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Abstract—We present a novel methodology to precisely calibrate
the subaperture views of an array of plenoptic 2.0 cameras. Such
cameras consist of a micro lens array, and the image captured
through them is a lenslet image that can be converted to a dense
set of pinhole views, the so-called subaperture images. This cam-
era array provides several dense multiview images at some sparse
points of 3D space. To find the relative position of those views,
simply using structure-from-motion creates misalignments due to
the small disparities within each set. Additionally, a traditional
calibration using calibration patterns will also fail due to the
complicated objectives of plenoptic 2.0 cameras and artifacts
when they are converted to subaperture views. In this paper, we
propose two calibration steps (a) to register the sparse central
subaperture views using Structure-from-Motion which makes it
robust to artifacts in the subaperture views, and (b) to register
all dense multiview sets per plenoptic camera using camera’s
lenses specifications, disparity and distance to the scene. These
two steps are followed by a novel merging process of the former
registrations, to achieve precise calibration parameters for all
the subaperture views of the multi-plenoptic array. Experimental
results objectively and subjectively demonstrate high accuracy of
the calibration. We show a 10% smaller reprojection error than
using a naive structure-from-motion approach and verify that our
method is suitable for high precision view synthesis applications
such as virtual reality and holography.

Index Terms—Plenoptic, Calibration, Light Field, Structure-
from-Motion, Multiview, Virtual view, Depth Map

I. INTRODUCTION

Plenoptic 2.0 cameras [1]–[4] allow capturing dense in-
formation within a very small distance (baseline) thanks to
their micro lens array (MLA) structure. The images behind
the MLA can be matched together to find precisely the 3D
structure of the photographed objects. Hence, the plenoptic
cameras found industrial and scientific applications, such as
digital microscopy. Such cameras are also interesting in the
domain of view synthesis with depth image-based rendering
(DIBR) [5] as they provide, in one capture shot, several
regularly spaced pinhole subaperture images. However, due to
the size of the MLA, it is practically impossible to capture in
one shot the occlusion information which is necessary for high
quality view synthesis applications, such as virtual reality and
holography, which require that the acquisitions cover a large
range as in a classical camera array.
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To combine the advantages of classical cameras arrays with
those of plenoptic cameras, a solution is hence to capture a
scene with an array of plenoptic cameras. Such arrays have
a potential in development of view synthesis methods using
their dense capture ability with a large navigation range. Un-
fortunately, if the calibration between distant pinhole images
is a vastly explored field [6], usual calibration methods fail
to precisely register the subaperture images due to their small
baseline. Camera parameters retrieval is widely explored for
regular cameras. They are described with various complexity
models, with and without distortion. Intrinsic camera param-
eters can be found using calibration patterns [7], [8] or by
solving the pose-from-n-points problem [6], [9], [10].

However, to the best of our knowledge, no calibration
method for subaperture views of the plenoptic 2.0 has been
proposed; only a calibration method for arrays of plenoptic
1.0 [11] was recently released [12]. For plenoptic 1.0, using
traditional calibration patterns is straightforward because of
their simple objectives (with spatial resolution [11]). Hence,
the conversion to subaperture views is as simple as pixel
replacement and alignment. This approach fails with an array
of plenoptic 2.0 cameras. Due to complicated objectives of
such cameras (spatial-angular resolution [2]), the subaperture
views converted from lenslet image will have artifacts, and
consequently the detection and matching of the constraint
features of the calibration pattern will not be reliable [13].
Nevertheless, it is possible to use dotted calibration patterns
to calibrate the microlens array image and avoid uncertainties
due to similar edges in neighbouring microlenses [13].

To make use of images captured by a plenoptic camera
2.0, several methods [4] have been designed for conversion
from multilens image (aka. lenslet image captured through
MLA, or sub-images) to subaperture images which is a chal-
lenging problem due to the complicated optical configuration
of plenoptic 2.0 cameras [14]–[16]. As this conversion is
done numerically based on adaptive block matching estimation
among sub-images, it is possible to compute accurate camera
parameters for the resulting multiview set, based on the camera
specification, disparity and distance of the scene objects, as
provided only internally in MPEG-I-Visual’s work on dense
light fields [17], that we release publicly in this paper.

On the other hand, to find the relative position among
distant sets of subaperture views of a plenoptic 2.0 array and
be robust to artifacts in the subaperture views, we propose
using the Structure-from-Motion (SfM) which only relies on



Fig. 1: Pipeline of the proposed method, from MLA to calibrated array of multiview images.

matching the natural features among images, for which com-
plete pipelines for scene reconstruction and camera registration
have been described [18], [19]. In this paper, we compute the
relative pose of distant pinhole cameras using the open-source
software Colmap [18], [20] - based on SfM, which shows good
performances [21].

