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Abstract. In collective decision-making (CDM) a group of experts with
a shared set of values and a common goal must combine their knowledge
to make a collectively optimal decision. Whereas existing research on
CDM primarily focuses on making binary decisions, we focus here on
CDM applied to solving contextual multi-armed bandit (CMAB) prob-
lems, where the goal is to exploit contextual information to select the
best arm among a set. To address the limiting assumptions of prior work,
we introduce confidence estimates and propose a novel approach to de-
ciding with expert advice which can take advantage of these estimates.
We further show that, when confidence estimates are imperfect, the pro-
posed approach is more robust than the classical confidence-weighted
majority vote.
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1 Introduction

In CDM, a group (e.g. experts) aims to find collectively the best solution among
a set of alternatives for a given problem [4,3,12]. Example applications are peer
review processes, wherein the decisions of multiple expert reviewers are com-
bined to ensure that the qualitatively best works are selected from a pool of
submissions [13], and medical diagnostics, wherein a group of medical experts
must decide on the best treatments for patients [14].

The quality of the decision produced in CDM depends strongly on the ex-
pertise of each person involved in the process. Participants in the CDM process
should thus have the opportunity to provide an estimate of the confidence they
have in their advice, as is now mandatory in many paper reviewing procedures,
for instance. When confidence information is available, it should be considered
by a CDM system to enhance decision accuracy based on expert advice [2].
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The Exponential-weight Algorithm for Exploration and Exploitation using
Expert advice (EXP4 for short [2]) is a state-of-the-art CDM solver that learns
how to integrate the advice of a set of stationary experts, which can either be
trained predictors or human experts. Although it is considered to be one of the
key approaches to automatically infer collective decisions based on expert advice,
it does not consider expert confidence in the learning process. This is a limiting
assumption, as experts are likely to have expertise only for the region of the
problem on which they were trained. In general, it is safe to assume experts will
perform relatively well in settings for which they have prior experience. Querying
human experts for (honest) confidence estimates about their given advice has
been shown to improve performance on visual perception and value estimation
tasks [3,12]. The dominant approach in these tasks is to use confidence-weighted
majority votes [12]. The higher an expert’s confidence, the higher its opinion
(i.e., advice) will be weighted when aggregating.

We hypothesize that EXP4’s performance can be improved by including
such confidence information. We show how EXP4 can be adapted and under
which conditions this hypothesis holds, considering two types of confidence, i.e.,
a global/non-contextual and a contextual one. Yet, as one cannot assume that
an expert always provides correct confidence estimates, we also consider how
imperfect confidence estimates affect CDM, revealing thus the robustness of the
approach to noise.

Our analysis is performed in the framework of contextual multi-armed ban-
dits (CMAB) [11,21], where each arm is identified by a combination of contex-
tual features, associated in turn to a context-dependent reward retrieved from an
a-priori unknown function. Most problems that can be solved through CDM nat-
urally lend themselves to a formalization through CMABs. In medical decision-
making [19] for example, the set of possible patient-treatment pairs is the set
of arms and the contexts are pairwise patient-treatment characteristics (e.g. pa-
tient symptoms, the results of medical tests, treatment properties). The aim of
every medical expert is to select the most appropriate treatment (i.e., the best
arm) given the set of contexts and their associated information. Similarly, in a
review process the best submission(s) (i.e., the best arm(s)) must be selected
based on their context. Different from classic CMAB solving, CDM requires
all experts to solve the same problem given their knowledge and combine their
proposals/opinions in a way that maximizes expected outcome (e.g., maximiz-
ing the overall quality of accepted submissions by taking into account multiple
reviewers). As the exact performance of a set of experts can be difficult to esti-
mate a-priori, it is useful to learn to exploit their knowledge purposefully. EXP4
performs exactly this task.

Prior to reporting the methods used to generate the results of this paper,
the next section provides first of all the background knowledge on CMAB and
making decisions based on expert advice. The final section provides a discussion
on the generated results and the conclusions that can be drawn. Note that within
this work, we do not yet consider human experts. Experts are modelled as known
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stochastic contextual bandit algorithms [21], having different degrees of expertise
on the CMAB problems for which they need to provide advice.

