com-
ponent is estimated with weight ωnT = 1

2 , which is slightly different from the estimator used by Forni
et al. (2017), in which ωnT = 1. Therefore, we begin the simulation exercise by looking at the properties
of the estimator in (56), setting K = 2, ps = 1 for all s, and considering b

√
nc permutations in building

the m blocks.
Table 1 shows the Standardized Mean Squared Error (S-MSE)

S-MSE :=

∑B
b=1

∑n
i=1

∑T
t=1

(
χ̂

(b)
it − χ

(b)
it

)2

∑B
b=1

∑n
i=1

∑T
t=1

(
χ

(b)
it

)2 (63)

of the estimator of χit. The results in Table 1 clearly show that the estimator in (56) works very well.
As n and T increase, the S-MSE monotonically decreases, to the point that, for n = T = 500, the
S-MSE is more than 70% lower than for n = T = 100.

Table 1: Standardize Mean Squared Errors
Common components

T n S-MSE
100 100 0.30
200 200 0.17
300 300 0.12
400 400 0.09
500 500 0.08

Next, we turn to the asymptotic distribution of the same common component. To this end, for each
replication b and each (i, t), we compute

Z
(b)
it =

(
1

4
Ŵ u
it +

1

4
ŴR
it

)−1/2 (
χ̂

(b)
it − χ

(b)
it

)
(64)

which, according to Theorem 4, is asymptotically standard normal. Figure 1 shows, for four out of five
of the (n, T ) couples considered in Table 1, histograms of {Z(b)

it : i = 1, . . . , n, t = 1, . . . , T, b = 1, . . . B}.
These histograms show that, while struggling a little bit in the tails, the empirical distribution of Z(b)

it
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is pretty close to the standard normal distribution (the red dashed line), well in line with Theorem 4.
The fatter than Normal tails are the price we are paying for estimating An(L). That price is nil in the
limit, but not for finite n and T .

Figure 1: Histograms of the simulated Z
(b)
it ’s in (64), for various values of n and T
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7 Empirical Application: a “core” inflation indicator for the U.S.

Headline (or total) PCE price inflation, the measure chosen by the Federal Reserve to target its 2%
target inflation objective, is highly volatile. Therefore, economists and policymakers have suggested
alternative measures, which the literature calls “core” inflation indicators, to reduce the variance of the
measured inflation, thus better distinguishing transitory from persistent movements. This Section uses
the one-sided GDFM considered in this paper to estimate a new “core” inflation indicator for the U.S.8

Nowadays, the notion of core inflation in the U.S. is mainly associated with inflation excluding food
and energy. The rationale for this indicator is that both food and energy prices are very volatile and
often driven by idiosyncratic shocks (such as weather for food or OPEC decisions for energy). Thus, not
only they do not provide a useful signal for inflation going forward, but also they are not controllable by
the Federal Reserve (Blinder, 1997). However, the literature has proposed alternative ways of measuring
core inflation, such as trimmed means and factor model-based estimates.9

8Altissimo et al. (2009) estimate a dynamic factor model, on disaggregated inflation data, that represents an over-
simplified case of our setting, as it is assumed that the common components follow AR(1) processes with iid idiosyncratic
components. This simplification allows to use a different estimation method. Unlike us, they estimate their model on euro
area data.

9The rationale for the use of trimmed means as core inflation indexes is that a trimmed mean is a robust estimator of
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The idea of considering (low-dimensional) factor models to estimate core inflation dates back to
Bryan and Cecchetti (1993), while Cristadoro et al. (2005) and Amstad et al. (2017) more recently
have used high-dimensional dynamic factor models, similar to the GDFM, with the same objective.10

The rationale for considering factor models on the estimation of core inflation is that central banks are
particularly interested in identifying movements in inflation that are driven by common (macroeconomic)
shocks, so to avoid responding to changes in inflation due to sector-specific shocks, or, even worse,
measurement error.

The dataset we are analyzing here consists of n = 148 PCE price inflation rates from January 1995 to
December 2019 (T = 300).11 Specifically, the dataset contains headline PCE price inflation, which is the
target chosen by the Federal Reserve for their inflation stability objective, PCE price inflation excluding
food and energy, and 146 disaggregated PCE prices. These 146 disaggregated PCE prices represent
a particular disaggregation of PCE prices in which each disaggregated price index is constructed from
a distinct data source. Indeed, most disaggregated PCE prices are measured using a corresponding
index from the CPI, a few of them are measured using PPIs, and some others are imputed. As a
result, some disaggregated PCE prices are based on the same CPI (or PPI) series, which means that
some disaggregated PCE price indexes are identical (or nearly so). For the complete list of prices and
detailed information on the data sources, we refer the reader to Luciani (2020).

The upper-left charts in Figures 2 and 3 show our estimate of core inflation based on the estimated
common component of headline PCE price inflation, as defined in (56) (the red line), where the shaded
area around our estimate is the ± one standard deviation confidence band, together with headline
PCE price inflation (the black line).12 Let P ht denote the headline PCE price index: Figure 2 shows
month-over-month inflation in the PCE price index, i.e., πht = 100 × (

Pht
Pht−1

− 1), while Figure 3 shows

year-over-year inflation in the PCE price index, i.e., πht = 100× (
Pht
Pht−12

− 1). The former is the target of
forecasters following inflation, and the latter is what policymaker care about and, consequently, what
newspaper tends to comment on. Note that the model is estimated over month-over-month inflation
rates, and then the estimated common component is computed by converting the month-over-month
estimate into an year-over-year estimate.13

From simple visual inspection of the upper-left charts in Figures 2 and 3, we immediately see that
our measure of core inflation is doing what it is supposed to do: tracking the trend of headline PCE price
inflation while reducing the variance. Moreover, the confidence band seems to be quite well calibrated,
as monthly headline PCE price inflation is outside the confidence band 27% of the time (as a reference,
the ± one standard deviation interval of a standardized normal excludes 32% of the observations).

the location of a fat-tailed distribution, while a weighted mean (like the total inflation index, or the index excluding food
and energy) typically is not.

10Other papers have used high-dimensional factor models for constructing inflation indicators, though with a different
goal. For example, Reis and Watson (2010) estimate an index of equiproportional changes in disaggregated PCE price
inflation, while Luciani (2020) disentangles the effects of common versus idiosyncratic shocks in PCE price inflation
excluding food and energy.

11Because n� T , to estimate UT and Rn, and therefore the common component and the asymptotic variances, we set
ωnT = 1.

12The specification used in this section features one common shock, one lag in the VAR, and the number of autocovari-
ances used to estimate the spectral density is set to [T 1/3].

13As for the asymptotic variance, we took a shortcut for year-over-year estimates. Indeed we compute the variance for
year-over-year estimates as 12× the asymptotic variance over the month-over-month estimates. However, in doing so we
are neglecting the autocorrelations, hence we can say that the confidence bands shown in Figure 3 are an approximation,
which, most likely, are slightly tighter than they should be.
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Figure 2: “Core” PCE price month-over-month inflation
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In all charts, the red line is our estimate, while the shaded area is the ± one standard deviation confidence band.