Beyond the multiview calibration for one plenoptic 2.0
camera, we present a solution to accurately compute the
relative poses of the multi-plenoptic subaperture cameras, by
combining two approaches that are alone insufficient to obtain
the complete registration: SfM for calibration sparse central
subaperture views, and calibration of all subaperture views
of an individual plenoptic camera. Our method is based on
matching the scene reconstructions obtained using the two ap-
proaches. Once the relative scale of each calibration is known,
we merge the two models and obtain the camera parameters
for the complete scene, making the dataset ready for view
synthesis applications based on plenoptic 2.0 acquisition. We
test our method on a natural dataset, reaching a minimum
PSNR of 28dB for view synthesis applications of distant
images, and 39dB for low-parallax images.

II. PROPOSED CALIBRATION METHOD

In this section, we explain the details of our approach to
calibrate the full multi-plenoptic camera dataset. The main
steps of our method are shown in Fig. 1.

A. From multilens arrays to multi-subaperture views
We assume we have an array of X×Y plenoptic 2.0 cameras

images. In this work, we have set X × Y = 7 × 3. The first
step is the conversion from array of sub-images (lenslet image)
to their corresponding subaperture multiview representation
(see Fig. 1(a)). This is performed with the MPEG-I-Visual
and Lenslet Video Coding software; Reference Lenslet content
Convertor (RLC) [15], [16], [22]–[26]. RLC computes a set of
n×n (here 5×5) subaperture views regularly spaced associated
to one lenslet image. Note that the number of subaperture
views will not influence the process.

B. Calibration of the central views of each subaperture set
Once the dataset is converted to a (7 × 3) × (5 × 5) array

of pinhole views, we first register the central views of each

5× 5 set (registration A, Fig. 1(b)). Those views form a 7× 3
regular array of pinhole cameras. We use the software Colmap
[18] to find the camera intrinsic and extrinsic parameters,
assuming no distortion and centered principal point (because
the images are recombined from the sub-images). We also
assume that all the images of the dataset have the same
intrinsic camera parameters, as they are acquired with the
same camera. In order to better estimate the focal length and
solve the uncertainty along the forward axis, which appears
for parallel cameras [27], we added in this step seven views
shot by hand-holding the camera, with random rotation and
position.

Note that attempts to directly register all the subaperture
views with Colmap’s structure-from-motion leads to a failure
and incomplete registration due to the error induced by adja-
cent views with small disparity. However, it is possible to first
calibrate the central views of each subaperture set, then register
the remaining views. We compare the reprojection error of this
naive approach to the proposed one in the experiment section.

C. Calibration of the subaperture sets

In order to register the remaining images in each 5× 5 sets
(registration B, Fig. 1(c)), we use the method that we recently
proposed internally in the context of MPEG-I-Visual stan-
dardization activities on dense light fields [17]. We describe
the approach in the following. The camera parameters for the
multiview images are generated from the camera specifications
and the multiview image specifications, using Fig. 2, which
shows the camera optical system.

For the intrinsic parameters, we use the ones found with
registration A: the multiview focal length Fm (pix) and the
principal point, assumed to be centered. We also define p the
lenslet image pixel size (mm), W×H and w×h the multiview
image size and the lenslet image size (pix). The multiview
image pixel size is given by P = p × w

W . The main lens F
(mm) is given by F = Fm × P . The lenslet focal length f
is given by f = Fn × D, where Fn is the F-number and
D the diameter of the lenslet. If the lenslets have multiple
F-numbers (ex. Fn = 2.8/4/5.6), we use the middle value.
In Fig 2, s is the distance between the MLA and the image
sensor and is given by s = k×f

k−1 , where k is the number of



Fig. 2: Plenoptic 2.0 optical system.

Fig. 3: Sub-image containing N×N patches of the multiview.

linearly connecting sub-images which include the same object
in them. When the main lens is focusing at distance Xo from
it, the image is projected at F+e behind it, where e = F 2

Xo−F .
The MLA further projects the image on the image sensor. The
distance t between the image and the lenslet array must be
t = sf

s−f to have a sharp image on the sensor.
For the extrinsic parameters of each subaperture view, we

seek the baseline B between the subaperture views and their
rotation angle α as follows. As the multiview set is composed
of N ×N views, each lenslet image must contain all N ×N
viewpoints in it. Hence, the horizontal or vertical view-point
distance of the lenslet center is given by q = D′ sin(45◦)

N (pix),
where D′ is a safe diameter of lenslet (Fig. 3), because the
fringe area of lenslet image is distorted in color and shape.
In this experiment, D′ was set to D′ = D − 2(pix). If D′,
which includes the maximum disparity, is known from the
lenslet-to-multiview conversion process, the result becomes
more accurate.