2 Background

2.1 Contextual Multi-Armed Bandits

Formally, a multi-armed bandit (MAB) is characterized by a set of K arms
identified by numbers 1, ...,K and a function f that maps each arm to a reward
distribution. In MABs, the aim of a learner is typically to identify the best
arm k∗ = argmaxk∈K E[f(k)]. Because f is unknown, exploration is required to
identify the best arm(s). State-of-the-art MAB algorithms balance exploration
of uncertain arms and exploitation of likely optimal arms to minimize regret [1].

While MABs are useful as models of fundamental repeated decision-making,
they are limited in their applicability as they assume that arms are only charac-
terized by their identifier. In real world problems, decisions are typically made
based on additional information about the problem or the arms. The addition of
such information transforms a MAB into a contextual MAB (or CMAB). We fol-
low here the formalism for stochastic contextual bandits specified in [21], which
associates to each individual arm a context vector. At time t, the set of all arms
in a CMAB is characterized by K time-dependent d-dimensional context vectors
{ #»x 1,t, ...,

#»xK,t} ∈ RK×d. A CMAB also possesses a fixed but unknown scalar-
ization function f which maps each arm context to a reward, f : Rd → [0, 1]. A
policy π : RK×d → [0, 1]K maps all K arm contexts to a probability distribution
according to which the learner chooses an arm, i.e., kt ∼ πt(xt). In CMABs, the
regret over T rounds of a learner pulling arm kt ∼ πt(xt) by following its policy
πt at each time-step t is the sum of reward differences between the pulled arm
given the context at time t, i.e., f( #»x kt∼πt,t), and the best arm at each time step
t, i.e., maxKk=1 f(

#»x k,t);

RπT =

T∑
t=1

( K
max
k=1

f( #»x k,t)− f( #»x kt∼πt,t)
)

(1)

The aim of any learner is to minimize the regret RπT .
Most research on tackling CMABs focuses on approximating the underlying

distribution function f by balancing exploration and exploitation [6,18]. The
complexity of f can however be such that it either cannot be learnt by a ded-
icated CMAB algorithm, or it would be prohibitively expensive to do so from
scratch [16]. Alternatively, f can be relatively straightforward to approximate,
but the contexts cannot be meaningfully converted into datapoints. In natural
language processing for example, meaningfully capturing context can be hard to
accomplish by artificial systems [9]. In such complex cases, experts can provide
the knowledge required to select the appropriate arms. Indeed, experts can re-
duce the complex contextual information into an advice about each arm that can
be exploited for the arm choice. To this end, methods such as EXP4 – described
in the following section – learn to identify the best performing experts.
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2.2 EXP4: deciding with expert advice

When deciding with expert advice [2], a learner can query a set of N stationary
experts for their advice on which arm to select, with each expert having access
to every context vector #»x k,t associated with those arms. Each expert n has
some expertise about these contexts which it uses to express advice ξnk,t for each
arm k (i.e., the probability of pulling arm k). Such experts can be complex,
time-intensive algorithms trained in advance on similar data as well as human
experts that are able to infer relations beyond the reach of current algorithmic
approaches (some human intuitions for example are hard to translate into an
algorithm), or a mix of both. In this setting, the learner has no access to the
information about the best arm, and should rely on the experts. Informally, a
learner must identify which experts’ advice to follow. Although one can again
use regret minimization in this setting, the regret is now relative to the best
expert and not the best arm, hence the new formula for regret (R

′π
T ) is now:

R
′π
T =

N
max
n=1

T∑
t=1

(
f( #»x kt∼

#»
ξ
n
t ,t

)− f( #»x kt∼πt,t)
)

(2)

By combining the knowledge of multiple experts, algorithms can surpass the
performance of the best single expert, generating a negative regret value.