The other charts in Figures 2 and 3 compare our estimate with other core PCE price inflation
estimates. Starting with the upper-right charts, our estimate of core inflation is quite similar to PCE
price inflation excluding food and energy (the blue line), but less volatile. Indeed, our estimate is not
affected by well-known idiosyncratic shocks such as the (down-up) spikes in September-October 2001 or
the large decline in March 2017, which not surprisingly are 3 of the 15 (out of 300) dates in which PCE
price inflation excluding food and energy is lying outside the confidence band of our estimate of core
inflation.14 Moreover, as shown in Figure 4, our estimate of core inflation captures primarily fluctuations
with periods longer than six months, while a large share of fluctuations in PCE price inflation excluding
food and energy is accounted for by fluctuations with periods shorter than six months. Finally, as can
be clearly seen in Figure 3, our measure of core inflation points towards higher inflation at the end of
the 1990s, which is in line with the literature indicating that the U.S. economy was very tight before
the dot com bubble burst (see, e.g., Hasenzagl et al., 2020; Barigozzi and Luciani, 2020).

Next, the lower-left charts in Figures 2 and 3 compare our estimate of core inflation with the Dallas
Fed Trimmed Mean PCE price inflation proposed by Dolmas (2005) (the slate-grey line), a measure
that is highly considered by officials at the Federal Reserve and by newspapers.15 Our measure and

14The 2001 swing in core PCE price inflation was driven by the price index for life insurance, which plunged 55 percent
in September 2001 and jumped 121 percent in October 2001 as a result of the 9/11 terrorist attacks. The March 2017
decline in core PCE price inflation was largely due to the plunge in the price index for wireless telephone services (52%
at an annual rate). The plunge was due to both a methodological change in the measurement of wireless services in the
CPI and the fact that in late February of 2017 both Verizon and AT&T (which in March 2017 accounted for nearly 70%
of wireless subscriptions in the US) brought back unlimited data plans.

15The Dallas Fed Trimmed Mean PCE price inflation estimates core inflation by taking the weighted trimmed mean of
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Figure 3: “Core” PCE price year-over-year inflation
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In all charts, the red line is our estimate, while the shaded area is the ± one standard deviation confidence band.

Figure 4: Spectral density PCE price inflation
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The spectral densities are standardized so that the integral below the curve is
equal to one. The x-ticks stands for frequencies corresponding to periods of “5
years”, “2 years”, “1 year”, and “6 months.” Points on the right of a given x-tick
denote fluctuations with period shorter than the x-tick.

the Dallas trimmed mean are remarkably similar, and they also capture similar frequencies. However,
our measure performs better in capturing the decline in inflation during recessions, where the Dallas

a dataset of disaggregated PCE price inflation similar to the one used in this paper. As currently computed, this measure
is computed by trimming out 24 percent from the lower tail of the distribution of monthly price changes and 31 percent
from the upper tail.
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trimmed mean is a bit lagging, as is evident when looking at Figure 3.
Finally, the lower-right charts in Figures 2 and 3 show the comparison with a principal component

estimate. This is the estimate of core inflation that comes from a high-dimensional static factor model.
By looking at the two charts, it is clear that a static factor model does not do a good job in estimating
core inflation, as the estimate is very volatile, thus failing to achieve one of the goals a core inflation
indicator is supposed to achieve. Even more so, the PCA estimate is very similar to the headline index
itself. This demonstrates the importance of considering dynamic (GDFM) rather than static (DFM)
loadings when constructing a core inflation indicator.

8 Conclusion

Factor models, in the past decades, have emerged as the most efficient tool in the analysis and prediction
of high-dimensional time series (high-dimensional panel data). Several factor models have been proposed
in the literature, the most flexible of which is the so-called Generalized Dynamic Factor Model (GDFM)
where common shocks are loaded via filters—as opposed to the Dynamic Factor Model (DFM) where
shocks are loaded in a static way. While complete results on the asymptotic behavior of DFM estimators
are available (Bai, 2003), the corresponding theory for estimators of the GDFM is still incomplete. This
paper fills that gap by deriving the asymptotic distributions of the GDFM estimators (common shocks,
loadings, and common components).

Our results paves the way for inferential applications of the GDFM of great interest to macro and
applied economists, such as asymptotic confidence intervals in prediction and in the construction of
economic indicators. We illustrate the use of our methodology with an application to the construction
of “core” inflation indicators for the U.S. economy. The GDFM-based indicator appears to provide much
stable results than the current methods—it also outperforms its DFM-based counterpart, which appears
to be much more volatile.

APPENDIX

This Appendix collects the proofs of the main results. For simplicity, we throughout assume that
Assumptions (S) (from (a) through (f)) and (K) hold—even though most results are valid under a
subset thereof.

A Proof of Theorem 1

A.1 Preliminary lemmas

Lemma 1. As n, T →∞,

(i)
∥∥∥∥U ′TUT

T
− Γu

∥∥∥∥ = OP

(
1√
T

)
, as T →∞; (ii)

∥∥∥∥R′nRn

n
−ΣR

∥∥∥∥ = OP

(
1√
n

)
, as n→∞.

Proof. Part (i) follows from parts (a) and (c) of Assumption (S) and (26); part (ii) follows from part (a)
of Assumption (S) and (25). �
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Lemma 2. For any given t and any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→∞,

1√
n̄
‖ẑn̄t − zn̄t‖ = OP(ζnT ) as n, T →∞.

Proof. Without loss of generality, set n̄ = m̄(q+ 1), implying m̄ ∼ cn̄. Then, because of Proposition 2,

‖ẑn̄t − zn̄t‖ =
∥∥∥(Ân̄(L)−An̄(L)

)
xn̄t

∥∥∥ ≤ p∑
r=0

(
m̄∑
i=1

x
(i)′
t−r

(
Â(i)
r −A(i)

r

)′ (
Â(i)
r −A(i)

r

)
x

(i)
t−r

)1/2

≤
p∑
r=0

(
m̄∑
i=1

(
x

(i)′
t−rx

(i)
t−r

)2
)1/4

 m̄∑
i=1

 q+1∑
ji=1

q+1∑
hi=1

(âji,hi,r − aji,hi,r)
2

21/4

≤
p∑
r=0

(
m̄∑
i=1

(
x

(i)′
t−rx

(i)
t−r

)2
)1/4(

(q + 1)3
m̄∑
i=1

∥∥∥Â(i)
r −A(i)

r

∥∥∥4
)1/4

= OP

(√
n̄ζnT

)
,

where p = maxs=1,...,m̄ ps, and aji,hi,r and âji,hi,r are the (j, h)th entries of A
(i)
r and of Â

(i)
r , respectively.