As N is odd, we can easily trace back a ray (red in Fig. 2),
passing through the lenslet center, from the first multiview
point at q from the lenslet center. For simplicity, we put this
lenslet center on the main lens optical axis as shown in Fig. 2.
Now, the ray angle is given by β = arctan( qs ). We add an
additional ray (green in Fig. 2), whose angle is the same β,
passing through the backside focal point F of the main lens.
The main lens bends the additional (green) ray to parallel to the
optical axis, and bends the first (red) ray to cross the additional
ray at F in front of the main lens, where the subaperture
(multiview lens) plane of this Plenoptic camera is. Now, its
baseline length is given by B = F × tanβ. The camera

rotation angle is α = arctan(CF ), where C = (e+ t)× tanβ.
This means that the multiview cameras are a convergent type
and the convergent point distance from the subaperture plane
is given by Xc =

B
tanα . The multiview camera angle depends

on the horizontal and vertical view position αv = n×α, where
n =

[
−N2 ,+

N
2

]
.

The nearest/farthest object distance Xn/Xf are related
to the maximum/minimum disparity Dmax/Dmin, which are
measured by comparing the multiview images:

Xn =
B × F

C +Dmax × P

Xf =
B × F

C +Dmin × P

(1)

By measuring the nearest/farthest object distance Xn/Xf and
the disparity Dmax/Dmin, the correctness of these derived
parameters can be checked by inversely solving Eq. 1:

B = P
Dmax −Dmin

F × (X−1n −X−1f )
(2)

α = arctan

(
1

F

(
B × F

Xn
−Dmax × P

))
(3)

Hence for the view j at position (h, v) in a 5 × 5 set of
subaperture views, we get its extrinsic matrix

MB
j =

(
R(αh, αv) | (hB, vB, 0)
0, 0, 0, 1

)
(4)

where R(θ, φ) is the rotation matrix. Note that for the
central view, we obtain the identity matrix.

D. Merging the calibrations to an array of subaperture views

At this point, we have two sets of registered cameras: the
7× 3 central views (registration A) and each equivalent 5× 5
multiview images (registration B) (see Fig. 4(a) and (b)).
Structure-from-Motion is known to perform reconstruction up
to a scale, hence we cannot directly apply the transform
of the central views to the 5 × 5 sets to get the finalized
registration: we need to evaluate the scaling factor between
the two registrations. To perform this precisely, we compute
the depth maps for all central views of the subaperture sets
using the parameters of the two registrations: using the central
views in registration A, and using the surrounding subaperture



Fig. 4: Merging the two registrations. (a) The central views
registration obtained with Colmap [18] (b) The multiview
registration obtained with the proposed method (c) Depth maps
computed with Colmap [20] for the central views in each
registration (d) Merging the two models by using the scale
extracted from the depth maps.

Fig. 5: Capturing condition (left) of the 7x3 multiview LL
images (middle) captured by the XYZ-stage (right)

views for registration B (see Fig. 4(c)). The ratio between
the two depth maps gives the scaling factor between the two
registrations (see Fig. 4(d)). For a view i (center of a 5 × 5
subaperture set), this ratio ri is computed on the pixels lying
between the 2nd and the 9th deciles (excluding the 1st and the
10th) of each depth map (hereafter valid (imgi)) to avoid black
pixels and outliers:

ri = Meanp∈valid(img1)∩valid(img2)

(
di2(p)

di1(p)

)
(5)

where di1(p) (resp. di2(p)) is the depth of the pixel p in the
view i in registration A (resp. B). Finally, we find an average
ratio r = Meani(ri).

The final calibration is obtained by multiplying the camera
position of the central views in registration A by r and apply-
ing the transformation of each central view to the registration
B. Hence, for the camera i, its jth view of the multiview set
has the following extrinsic matrix:

Mi,j =MA
i ×MB

j (6)

where MA
i is the extrinsic of the camera i of registration A

(after scaling) and MB
j the extrinsic of camera j in registration

B (identity matrix for the central views MB
13).

III. EXPERIMENTS

In this section, we verify the proposed method on a natural
dataset. To simulate a camera array, we use a robotic XYZ-
stage with a mounted plenoptic 2.0 camera, ie. Raytrix [1]
(see Fig.5). We captured a lenslet image every centimeter in
the vertical and horizontal directions for a total of 7×3 shots.

Fig. 6: Configurations used for view synthesis. (a) Validating
registration A (b) Validating registration B (c) Validating
overall registration with central views (d) Validating overall
registration with lateral views.