Algorithm 1 outlines the problem of deciding with expert advice. Solvers for
this problem provide a concrete implementation of (i) the policy which maps
advice to selected arms (Line 5), and (ii) how the policy is updated based on
the observed reward (Line 6). EXP4 [2] performs these tasks by maintaining a
weight wnt for each expert which it uses to compute a weighted average of expert
advice as follows:

pk,t =
∑
n∈N

exp(wnt )∑
n′∈N exp(w

n′
t )

ξnk,t (3)

Based on this weighted average, the learner pulls an arm kt and collects a reward
rt ∼ f( #»x kt,t). Weights are updated based on the collected reward, the expert’s

Algorithm 1 Deciding with expert advice
Require: N experts, contextual bandit with distribution function f and K arms of

dimensionality d, learner with policy π : [0, 1]K×N → [0, 1]K which maps advice to
a probability distribution over the arms

1: Each expert n has experience on Pn contexts sampled from its expertise region.
2: for t = 1, 2, ..., T do
3: Observe context matrix xt = { #»x 1,t, ...,

#»xK,t} and share it with experts
4: Get expert advice vectors ξt = {

#»

ξ 1
t , ...,

#»

ξ N
t }

5: Pull arm kt ∼ πt(ξt) and collect resulting reward rt
6: πt+1 = update(πt, ξt, kt, rt) . Learner updates its policy based on the

received advice, the pulled arm and the observed reward
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advice and the aggregated probability, as follows:

wnt+1 = wnt + γrtξ
n
kt,t

1

pkt,t
, (4)

where γ is the learning rate. The factor 1
pkt,t

is included to un-bias the estima-
tor by increasing the weight of arms that were unlikely to be pulled. However,
because of the factor’s high variance, EXP4 is prone to instability [5]. EXP4.P
[5] (see Algorithm 2), a later improvement on EXP4, reduces this instability by
including an additional term in the weight update:

v̂nt =

K∑
k=1

ξnk,t/pk,t (5)

wnt+1 = wnt +
γ

2

(
rtξ

n
kt,t

1

pkt,t
+ v̂nt

√
ln(N/δ)

KT

)
(6)

Intuitively, the term in (5) measures how much each expert disagrees with the
aggregated probabilities. For any given expert n this term will be large when
there is an arm k such that ξnk,t >> pk,t (in other words, if expert n disagrees

with the aggregated probability pk,t). The factor
√

ln(N/δ)
KT weighs this additional

term in function of the number of experts (N), the number of arms (K), the
number of time-steps (T ) and the parameter δ.

Neither EXP4 nor EXP4.P make use of contextual information when up-
dating weights. As a consequence, the weight of an expert is uniform over the
complete context space, which limits the usefulness of EXP4.P when expertise
is localized (e.g., when experts provide good advice for subsets of the context-
space, but do not show significant differences in performance when the whole
context-space is considered).

2.3 Weighted Majority Vote

To evaluate the results obtained for our adaptations of EXP4, we consider
as a baseline a straightforward aggregation method consisting in computing a
weighted average of all advices and acting greedily on this average, i.e., the
Weighted Majority Vote (WMV) algorithm [12]. The weights used in the WMV
can for example be based on experts’ expressed confidence, with higher con-
fidence resulting in a higher impact on the weighted aggregation. In binary
decision-making the usage of confidence-based weights is optimal [12]. Build-
ing on that result we propose a rudimentary extensions of the weighted majority
vote for the n-ary case by computing the weighted average of the advice vectors.
If the confidence cnk,t of an expert n at time t about context #»x k is expressed in
the range [0, 1] wherein confidences of 1, 0.5, and 0 correspond respectively to a
perfect expert, a random expert, and the worst possible expert, we can weigh
advice as follows: ∑

n∈N
ln

(
cnk,t

1− cnk,t

)
ξnk,t (7)
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Algorithm 2 Description of the EXP4.P algorithm
Require: δ > 0

1: Define γ =
√

lnN
KT

, set w1,i = 1 for i = 1, ..., N .
2: for t = 1, 2, ...T do
3: Get expert advice vectors ξt = {

#»

ξ 1
t , ...,

#»

ξ N
t }, each vector is of size K.