See also (D.8) in the proof the Lemma 11 in Forni et al. (2017), which in turn follows from Lemmas 8
through 10, which entail uniformity over i for ‖Â(i)

r −A
(i)
r ‖. �

Lemma 3. Collect the q largest eigenvalues of Γ̃zn :=
Z′nTZnT

T in the q × q diagonal matrix Λ̃z
n and the

corresponding normalized eigenvectors in P̃z
n. Then, as n, T →∞,

(i) 1
n‖Λ̃

z
n −Λψ

n‖ = OP

(
max

(
1√
T
, 1
n

))
;

(ii) there exists a q×q diagonal matrix Ŵz
1 with entries ±1 such that, for any n̄ ≤ n such that 1

n̄+ n̄
n → 0

as n→∞, ‖P̃z
n̄ −Pψ

n̄Ŵz
1‖ = OP

(
n̄
n max

(
1√
T
, 1
n

))
.

Proof. From Assumption (S(d1)), (36), and Lemma 1(i) it follows that, as n, T →∞,

1

n

∥∥∥Γ̃zn −RnΓ
uR′n

∥∥∥ =
1

n

∥∥∥∥Rn
U ′TUT

T
R′n +

Φ′nTΦnT

T
−RnΓ

uR′n
∥∥∥∥

≤ 1

n

∥∥∥∥Rn
U ′TUT

T
R′n −RnΓ

uR′n
∥∥∥∥
F

+
1

n

∥∥∥∥Φ′nTΦnT

T

∥∥∥∥
=

1

n

∥∥∥Γφn∥∥∥+OP

(
1√
T

)
≤ 2πBφ

n
+OP

(
1√
T

)
= OP

(
max

(
1√
T
,

1

n

))
,

which implies
1

n

∥∥∥Λ̃z
n −Λψ

n

∥∥∥ ≤ 1

n

∥∥∥Γ̃zn −RnΓ
uR′n

∥∥∥ = OP

(
max

(
1√
T
,

1

n

))
.

hence part (i) of the claim. Turning to (ii), by the Davis-Kahn sin-θ Theorem (see also Yu et al., 2015,
Theorem 2) there exists a q × q diagonal matrix Ŵz

1 with entries ±1 such that

∥∥∥P̃z
n −Pψ

nŴz
1

∥∥∥ ≤ 23/2√q‖Γ̃zn −RnΓ
uR′n‖

min(µψn0 − µ
ψ
n1, µ

ψ
nq − µψn,q+1)

= OP

(
max

(
1√
T
,

1

n

))
,
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where µψnj are the eigenvalues of RnΓ
uR′n (satisfying (28) and Assumption (S(e)), µψn0 := ∞,

and µψn,q+1 = 0. Similarly, for n̄ ≤ n,

∥∥∥P̃z
n̄ −Pψ

n̄Ŵz
1

∥∥∥ ≤ 23/2√q‖Γ̃zn̄ −Rn̄Γ
uR′n̄‖

min(µψn0 − µ
ψ
n1, µ

ψ
nq − µψn,q+1)

= OP

(
n̄

n
max

(
1√
T
,

1

n

))
, (65)

which completes the proof. �

Lemma 4. Collect the q largest eigenvalues of Γ̂zn :=
Ẑ′nT ẐnT

T in the q × q diagonal matrix Λ̂z
n and the

corresponding normalized eigenvectors in P̂z
n. Then, as n, T →∞,

(i) 1
n‖Λ̂

z
n − Λ̃z

n‖ = OP(ζnT );
(ii) there exists a q×q diagonal matrix Ŵz

2 with entries ±1 such that, for any n̄ ≤ n such that 1
n̄+ n̄

n → 0

and n̄→∞ as n→∞, ‖P̃z
n̄ − P̂z

n̄Ŵ
z
2‖ = OP( n̄nζnT ).

Proof. From Lemma 2 it immediately follows that 1
n

∥∥∥Γ̂zn − Γ̃zn

∥∥∥ = OP(ζnT ), which implies

1

n

∥∥∥Λ̂z
n − Λ̃z

n

∥∥∥ ≤ 1

n

∥∥∥Γ̂zn − Γ̃zn

∥∥∥ = OP(ζnT ),

hence part (i) of the claim. Now, from Lemma 3(i), with probability tending to one as n, T →∞, there
exists a positive real c such that

1

n

∣∣∣µ̃znj − µψnj∣∣∣ ≤ cmax

(
1√
T
,

1

n

)
, j = 1, . . . , q and

1

n

∣∣µ̃znj∣∣ ≤ cmax

(
1√
T
,

1

n

)
, j = q + 1, . . . , n.

Thus, from (28), with probability tending to one as n, T →∞,

µ̃znj ≥ µ
ψ
nj − cmax

(
1√
T
,

1

n

)
≥ nαψj − c, j = 1, . . . , q,

and µ̃znj ≤ c, j = q + 1, . . . , n. Therefore, for n ≥ 4c

αψj
, with probability tending to one as n, T →∞, it

holds that

µ̃znq − µ̃zn,q+1 ≥ nα
ψ
j − 2c = nαψj

(
1− 2c

αψj n

)
≥ n

αψj
2
.

Then, by the Davis-Kahn sin-θ Theorem again, there exists a q× q diagonal matrix Ŵz
2 with entries ±1

such that ∥∥∥P̂z
n − P̃z

nŴ
z
2

∥∥∥ ≤ 23/2√q‖Γ̂zn − Γ̃zn‖
min(µ̃zn0 − µ̃zn1, µ̃

z
nq − µ̃zn,q+1)

= OP(ζnT ),

where µ̃znj are the eigenvalues of Γ̃zn and µ̃zn0 :=∞. It follows that, for any n̄ ≤ n,∥∥∥P̂z
n̄ − P̃z

n̄Ŵ
z
2

∥∥∥ = OP

( n̄
n
ζnT

)
. �

Lemma 5. As n, T →∞,
(i) 1

n‖Λ̂
z
n −Λψ

n‖ = OP(ζnT );
(ii) for any n̄ ≤ n such that 1

n̄ + n̄
n → 0 as n→∞, ‖P̂z

n̄ −Pψ
n̄Ŵz‖ = OP( n̄nζnT ), with Ŵz = Ŵz

1Ŵz
2,

where Ŵz
1 is defined in Lemma 3 and Ŵz

2 in Lemma 4.
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Proof. From Lemmas 3(i) and 4(i) it holds that

1

n

∥∥∥Λ̂z
n −Λψ

n

∥∥∥ ≤ 1

n

∥∥∥Λ̂z
n − Λ̃z

n

∥∥∥+
1

n

∥∥∥Λ̃z
n −Λψ

n

∥∥∥ = OP(ζnT ) +OP

(
max

(
1√
T
,

1

n

))
.

Part (i) of the claim follows, since 1√
T

and 1
n are O(ζnT ). From Lemmas 3(ii) and 4(ii), and since

‖Ŵz
2‖ = 1, we obtain∥∥∥P̂z

n −Pψ
nŴz

1Ŵz
2

∥∥∥ ≤ ∥∥∥P̂z
n − P̃z

nŴ
z
2

∥∥∥+
∥∥∥P̃z

nŴ
z
2 −Pψ

nŴz
1Ŵz

2

∥∥∥
≤ OP(ζnT ) +

∥∥∥P̃z
n −Pψ

nŴz
1

∥∥∥ ‖Ŵz
2‖

= OP(ζnT ) +OP

(
max

(
1√
T
,

1

n

))
.