Registration A B Complete Complete
7× 3 5× 5 (A+B) (A+ SfM)

(proposed) (proposed)
Reprojection 0.663 0.450 0.714 0.770
error [pix]
Number 21 + 7 25 525 + 175 525 + 175

of images

TABLE I: Reprojection error (pix) for each calibration (inter-
mediate registrations A and B, proposed approach and only
structure-from-motion).

The scene objects were placed between 47 cm and 74 cm away
from the plenoptic camera array.

After computing the camera parameters of our acquisition,
we triangulated the dataset using Colmap, in order to compute
the reprojection error. The error for each registration (A, B and
complete) is reported in Table I. We reach lower reprojection
error compared with only using Structure-from-Motion.

We verify our calibration by synthesising views of the
dataset from other viewpoints, a verification strategy used
in MPEG-I-Visual for the calibration the datasets meant for
view synthesis applications [28], [29]. The view synthesis is
done by DIBR using the Reference View Synthesis software
(RVS) [30]–[32]. The depth maps are computed with the Depth
Estimation Reference Software (DERS) [33]–[35]. Both soft-
ware are used in MPEG-I-Visual’s standardization activities
for immersive video compression.

Experiment 1: To verify the registration of the central
views (with Colmap [18], ie. registration A), we synthesize
the central views of each multiview set from the four central
views of the corners plenoptic views (see Fig. 6(a)). We

Fig. 7: Objective results (PSNR) of view synthesis using the
calibration of the central views (Experiment 1).



Fig. 8: Objective results (PSNR) of view synthesis using the
calibration per subaperture set (Experiment 2).

Fig. 9: Objective results (PSNR) of view synthesis using the
calibration of the central views (Experiment 3).

obtain an average PSNR of 28.44dB. Details of the PSNR
are given in Fig. 7. Obviously, we obtain a lower PSNR in the
most distant view from the input, due to occlusions. Results
verify the accuracy of the calibration among the sparse central
subaperture views.

Experiment 2: To verify the proposed registration B
within the multiview sets, we synthesize the views of a set
from four inputs on the sides of the 5×5 square (see Fig. 6(b)).
We obtain a PSNR of 36.89dB. The high values of the PSNR
result from the small disparity between each view, while it
verifies the accuracy of the calibration within the 5x5 views.

Experiment 3: To verify the consistency between the
two registrations (A and B), we synthesize all the views of
the dataset from the central viewpoints of the corners of the
plenoptic array and from the lateral viewpoints of the corners
of the array (see Fig. 6(c) and (d)). By this experiment, we can
verify the accuracy of the proposed merging process explained
in Fig. 1(d) and Fig. 4. The results are shown in Fig. 9. The
view synthesis using the central viewpoints (Fig. 9(a)) takes
the same input images and depth maps as the first experiment
and gives similar results for the overall registration as for the

Ground Truth Registration A Registration B Complete

Fig. 10: Result of the view synthesis of the central view
following the experiments of Fig. 6. First row: ground truth
image. Following rows: zoomed details. From left to right:
ground truth, calibration of the central images of each 5 × 5
set, calibration of the subaperture set, complete registration
using the corners’ lateral views.

centers calibrated with structure from motion. When using the
lateral viewpoints (Fig. 9(b)), the difference in performance
is imperceptible objectively (29.32dB vs. 29.98dB). Given
the objective values, we can confirm the accuracy of the
calibration for all subaperture views.

Finally, visual results of synthesized views are shown in
Fig. 10, where the middle view of the central camera has been
synthesized with RVS according to the four configurations of
Fig. 6. The configurations using input images in the corners of
the dataset present disocclusion artifacts due to the imperfect
depth estimation on objects’ borders. Zoomed details show
that the precision is pixel-wise, even if the lenslet to multiview
conversion induced some blur.



IV. CONCLUSION AND FUTURE WORK

We have presented a novel process to calibrate the intrinsic
and register the extrinsic parameters of plenoptic 2.0 camera
arrays. As a result, such arrays can serve as inputs for view
synthesis using dense captures with a large navigation range.
In order to use such content, the proposed calibration process
is designed to accurately calibrate and register multiple sets of
dense multiview images, converted from multi-plenoptic cam-
eras’ views. We proposed a merging process that combines the
classical structure-from-motion for calibration of the distant
cameras, and another calibration approach that we proposed
for the subaperture images of one plenoptic camera. Experi-
mental results verify the accuracy of the process, objectively
and subjectively.

In order to further improve the accuracy of the calibration,
we will consider a more complete camera model to address
distortion caused by the main lens and the micro lens array.
We plan to release the complete tool to MPEG and make it
publicly available in our repository.
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