4: for k = 1, 2, ...,K do . compute weighted average

pk,t =
∑
n∈N

exp(wn
t )∑

n′∈N exp(wn′
t )

ξnk,t

5: Draw arm kt according to #»p t, and receive reward rt.
6: for n = 1, ..., N do . Update weights

ŷnt = ξnt,kt · rt/pkt,t

v̂nt =

K∑
k=1

ξnk,t/pk,t

wn
t+1 = wn

t +
γ

2

(
ŷnt + v̂nt

√
ln(N/δ)

KT

)

Given the weighted value, WMV greedily selects the arm with the highest result-
ing value. The term ln

(
cnk,t

1−cnk,t

)
provides optimal weights for the binary case [12],

because experts with worse-than-random confidence (cnk,t < 0.5) are weighted
negatively, and experts with random confidence (cnk,t = 0.5) are ignored. A fur-
ther discussion on how the confidence estimates can be obtained for CMABs is
given in Section 3.2. It should nevertheless be clear that this method heavily
relies on accurate confidence estimates. To address this drawback we propose
an expansion of EXP4.P in Section 3.4 which can take advantage of accurate
confidence estimates but is robust to inaccurate values.

3 Implementation

In this section we introduce our extensions to EXP4.P as well as the two forms
of confidence that will be used, i.e., contextual and non-contextual confidence,
and how they intuitively can be incorporated in the algorithm. We also hypoth-
esize that by using as advice the expected value obtained from pulling an arm
as opposed to the probability distribution over the arms an additional boost
in decision-making performance can be obtained. As already mentioned in the
introduction, experts are considered here as instances of known stochastic con-
textual bandit algorithms [21].
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3.1 Value Advice

When considering localized expertise in a CMAB problem, experts can be knowl-
edgeable about a subset of the active contexts but agnostic about the remaining
contexts. To provide probability advice, experts must make assumptions about
unknown arms which affect the probability distribution over all the arms. Previ-
ous work on deciding with expert advice has been limited to advice in the form
of probability distributions (see Section 2.2). In contrast, if advice consists of one
value estimate per arm, the uncertainty about some contexts does not affect the
given advice for the known arms. This is the main motivation behind our first
contribution: the introduction of value advice and a straightforward extension
of EXP4.P to this setting.

Concretely, in the case of value advice, if f̃nt is expert n’s approximation of
f at time t, then its advice for context vector #»xnk,t at time t is: ξnk,t = f̃nt (

#»xnk,t)
In the original algorithm, when using probability advice, EXP4.P computes

the following unbiased gain for each expert which is used to increment expert
weights: ŷnt = ξnk,trt/pk,t, with pk,t the probability of pulling arm k at time t.
When dealing with value advice we hypothesize that an expert with low predic-
tion errors will have low regret and use the negation of (unbiased) squared error
between the expert’s predicted value and the outcome: ŷnt = −(ξnk,t − rt)2/pk,t.
This value iteratively increases the relative weight of the experts with the lowest
mean square error. While value advice prevents the spread of uncertainty to all
arms, the expression of confidence as we explore in the following section can
further help the CDM algorithm in its decision-making.

3.2 Confidence in Contextual Multi-Armed Bandits

In what follows we propose two measures of confidence, i.e., non-contextual con-
fidence, which is analogous to the accuracy measure used for weighted majority
votes in binary classification [12], and contextual confidence, in which experts
provide confidence for active contexts.