Since 1√
T

and 1
n are O(ζnT ), this concludes the proof. �

Lemma 6. There exists a positive definite q × q diagonal matrix Lu such that

Λψ
n

n
−→P Lu as n→∞.

Proof. The Lemma is an immediate consequence of (28). �

Lemma 7. (i)

∥∥∥∥∥∥
(

Λψ
n

n

)−1
∥∥∥∥∥∥ = OP(1) as n→∞; (ii)

∥∥∥∥∥∥
(

Λ̂z
n

n

)−1
∥∥∥∥∥∥ = OP(1) as n, T →∞.

Proof. Part (i) follows from (28), part (ii) from Lemma 5(i) and part (i). �

Lemma 8. Denoting by eni the ith column of In,

max
i=1,...,n

∥∥∥e′niPψ
n

∥∥∥ = OP

(
1√
n

)
as n→∞.

Proof. Since Pψ
n = (RnΓ

uR′n)Pψ
n(Λψ

n)−1, we have

max
i=1,...,n

∥∥∥e′niPψ
n

∥∥∥ ≤ max
i=1,...,n

∥∥e′niRnΓ
uR′n

∥∥ ∥∥∥Pψ
n

∥∥∥ ∥∥∥(Λψ
n)−1

∥∥∥ = OP

(
1√
n

)
.

Indeed, ‖e′niRnΓ
uR′n‖ = OP(

√
n), ‖Pψ

n‖ = 1, and ‖(Λψ
n)−1‖ = OP(n−1), because of Lemma 7(i)

(which, actually, only requires Assumption (S)). �

Lemma 9. For any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→∞,

(i) ‖Pψ
n̄‖ = OP

(√
n̄

n

)
and (ii) ‖Pψ′

n̄ Pψ
n̄‖ = OP

( n̄
n

)
.

Proof. It follows from Lemma 8 that

∥∥∥Pψ
n̄

∥∥∥2
≤
∥∥∥Pψ

n̄

∥∥∥2

F
=

n̄∑
i=1

∥∥∥e′niPψ
n

∥∥∥2
≤ n̄ max

i=1,...,n̄

∥∥∥e′niPψ
n

∥∥∥2
= OP

( n̄
n

)
.
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Moreover, ∥∥∥Pψ′
n̄ Pψ

n̄

∥∥∥ ≤ ∥∥∥Pψ
n̄

∥∥∥2
= OP

( n̄
n

)
. �

Lemma 10. For any t ∈ Z and any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→∞,√
n

n̄
‖Pψ′

n̄ φn̄t‖ = OP(1) as n→∞.

Proof. Recall that n
n̄‖P

ψ′
n̄ Pψ

n̄‖ = OP(1), because of Lemma 9(ii). Therefore, for the kth column of Pψ
n̄ ,

denoted as pψn̄k, it holds that
n
n̄pψ′n̄kp

ψ
n̄k = OP(1). Let p̃ψn̄k := pψn̄k/

√
pψ′n̄kp

ψ
n̄k, so that p̃ψ′n̄kp̃

ψ
n̄k = 1. Let p̃ψik

denote the ith entry of p̃ψn̄k and let P̃ψ
n̄ be the matrix with columns p̃ψn̄1, . . . , p̃

ψ
n̄n̄. Due to normalization

of p̃ψn̄k and Lemma 8, there exists a finite positive real c̄ such that maxi=1,...,n maxj=1,...,q |p̃ψij | ≤
c̄√
n̄

with probability one. Then, denoting by ιn̄ a n̄-dimensional column vector of ones, for any t ∈ Z,

E
[∥∥∥P̃ψ′

n̄ φn̄t

∥∥∥2
]

= E

 q∑
k=1

(
n̄∑
i=1

p̃ψikφit

)2
 =

q∑
k=1

n̄∑
i=1

n̄∑
j=1

E[p̃ψikp̃
ψ
jkφitφjt]

≤
q∑

k=1

n̄∑
i=1

n̄∑
j=1

c̄2

n̄
E[φitφjt]

≤ qc̄2 max
k=1,...,q

ι′n̄√
n̄
E[φn̄tφ

′
n̄t]
ιn̄√
n̄
≤ qc̄2 max

k=1,...,q
max
bn̄

b′n̄bn̄=1

b′n̄Γ
φ
n̄bn̄

≤ qc̄2 max
k=1,...,q

sup
n̄∈N

max
bn̄

b′n̄bn̄=1

b′n̄Γ
φ
n̄bn̄ ≤ qc̄22πBφ,

in view of (36). Hence, it follows from Chebychev’s inequality that ‖P̃ψ′

n̄ φn̄t‖ = OP(1) and, there-
fore, ‖Pψ′

n̄ φn̄t‖ is OP

(√
n̄
n

)
. �

A.2 Proof of Theorem 1

Let xn̄t, ẑn̄t, zn̄t,φn̄t denote the first n̄ elements of xnt, ẑnt, znt,φnt, respectively. Then, from (41)

ût =

((
Λ̂z
n

)1/2
P̂z′
n̄ P̂z

n̄

(
Λ̂z
n

)1/2
)−1 (

Λ̂z
n

)1/2
P̂z′
n̄ ẑn̄t =

(
Λ̂z
n

)−1/2 (
P̂z′
n̄ P̂z

n̄

)−1
P̂z′
n̄ ẑn̄t

=

((
Λ̂z
n

)−1/2
−
(
Λψ
n

)−1/2
)(

P̂z′
n̄ P̂z

n̄

)−1
P̂z′
n̄ ẑn̄t

+
(
Λψ
n

)−1/2
((

P̂z′
n̄ P̂z

n̄

)−1
−
(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1
)

P̂z′
n̄ ẑn̄t

+
(
Λψ
n

)−1/2 (
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1 (
P̂z′
n̄ − ŴzPψ′

n̄

)
ẑn̄t

+
(
Λψ
n

)−1/2
Ŵz

(
Pψ′

n̄ Pψ
n̄

)−1
Pψ′

n̄

(
Ân̄(L)−An̄(L)

)
xn̄t

+
(
Λψ
n

)−1/2
Ŵz

(
Pψ′

n̄ Pψ
n̄

)−1
Pψ′

n̄ zn̄t

= I + II + III + IV + V, say. (66)
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For I, since((
Λ̂z
n

)−1/2
−
(
Λψ
n

)−1/2
)

=

((
Λ̂z
n

)−1
−
(
Λψ
n

)−1
)((

Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

=
(
Λ̂z
n

)−1 (
Λψ
n − Λ̂z

n

)(
Λψ
n

)−1
((

Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

, (67)

and because of (67) and Lemmas 5(i) and 7, the norm of I is bounded from above by∥∥∥∥(Λ̂z
n

)−1
∥∥∥∥ ∥∥∥Λψ

n − Λ̂z
n

∥∥∥ ∥∥∥∥(Λψ
n

)−1
∥∥∥∥
∥∥∥∥∥
((

Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

∥∥∥∥∥
∥∥∥∥(P̂z′

n̄ P̂z
n̄

)−1
P̂z
n̄

∥∥∥∥ ‖ẑn̄t‖
= OP

(
1

n2

√
nζnT

√
n

√
n√
n̄

√
n̄

)
(68)

since ‖ẑn̄t‖ = OP(
√
n̄) by Lemma 2, and ‖(P̂z′

n̄ P̂z
n̄)−1P̂z

n̄‖ = OP(
√

n
n̄) by Lemma 9(i) and 9(ii). This

yields I = OP

(
ζnT√
n

)
.