Non-contextual confidence The non-contextual confidence takes inspiration
from the accuracy of experts in binary classification problems [12], wherein a
perfect expert has confidence 1, a random expert has confidence 0.5 and the worst
possible expert has confidence 0. Given an expert’s confidence cn (the probability
that an expert n’s advice is the right one), their advice can be optimally weighted
by ln( cn

1−cn ). The goal is to derive a similar measure for CMABS in CDM.
To this end one needs to derive a confidence for n-ary decisions similar to

the binary classification accuracy, with similar mappings as for the binary clas-
sification, i.e., a measure of 1 for perfect performance or optimal policy π∗, a
measure of 0 for the worst possible performance or worst policy π−, and 0.5 for
the performance of a random agent or uniform policy πU ). Because rewards are
not all-or-nothing as they are in binary classification, we define confidence in
terms of regret. Recall that RπT (or R

′π
T ) is the regret of policy π over T steps

(see Equation 1 and Equation 2). Given that policy, we derive its confidence
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over T steps by normalizing its regret with regards to the worst possible regret
(Rπ

−

T ) and random regret (Rπ
U

T ) as:

cπT =

(
Rπ
−

T −RπT
Rπ
−
T

)ρ
(8)

where ρ = log(0.5)/log(
Rπ
−
T −R

πU
T

Rπ
−
T

) scales the regret such that a random policy is
assigned a confidence of 0.5. Analogously to the binary classification setting, this
confidence measure has the following properties: (i) cπT ∈ [0, 1] for every policy
π, (ii) cπT < cπ

′

T ⇔ RπT > Rπ
′

T , (iii) cπ
U

T = 0.5, (iv) cπ
∗

T = 1 and v) cπ
−

T = 0.
Note that, while determining the exact confidence of an expert a priori would

be impossible, a reasonable assumption is that a confidence estimate is available
based on prior experiences. Such (approximate) confidence measure reflects how
confident a participant can be about its advice. This provides the aggregating
algorithm with information on how to weigh expert advice. Such confidence is
however limited in that it only captures a general trend rather than decision-
specific confidence. A more appropriate form of confidence, would depend on the
decision that needs to be made rather than on a sequence of decisions.

Contextual confidence It is reasonable to assume that expertise is not uni-
formly distributed over the context-space. Global confidence measures like the
one discussed earlier fail to capture such a heterogeneous expertise distribution.
When confidence can be considered on a case-by-case basis, i.e., based on the
contexts for which a decision must be made, we refer to it as contextual confi-
dence. Concretely, every time an expert n gives an advice ξnk,t for an arm k, she
can also express a confidence measure cnk,t related to that advice. We assume
that this confidence is on average correlated to the expert’s performance.

Confidences are expressed for the advice on the current context xk,t, which
is, intuitively, how likely it is that following the expert’s advice for that arm
will help the learner pick the best arms. An expert’s lack of confidence might
reflect that the expert has spent little time solving problems in that region of
the context space (e.g., a patient showing symptoms the doctor is not familiar
with might reduce the doctor’s confidence in which treatment is appropriate).
Contextual confidence provides a convenient way of modelling for example a
general practitioner as an expert whose prior experiences are spread out over
most of the context-space as opposed to a specialist (e.g., an ophthalmologist)
whose prior experience is focused on a small region of the context-space. The
former will have a moderate confidence over most of the context space, the latter
will have high confidence for that specific region on which she was trained.

Note that confidence is not always accurate. Humans also have a tendency
to overestimate their confidence [7], and over-fitting is a well-known problem
in algorithmic prediction wherein performance on training data (on which one
might base confidence) does not translate to performance on the test data [15,20].
The noise model presented in Section 3.3 partially addresses this drawback.



Confidence for CDM in CMAB Problems 9

Although human experts can readily provide contextual confidence our ex-
perimental results focus on CDM with CMAB-based algorithmic experts. the
next section discusses how contextual confidence can be derived for some of the
more common CMAB algorithms [21].

Deriving confidence from artificial experts CMAB algorithms make (ex-
plicit) use of an additional term that drives exploration. At time t, these al-
gorithms generally select the arm k that maximizes f̃t( #»x k,t) + ασk,t, where f̃t
is the learner’s current approximation of f , σk,t is the uncertainty around con-
text #»x k,t and α weighs this exploratory term. Thus, the higher the uncertainty
about a context, the higher the exploratory drive. This measure of uncertainty
is naturally linked to a lack of confidence as one can consider that low uncer-
tainty is correlated with a high accuracy and can be used as a proxy for perfect
confidence.