For II, first notice that from Lemma 5(ii),∥∥∥Pψ
n̄Ŵz − P̂z

n̄

∥∥∥ = OP

( n̄
n
ζnT

)
. (69)

Then, ((
P̂z′
n̄ P̂z

n̄

)−1
−
(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1
)

=
(
P̂z′
n̄ P̂z

n̄

)−1 (
ŴzPψ′

n̄ Pψ
n̄Ŵz − P̂z′

n̄ P̂z
n̄

)(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1

=
(
P̂z′
n̄ P̂z

n̄

)−1 (
ŴzPψ′

n̄

(
Pψ
n̄Ŵz − P̂z

n̄

)
+
(
ŴzPψ′

n̄ − P̂z′
n̄

)
P̂z
n̄

)(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1

and, because of (69) and Lemma 9,∥∥∥∥((P̂z′
n̄ P̂z

n̄

)−1
−
(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1
)∥∥∥∥ = OP

(√
n

n̄

n̄

n
ζnT

n

n̄

)
= OP

(√
n

n̄
ζnT

)
. (70)

Because of (70), and Lemmas 2, 7(i), and 9(i), the norm of II is bounded from above by∥∥∥∥(Λψ
n

)−1/2
∥∥∥∥ ∥∥∥∥((P̂z′

n̄ P̂z
n̄

)−1
−
(
ŴzPψ′

n̄ Pψ
n̄Ŵz

)−1
)∥∥∥∥ ∥∥∥P̂z′

n̄

∥∥∥ ‖ẑn̄t‖
= OP

(
1√
n

√
n

n̄
ζnT

√
n̄

n

√
n̄

)
= OP

(√
n̄

n
ζnT

)
, (71)

yielding II = OP

(√
n̄
nζnT

)
.

By (69) and Lemmas 2, 7(i), and 9(i), one immediately gets III = OP

(√
n̄
nζnT

)
and IV = OP

(
ζnT√
n

)
.

Finally, consider term V . Recall that, from Assumption (S(d1)), (36), (46), and Lemma 1(i), for
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any n ∈ N, as T →∞,

1

T

T∑
t=1

zntz
′
nt −→P RnΓ

uR′n + Γφn = Pψ
nΛψ

nPψ′
n + Γφn

(see also the proof of Lemma 3). Considering the upper-left n̄ × n̄ submatrix Rn̄Γ
uR′n̄ = Pψ

n̄Λψ
nPψ′

n̄

of RnΓ
uR′n, it follows that zn̄t = Pψ

n̄

(
Λψ
n

)1/2
(Γu)−1/2 ut + φn̄t. Collecting terms,

ût − Ŵz (Γu)−1/2 ut = I + II + III + IV + Ŵz
(
Λψ
n

)−1/2 (
Pψ′

n̄ Pψ
n̄

)−1
Pψ′

n̄ φn̄t. (72)

Recalling that ‖Ŵz‖ = 1, it follows from (72) that, in view of Lemmas 7(i), 9(ii), and 10,

∥∥∥ût − Ŵz (Γu)−1/2 ut

∥∥∥ ≤ ∥∥∥∥(Λψ
n

)−1/2
∥∥∥∥ ∥∥∥∥(Pψ′

n̄ Pψ
n̄

)−1
∥∥∥∥ ∥∥∥Pψ′

n̄ φn̄t

∥∥∥+OP

(√
n̄

n
ζnT

)

= OP

(
1√
n

n

n̄

√
n̄

n

)
+OP

(√
n̄

n
ζnT

)
= OP

(
max

(
1√
n̄
,

√
n̄

n
ζnT

))
.

This proves consistency.
Now, by (28), there exists a q × q positive definite diagonal matrix Lu such that Λψ

n
n →P Lu

as n → ∞. Similarly, by Lemma 9(ii), there exists a q × q positive definite matrix Mu such that,
as n→∞, nn̄Pψ′

n̄ Pψ
n̄ −→P Mu. Therefore, by Assumption (S(f1)), as n, T →∞,

√
n̄
(
ût − Ŵz (Γu)−1/2 ut

)
=
√
n̄Ŵz

(
Λψ
n

)−1/2 (
Pψ′

n̄ Pψ
n̄

)−1
Pψ′

n̄ φn̄t + oP(1)

= Ŵz

(
Λψ
n

n

)−1/2 (n
n̄

Pψ′

n̄ Pψ
n̄

)−1
√
n

n̄

(
Pψ′
n̄ φn̄t

)
+ oP(1)

−→d N
(
0q,W

u (Lu)−1/2 (Mu)−1 Pu
t (Mu)−1 (Lu)−1/2 Wu

)
,

since
√
n̄ζnT → 0, because of (48). �

B Proof of Theorem 2

B.1 Preliminary lemmas

Lemma 11. Collect the q largest eigenvalues of G̃z
T :=

ZnTZ
′
nT

n in L̃zT and the corresponding normalized
eigenvectors in Π̃z

T . As n, T →∞,

(i) 1
T

∥∥∥L̃zT −LψT∥∥∥ = OP

(
max

(
1√
n
, 1
T

))
;

(ii) there exists a q × q diagonal matrix Ŵ z
1 with entries ±1 such that, for any T̄ ≤ T such

that 1
T̄

+ T̄
T → 0 as T →∞,

∥∥∥Π̃z
T̄
−Πψ

T̄
Ŵ z

1

∥∥∥ = OP

(
T̄
T max

(
1√
n
, 1
T

))
.

Proof. The claim follows along the same lines as for Lemma 3 but using Assumption (S(d2), (37), and
Lemma 1(ii) instead of Assumption (S(d1), (36), and Lemma 1(i). �

Lemma 12. Collect the q largest eigenvalues of Ĝz
T :=

ẐnT Ẑ
′
nT

n in the q × q diagonal matrix L̂zT and
the corresponding normalized eigenvectors in Π̂z

T . As n, T →∞,
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(i) 1
T ‖L̂

z
T − L̃zT ‖ = OP(ζnT );

(ii) there exists a q × q diagonal matrix Ŵ z
1 with entries ±1 such that, 1

T̄
+ T̄

T → 0, as T →∞, such
that T̄ →∞, ‖Π̃z

T̄
− Π̂z

T̄
Ŵ z

2 ‖ = OP( T̄T ζnT ).