Hence, since experts here correspond to CMAB algorithms (and more specif-
ically KernelUCB [18]), we can exploit this uncertainty to obtain confidence
estimates. In essence, when the uncertainty σk,t around a context #»x k,t is large,
the expert’s confidence should be low. Conversely, a small uncertainty should re-
sult in a high confidence. A high level of uncertainty for all contexts indicates an
overall lack of knowledge. In such cases, performance is equivalent to a random
policy and a confidence of 0.5 is appropriate. In all other cases more informa-
tion than random is available, and the resulting confidence should reflect this by
being superior to 0.5.

Taking this into account, if σnk,t ∈ [0, 1] is expert n’s uncertainty for context
vector #»x k,t, the expert’s contextual confidence is defined as cnk,t = 0.5 + 1

2 (1 −
σnk,t).

In the case of probability advice, the probabilities are expressed in function
of multiple contexts. As a result, the expressed confidence should be a function
of the confidences of these multiple contexts. When we need to combine multiple
confidences we will use the geometric mean of individual confidences.

3.3 Noise Model

Experimental results have shown that humans have a tendency to show bias
in self-reported confidence estimates [7]. Whether it is because of past experi-
ence which is no longer relevant or simply a tendency to over or under-estimate
one’s confidence, an estimated confidence which diverges from the expert’s ac-
tual confidence can be counter-productive. It is therefore desirable to have CDM
methods that are robust to the presence of noise in confidence estimates. To sim-
ulate the presence of imperfect confidence we propose the following noise model
parametrized by a noise level η. Given an expert with true confidence cnT , we
sample her noisy confidence from the Beta distribution β(1+cnT /η, 1+(1−cnT )/η),
which ensures one remains in the [0, 1] interval. As Figure 1 (left panel) illus-
trates, the lower the noise level, the more likely it is that the expert’s sampled
confidence equals its true confidence.
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Fig. 1. Confidence distributions and reward values in 2-dimensional contex-
tual bandit. (left) Confidence distribution in function of noise (η) levels for ceT = 0.8.
Given an expert with true confidence cnT , the expert’s noisy confidence is sampled from
the beta distribution β(1 + cnT /η, 1 + (1 − cnT )/η). As η → 0 the sampled values con-
verge to cnT . As η →∞, the confidence distribution converges to a uniform distribution
over [0, 1]. (right) Example of the truth values of a 2-dimensional contextual bandit.
Brighter values have a higher expected reward. This landscape is generated using the
Perlin noise procedure described in Section 4.1.

3.4 Confidence-weighted, value-based EXP4.P

Our implementation starts from EXP4.P [5], detailed in Algorithm 2, which
builds on the assumption that expertise is equal over the complete context-space.
To deal with more localized expertise with the help of confidence estimates we
propose EXP4.P+CON.

In its original description, EXP4.P assumes no prior knowledge about the
performance of experts. Hence, weights are initialized uniformly. However, if a
confidence estimate cnk,t is available, we modify Line 4 in Algorithm 2 to in-
tegrate at each time-step the confidence estimate in the aggregation rule (the
denominator ensures the weights add up to 1):∑

n∈N

exp(wn,t)c
n
k,t/(1− cnk,t)∑

n′∈N exp(wn′,t)c
n′
k,t/(1− cn

′
k,t)

ξnk,t (9)

4 Experiments

In what follows the experimental settings are defined. First, the performance of
the different advice types, i.e., probability advice and value advice, is evaluated.
Second, the effect of (non-)contextual confidence estimates on performance are
tested against the scenario without confidence. Third, as accurate confidence
estimates are not always available, the impact of noisy confidence estimates is
tested. In all cases, EXP4.P+CON is compared to the WMV algorithm described
earlier4.
4 Code to reproduce these results will be made available upon publication of this
paper.