Proof. The claim follows along the same lines as for Lemma 4 but using Lemma 12 and (30). �

Lemma 13. As n, T →∞,
(i) 1

T ‖L̂
z
T −L

ψ
T ‖ = OP(ζnT );

(ii) for any T̄ ≤ T such that 1
T̄

+ T̄
T → 0 as T →∞, ‖Π̂z

T̄
−Πψ

T̄
Ŵ z‖ = OP( T̄T ζnT ), with Ŵ z = Ŵ z

1 Ŵ
z
2 ,

where Ŵ z
1 is defined in Lemma 11 and Ŵ z

2 in Lemma 12.

Proof. Same as Lemma 5 but using Lemmas 11 and 12. �

Lemma 14. There exists a positive definite q×q diagonal matrix LR such that LψT
T −→P LR as T →∞.

Proof. This Lemma is an immediate consequence of (30). �

Lemma 15. (i)

∥∥∥∥∥∥
(
LψT
T

)−1
∥∥∥∥∥∥ = OP(1) as T →∞; (ii)

∥∥∥∥∥∥
(
L̂zT
T

)−1
∥∥∥∥∥∥ = OP(1) as n, T →∞.

Proof. Part (i) follows from (30), part (ii) from Lemma 13(i) and part (i). �

Lemma 16. Denoting by eTt the tth column of IT ,

max
t=1,...,T

∥∥∥e′TtΠψ
T

∥∥∥ = OP

(
1√
T

)
as T →∞.

Proof. Same as the proof of Lemma 8 but using Lemma 15(i). �

Lemma 17. For any T̄ ≤ T such that 1
T̄

+ T̄
T → 0 as T →∞,

(i) ‖Πψ
T̄
‖ = OP

(√
T̄

T

)
; (ii) ‖Πψ′

T̄
Πψ
T̄
‖ = OP

(
T̄

T

)
.

Proof. Same as Lemma 9 but using Lemma 16. �

Lemma 18. For any i ∈ N and any T̄ ≤ T such that 1
T̄

+ T̄
T → 0 as T →∞,√

T

T̄
‖Πψ′

T̄
ϕiT̄ ‖ = OP(1).

Proof. Recall that, in view of Lemma 17(ii), T
T̄
‖Πψ′

T̄
Πψ
T̄
‖ = OP(1). Therefore, for the kth column of Πψ

T̄
,

denoted as πψ
T̄k

, it holds that T
T̄
πψ′
T̄ k
πψ
T̄k

= OP(1). Let π̃ψ
T̄k

:= πψ
T̄k
/
√
πψ′
T̄ k
πψ
T̄k

, so that π̃ψ′
T̄ k
π̃ψ
T̄k

= 1.

Let π̃ ψik be the ith entry of π̃ψ
T̄k

and denote by Π̃ψ
T̄

the matrix with columns π̃ψ
T̄1
, . . . , π̃ψ

T̄ T̄
. Due to

normalization of π̃ψ
T̄k

and Lemma 16, there exists a finite positive real c̄ such that

max
t=1,...,T

max
j=1,...,q

|π̃ ψtj | ≤
c̄√
T̄
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with probability one. Then, denoting by ιT̄ the T̄ -dimensional column vector of ones, for any i ∈ N,

E
[∥∥∥Π̃ψ′

T̄
ϕiT̄

∥∥∥2
]

= E

 q∑
k=1

 T̄∑
t=1

p̃ψtkφit

2 =

q∑
k=1

T̄∑
t=1

T̄∑
s=1

E[π̃ ψtkπ̃
ψ
skφitφis]

≤
q∑

k=1

T̄∑
t=1

T̄∑
s=1

c̄2

T̄
E[φitφis] ≤ qc̄2 max

k=1,...,q

ι′
T̄√
T̄
E[ϕiT̄ϕ

i′
T̄ ]
ιT̄√
T̄

≤ qc̄2 max
k=1,...,q

max
cT̄

c′
T̄
cT̄=1

c′T̄E[ϕiT̄ϕ
i′
T̄ ]cT̄

≤ qc̄2 max
k=1,...,q

max
cT̄

c′
T̄
cT̄=1

sup
n∈N

1

n

n∑
i=1

c′T̄E[ϕiT̄ϕ
i′
T̄ ]cT̄

≤ qc̄2 max
k=1,...,q

sup
T̄∈N

max
cT̄

c′
T̄
cT̄=1

c′T̄G
φ
T̄
cT̄ ≤ qc̄22πBφ,

because of (37) and sinceGφ
T = limn→∞

1
n

∑n
i=1 E[ϕi

T̄
ϕi′
T̄

]. From Chebychev’s inequality, ‖Π̃ψ′

T̄
ϕi
T̄
‖ = OP(1)

and, therefore, ‖Πψ′

T̄
ϕi
T̄
‖ = OP

(√
T̄
T

)
. �

B.2 Proof of Theorem 2

The proof is entirely the same as for Theorem 1, with Lemmas 11–18 replacing Lemmas 3–10. �

C Proof of Theorem 3

Proof. First, for any i = 1, . . . , n, we have, from the proof of Theorem 1, R′i = pψ′i (Λψ
n)1/2(Γu)−1/2.

Therefore, from the definition of Ř′i in (39),

Ř′i −R′i (Γu)1/2 Ŵz = p̂z′i

(
Λ̂z
n

)1/2
− pψ′i

(
Λψ
n

)1/2
Ŵz = p̂z′i

(
Λ̂z
n

)1/2
− pψ′i Ŵz

(
Λψ
n

)1/2

= pψ′i Ŵz
(
Λ̂z
n −Λψ

n

)1/2
+
(
p̂z′i − pψ′i Ŵz

)(
Λψ
n

)1/2
+
(
p̂z′i − pψ′i Ŵz

)(
Λ̂z
n −Λψ

n

)1/2

= I + II + III, say. (73)

Term I is OP(ζnT ) because of Lemmas 5(i) and 8, term II is OP

(√
n̄
nζnT

)
because of of Lemmas 5(ii)

and 8 (see also the arguments in Lemma 6 in Forni et al., 2017), and term III is oP(ζnT ). From (73),
we get ∥∥∥Ř′i −R′i (Γu)1/2 Ŵz

∥∥∥ = OP(ζnT ) (74)

which, combined with Theorem 1(i), gives

∥∥Ř′iût −R′iut
∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
= OP

(
max

(
1√
h̄
, ζnT

))
. (75)

Following a reasoning similar to (73), since, from the proof of Theorem 2, for any t = 1, . . . , T we
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have u′t = πψ′t (LψT )1/2(ΣR)−1/2, the definition of ǔ′t in (42) and Lemmas 13 and 16 imply that∥∥∥ǔ′t − u′t
(
ΣR
)1/2

Ŵ z
∥∥∥ = OP(ζnT ) (76)

which, combined with Theorem 2(i), yields∥∥∥ǔ′tR̂i − u′tRi

∥∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
= OP

(
max

(
1√
h̄
, ζnT

))
. (77)

Part (i) of the theorem filliws from (75) and (77).
Now, from the proof of Theorems 1 and 2 and using (74) and (76),

Ř′iût = R′iut + R′i (Γu)1/2 Ŵz
(
ût − Ŵz (Γu)−1/2 ut

)
+
(
Ř′i −R′i (Γu)1/2 Ŵz

)
ût

= R′iut + R′i (Γu)1/2 Ŵz
(
Λψ
n

)−1/2 (
Pψ′
n̄ Pψ

n̄

)−1
Pψ′

n̄ φn̄t +
(
Ř′i −R′i (Γu)1/2 Ŵz

)
ût +OP(ζnT )

= R′iut + R′i (Γu)1/2 Ŵz
(
Λψ
n

)−1/2 (
Pψ′
n̄ Pψ

n̄

)−1
Pψ′
n̄ φn̄t +OP(ζnT ), (78)

and

ǔ′tR̂i = u′tRi + u′t
(
ΣR
)1/2

Ŵ z
(
R̂i − Ŵ z

(
ΣR
)1/2

Ri

)
+
(
ǔ′t − u′t

(
ΣR
)1/2

Ŵ z
)

R̂i

= u′tRi + u′t
(
ΣR
)1/2

Ŵ z
(
LψT

)−1/2 (
Πψ′
T̄

Πψ
T̄

)−1
Πψ′
T̄
ϕiT̄ +

(
ǔ′t − u′t

(
ΣR
)1/2

Ŵ z
)

R̂i +OP(ζnT )

= u′tRi + u′t
(
ΣR
)1/2

Ŵ z
(
LψT

)−1/2 (
Πψ′
T̄

Πψ
T̄

)−1
Πψ′
T̄
ϕiT̄ +OP(ζnT ), (79)

since ‖ût‖ = OP(1) and ‖R̂i‖ = OP(1).
From Theorem 1, (78), and because of (57), as n, T →∞,

√
n̄
(
Ř′iût −R′iut

)
=
√
n̄R′i (Γu)1/2 Ŵz

(
Λψ
n

)−1/2 (
Pψ′
n̄ Pψ

n̄

)−1
Pψ′
n̄ φn̄t + oP(1)

= R′i (Γu)1/2 Ŵz

(
Λψ
n

n

)−1/2 (n
n̄

Pψ′
n̄ Pψ

n̄

)−1
√
n

n̄

(
Pψ′
n̄ φn̄t

)
+ oP(1)

−→d N
(
0q,R

′
i (Γu)1/2 Wu (Lu)−1/2 (Mu)−1 Pu

t (Mu)−1 (Lu)−1/2 Wu (Γu)1/2 Ri

)
,

where Wu = plimn,T→∞ Ŵz as defined in Theorem 1.
Likewise, from Theorem 2, (79), and because of (57), as n, T →∞,

√
T̄
(
ǔ′tR̂i − u′tRi

)
=
√
T̄ u′t

(
ΣR
)1/2

Ŵ z
(
LψT

)−1/2 (
Πψ′
T̄

Πψ
T̄

)−1
Πψ′
T̄
ϕiT̄ + oP(1)

= u′t
(
ΣR
)1/2

Ŵ z

(
LψT
T

)−1/2(
T

T̄
Πψ′
T̄

Πψ
T̄

)−1
√
T

T̄

(
Πψ′
T̄
ϕiT̄

)
+ oP(1)

−→d N
(
0q,u

′
t

(
ΣR
)1/2

WR
(
LR
)−1/2 (MR

)−1 PR
i

(
MR

)−1 (LR
)−1/2

WR
(
ΣR
)1/2

ut

)
,

where WR = plimn,T→∞ Ŵ
z as defined in Theorem 2.
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Moreover, defining

Ωit := lim
n,T→∞

(√
nT√
n̄T̄

)
E
[
Pψ′
n̄ φn̄tϕ

i′
T̄Πψ

T̄

]
.

as n, T →∞, when h̄ = n̄ = T̄ ,√
n

n̄
Pφ′
n̄ φn̄t +

√
T

T̄
Πφ′
T̄
ϕiT →d N

(
0q,Pu

t + PR
i + Ωit + Ω′it

)
.

Therefore, as n, T →∞,√
h̄
((
ωnT Ř′iût + (1− ωnT )ǔ′tR̂i

)
−R′iut

)
→d N

(
0, ω2V u

it + (1− ω)2V R
it + 2ω(1− ω)Cit

)
,

where

V u
it = R′i (Γu)1/2 Wu (Lu)−1/2 (Mu)−1 Pu

t (Mu)−1 (Lu)−1/2 Wu (Γu)1/2 Ri,

V R
it = u′t

(
ΣR
)1/2

WR
(
LR
)−1/2 (MR

)−1 PR
i

(
MR

)−1 (LR
)−1/2

WR
(
ΣR
)1/2

ut,

Cit = R′i (Γu)1/2 Wu (Lu)−1/2 (Mu)−1 Ωit

(
MR

)−1 (LR
)−1/2

WR
(
ΣR
)1/2

ut. �

D Proof of Theorem 4

Let Cn(L) := [An(L)]−1 and Ĉn(L) := [Ân(L)]−1. Then, for any i = 1, . . . , n and t = 1, . . . , T ,

χ̂it − χit = e′i

(
Ĉn(L)ψ̂nt −Cn(L)ψnt

)
= e′i

(
Ĉn(L)−Cn(L)

)
ψnt + e′iCn(L)

(
ψ̂nt −ψnt

)
+ e′i

(
Ĉn(L)−Cn(L)

)(
ψ̂nt −ψnt

)
= I + II + III, say, (80)

where ei denotes the ith column of In.
From Proposition 2, we have, for any s = 1, . . . ,m, js = 1, . . . , (q + 1), and hs = 1, . . . , (q + 1),

as n, T →∞,

max
`=1,...,ps

max
js,hs=1,...,(q+1)

(âjs,hs,` − ajs,hs,`)2 ≤
∥∥∥Â[s] −A[s]

∥∥∥2
= OP(ζ2

n,T ), (81)

where ajs,hs,` and âjs,hs,` are the (j, h)th entries of A
(i)
` and of Â

(i)
` , respectively.

Without loss of generality, let us assume ps = 1 for all s = 1, . . . ,m, so that An(L) = In −AnL

and Ân(L) = In − ÂnL. Thus, Cn(L) =
∑∞

k=0 Ak
n and Ĉn(L) =

∑∞
k=0 Âk

n. Then, for any i = 1, . . . , n,
there exists an s ∈ {1, . . . ,m} such that χit is an element of the sth (q + 1)-dimensional subvector χ(s)

t

of χnt. Let ci,js,k and ĉi,js,k denote the (i, js)th entries of Ak
n and Âk

n, respectively (here js indicates
the jth column of block s of Ak

n and Âk
n).