Confidence for CDM in CMAB Problems 11

4.1 Setting

Defining the contextual bandits While human expert CDM datasets exist,
they are typically limited in either the number of arms (typically binary), the
number of samples, the consistency in which experts participate in the CDM, the
absence of confidence, or, finally, the absence of value estimates. To allow us to
exhaustively test our methods we use artificial experts which solve an artificial
CMAB. We consider a context space of [0, 1]d with d = 2. The value landscape
is generated following Perlin noise [10], as visualized in Figure 1 (right panel).
Values generated in this manner have an average reward of 0.5 and range from 0
to 1. When pulling an arm with context #»x in this space, the reward is sampled
from a binomial distribution with probability of success p(r = 1; #»x ) = f( #»x ),
where f : [0, 1]d → [0, 1] is the function mapping the context to its value in the
value landscape.

Prior expert information We simulate prior knowledge by introducing each
expert n to Pn experiences on contexts sampled from within its hyper-rectangle
with origin #»o n ∈ [0, 1]d and side lengths #»s n ∈ [0, 1]d with #»o nd+

#»s nd ≤ 1 ∀ d. This
allows us to model the case wherein experts come into play with (in)accurate
prior knowledge. Increasing Pn improves the expert’s performance, increasing
side lengths increases the region of context-space for which the expert can provide
relevant advice.

Expert implementation A pool of N experts with differences in prior ex-
pertise is used here. Each individual expert is implemented as a KernelUCB
algorithm, as mentioned earlier, and exposed to a different subset of the context
space. We fix Pn = 100, #»s d =

#  »
0.5 and randomly sample origins from [0, 0.5]d,

meaning every expert covers (a possibly overlapping) 25% of the context space.
The noisy confidence values are sampled following the noisy model discussed in
Section 3.3.

Collective Decision Making A trial or run is defined as one iteration of
Algorithm 1. Within each trial, after each expert acquires experiences in its
expertise range, collective decision-making occurs with T = 1000. The results
discussed in the following sections are aggregated over 1000 runs. At the start of
each run, a new CMAB instance and pool of experts is generated. For any given
trial however, all algorithms considered here solve the same CMAB instance with
the same pool of experts.

4.2 Results and Discussion

Due to space limitations the results presented here are limited to two extreme
bandit-arms/expert combinations, i.e., many arms (K = 32) few experts (N =
2), and few arms(K = 2) many experts (N = 32).
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How does value advice alter probability advice results? The left-most
column of Figure 2 compares the performance of the different algorithms when
no confidence is provided. It appears that EXP4.P with value advice performs
better than probability advice when K << N , a tendency which inverses this
condition is no longer met.

When the number of arms is high but the number of experts is low, it is easier
for an expert’s overestimation of a sub-optimal arm to affect the final decision.
In contrast, when the number of experts outnumbers the number of arms, the
collective variance is reduced (similarly to ensemble methods [17]). It’s notable
that EXP4.P’s improvement on a non-adaptive weighted majority vote is not
as large as one might expect. In part, this is due to the absence of worse than
random experts, which is one of the well known conditions for effective majority
votes [8].
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Fig. 2. Performance per advice and confidence type. Regret of different ag-
gregation algorithms in function of advice and confidence type. A value of 0 means
the algorithm performs as well as the best expert. The white square marks the mean.
The given p-value results from a Wilcoxon test on the results for probability and
value advice. This plot presents performance when experts outnumber arms (top) and
arms outnumber experts (bottom). (left) Performance without confidence, (middle)
performance with non-contextual confidence, and (right) performance with contextual
confidence.

How does non-contextual confidence influence EXP4.P and WMV?
Results using non-contextual confidence estimates are given in the central col-
umn of Figure 2. Comparing these results with those obtained without confi-
dence, a significant (Wilcoxon rank-sum test with confidence level 5%) increase
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in performance can be observed for both EXP4.P (with an exception for proba-
bility advice in the N >> K case) and the (weighted) Majority vote. We further
note that the methods appear to be limited by the performance of the best
expert when K >> N .