Assumption (A2(a)), which holds with probability one in view of Assumption (S(a)) implies summa-
bility of the autoregressive coefficients, for any i = 1, . . . , n and t = 1, . . . , T and, for any ε > 0 and η > 0,
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the existence of a constant K = K(ε, η) independent of i, js, s, and t such that

P

∣∣∣∣∣∣
q+1∑
js=1

∞∑
k=K+1

(ĉi,js,k − ci,js,k) ψjs,t−k

∣∣∣∣∣∣ > η

 ≤ ε.
Hence, we can select K such that∣∣∣∣∣∣

q+1∑
js=1

∞∑
k=K+1

(ĉi,js,k − ci,js,k) ψjs,t−k

∣∣∣∣∣∣ = oP(ζnT ).

Then, the norm of I is such that

∣∣∣e′i (Ĉn(L)−Cn(L)
)
ψnt

∣∣∣ ≤ K∑
k=0

 q+1∑
js=1

(ĉi,js,k − ci,js,k)
2 ψ2

js,t−k

1/2

+ oP(ζnT )

≤
K∑
k=0

 q+1∑
js=1

ψ4
js,t−k

1/4 q+1∑
js=1

(ĉi,js,k − ci,js,k)
4

1/4

+ oP(ζnT )

= OP(ζnT ), (82)

because of (81) and the continuous mapping theorem.
Similarly, for the norm of II and because of Assumption (A2(a)), we can select K such that∣∣∣∣∣∣

q+1∑
js=1

∞∑
k=K+1

ci,js,k

(
ψ̂js,t−k − ψjs,t−k

)∣∣∣∣∣∣ = oP(ζnT ) (83)

and, therefore, by Theorem 3, when h̄ = n̄ = T̄ ,

∣∣∣e′iCn(L)
(
ψ̂nt −ψnt

)∣∣∣ ≤ K∑
k=0

 q+1∑
js=1

c2
i,js,k

(
ψ̂js,t−k − ψjs,t−k

)2

1/2

+ oP(ζnT )

≤
K∑
k=0

 q+1∑
js=1

c4
i,js,k

1/4 q+1∑
js=1

(
ψ̂js,t−k − ψjs,t−k

)4

1/4

+ oP(ζnT )

= OP

(
max

(
1√
h̄
, ζnT

))
+ oP(ζnT ). (84)

Obviously III = oP(ζnT ). Therefore, substituting (82) and (84) into (80), we prove consistency.
Now, from Theorem 1, for any finite k ∈ N such that k < T and any t = k+ 1, . . . , T , as n, T →∞,

√
n̄




ût
...

ût−k

−


ut
...

ut−k


 −→d N

(
0qk,Vu

t...t−k
)
, (85)
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where

Vu
t...t−k =

{
Ik ⊗

[
Wu (Lu)−1/2 (Mu)−1

]}
Pu
t...t−k

{
Ik ⊗

[
(Mu)−1 (Lu)−1/2 Wu

]}
and

Pu
t...t−k = lim

n→∞

n

n̄
E

{Ik ⊗Pψ′
n̄

}
φn̄t
...

φn̄t−k




φn̄t
...

φn̄t−k


′ {

Ik ⊗Pψ′
n̄

}′ .
Similarly, from Theorem 2, for any finite ` ∈ N such that {i1, . . . , i`} ⊂ {1, . . . , n}, as n, T →∞,

√
T̄




R̂i1
...

R̂i`

−


Ri1
...

Ri`


 −→d N

(
0q`,VR

i1...i`

)
, (86)

where

VR
i1...i`

=
{

I` ⊗
[
WR

(
LR
)−1/2 (MR

)−1
]}

PR
i1...i`

{
I` ⊗

[(
MR

)−1 (LR
)−1/2

WR
]}

and

PR
i1...i`

= lim
T→∞

T

T̄
E

{I` ⊗Πψ′
T̄

}
ϕi1
T̄
...
ϕi`
T̄



ϕi1
T̄
...
ϕi`
T̄


′ {

I` ⊗Πψ′
T̄

}′ .
For any i = 1, . . . , n, define the (q + 1)× q(K + 1) matrix

Ci :=


ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,1,K

...
. . .

...
ι′q ⊗ ci,q+1,0 . . . ι′q ⊗ ci,q+1,K

 ,

and the (K + 1)× q(q + 1) matrix

Di :=


ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,q+1,0

...
. . .

...
ι′q ⊗ ci,1,K . . . ι′q ⊗ ci,q+1,K

 ,

where ιq is a q-dimensional vector of ones. For given i = 1, . . . , n, let R′ijs be the row ofRn corresponding
to the jsth series in block s, which is the block to which series i belongs. Then, from (80), (85), (86),
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and given K as defined in (83), for any i = 1, . . . , n and t = 1, . . . , T , as n, T →∞,

√
h̄ (χ̂it − χit) =

√
h̄

K∑
k=0

q+1∑
js=1

ci,js,k

(
ψ̂js,t−k − ψjs,t−k

)
+ oP(1)

=
√
h̄

K∑
k=0

q+1∑
js=1

ci,js,k

(
ωnTR′ijs ût−k + (1− ωnT )u′t−kR̂ijs −R′ijsut−k

)
+ oP(1)

=
√
h̄

K∑
k=0

q+1∑
js=1

{
ωnT ci,js,kR

′
ijs

(
ût−k − ut−k

)
+ (1− ωnT ) ci,js,ku

′
t−k

(
R̂ijs −Rijs

)}
+ oP(1)

−→d N

(
0,ω′

(
W u
it Git

Git WR
it

)
ω

)

where ω = limnT→∞

(
ωnT

1− ωnT

)
,

W u
it = ι′q+1

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2



Vu

t...t−k

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2




′

ιq+1,

WR
it = ι′K+1

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2



VR

i1...iq+1

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2




′

ιK+1,

Git = ι′q+1

Ci �

ι′K+1 ⊗


R′i1(Γu)1/2

...
R′iq+1

(Γu)1/2



Oi1...iq+1

t...t−K

Di �

ι′q+1 ⊗


u′t(Σ

R)1/2

...
u′t−K(ΣR)1/2




′

ιK+1,

with

Oi1...iq+1

t...t−K
=
{

IK+1 ⊗Wu (Lu)−1/2 (Mu)−1
}

Ωi1...iq+1

t...t−K

{
Iq+1 ⊗WR

(
LR
)−1/2 (MR

)−1
}′
,

Ωi1...iq+1

t...t−K
= lim

n,T→∞

√
nT√
n̄T̄

E

{IK+1 ⊗Pψ′
n̄

}
φn̄t
...

φn̄t−K




ϕi1
T̄
...

ϕ
iq+1

T̄


′ {

Iq+1 ⊗Πψ′
T̄

}′ ,
and ιK+1 and ιq+1 the vectors of ones with dimensions K + 1 and q + 1, respectively. �
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