While both methods can improve with the use of non-contextual confidence,
the improvements for EXP4.P are less pronounced. This is in part due to how
the confidence measures are exploited. In the case of EXP4.P, confidence is
essentially used as a prior on the weights, and as such the EXP4.P algorithm can
learn to diverge from the given confidence estimates. While this can be useful if
confidence is inaccurate, it also reduces the performance benefits when confidence
estimates are appropriate. Similar to results obtained in binary classification
[8], increasing the number of experts increases the relative performance of the
collective, as the lower regret when N >> K suggests.

How does Contextual confidence influence the outcome The results
using contextual confidence estimates are given in the right-most column of
Figure 2. Comparing these results with those obtained without confidence or
with non-contextual confidence, a significant improvement in performance can
be observed for both EXP4.P and the (weighted) Majority vote when N >> K.
Similarly to non-contextual confidence, the methods seem to be bound by the
performance of the best expert when N is low.

By providing contextual confidence, experts can be weighted by their (esti-
mated) performance for the given contexts. This allows the methods to improve
beyond the performance of non-contextual confidence, which only give a general
trend. This seems to especially be the case for EXP4.P+CON. We suggest that
the change in priors can purposefully drive exploration in the early stages of the
learning process and prevent the early convergence of EXP4.P+CON.

How does noisy confidence estimation affect both methods? Plots in
function of different noise levels are given in Figure 3. As the noise levels increase,
the performance of EXP4.P+CON and the Majority vote degrades. Furthermore,
while the performance of the majority significantly degrades with large noise, the
performance of EXP4.P+CON is less affected.

These results strongly suggest that, while EXP4 benefits less from accurate
confidence, it is also more robust to noisy confidence estimates than the majority
vote is. From this, a rule of thumb for the selection of the appropriate algorithm
can be derived. If noisy confidence is expected, one should prefer EXP4.P. What’s
more, this confirms the intuition that if confidence is known to be extremely
noisy, it should be ignored when making decisions.

5 Conclusion

To reduce the influence of uncertainty, this paper proposed an alternative take
on advice in the deciding with expert advice setting. More specifically, we in-
troduced value advice and proposed an extension to EXP4.P to integrate such



14 A. Abels et al.

= 0.0 = 0.001 = 0.01 = 0.1 = 1.0 = 10.0
confidence

100

50

0

50

100

150

200

250

re
gr

et

arms: 2 experts: 32

= 0.0 = 0.001 = 0.01 = 0.1 = 1.0 = 10.0
confidence

re
gr

et

arms: 32 experts: 2
EXP4.P+CON PROB
EXP4.P+CON VAL
WMV PROB
WMV VAL

Fig. 3. Influence of noise on algorithm performance. For each noise level (η)
confidence is sampled from the beta distribution β(1 + a/η, 1 + (1 − a)/η). A value
of 0 means the algorithm performs as well as the best expert. Dashed lines use value
advice, full lines use probability advice. This plot presents performance when experts
outnumber arms (left) and arms outnumber experts (right).

value advice as opposed to probability advice. Our results show such value advice
can significantly improve performance when the number of experts is sufficiently
bigger than the number of arms. What’s more, to handle the problem of local-
ized expertise, we proposed the addition of confidence estimates in the deciding
with expert advice. By using these confidences as priors on EXP4.P’s weights
we obtain a method that can benefit from confidence and is more robust than
the classical weighted majority vote when confidence is noisy. We also find that
contextual confidence, which is straightforward to derive from existing CMAB
experts can further improve the performance when compared to non-contextual
confidence. As the latter only provides information on overall performance it
is ineffective at determining optimal per-context weights. Confidence with high
noise remains a problem however, suggesting that a method which purposefully
identifies when confidence is noisy might provide further improvements. This lays
the foundation for future work in which we aim to further explore the influence
of noise (in the form of bias) on confidence and how it can be counteracted.
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